
A Case Study of Interactive
Conflict-Resolution Support
in Software Configuration
Master’s thesis in Software Engineering

DANIEL JONSSON

Software Engineering division, Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden 2016

Master’s thesis 2016

A Case Study of Interactive Conflict-Resolution
Support in Software Configuration

DANIEL JONSSON

Software Engineering division, Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2016

A Case Study of Interactive Conflict-Resolution Support in Software Configuration
DANIEL JONSSON

© DANIEL JONSSON, 2016.

Supervisor: Thorsten Berger, Chalmers University of Technology and University of Gothenburg

Supervisor: Sarah Nadi, TU Darmstadt

Examiner: Miroslaw Staron, Chalmers University of Technology and University of Gothenburg

Master’s Thesis 2016
Software Engineering division, Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Sweden
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2016

iii

A Case Study of Interactive Conflict-Resolution Support in Software Configuration
DANIEL JONSSON
Software Engineering division, Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The Linux kernel is one of the largest highly configurable systems, with more than
13,000 configuration options. Although a description is provided for many of the
configuration options, configuring the kernel has been identified as troublesome by
both users and developers. To assist the user in satisfying unmet dependencies
when configuring a system, an algorithm for resolving configuration conflicts called
RangeFix has been proposed by academia. In this case study, we explore how
RangeFix can be integrated with the Linux kernel configurator xconfig. We develop
a prototype based on xconfig, where an existing Scala implementation of RangeFix
is integrated to generate fixes and help the user resolve unmet dependencies. The
workflow for configuring the kernel, supported by this prototype, is evaluated with
Linux users through a survey. We find that the prototype is promising and can
be useful in certain scenarios. We also evaluate the existing Scala implementation
of RangeFix in terms of correctness and performance. Although the correctness is
found to be good, it is much slower than the users’ expectation. How RangeFix
can be implemented to comply with the Linux kernel community’s requirements
is also explored in this case study. The result is a partial C implementation of
RangeFix, based on a SAT solver. This C implementation is also evaluated in terms
of correctness and performance. Even if our C implementation is incomplete, we
find that this is a feasible way to implement the algorithm. When finished, it might
perform well enough to provide interactive conflict-resolution support in the Linux
kernel configurators.

Keywords: software configuration, conflict-resolution, configurators, Kconfig,
xconfig, Linux, RangeFix, SAT.

iv

Contents

1 Introduction 1
1.1 Problem identification and motivation 2
1.2 Objectives . 3
1.3 Research questions . 4
1.4 Research design . 4

2 Background 6
2.1 Feature modeling . 6
2.2 Kconfig . 10

2.2.1 Internal Kconfig infrastructure 12
2.3 Constraint solvers . 14
2.4 Overview of available Kconfig tools 15
2.5 RangeFix . 16

2.5.1 RangeFix’s three stages . 17
2.5.2 Generating diagnoses . 18
2.5.3 Encode a Kconfig model as an SMT problem 19

2.6 Related works . 21

3 Methodology 23
3.1 Problem identification and motivation 23
3.2 Objectives of a solution . 23
3.3 Design and development . 24
3.4 Demonstration . 25
3.5 Evaluation . 25
3.6 Communication . 26

4 Design and development 27
4.1 Encode a Kconfig model as a SAT problem 27

4.1.1 Configuration option encoding 28
4.1.2 Constraints encoding . 29

4.2 Read and set the configuration . 31
4.3 Generate unsatisfiable cores with SAT 32

4.3.1 How unsatisfiable cores are generated with SMT 33
4.3.2 How to generate unsatisfiable cores with SAT 34

4.4 Generate diagnoses . 36
4.5 Simplify diagnoses . 38

vi

Contents

4.6 Integrate with xconfig . 40

5 Demonstration 42
5.1 Configurator with Scala backend . 42
5.2 Configurator with C backend . 45

6 Evaluation 47
6.1 User survey . 47

6.1.1 Survey design . 48
6.1.2 Survey results . 48

6.2 The Scala implementation . 52
6.2.1 Evaluation design . 52
6.2.2 Correctness results . 54
6.2.3 Performance results . 59

6.3 The C implementation . 61
6.3.1 Evaluation design . 61
6.3.2 Correctness results . 63
6.3.3 Performance results . 65

6.4 Observations and conclusions . 67
6.4.1 User survey . 67
6.4.2 The Scala implementation . 68
6.4.3 The C implementation . 69

6.5 Threats to validity . 70

7 Towards a SAT-based implementation in C 72
7.1 Challenge #1: Integrating with xconfig 72
7.2 Challenge #2: SAT encoding . 73

7.2.1 Proper tristate expression translation 73
7.2.2 Use operators in conjunction 79

7.3 Challenge #3: Realize diagnoses . 80
7.3.1 Using the internal Kconfig infrastructure for computing the

configuration . 81
7.3.2 Implicitly configured configuration options 81

7.4 Challenge #4: Realize fix generation 82
7.4.1 Problem formulation . 82
7.4.2 Attempted approach . 83
7.4.3 Alternative approaches . 85

8 Conclusion 87

Bibliography 89

A Survey questions I

vii

1
Introduction

Through software configuration, the users of a piece of software are able to cus-
tomize it to their needs. There are software systems with a wide range of users,
exposing an extensive set of configuration options to support a variety of hardware
and software needs. These options might have complex dependencies between one
another. Having an effective interactive configuration process that aids the user in
resolving violations of one or more of these dependencies is therefore important.

For instance, the Linux kernel is one of the largest highly configurable open-
source software systems in existence today [1, 2]. A screenshot of its configuration
tool xconfig can be seen in Figure 1.1. It has more than 13,000 configuration op-
tions [3], also called features. Other examples of highly configurable systems are
BusyBox, CoreBoot, eCos, and uClibc [2]. Highly configurable systems appear in
software industries such as automotive, avionics, and communications equipment.

xconfig is not the only configurator that the Linux kernel comes bundled with.
The Linux kernel also includes other configurators called config, menuconfig and
gconfig that expose configuration of the same underlying feature model [4]. While
config is a very basic prompt-based interface, the other configurators offer a menu-
based interface, such as the one seen in Figure 1.1, using different front-end toolk-
its [4].

Figure 1.1: A screenshot of the Linux configuration tool xconfig.

1

1. Introduction

1.1 Problem identification and motivation
Building feature models with Kconfig, which is the feature modeling language that
the Linux kernel uses, occurs to a great extent. There are many people in the world
who either interact with the language directly as developers, or indirectly using one
of the many configurators. The Linux kernel has received contributions from more
than 2,000 developers during a 15 months period [5]. Furthermore, between 2005
and 2015, nearly 1,000 companies contributed to the Linux kernel [5]. Taking into
account the number of people using the Linux kernel, developing it, and the number
of companies involved, it is the largest software development project in history [1].
Besides the Linux kernel, there are also several other open-source projects that use
Kconfig for their feature model, including axTLS, BuildRoot, BusyBox, CoreBoot,
EmbToolkit, Fiasco, Fraeetz, ToyBox, uClibc, uClinux-base and uClinux-dist [2].
Linux users configure the kernel for reasons such as personal use, server maintenance,
system administration, development, embedded systems and virtual machines [6].
Since Kconfig is open-source, it is impossible to exactly quantify to what extent it is
being used, but as noted here, there clearly are a lot of developers, administrators,
projects and companies who interact with Kconfig in one or another way.

The task to configure the Linux kernel becomes more challenging as its feature
model continues to grow. With each new release of the Linux kernel, the code
base grows both in terms of source lines of code and configuration options [7, 8].
Between 2005 and 2015, the number of source lines of code in the kernel grew with
159 %, or on average with 2.6 % per release [8]. Today, there are more than 13,000
configuration options in the Linux kernel [3], making it one of the largest known
feature models [2]. The number of Kconfig configuration options grows linearly
with the number of lines of code, due to the development of the Linux kernel being
predominantly feature-driven [9].

Hubaux et al. [6] have conducted a survey to identify challenges Linux and eCos
users face when configuring their systems. 97 Linux users filled out the survey,
roughly half of whom claimed to be experts with up to 20 years of experience with
Linux. Half of the Linux user participants reported that they make between 20 and
50 changes to a default configuration, while some participants answered that they
make more than 2,000 changes. 56 % of the participants consider enabling/disabling
a configuration option to be a problem in practice. 20 % of the Linux user partic-
ipants stated that they need at least a few dozen minutes on average to figure out
how to activate an inactive option. To activate an inactive option, 46 % of the partic-
ipants said that they manually read and follow the constraints in the configuration
option’s help text. However, 19 % of the Linux user participants complained that
the help text documentation often is incomplete, hard to understand or incorrect.
26 % participants said that they rely on their own expertise to activate an inactive
option. In the paper by Hubaux et al., we find the following quote from one of the
participants who provided a more detailed response to the survey:

"As far as consistency checking and helping determine inter-related de-
pendencies on settings, I have long wished for a better kernel configura-
tion tool [. . .], but it seems that the kernel guys learn their way around

2

1. Introduction

the configurator by much exposure, and the rest of us have to just figure
it out [. . .]"

Hubaux et al. [6] are not the only ones having identified the configuration process
of the Linux kernel as lacking; there are also kernel developers who want to see
improvements in this area. They have created a project called kconfig-sat with a wiki
page [10], where information about the initiative is organized, and a mailing list [11],
where discussions take place. Their plan is to integrate a boolean satisfiability solver,
SAT solver for short, with the kernel configurators to assist the users in resolving
dependencies. As a side note, they have also identified other areas in the kernel
where a SAT solver could be beneficial, such as process scheduling and dependency
resolution during boot up [12].

To illustrate the challenge in configuring the Linux kernel, let us look at a prac-
tical example. For instance, the user may want to enable the configuration option
RTLWIFI_DEBUG, which provides debugging information to Realtek network adapters.
But RTLWIFI_DEBUG depends on the configuration option RTLWIFI, which means
that RTLWIFI has to be enabled before RTLWIFI_DEBUG can be enabled. However,
RTLWIFI is invisible and does not appear in the configurator. To enable it, a Real-
tek network adapter must instead be enabled, for instance RTL8192DE or RTL8821AE.
These latter two options are utilizing a reverse-dependency that enables RTLWIFI
whenever they are enabled. To figure out why RTLWIFI_DEBUG is inactive and cannot
be enabled, and to satisfy its constraints, is not straightforward with the current
configurators. Resolving dependencies is often a time-consuming task where the
user has to rely on his own expertise or manually follow the constraints described
in the documentation [6].

To summarize, Kconfig is a feature modeling language that a large user base
depends on in one way or another. The Linux kernel is interesting as a case study
target due to its large feature model and popularity. Lastly, both users and devel-
opers of the Linux kernel have identified that a dependency-resolution tool would
be beneficial.

1.2 Objectives
The objective of this Master’s thesis is to conduct a case study where the feasibility
of realizing an interactive conflict-resolution approach in one of the Linux kernel con-
figurators is investigated. An approach would be attempted, and the effectiveness,
scalability and practicability evaluated. By also collecting feedback from the Linux
community, the usability of such a solution could be estimated. The results can be
used to realize configuration processes for similar domains, or assess the feasibility
of it. To achieve this objective, we address the following sub-goals:

• Generate a logical representation of the Linux kernel’s feature model usable
by reasoners.

• Find an approach to detect conflicts.
• Implement an approach to generate fixes, which will ultimately resolve the

conflicts.

3

1. Introduction

• Create a prototype that integrates the above into the Linux kernel configurator
xconfig.

1.3 Research questions
The main research question to be addressed is:

• How to realize scalable conflict-resolution for a configuration system as large
as the Linux kernel configurator? The feasibility of implementing a conflict-
resolution algorithm from academia, which meets the requirements of the com-
munity, will be investigated.

The sub-question is:

• How to encode the problem? The constraints of the Linux kernel’s feature
model must be encoded in such a way that it is possible to do reasoning
with them. The choice of constraint solver depends on what the Linux kernel
community prefers.

1.4 Research design
Our goal is to realize interactive conflict-resolution support for one of the Linux
kernel’s configurators. This was initiated by a pre-study where available tools and
options were investigated, with the goal of finding an appropriate algorithm for
resolving unmet dependency. It was followed by the construction of a prototype
where the usefulness of interactive conflict-resolution could be demonstrated. The
feasibility of implementing the algorithm in C with a boolean satisfiability solver,
which has a stronger community support, was also investigated. The last part of
the thesis project was to evaluate the accuracy of the fixes, the scalability of the
algorithm, and the usability of the prototype’s user interface.

The research strategy for this project was a case study. In an exploratory manner,
the objective to implement and evaluate interactive conflict-resolution in a highly
configurable software has been researched. The context was software configuration,
while the case was narrowed down to the Linux kernel, and the unit of analysis was
this very project’s produced artifacts. A frame of reference and data collection were
achieved through a survey with kernel developers, where they provided their insights
and feedback on the implementation. The case was intentionally selected within the
context with the expectation of it to be revelatory due to its size and complexity.

The research method for this project was design science research, which can be
divided into six activities [13]. The methodology is explained in further detail in
Chapter 3, but a short overview is given here together with an outline of this thesis.
The first activity of design science research is problem identification and motivation,
where the specific research problem is defined and the value of a solution justified.
This is elaborated in detail in Section 1.1. The second activity is objectives of a
solution, where objectives of the project are inferred from the problem definition,
which is done in detail in Chapter 3. The third activity is design and development,

4

1. Introduction

where artifacts are produced with the aim of addressing the research question. The
thought process behind the development and the produced artifacts are presented in
Chapter 4. The fourth activity is demonstration, where the efficacy of the artifacts
is showcased. This is done in Chapter 5, where the implementations are shown,
and the workflow they support explained. The fifth activity is evaluation, where the
artifacts are observed and measured to determine how well they solve the identified
problem. This was done through correctness and performance analysis, as well as
through a survey with kernel users and developers, and the results are presented
in Chapter 6. The sixth activity is communication, where the problem and the
artifacts are communicated, which is done through this report. The results have also
been shared with the Linux developers. Furthermore, observed challenges that this
thesis’ C-based artifact has not yet been able to solve or implement are elaborated
in Chapter 7. This provides information for the design and development activity for
subsequent projects aimed at improving the effectiveness of that artifact.

5

2
Background

In this chapter, topics central for this thesis are explained. The first section shows
how feature modeling looks like in some software systems. Next, an overview of the
Kconfig feature modeling language is given. This is followed by the presentation of
two types of constraint solvers. Next, an overview of the available Kconfig tools that
were investigated for this thesis are presented. One such tool, RangeFix, is explained
in further detail in its own section. Lastly, some related works are presented.

2.1 Feature modeling
A feature model is a graphical representation of commonalities and differences in
a product line [14]. The feature model consists of a hierarchy of features [14],
where a feature is an increment in product functionality [15]. Features are used to
capture functionalities and distinguish products in a product line [15]. Furthermore,
a feature model does also define constraints over the model to limit the number of
valid combinations [14]. Each such valid feature combination is called a product, or
an instance of the feature model [14].

Examples of feature modeling software are pure::variants from pure-systems,
Gears from BigLever, and the eCos Configuration Tool. pure::variants is a com-
mercial tool where the user can build a feature model consisting of features and
restrictions between arbitrary features [16]. These restrictions are expressed with
logical rules [16]. pure::variants has integrated conflict-resolution support, which is
implemented through a conversion of the constraints into Prolog where the depen-
dencies are evaluated [16]. A screenshot of pure::variants can be seen in Figure 2.1.
The window in the screenshot contains a feature model in the left panel, relations in
the right panel, and conflicts between the configuration options in the bottom panel.
In the bottom panel we can see that there is a conflict between two of the configura-
tion options. In Figure 2.2, a different view of pure::variants’ feature model can be
seen. It displays the relations and conflicts more visually. Gears is another commer-
cial tool. It allows its user to build and manage a complete product line through a
feature model [17]. eCos on the other hand is an open source real-time operating sys-
tem which is configured through a configurator called eCos Configuration Tool [18].
The feature model is specified with a language called Component Definition Lan-
guage (CDL) [18]. The eCos Configuration Tool also supports dependency-checking
and reports on any detected conflicts, which makes it possible for its users to resolve
the conflicts and ensure a consistent configuration [18]. A screenshot of the eCos
Configuration Tool can be seen in Figure 2.3. The configuration in the screenshot is

6

2. Background

Figure 2.1: A screenshot of the pure::variants configurator.

in an unsatisfied state and in the upper-right corner of the window we can see that
one conflict has been detected.

The Linux kernel is bundled with several configurators. These configurators can
be seen as feature modeling tools [19]. All of them expose the same feature model,
but with different front-ends. The most basic one is called config, a screenshot of
it can be seen in Figure 2.4, which prompts the user with questions to configure
the kernel. Another configurator is menuconfig, which can be seen in Figure 2.5.
It has a terminal-based interface with menus that the user can navigate through
and tick configuration options on and off to configure the kernel. One of the con-
figurators with a graphical user interface is called xconfig, which can be seen in
Figure 1.1. Common among all Linux configurators is that entering an invalid state
is impossible due to only the valid configuration option values being selectable [6].
This means that no interactive conflict-resolution support in the configurators has
been implemented, as opposed to eCos and pure::variants. However, there is also no
built-in tool for helping the user to activate an inactive configuration option through
dependency-resolution.

7

2. Background

Figure 2.2: A different view of the feature model in pure::variants.

Figure 2.3: A screenshot of the eCos Configuration Tool.

8

2. Background

Figure 2.4: A screenshot of the Linux kernel configurator "config".

Figure 2.5: A screenshot of the Linux kernel configurator menuconfig.

9

2. Background

2.2 Kconfig
The Linux kernel’s feature model is specified with a language called Kconfig, which
at a high level is a collection of configuration options that are organized in a tree
structure [20]. These configuration options are sometimes also called symbols, menu
entries, or features. An example of a Kconfig file can be seen in Listing 2.1. The
most relevant Kconfig concepts for this thesis, among the ones affecting Kconfig’s
variability management logic [21], are config options, attributes, choices, hierarchies,
and propositional logic constraint expressions.

Config options are what the user modifies to configure the kernel. A configu-
ration option is specified in Kconfig with the keyword config. Each configuration
option has one of the five types bool, tristate, string, hex and int. Out of
these, tristate needs some further explanation. A tristate behaves like a bool,
except that it has three states: no, module, and yes. By using tristate, it is pos-
sible for the user to specify whether a configuration option, for instance a driver,
should be compiled into the kernel or be compiled as a loadable module. 94 % of
the configuration options for the x86 architecture are either of the type bool or
tristate [2].

Attributes are used to enhance configuration options with various properties.
They are prompt, default, range, visible if, depends on, and select. prompt
sets the name of the configuration option that appears in the configurator; if it is
absent, the config is invisible. default sets the configuration option’s default value.
range is valid for the numerical types and specifies the range that the configuration
option’s value can be set within. visible if controls the visibility of the config-
uration option in the configurator. With depends on, it is possible to specify an
expression that must evaluate to true for the user to be able to edit its value in the
configurator. select is a reverse-dependency; if a configuration option is enabled
and it is set to select a second configuration option, that second configuration
option is forced to also be enabled.

Choice is a group of bool or tristate configuration options where only a single
one may be set to yes, i.e. they are mutually exclusive. In the case when the type is
tristate, any number of configuration options are also allowed to be set to module.
A choice group is useful if there exists multiple drivers for a single hardware but only
one can be compiled into the kernel while any number can be compiled as loadable
modules [20].

Hierarchies are built by dependencies and menus. Through dependencies, a
hierarchy can sometimes be inferred, where a configuration option becomes a child
to the configuration option it depends on. A menu, specified with the keyword
menuconfig, is a regular config except that it also has sub-options which gives
a hint to the configurator how the configuration options should be presented. In
configurators such as menuconfig and xconfig, a menuconfig results in a new level
in the tree view.

Constraint logic expressions can be used together with most attributes. The
supported operators for boolean and tristate logic are:

• Constants. There are three constants: no, n (=0); module, m (=1); and yes, y
(=2).

10

2. Background

Listing 2.1: A partial Kconfig model with six configuration options.
1 config MODVERSIONS
2 bool "Set version information on all module symbols "
3 depends on MODULES
4

5 config BT_MRVL_SDIO
6 tristate " Marvell BT -over -SDIO driver "
7 depends on BT_MRVL && MMC
8 select FW_LOADER
9 select WANT_DEV_COREDUMP

10

11 config NR_CPUS
12 int " Maximum number of CPUs (2 -32)"
13 range 2 32
14 depends on (AGP || AGP=n) && ! EMULATED_CMPXCHG && MMU && HAS_DMA
15 default "32" if ALPHA_GENERIC || ALPHA_MARVEL
16 default "4" if ! ALPHA_GENERIC && ! ALPHA_MARVEL
17 select I2C_ALGOBIT
18 select DMA_SHARED_BUFFER
19 help
20 MARVEL support can handle a maximum of 32
21 CPUs , all the others with working support
22 have a maximum of 4 CPUs.
23

24 config A
25 tristate "A prompt "
26 depends on B
27

28 config B
29 tristate "B prompt "
30

31 config C
32 tristate "C prompt "
33 select A

Listing 2.2: A Kconfig .config configuration file.
1 CONFIG_MODVERSIONS =y
2 CONFIG_BT_MRVL_SDIO =m
3 CONFIG_NR_CPUS =8
4 # CONFIG_A is not set
5 CONFIG_B =m
6 CONFIG_C =y

11

2. Background

• Negation. Negation is achieved with !<expression>, which returns the result
of 2 - <expression>. y turns into n and vice-versa, while m is unaffected.

• Equality. The equality between two symbols, i.e. either a configuration option
or a constant, is returned with <symbol 1>=<symbol 2>. For example, A=m
returns y if the configuration option A is set to m, otherwise n.

• Inequality. This works like equality, but the other way around. It is specified
with <symbol 1>!=<symbol 2> and returns n when the symbols are equal and
y otherwise.

• Max. The max-operator returns the largest value of two expressions, and the
operator is written <expression 1> || <expression 2>. For instance, if the
expression is n || m, it will be evaluated to m.

• Min. The min-operator returns the smallest value of two expressions, and
the operator is written <expression 1> && <expression 2>. For instance,
if the expression is y && m, it will be evaluated to m.

Using these operators, it is possible to write complex expressions for controlling
dependencies and other attributes. For instance, depends on (A && B) || C and
select A if B=m || C!=n. More examples of constraint logic formulas can be seen
in Listing 2.1.

There is also an attribute called help that does not affect Kconfig’s variability
management [21]. It is used for providing documentation about the configuration
options, which can be displayed in the configurators for the users. A screenshot of
how it looks like in xconfig for the configuration option OMAP2_DSS can be seen in
Figure 2.6. The description of the configuration option is just "OMAP2+ Display
Subsystem support." However, the help text in the configurator also contains other
useful information.

Dependencies and reverse-dependencies give rise to upper and lower bounds. Let
us take a look at the three configuration options A, B, and C in Listing 2.1. If B is
set to n, the value of A cannot be changed by the user from n. But if B is to y by
the user, then A can be set to any tristate value. However, if B is set to m, then A
can only be set to either n or m. This illustrates how depends on creates an upper
bound. In a similar manner, select creates a lower bound. If C is set to y, then A
is also forced to y without the user being able to change its value. If C is set to m,
the user is free to set A to either m or y (given that B is set to y). But if C is set to
n, the lower bound is n.

The upper and lower bounds can also be combined. For instance, if both B and C
are set to m, then A is also set to m; the reason being that B creates the lower bound
m, and C creates the upper bound m.

The configuration is stored in a file called .config. An example of such a file
can be seen in Listing 2.2. A hashtag (#) creates a comment. Any configuration
option that has not been assigned a value is implicitly set to n, if it does not have
a default attribute that overrides it to something else.

2.2.1 Internal Kconfig infrastructure
The kernel source tree includes several configurators and they do all share the same
code for reading and parsing Kconfig models and .config configuration files. The

12

2. Background

Figure 2.6: Help text in xconfig for the configuration option OMAP2_DSS.

function with the signature void conf_parse(const char *name) takes the path
to a Kconfig file as its parameter and loads the Kconfig model into a global variable
with the signature struct menu rootmenu. The configuration is loaded with the
function int conf_read(const char *name), which takes the path to a .config
file as its parameter. By loading a configuration, the rootmenu data structure is
updated with value assignments from the configuration.

Some of the most important Kconfig C structs and their variables are shown in
Figure 2.7. Each list item in the configurator maps to an instance of the struct
menu. The list items are organized in a tree structure, where one’s children are
pointed at by menu’s variable list. A menu can also, with its sym variable, point
at a symbol struct, where the configuration option’s data is found. A symbol’s
current configuration value is found in the variable curr. The configuration option’s
attributes are pointed at by prop, which are ordered as a single-linked list. The
different configuration option types are found in the enum symbol_type, and the
configuration option attribute types are in the enum prop_type.

13

2. Background

Figure 2.7: Internal Kconfig data structures.

2.3 Constraint solvers
There are several different types of solvers for working with constraint satisfaction
problems. Two popular choices are SAT and SMT, which are explained in further
detail below. The concept of unsatisfiable cores will also be explained.

SAT, an abbreviation of boolean satisfiability problem, is used for modeling boolean
constraint problems. It only supports boolean typed variables, and the constraint
formulas must often be written in CNF [22] (conjunctive normal form). A common
format for these problems is DIMACS [23]. An example of a DIMACS encoded
problem can be seen in Listing 2.3; it consists of three variables (1, 2 and 3) and the
two clauses (1∨¬3)∧(2∨3¬∨1). The problem is satisfiable if there is an assignment
of 1, 2 and 3 that makes all clauses evaluate to true. By running it through a SAT
solver, we can find out if the problem is satisfiable and what a valid assignment of
the variables would be in that case. The primary advantage with SAT is its very
good performance which enables it to do extremely fast reasoning with thousands
of variables [14].

SMT stands for satisfiability modulo theories and is a generalization of SAT.
It provides a richer modeling language, where it is possible to work with integers,
arithmetic, functions and more. An example of an SMT problem, written in the
SMT-LIB language syntax, can be seen in Listing 2.4. In the example, a constant a
is declared with the type Int, and a function f, taking two arguments and returning
one value, is also declared. Two asserts are made over these declarations, and in the
end the satisfiability of the problem is checked. As we can see in this small example,
with SMT many problems can be modeled more easily than in SAT.

A concept related to constraint solvers is the notion of unsatisfiable cores, which
is a subset of constraints in a configuration that in standalone are unsatisfiable.

14

2. Background

Listing 2.3: An example of a SAT problem written in DIMACS.
1 p cnf 3 2
2 1 -3 0
3 2 3 -1 0

Listing 2.4: An example of an SMT problem written in SMT-LIB.
1 (declare -const a Int)
2 (declare -fun f (Int Bool) Int)
3 (assert (> a 10))
4 (assert (< (f a true) 100))
5 (check -sat)

Assume we have the boolean variables A, B and C, and the following constraints:

A := true, B := false, C := true, A↔ B, B ↔ C

The configuration is unsatisfied since some of the constraints are violated. One
unsatisfiable core in this example is {A := true, B := false, A ↔ B}, which
means that if we only consider the constraints in the core, the configuration is still
unsatisfiable. The core is also minimal because if we remove any of the constraints
from the core, it is possible to find an assignment of the variables that satisfies the
constraints. For instance, if we remove B := false, we only have the constraints
{A := true, A ↔ B} left, and we are able to find a valid assignment to A, B and
C, such as A := true, B := true, C := false.

2.4 Overview of available Kconfig tools
There are several tools and research projects available that can analyze Kconfig
models in various ways. Part of the project has been to investigate these configura-
tion options and see what could be re-used for this thesis project. These are listed
below.

Kconfigreader [24] is a tool implemented in Scala that reads Kconfig files and
converts them into CNF formulas in the DIMACS format for further reasoning. It
relies on a utility called dumpconf, which is implemented in C, that utilizes Linux’s
Kconfig infrastructure to dump the internal representation as XML, which is then
parsed by Kconfigreader.

Undertaker [25] is a tool implemented in C++ that parses Kconfig models and
does configuration analysis on them. It can check the structure of preprocessor
directives in the Linux kernel’s source code against different configuration models
to find blocks of features that cannot be selected or deselected.

LVAT [26, 27] (Linux Variability Analysis Tools) is a tool suite written in Scala
for analyzing Kconfig models. It currently offers three different tools: propositional
formula extractor, Kconfig statistics, and feature model translator. It relies on a
utility called exconfig [28] (Linux Kconfig Extractor), which is implemented in C,
that utilizes Linux’s Kconfig infrastructure to dump the internal representation to
an .exconfig file [29], which is then parsed by LVAT.

15

2. Background

RangeFix [30, 31] is an algorithm for finding fixes to resolve configuration con-
flicts. A proof-of-concept with a command-line interface has been implemented in
Scala that works with both Kconfig and eCos’ CDL files. The Kconfig version
depends on LVAT, and takes an .exconfig file, a .config configuration file, a con-
figuration option name and a requested value as inputs. If setting the configuration
option to the requested value results in a conflict, RangeFix returns one or more
fixes that the user can implement in her configuration to set the configuration option
to the requested value and satisfy its dependencies. The algorithm depends on a
constraint solver, and the Scala implementation utilizes the SMT solver Z3 [32].

Satconfig [33] is a tool for creating a valid .config configuration file from a
partial configuration. The user only has to set the values of the configuration options
she is interested in, and Satconfig will automatically fill in any blanks to satisfy their
dependencies. However, if there are any conflicts, Satconfig quits since it is not able
to resolve any conflicts. Satconfig is written in C and is integrated as an additional
command in the Linux kernel’s build system. It started as a Google Summer of Code
project, but it has not been merged upstream and is only available in a downstream
fork of the kernel repository [33]. Satconfig translates the Linux kernel’s internal
Kconfig data structure directly into CNF clauses and appends them to the SAT
solver PicoSAT [34] by using its C API.

2.5 RangeFix
RangeFix was already introduced in the previous section. However, since this thesis
bases a lot of its work on RangeFix, the algorithm needs a more detailed explanation.

RangeFix is a novel algorithm for finding minimal fixes to a configuration that
resolve any unsatisfied constraints [30]. Since it is just an algorithm, it is not bound
to any feature modeling language in particular. However, the algorithm has been
tested with both Kconfig and CDL through an implementation in Scala.

The functionality of RangeFix is best illustrated by a small example, taken from
the RangeFix paper [30]. Assume the following set of configuration options are
declared in a feature model:

{m : Bool, a : Int, b : Int}

Furthermore, assume that the feature model contains the following three proposi-
tional logical constraints:

(m→ a > 10) ∧ (¬m→ b > 10) ∧ (a < b)

Our feature model now contains three variables (m, a and b) and three constraints
over these configuration options. Continuing with the example, assume that there
is also the following configuration:

{m := true, a := 6, b := 5}

Values have now been assigned to the feature model’s variables. However, these
value assignments violate a couple of the constraints. More specifically, the first and

16

2. Background

the last constraints are violated:

(true→ 6 > 10) ∧ (¬true→ 5 > 10) ∧ (6 < 5)

The first is violated because (true → 6 > 10) = (true → false) = false. The
third is violated because (6 < 5) = false. Clearly, some of the variables need
to have their values changed to satisfy the constraints. By applying the RangeFix
algorithm to this problem, the following two fixes are generated:

• [m := false, b : b > 10]
• [(a, b) : a > 10 ∧ a < b]

All conflicts will be resolved and the configuration satisfied if one of these two fixes
is applied. In other words, the user has two options in how to resolve the conflicts
and satisfy the constraints. If the first fix is selected, the assignment to m needs to
be changed from true to false, and b from 5 to something greater than 10. a does
not need to be changed in the first fix. If the second fix is selected, both a and b
need to be changed in such a way that a > 10 and a < b are true.

2.5.1 RangeFix’s three stages
RangeFix generates fixes in three separate steps called stages. The variables that
need to be changed are found during the first stage. These variables are organized in
sets, called diagnoses. Returning to the previous example, the two located diagnoses
were:

• {m, b}
• {a, b}

In the second stage, the constraints are transformed into modified constraints.
The transformation is done for each diagnosis by retrieving the constraints affecting
the diagnosis and replacing all variables in the constraints that are not part of the
diagnosis with the configuration’s value. Continuing with the running example, the
two modified constraints were:

• (m→ 6 > 10) ∧ (¬m→ b > 10) ∧ (6 < b)
• (true→ a > 10) ∧ (¬true→ b > 10) ∧ (a < b)

In the first modified constraint, the applied diagnosis was {m, b}, and all other
configuration options have therefore been substituted with their configuration value;
in this case have all occurrences of a been substituted with 6. In the second modified
constraint have all occurrences of m been substituted with true.

The modified constraints are minimized into fixes during the last, and final,
stage of RangeFix. The minimization is achieved through a process where several
heuristic rules are applied to rewrite the modified constraints into simpler units.
The end result of this stage are the fixes:

• [m := false, b : b > 10]
• [(a, b) : a > 10 ∧ a < b]

17

2. Background

2.5.2 Generating diagnoses
A diagnosis is

• a subset of configuration options that are violating one or more of the con-
straints, and is

• able to satisfy the constraints when the values of its configuration options are
changed properly.

An important property of a diagnosis is that each configuration option in the di-
agnosis is part of an unsatisfiable core. Furthermore, for a diagnosis to be able to
satisfy the configuration, it must contain at least one configuration option from each
unsatisfiable core. To be able to understand how this works, a closer look at hard
and soft constraints in conjunction with a satisfiability solver is needed.

Returning to the running example for this section, the constraints were:

(m→ a > 10) ∧ (¬m→ b > 10) ∧ (a < b)

These are considered to be hard constraints, because lessening them is not an option
when seeking for a valid configuration. Continuing on, there was also the following
configuration:

{m := true, a := 6, b := 5}

These assignments are the soft constraints. It would be best if as many assignments
as possible could be made, but if that is not possible due to constraint violations,
some need to be edited.

Constraint solvers often only understand the concepts of variables and con-
straints, and there is usually no distinction made between hard and soft constraints.
However, assuming that there is at least one assignment of the configuration options
that do not cause any constraint violations, each unsatisfiable core must contain at
least one soft constraint. Because it is only from the user’s configuration choices that
conflicts can be introduced. In the running example, the union of the constraints
are:

(m→ a > 10) ∧ (¬m→ b > 10) ∧ (a < b) ∧ (m := true) ∧ (a := 6) ∧ (b := 5)

The minimal unsatisfiable cores are:

• (m→ a > 10) ∧ (m := true) ∧ (a := 6)
• (a < b) ∧ (a := 6) ∧ (b := 5)
• (m→ a > 10) ∧ (¬m→ b > 10) ∧ (m := true) ∧ (b := 5)
• (m→ a > 10) ∧ (¬m→ b > 10) ∧ (a := 6) ∧ (b := 5)
• (m→ a > 10) ∧ (¬m→ b > 10) ∧ (a < b) ∧ (b := 5)

A diagnosis contains at least one soft constraint from each minimal unsatisfiable core.
By selecting either (m := true) ∧ (b := 5) or (a := 6) ∧ (b := 5), all unsatisfiable
cores are covered. In other words, by changing the values of either {m, b} or {a, b},
it is possible to satisfy the constraints.

In Figure 2.8, a visualization of the first stage of the RangeFix algorithm can
be seen on a high level in the form of a flowchart. Starting with an empty partial
diagnosis, the algorithm enters a loop where it tries to expand the partial diagnosis

18

2. Background

into more partial diagnoses and make them as large as possible. When a partial
diagnosis does not cause any more unsatisfiable cores to be detected, it is appended
to the set R as a diagnosis. The important part to note here is that the constraint
solver has to be invoked during each iteration to tell whether the partial diagnosis is
large enough to eliminate all unsatisfiable cores; if not, it will extract an unsatisfiable
core to construct one or more larger partial diagnoses.

Figure 2.8: A flowchart of the first stage of the RangeFix algorithm on a high
level.

2.5.3 Encode a Kconfig model as an SMT problem
The Scala implementation of RangeFix utilizes an SMT solver to find and extract
unsatisfiable cores. A brief overview of how a Kconfig model is encoded as an SMT
problem is given in this section.

Boolean variables are encoded with SMT’s primitive type Bool, while tristates
are encoded with an enum with three states. The enum is called __enum__0, and
its definition is shown in Listing 2.5.

For each configuration option that appears in the Kconfig model, two SMT
variables are allocated. The first variable contains the configuration option’s value,
and its type maps to its corresponding type in the Kconfig model. For instance, a
tristate in the Kconfig model maps to a __enum__0 in SMT, while a bool in the
Kconfig model maps to a Bool in SMT. The second variable is a Bool, regardless of

Listing 2.5: The tristate type declared with an enum.
1 (declare - datatypes () ((__enum__0
2 __s__enum_int__0_0 __s__enum_int__0_1 __s__enum_int__0_2)))

19

2. Background

Listing (2.6) A Kconfig model
with exconfig’s syntax.

1 config A tristate {
2 }
3 config B boolean {
4 }

Listing (2.7) A corresponding .config
configuration file.

1 CONFIG_A =n
2 CONFIG_C =n

Listing (2.8) Allocated SMT variables from Listing 2.6, and assert commmands to
control their value from and Listing 2.7.

1 (declare -const A __enum__0)
2 (declare -const B Bool)
3 (declare -const __gd__A Bool)
4 (declare -const __gd__B Bool)
5 (assert (or (not __gd__A) (= A __s__enum_int__0_0)))
6 (assert (or (not __gd__B) (= B false)))

Listing 2.9: The allocated SMT variables and the asserts to control their value
source.

1 (assert (! __gd__A :named __ex____gd__A))
2 (assert (! __gd__B :named __ex____gd__B))

the configuration option’s type, and it is used to determine the first variable’s value
source. If the second variable is set to True, the first variable is assigned to what
is declared in the .config file. If the second variable is instead set to False, the
SMT solver is free to determine the value of the first variable.

An example of a Kconfig model, a .config file and the corresponding SMT
variables are shown in Listing 2.6, Listing 2.7 and Listing 2.8. In Listing 2.8, the
SMT solver will use the values from the .config file when __gd__A and __gd__B are
set to True. This is done with the two assert commands in Listing 2.9, which also
name the variables to be able to extract the unsatisfiable cores that the configuration
might give rise to.

The constraints are declared using a set of various functions. A minimal example
for a configuration option C that has no dependencies is shown in Listing 2.10.
This small example illustrates how the Scala implementation of RangeFix creates
functions for each configuration option that defines its lower and upper bounds. At
the last line, an assert is made to set C’s value to yes by specifying that the function
C__effective’s return value should be equal to __s__enum_int__0_2.

20

2. Background

Listing 2.10: An example of SMT functions.
1 (define -fun C__upperBound () Bool true)
2 (define -fun C__inherited () __enum__0 __s__enum_int__0_2)
3 (define -fun C__lowerBound () Bool false)
4 (define -fun C__rangedUserValue () Bool
5 (or (and C C__upperBound) C__lowerBound))
6 (define -fun C__default () Bool
7 (or (and false true) C__lowerBound))
8 (define -fun C__effective () Bool
9 (ite (= C__inherited __s__enum_int__0_0)

10 C__default C__rangedUserValue))
11 (assert (= __s__enum_int__0_2 C__effective))

2.6 Related works
Usability of the Linux configurators. Improving the usability of the Linux
kernel configurators has been studied by Bak et al. [35]. In their study, they had
identified the usability to be lacking, and used xconfig as an example to highlight
these usability problems. They implemented a prototype that they called lkc, which
would eliminate many of their identified usability problems. lkc was evaluated with
users, and they received positive feedback saying that their changes were definitely
an improvement over xconfig. Among the users’ desired additional features was
conflict-resolution.

Formalizing the Kconfig language. Since the Kconfig language lacks a formal
specification, semantics of it have been described by studying the behavior exhibited
in xconfig [26]. An experiment to formalize the language, by defining propositional
formulas that describe all valid configurations of the Linux kernel, has also been
made [36, 37], where implementing it with SAT solvers is highlighted as a possible
application.

Resolving configuration conflicts. As mentioned in Section 2.4, there are sev-
eral projects that have implemented various reasoners for Kconfig feature models.
One of them was RangeFix [30], which is an algorithm for resolving configuration
conflicts. It was also mentioned that RangeFix has a Scala implementation that
works with Kconfig feature models.

Feature model analysis. Through a variety of papers, different aspects of the
Linux kernel’s feature model have been studied. One such aspect is the evolution of
the kernel’s feature model, which involves the growth of the number of features [9,
7]. Another aspect is finding zombie features, which are bugs where features cannot
be either enabled or disabled at all [38]. How features are scattered in a non-modular
way has also been researched [8].

Knowledge based configurators. Much work has been done for configurators
for physical goods in the field of knowledge-based configuration, a subfield of AI, but

21

2. Background

relatively little research has been done in the area of configurators for software [39].
In manufacturing, companies adopt configurators to gain commercial advantages
such as flexibility, lower production costs and increased customer satisfaciton [14].
These are built on models called product variant master, which is a set of hier-
archically organised components that aims at capturing variability of the product
range [14]. Abbasi et al. [40] did a study on 111 web-based product configurators
and found that one can do a lot of parallels to software configurators. Since there
exists a big overlap between the fields, an attempt at unifying these two fields has
recently been made [39].

22

3
Methodology

The methodology applied in this case study has been the one described by design
science research [13]. Design science research is suitable for development projects
and it prescribes a process of six activities. The six activities are 1. problem iden-
tification and motivation, 2. objectives of a solution, 3. design and development,
4. demonstration, 5. evaluation, and 6. communication. How these activities have
been applied in this case study is expanded upon in the following sections in this
chapter.

3.1 Problem identification and motivation
In Section 1.1, the relevancy of improving the configuration process of Kconfig fea-
ture models was argued for. Statistics from a user survey were presented, telling us
that the configurators were indeed lacking in usability. Confirming the issues were
kernel developers, who have started an initiative called kconfig-sat, where the aim is
to add support for automatic dependency-resolution. From the gathered evidence,
it is apparent that it would be beneficial if people who configure Kconfig based
software could receive aid from the configurator with resolving unmet dependencies.

3.2 Objectives of a solution
With the problem having been identified, the next step was to formulate an objective
on how to best address it. In Section 2.1, we presented examples of other feature
modeling tools similar to the Linux kernel’s configurator xconfig. Two of those
were the eCos Configuration Tool and pure::variants, both of which have built-in
support for conflict-resolution assistance. Using these solutions as an inspiration,
implementing a similar solution for the Linux kernel seemed like a reasonable way
to address the issue. We also noted in Section 1.1 that there are Linux users who
have also arrived at the same conclusion—that adding support in the Kconfig con-
figurators for resolving dependencies would be beneficial. The objective therefore
became to implement an interactive conflict-resolution tool that integrates with one
of the Kconfig configurators. Whenever the user attempts to enable a configuration
option with unmet dependencies, the configurator could present a list of possible
fixes that would resolve the unmet dependencies.

23

3. Methodology

3.3 Design and development
The design and development activity was initiated by an investigation of available
tools related to Kconfig. An overview of the tools that were investigated is pre-
sented in Section 2.4. Among these, the ones that appeared as having the highest
potential in achieving the goal of the research questions were RangeFix and Sat-
config. RangeFix is an algorithm for resolving configuration conflicts, which has an
existing Scala implementation that works with Kconfig. Satconfig is tool for auto-
matically completing a partial .config configuration file, that is implemented in C,
and contains a mechanism for translating a Kconfig model into a SAT problem. By
combining these projects, the plan was to realize a C implementation of RangeFix
that utilizes Satconfig’s translation of Kconfig models into SAT problems. To make
the conflict-resolution process interactive, the implementation of GUI additions in
one of the Kconfig configurators to support such a workflow also had to be achieved.

The existing Scala implementation of RangeFix utilizes an SMT solver for en-
coding the Kconfig model and detecting unsatisfiable cores. Since SMT provides a
richer modeling language than SAT, it is therefore more straightforward to model
Kconfig constraints that involve strings and integers. Another strength with SMT
in our context is that the Scala implementation of RangeFix has already been im-
plemented using SMT. On the other hand, only 6 % of the configuration options for
x86 are of other types than bool and tristate [2], which means that for the majority
of cases a SAT solver is enough. Furthermore, the Linux community acceptance fac-
tor for SMT is also much lower than for SAT, and many would like to see the SAT
avenue investigated first [41]. Reasons for preferring SAT are its relative simplicity
and its smaller code base (~10k lines of code for a SAT solver compared to ~100k
lines of code for an SMT solver) [42]. The decision was therefore made to proceed
with using a SAT solver in the C implementation of RangeFix.

After the selection of tools to use as a foundation, a prototype was implemented
where the user would be able to perform conflict-resolution interactively. This in-
volved modifying the Kconfig configurator xconfig with extra GUI elements to sup-
port the workflow. It was made to call the Scala implementation of RangeFix in the
background, and print the returned fixes inside xconfig.

Next, the implementation of RangeFix in C took place. This involved examining
the algorithm and Satconfig’s translation of Kconfig models into SAT problems.
However, only the first stage of the RangeFix algorithm was implemented, which
means that it would only be able to generate diagnoses and not complete fixes. A
version of xconfig that uses the C implementation for conflict-resolution was also
developed.

Details about our implementation of RangeFix in C, based on a SAT-solver,
are shared in Chapter 4. How our implementation of RangeFix and the existing
Scala implementation of RangeFix were integrated with xconfig is also told in that
chapter.

24

3. Methodology

3.4 Demonstration
From the design and development activity, two artifacts were produced. Both were
versions of xconfig, but they were calling different implementations of RangeFix for
dependency-resolution. One was a version of xconfig for version 2.6.32 of the Linux
kernel that made calls to the Scala implementation of RangeFix for fix generation.
The second was a version of xconfig for version 4.4 of the Linux kernel that gener-
ated diagnoses using our C implementation of RangeFix. These two artifacts are
demonstrated in Chapter 5.

3.5 Evaluation
The evaluation of the two produced artifacts is presented in Chapter 6. The qualities
performance, correctness and usability were evaluated.

Through a survey with Linux kernel developers and users, this thesis’ direction
was evaluated. In Section 6.1, the design and results of the survey are presented.
The participants were asked to fill in the survey that can be seen in Appendix A.
They were, among things, questioned on the method they currently use to enable a
disabled configuration option, and the time it takes on average to accomplish that
task. This established a baseline for how fast an interactive dependency-resolution
solution would need to function. The participants were also shown a video of our
version of xconfig that calls the Scala implementation of RangeFix, and through
several questions they were asked to provide various kinds of feedback.

The Scala implementation of RangeFix was evaluated with respect to perfor-
mance and correctness. The evaluation procedure and the results are found in Sec-
tion 6.2. But to summarize the evaluation, a set of disabled configuration options
were randomly sampled, and for each one the Scala implementation of RangeFix
was invoked to generate fixes for enabling it. The time from when the program was
started until it returned was recorded to determine the performance of the imple-
mentation. Furthermore, the time spent generating the diagnoses, and converting
them to fixes, was also recorded. For each run, the correctness of the generated fixes
was evaluated by testing them in xconfig. Depending on the quality of the generated
fixes in this test, one of five different labels was given to summarize its correctness.

The C implementation of RangeFix was also evaluated with respect to perfor-
mance and correctness. The evaluation, whose procedure and results are presented
in Section 6.3, was carried out similarly to the previous one for the Scala imple-
mentation. However, since we were only able to implement in C the first stage of
the algorithm, that yields the diagnoses, only that part was evaluated. As with the
previous evaluation, a set of disabled configuration options were first randomly sam-
pled. For each configuration option, the performance of generating the diagnoses
was evaluated by measuring the running time of the program. The correctness of
the diagnoses were evaluated by testing if it was possible to enable the configuration
option by only modifying the values of the configuration options in them. Using
the same five correctness labels as for the Scala implementation, the results were
categorized in a comparable way.

25

3. Methodology

By using the numbers collected in the survey as a baseline, it was possible to
evaluate whether the Scala implementation of RangeFix performed well enough.
Furthermore, by comparing the C implementation’s running time against the Scala
implementation’s time spent at generating diagnoses, it was possible to determine
if implementing it in C meant a performance improvement. With the performance
and correctness statistics, it would also be possible to decide whether continuing
implementing RangeFix in C with a SAT-solver is meaningful to explore in future
projects.

3.6 Communication
This thesis is used as a medium for communicating the results from the project. It
includes implementation details, demonstration of the produced artifacts, and evalu-
ation of the artifacts. Furthermore, observations and ideas that might help in future
iterations of developing an interactive conflict-resolution mechanism are shared in
Chapter 7. The information has also been shared with the Linux developers.

26

4
Design and development

Two artifacts have been produced to investigate the feasibility of realizing support for
interactive conflict-resolution in the Kconfig configurator xconfig. Both are versions
of the Kconfig configurator xconfig, but they utilize different implementations of
RangeFix for assisting the user in satisfying unmet dependencies. One of them
utilizes the existing Scala implementation of RangeFix, while the other utilizes our
implementation of RangeFix in C that depends on a SAT solver.

The first five sections of this chapter describe design elements that make up
our partial implementation of RangeFix in C. Together, they implement the first
stage of the RangeFix algorithm. In Section 4.1, the encoding of a Kconfig model
as a SAT problem is described. Next, in Section 4.2, how the user’s configuration
is read and translated into soft constraints in the SAT problem is explained. In
Section 4.3, we take a look at how unsatisfiable cores are generated in the existing
Scala implementation of RangeFix with an SMT solver, and how we achieve the
same thing in C with a SAT solver. These sections are tied together in Section 4.4,
where we explain how we generate the diagnoses for the first stage of the RangeFix
algorithm. Lastly, in Section 4.5, we explain why and how we simplify the diagnoses
by removing redundant configuration options.

The last section, Section 4.6, describes how both implementations have been
integrated with xconfig. The Linux configurators are not engineered for letting the
user cause conflicts, which meant that some compromises in the design had to be
made. Furthermore, since the codebase for the existing Scala implementation has
not been maintained for a long time, some further compromises had to be made
with regards to the utilized Linux kernel versions.

4.1 Encode a Kconfig model as a SAT problem
In this section, our encoding of a Kconfig model as a SAT problem is presented. This
encoding is to a large extent based on the encoding found in Satconfig [33], which
is unpublished and to a large extent undocumented. The encoding can be divided
into two separate phases. First, the configuration options, declared in the Kconfig
model, are translated into boolean literals in the SAT problem. Next, the constraints
imposed by the various Kconfig attributes are translated into CNF clauses in the
SAT problem.

27

4. Design and development

Table 4.1: Encoding a tristate with two literals.

Tristate value Literal 1 Literal 2
n 0 0
y 1 0
m 1 1

Table 4.2: Allocated literals for each configuration option.

Literal Used for Allocated when
1 The option’s value (yes or

no)
Always present

2 The option’s value (module
or not)

Present only if tristate

3 If the option’s value has
been set by the user

Always present

4 If the option is selected by
another symbol

Always present

5 If the option’s dependencies
are satisfied

Only present if the option
has a prompt attribute

6 If the option’s default con-
straint is satisfied

One for each default value

7 Disallow the option’s value
to be set manually

Always present

4.1.1 Configuration option encoding
The two configuration option types to consider are bool and tristate. The value
of a configuration option with the type bool is simply encoded using a single literal.
However, a configuration option with the type tristate has three states, and there-
fore needs two literals to encode its value. How the tristate’s states are encoded
using two literals is depicted in Table 4.1.

To aid in the constraints encoding, a set of additional literals are allocated
for each configuration option. Besides one literal for a bool or two literals for a
tristate, literals for five additional properties are allocated. The additional liter-
als encode if its value has been explicitly set by the user, if it has been selected
by another configuration option, if its prompt’s dependencies have been satisfied, if
its defaults’ expressions have been satisfied, and if the value must be set implicitly.
The literals allocated for each configuration option, and the number of instances of
them, are summarized in Table 4.2. The last literal, that forces the option’s value
to be set implicitly, is more of a helper that is used when simplifying a diagnosis by
removing already indirectly set configuration option values.

With the Kconfig model declared in Listing 4.1, the literals listed in Table 4.3
are allocated. Two literals are allocated for each A and C to hold their values, since
they are of the type tristate, while B only needs one. Each configuration option gets
the two mandatory literals that say if its value has been set by the user and if it
has been selected by another configuration option. All three configuration options

28

4. Design and development

Listing 4.1: A Kconfig model.
1 config A
2 tristate "A prompt "
3

4 config B
5 bool "B prompt "
6 select A
7 default y
8

9 config C
10 tristate "C prompt "
11 depends on A && !B

have a prompt and are therefore allocated a literal each that says if the configuration
option’s dependencies have been satisfied. Lastly, since B has a default attribute, a
literal is also allocated that says if its if expression has been satisfied.

4.1.2 Constraints encoding
Various propositional logic constraints can be inferred from a Kconfig model, and
their purpose is to limit the configurations to what the Kconfig language permits.
Since a SAT solver is being used, the constraints must be written as CNF clauses,
which are also easily expressed in the DIMACS format.

4.1.2.1 Tristate

A tristate has three states and is encoded with two literals, as depicted in Ta-
ble 4.1. The state (0, 1) is invalid, and this is enforced by the constraint:

(Literal2 → Literal1) ≡ (¬Literal2 ∨ Literal1)

If the second literal is true and the first literal is false, which happens in the invalid
state, the clause evaluates to false. Continuing with the Kconfig example in List-
ing 4.1 and its literals allocation depicted in Table 4.3, this constraint gives rise to
the following two CNF clauses:

(¬A2 ∨ A1) ≡ (¬2 ∨ 1)

(¬C2 ∨ C1) ≡ (¬14 ∨ 13)
In DIMACS they correspond to -2 1 0 and -14 13 0.

4.1.2.2 Select

If a configuration option is activated and it has a select attribute, the configuration
option it selects is also activated.

In the example in Listing 4.1, B has the attribute select A. This translates to
the propositional formula (B1 → A4) ≡ (¬B1 ∨A4) ≡ (¬7∨ 4), which means that if
B is set to y, A is selected. In DIMACS it is equal to -7 4 0.

29

4. Design and development

Table 4.3: The literals allocated for the Kconfig model in Listing 4.1.

Literal Used for

A

A1 1 Yes/no value
A2 2 Module/yes value
A3 3 If value is set by the user
A4 4 If the symbol has been selected
A5 5 If the prompt’s dependency is fulfilled
A6 6 If the value must be implicitly set

B

B1 7 Yes/no value
B2 8 If value is set by the user
B3 9 If the symbol has been selected
B4 10 If the prompt’s dependency is fulfilled
B5 11 If the default’s dependency is fulfilled
B6 12 If the value must be implicitly set

C

C1 13 Yes/no value
C2 14 Module/yes value
C3 15 If value is set by the user
C4 16 If the symbol has been selected
C5 17 If the prompt’s dependency is fulfilled
C6 18 If the value must be implicitly set

Furthermore, to enforce that whenever a configuration option is selected a lower
bound is created, we need some more constraints. These are (A4 → A1) ≡ (¬A4 ∨
A1), (B3 → B1) ≡ (¬B3 ∨ B1), and (C4 → C1) ≡ (¬C4 ∨ C1). In DIMACS, these
constraint clauses are equal to -4 1 0, -9 7 0 and -16 13 0. For instance, when
A is selected, which happens when A4 is true, it has to be set to either m or y.
Note that this is a simplification that does not deal with the complete complexity
of select’s lower bound.

4.1.2.3 Prompt

A configuration option’s dependency, specified with the attribute depends on, con-
trols the visibility of the configuration option’s prompt. If the dependency is not
satisfied, then the prompt is invisible and the user is not able to change the config-
uration option’s value.

All three configuration options in Listing 4.1 have a prompt. For A and B, the
prompt is implicitly always enabled since no dependency has been declared. A’s
literal that specifies if its prompt’s dependency is fulfilled is 5. The CNF formula is
therefore simply (5), and in DIMACS the clause is 5 0. For B, the DIMACS clause
is equal to 10 0 in an analogous way.

C on the other hand has the dependency A && !B, which translates into the
propositional formula C5 = A1 ∧ ¬B1 ≡ 17 = (1 ∧ ¬7). In CNF, it is equal to the
three clauses (17∨¬1∨ 7), (¬17∨ 1) and (¬17∨¬7) [43]. In DIMACS, the clauses
are equal to 17 -1 7 0, -17 1 0 and -17 -7 0. Note that this is a simplification
that does not deal with the complete complexity of depends on’s upper bound.

30

4. Design and development

4.1.2.4 Default

A configuration option gets its default value if the default attribute’s optional
constraint is fulfilled, the option is not selected by another option and the user
has not already assigned a value to it.

A has the implicit default value n. It gets its default value if it is not selected
by another symbol and the user has not given it a value. This translates into the
propositional formula ((¬A3 ∧ ¬A4) → ¬A1) ≡ {De Morgan’s law [44]} ≡ (¬(A3 ∨
A4)→ ¬A1) ≡ (A3∨A4∨¬A1) ≡ (3∨4∨¬1). In DIMACS it is equal to 3 4 -1 0.

B has the explicit default value y. If it has not been selected, the user has
not assigned a value to it, and the default’s constraint is fulfilled, it should fall
back on its default value y. This yields us the constraint ((¬B2 ∧ ¬B3 ∧ B5) →
B1) ≡ (¬(B2 ∨ B3 ∧ ¬B5) → B1) ≡ (B2 ∨ B3 ∨ ¬B5 ∧ B1) ≡ (8 ∨ 9 ∨ ¬11 ∧ 7),
which in DIMACS is 8 9 -11 7 0. Furthermore, since the default attribute lacks
an if expression, it is always true, and we also get the additional constraint clause
(B5) ≡ (11), which in DIMACS is 11 0.

C also has the implicit default value n. The CNF clause is equal to (15∨16∨¬13)
and the DIMACS formula is equal to 15 16 -13 0.

4.1.2.5 Must get its value from somewhere

The default value of a symbol is n. If it has no explicit default, no prompt and is
not being selected, it falls back on the value n. Having any other value than n
implies that it got its value from a source.

Returning to the Kconfig example and looking at the configuration option B, 10
says if its prompt is visible, 9 says if it is selected, 11 says if its default is satisfied,
and 7 is its value. This translates to (7 → (9 ∨ 10 ∨ 11)) ≡ (¬7 ∨ 9 ∨ 10 ∨ 11). In
other words, to be be able to set its value to y, one of its value sources must first be
true. This constraint is created in an analogous way for A and C.

4.1.2.6 Force an implicit value

This constraint does not originate from the Kconfig language. Its purpose is to
make the seventh literal in Table 4.2 act as a toggle for the configuration option’s
value source. If the literal is set to true, the configuration option must get its value
indirectly from either a default or from being selected. If it is false, it has no effect
on the satisfiability.

If we look at configuration option B from the Kconfig example, its constraint
is (B6 → (B3 ∨ B5)) ≡ (12 → (9 ∨ 11)) ≡ (¬12 ∨ 9 ∨ 11). Now, by setting literal
12 to true, it enforces configuration option B to obtain a value from its default or
from being selected. The satisfiability solver will return unsat if this enforcement
is not possible to make.

4.2 Read and set the configuration
The user’s configuration is stored in the file .config. An excerpt of how it could
look like can be seen in Listing 4.2. We can in the example see that A is set to y and

31

4. Design and development

Listing 4.2: A .config excerpt.
1 #
2 # Linux/x86 4.4.10 Kernel Configuration
3 #
4 CONFIG_A =y
5 # CONFIG_B is not set
6 CONFIG_C =m

C is set to m. What is not so obvious is that B is explicitly set to n, even though it
appears like the line about CONFIG_B is just a comment. However, it is only when
a configuration option is completely absent from the configuration file that it falls
back on its default value, specified in the Kconfig file.

We will now look at how the user’s configuration is set in the SAT problem.
Assume that the configuration in Listing 4.2 is for the Kconfig model declared in
Listing 4.1, with the allocated literals in Table 4.3. From this model and configu-
ration, we get the constraints (1 ∧ ¬2), (¬7) and (13 ∧ 14). These will enforce the
values of the three configuration options A, B and C. Furthermore, we will also set
the literals 3, 8 and 15 to true, which say that these configuration options got their
values from the user. Combined, they translate into the following single-variable
clauses in DIMACS:

1 0
-2 0
3 0
-7 0
8 0
13 0
14 0
15 0

4.3 Generate unsatisfiable cores with SAT
In this section, our method for extracting unsatisfiable cores in C with a SAT solver
is presented. With a small example containing both hard and soft constraints, how
the Scala implementation of RangeFix achieves this with an SMT solver is first
examined. Next, how we achieve the same thing with SAT in C is presented. This
highlights the contrast between the SMT and SAT syntax, and their respective
capabilities.

An example of two hard and three soft constraints is depicted in Figure 4.1.
A satisfiability solver will evaluate this to unsatisfiable, since C → ¬B ≡ true →
¬true ≡ true→ false ≡ false. To regain satisfiability, some of the soft constraints
need to be edited.

The two minimal unsatisfiable cores in this example are {2, 4, 5} and {1, 2, 3, 5}.
If any of the clauses that appears in a minimal unsatisfiable core is removed, the
rest of the core’s clauses become satisfiable. For instance, if clause 5 is removed,

32

4. Design and development

[1] (A→ B)
[2] (C → ¬B)
[3] (A := true)
[4] (B := true)
[5] (C := true)

Figure 4.1: Two hard constraints and three soft constraints.

Listing 4.3: Encoding the example in Figure 4.1 as an SMT problem.
1 (set - option :produce -unsat -cores true)
2 (declare -const a Bool)
3 (declare -const b Bool)
4 (declare -const c Bool)
5 (declare -const _a Bool)
6 (declare -const _b Bool)
7 (declare -const _c Bool)
8 (assert (=> a b))
9 (assert (=> c (not b)))

10 (assert (or (not _a) (= a true)))
11 (assert (or (not _b) (= b true)))
12 (assert (or (not _c) (= c true)))
13 (assert (! _a :named A))
14 (assert (! _b :named B))
15 (assert (! _c :named C))
16 (check -sat)
17 (get -unsat -core)

then the core {2, 4, 5} becomes satisfiable because C may be assigned to false.

4.3.1 How unsatisfiable cores are generated with SMT
The Scala implementation of the RangeFix algorithm depends on an SMT solver,
more specifically the SMT solver Z3. The SMT-LIB language has a command called
get-unsat-core, which responds with one unsatisfiable core if the previous call
to check-sat returned unsat. All solvers do not support the get-unsat-core
command [45], however, Z3 is one of those which supports it, making it suitable for
the RangeFix algorithm.

The hard and soft constraints from Figure 4.1 are encoded with the commands
depicted in Listing 4.3. The variables are declared using constants, while the con-
straints are declared with assert statements. Executing the SMT program prints:

unsat
(B C)

If line number 13 is deleted, it will instead print the other core: (A C). An advantage,
as illustrated in this example, is that with SMT it is easily controlled what variables
are returned as parts of the unsatisfiable cores.

33

4. Design and development

Listing 4.4: Encoding the example in Figure 4.1 as a SAT problem.
1 p cnf 3 5
2 -1 2 0
3 -2 -3 0
4 1 0
5 2 0
6 3 0

4.3.2 How to generate unsatisfiable cores with SAT
The propositional logical formulas in Figure 4.1 can also be expressed as the CNF
clauses in Listing 4.4, encoded in the DIMACS syntax, making them compatible
with SAT solvers. An example of such a SAT solver is PicoSAT [34]. By us-
ing logical equivalence [46], the implies connectives have been expressed with log-
ical or instead. With these clauses declared, PicoSAT’s function picosat_sat re-
turns PICOSAT_UNSATISFIABLE. Having evaluated the satisfiability, iterating over
the clauses and calling picosat_coreclause during each iteration, yields the re-
sponses false, true, false, true and true, i.e. the second, fourth and fifth clauses
belong to the unsatisfiable core, which translates to the core {2, 4, 5}. If line number
5 is deleted, PicoSAT will instead return true, true, true and true, which trans-
lates to the core {1, 2, 3, 5}. There clearly exists no distinction between hard and
soft constraints, and the unsatisfiable cores contain both constraint types. However,
since it is known in what order the clauses were added, it is trivial to filter out the
soft constraints from the unsatisfiable cores. By using this technique, it is possible
to get the diagnoses {B, C} and {A, C}.

A code example where PicoSAT is utilized can be seen in Listing 4.5, which
prints B C to the console. Where the soft constraints begin is stored in the variable
config_start, which marks the spot of where to begin iterating over the clauses to
identify the ones that belong to the unsatisfiable core.

34

4. Design and development

Listing 4.5: Extracting an unsatisfiable core in C with PicoSAT.
1 # include <stdio .h>
2 # include " picosat .h"
3

4 # define number_of_configs 3
5

6 int main(int argc , char *argv []) {
7 PicoSAT *ps = picosat_init ();
8 picosat_enable_trace_generation (ps);
9

10 int a = picosat_inc_max_var (ps);
11 int b = picosat_inc_max_var (ps);
12 int c = picosat_inc_max_var (ps);
13 char *names[number_of_configs] = {"A", "B", "C"};
14

15 picosat_add_arg (ps , -a, b, 0);
16 picosat_add_arg (ps , -c, -b, 0);
17 int config_start = picosat_add_arg (ps , a, 0);
18 picosat_add_arg (ps , b, 0);
19 picosat_add_arg (ps , c, 0);
20

21 if (picosat_sat (ps , -1) == PICOSAT_UNSATISFIABLE) {
22 for (int i = config_start ;
23 i < picosat_added_original_clauses (ps);
24 ++i)
25 if (picosat_coreclause (ps , i) == 1)
26 printf ("%s ", names[i - config_start]);
27 printf ("\n");
28 }
29 return 0;
30 }

35

4. Design and development

4.4 Generate diagnoses
In this section, how the diagnoses are generated in the C implementation of Range-
Fix is examined. The algorithm works as explained in Section 2.5, however, some
additional implementation details will be given here.

To start with, we will look at an example that illustrates how the diagnoses are
generated by the algorithm. Assume that we have the Kconfig model in Listing 4.6
and the configuration in Listing 4.7. The soft constraints are {A := no, B := no,
D := yes}. During the first iteration of RangeFix, the partial diagnosis is {} and
the configuration consists of {A, B, D}. The core it finds is {B, D}, and the two
partial diagnoses {A} and {B} are added. During the second iteration, it randomly
selects a partial diagnosis to continue with. Assume that the partial diagnosis {B}
gets picked; the configuration consists then of {A, D}. This returns the core {A,
D}. The two partial diagnoses are now {D} and {A, B}. Next, it continues with the
partial diagnosis {D}, which manages to satisfy the constraints and is added to the
list of generated diagnoses. The remaining partial diagnosis, {A, B}, also manages
to satisfy the constraints. The two produced diagnoses are therefore {D} and {A,
B}. This makes sense, because we can either satisfy the constraints by setting D to
n, or by setting A and B to y.

How the user starts with a small configuration and expands it to contain an
additional configuration option is illustrated in Figure 4.3. We start with the set
of all configuration options declared in the Kconfig model, named S in Figure 4.3a.
The user has a configuration in her .config file, where she has configured a subset
of all present configuration options. This is depicted in Figure 4.3b, where the
configuration C is a subset of S. The configuration option the user wants to enable
is called f and is depicted in Figure 4.3c. f is drawn outside the area of C, because
the user has not yet assigned a value to it in her .config file. However, to enable f ,
its dependencies must also be satisfied. This means that some of the configuration
options that f depends on must be edited too, illustrated by the green area in
Figure 4.3d. Some of the dependencies have already been configured by the user
and have to be updated, which is depicted by the intersection of the green and red

Listing (4.6) A Kconfig model.
1 config A
2 bool "A"
3

4 config B
5 bool "B"
6 depends on A
7

8 config C
9 bool

10 default y if B
11

12 config D
13 bool "D"
14 depends on C

Listing (4.7) A configuration for the
Kconfig model in Listing 4.6.

1 CONFIG_A =n
2 CONFIG_B =n
3 CONFIG_D =y

36

4. Design and development

S

(a) The complete set of
configuration options of
the model S.

S

C

(b) The configuration C
from .config is a sub-
set of the whole set of de-
clared configuration op-
tions.

C
f

(c) We want to change
the value of a configura-
tion option f .

C
f

(d) A diagnosis which
requires us to set new
options’ values and edit
some of our previous
configuration choices has
been generated.

C’f

(e) Our new configura-
tion C ′ now contains the
configuration option f .

Figure 4.3: Visualizing how a configuration option’s value is edited, a diagnosis
computed and the configuration expanded.

areas. When f and its dependencies have been properly configured, we end up with
a new configuration C ′, shown in Figure 4.3e. Note that the new configuration C ′

contains a larger set of configuration options, including the configuration option f .
For this to work, we cannot only have the configuration options in C∪{f} as our

soft constraints, because then the unsatisfiable cores will only contain configuration
options from this set. If the soft constraints do only consist of configuration options
from C ∪ {f}, i.e. the union of the red area and the blue dot in Figure 4.3c,
the satisfiability solver can then freely infer values for the configuration options in
S\(C ∪ {f}). The configuration options that will be found among the unsatisfiable
cores are therefore only those in the green area in Figure 4.3d that overlap with
C. To solve this, we include the whole set of configuration options from the feature
model as soft constraints, as illustrated by Figure 4.4. The configuration options
in S\(C ∪ {f}) are set to their default values, which are computed by the internal

37

4. Design and development

C
f

Figure 4.4: Visualizing how all configuration options in S are used as soft con-
straints.

Listing (4.8) A Kconfig model.
1 config A
2 bool "A"
3

4 config B
5 bool "B"
6 default y
7

8 config C
9 bool "C"

Listing (4.9) A configuration for the
Kconfig model in Listing 4.8.

1 CONFIG_A =y

Kconfig infrastructure and read from the rootmenu data structure.
We will now look at an example of how the soft constraints look like. Assume

that we have the Kconfig model in Listing 4.8 and the configuration in Listing 4.9.
There are three configuration options, where one of them has been configured by the
user in the configuration file. When the configuration is read by the internal Kcon-
fig infrastructure, the values for all configuration options are computed. By reading
the rootmenu data structure, we find the three configuration options’ values. Even
though only A has been explicitly assigned a value by the user in the configuration
file, the two others’ values are also easily retrieved by iterating over all configuration
options using the Kconfig infrastructure’s function for_all_symbols. The config-
uration, and the soft constraints, that the C implementation of RangeFix uses are
then [A:=y, B:=y, C:=n].

4.5 Simplify diagnoses
In the previous section, it was explained that all configuration options are used as
soft constraints. It was also explained that the values used for these configuration
options in the soft constraints are parsed from the configuration. This means that a
diagnosis will contain all configuration options whose values deviate from the values
parsed from the configuration. This includes configuration options that become
implicitly selected or whose default value is changed.

Let us take a look at an example of how this looks like in practice. Starting

38

4. Design and development

Listing 4.10: The definitions of the configuration options IMA and
IMA_DEFAULT_HASH_SHA512.

1 config IMA
2 bool " Integrity Measurement Architecture (IMA)"
3 select SECURITYFS
4 select CRYPTO
5 select CRYPTO_HMAC
6 select CRYPTO_MD5
7 select CRYPTO_SHA1
8 select CRYPTO_HASH_INFO
9 ...

10

11 choice
12 prompt " Default integrity hash algorithm "
13 depends on IMA
14 ...
15

16 ...
17

18 config IMA_DEFAULT_HASH_SHA512
19 bool " SHA512 "
20 depends on CRYPTO_SHA512 && ! IMA_TEMPLATE
21 ...
22

23 ...
24

25 endchoice

with an allnoconfig for Linux kernel 4.4.10, assume that we generate diagnoses
for setting the configuration option IMA_DEFAULT_HASH_SHA512 to y. A diagnosis
for IMA_DEFAULT_HASH_SHA512, which contains all configuration options whose
values are changed, is [INTEGRITY, CRYPTO_SHA512, MULTIUSER, CRYPTO, IMA,
CRYPTO_SHA1, CRYPTO_MD5, SECURITYFS, CRYPTO_HMAC, CRYPTO_MANAGER,
TCG_TPM, TCG_TIS, SYSFS, SECURITY, IMA_NG_TEMPLATE]. However, the user
does not need to manually change all these configuration options by herself.
The reason is that many of them are indirectly changed by other configuration
options through select and default attributes. Looking at the definition of
IMA_DEFAULT_HASH_SHA512 in Listing 4.10, it is part of a choice group that
depends on IMA. However, IMA selects many other configuration options, which
therefore become part of the diagnosis. But, a better diagnosis would only contain
the smallest set of configuration options that the user is required to edit. In this
example, a simplified diagnosis is [CRYPTO_SHA512, MULTIUSER, IMA, SYSFS,
SECURITY]. By only changing the values of these five configuration options, it is
possible to satisfy the dependencies for IMA_DEFAULT_HASH_SHA512. However, as
we have seen, other configuration options are also implicitly changed.

To simplify a diagnosis, our C implementation of RangeFix uses the seventh
allocated configuration option literal, see Table 4.2 for a list of all allocated literals
for each configuration option. When a diagnosis has been found, the program iterates
over each configuration option in the diagnosis, sets the seventh literal to true and

39

4. Design and development

checks if the configuration is still satisfiable. If it is satisfiable, it means that the
configuration option does not need to be explicitly changed by the user. But if it
is not satisfiable, it means that the user must manually change this configuration
option. Doing this process for each configuration option in a generated diagnosis,
it is possible to remove the configuration options that the user does not need to
change manually, which increases the usability of the diagnoses.

4.6 Integrate with xconfig
In Section 2.1, screenshots of the configurators pure::variants and the eCos Config-
uration Tool were shown. Both of them support the ability to enter an invalid state
and later resolving any conflicts. To help the user resolve conflicts, they detect and
show conflicts in a panel adjacent to the feature model. In the same section, it was
also explained that the Kconfig configurators do not support the configuration to
enter an invalid state. This is achieved by only presenting configuration alternatives
that do not cause any conflicts. For instance, assume that there are two configu-
ration options A and B, they are both tristates, and A depends on B. If B is set to
m, the configurator does only let the user to set A to either n or m. This is shown
in Figure 4.6, where "N" and "M" are the configuration options’ current values, and
the underscores show the valid states they may be changed to.

The Kconfig configurators are built to only allow the configuration to enter valid
states, which has shaped the source code to a large extent. When building a GUI
prototype with xconfig, it was therefore easier to leave that code as-is, and add the
conflict-resolution as dependency-resolution instead. Rather than assisting the user
with resolving conflicts, it would assist the user by generating fixes for satisfying
unmet dependencies. This does not allow the user to enter an invalid configura-
tion state, but does still achieve the goal of helping the user to enable disabled
configuration options.

When this thesis project started, the existing Scala implementation of RangeFix
had not seen major updates for the last few years. This meant that the latest version
of the Linux kernel that it had been tested with was 2.6.32. LVAT, which the Scala
implementation of RangeFix depends on, had also not been touched for many years.

Figure 4.6: Configuration option A depends on B, and is prohibited by the config-
urator to be set to y.

40

4. Design and development

For instance, exconfig, which utilizes the internal Kconfig infrastructure to produce
an .exconfig file that is used as input to RangeFix, did not work with version
4.4 of the Linux kernel, which was the latest kernel version at this project’s start.
To demonstrate and evaluate the concept of interactive dependency-resolution for
Kconfig, implementing it for the deprecated kernel version 2.6.32 had a lower barrier.

For evaluating the feasibility of implementing a SAT-based conflict-resolution
mechanism in C, there was no reason to use the deprecated 2.6.32 version of the
Linux kernel. The latest version of Satconfig, which our C implementation of Range-
Fix utilizes, was based on version 4.4 of the Linux kernel. It was therefore easiest,
and it felt more relevant, to use a modern and supported kernel version for eval-
uating the feasibility. The comparability might have been slightly better if the C
implementation of RangeFix had been implemented for version 2.6.32 of the Linux
kernel, as the Scala version. However, version 2.6.32 was first released in 2009 and
has since then reached end-of-life.

41

5
Demonstration

Two artifacts have been produced. They are both versions of xconfig, but with
different backends for the dependency-resolution support. The first uses the Scala
implementation of RangeFix as its backend, while the second uses the C implemen-
tation of RangeFix as its backend.

5.1 Configurator with Scala backend
In Figure 5.1, a screenshot of the modified version of xconfig that calls the Scala
implementation of RangeFix can be seen. With its additional functionality, it is
possible for the user to get assistance in resolving configuration options’ dependen-
cies. In the screenshot, the configuration option TIFM_CORE, whose prompt is called
"TI Flash Media interface support", has been marked by the user. It is currently
set to no, indicated by the N in the column "N" to the right of it. Assume that the
user wants to change the value of the configuration option to yes, but does not know
how; by pressing the button in the toolbar that looks like a blue C, a panel with
functionality for calculating fixes will be opened.

In Figure 5.2, the panel for assisting the user with calculating fixes has been
opened. It consists of a toolbar, two lists and a status bar. The buttons in the
toolbar let the user perform various actions, and will be explained in further detail
in the following paragraphs. The upper list is for containing configuration options
that the user wants to configure, while the lower list is for presenting generated fixes.

Figure 5.1: A screenshot of the Linux configuration tool xconfig, enhanced with
interactive dependency-resolution hidden behind a toolbar button.

42

5. Demonstration

Figure 5.2: The functionality to support interactive dependency-resolution has
been opened in a separate panel of the window.

Lastly, the status bar provides the user with feedback, such as telling if RangeFix
is running in the background.

With the buttons "N", "M" and "Y", the user is able to say what value she wants
for the marked configuration option in the left-hand panel. Assume that the user
wants to change the value of the configuration option TIFM_CORE from N to Y. It is
currently not possible due to unmet dependencies, indicated by the absence of an
underscore in the column "Y" to the right of the marked configuration option. But
by pressing the button "Y" in the toolbar to the right, the configuration option will
be copied to the upper list of the right panel. In Figure 5.3, it is shown how it looks
like after the user has pressed the button "Y". TIFM_CORE has been copied to the
list of configuration options that the user wants to configure, its current value is N,
and the value the user wants it to have is Y.

By selecting the configuration option in the upper-right list and pressing the
"Calculate fixes" button, RangeFix will be initiated. After a while, when the com-
mutation is completed, the fixes are returned and presented in the lower-right list.
In Figure 5.4, fixes for the configuration option TIFM_CORE have been computed.
Three fixes were found in this case, two being visible in the screenshot. Any one of
these fixes is a valid way for resolving the dependencies and setting TIFM_CORE to Y.

This interface allows the user to first locate the configuration options she wants to
configure, and afterwards deal with their dependencies. An example where the user
has added three configuration options to the upper-right list is shown in Figure 5.5.
The user has marked two of those configuration options, and calculated fixes for
them both at the same time. The visible fix is much larger than the previous two
fixes in Figure 5.4, but it will on the other hand result in both TIFM_CORE and
BT_HCIBLUECARD being set to yes if applied.

The "Remove" button in the toolbar deletes marked configuration options from
the upper-right list. It is useful after a session where the user has been wanting to
edit some configuration options, computed fixes for them, applied the fixes, and is

43

5. Demonstration

Figure 5.3: The user has added TIFM_CORE to the list of configuration options she
wants to configure.

Figure 5.4: Fixes for the disabled configuration option TIFM_CORE have been gen-
erated.

44

5. Demonstration

Figure 5.5: Fixes for the both configuration options TIFM_CORE and
BT_HCIBLUECARD have been generated.

now done with configuring them.
For a more thorough demonstration of the workflow that this configurator en-

ables, a video that showcases it has been recorded [47].

5.2 Configurator with C backend
In Figure 5.6, a screenshot of the modified version of xconfig that uses the partial C
implementation of RangeFix as its backend for dependency-resolution can be seen.
Overall, it works in the same way as the other version. However, the style of the
widgets look a bit different, because this version of xconfig is compiled against Qt
4.8 or 5.x, while xconfig for version 2.6.32 of the kernel is compiled against Qt 3.

By clicking the button in the toolbar that resembles the letter C, the dependency-
resolution panel in the right side of the window is opened. By selecting a configu-
ration option and clicking one of the "N", "M" and "Y" buttons, the configuration
option is added to the list of configuration options in the middle-right part of the
window. These are the configuration options that the user wants to configure. Se-
lecting one of the saved configuration options in that list and clicking the "Calculate
fixes" button, triggers the C implementation of RangeFix. When RangeFix returns,
the generated diagnoses are listed in the bottom-right corner of the window.

45

5. Demonstration

Figure 5.6: A screenshot of the Linux 4.4.10 configuration tool xconfig, enhanced
with interactive conflict-resolution.

46

6
Evaluation

The aim of this chapter is to evaluate this thesis’ proposed solution. We started
the thesis by making the case for why configuring the Linux kernel is in need of
improvement, see Section 1.1. To resolve these issues, we found RangeFix, which
integrated with one of the Linux kernel configurators would be able to aid the user in
resolving dependencies. To demonstrate its capabilities, we designed and developed
two versions of xconfig that both rely on the RangeFix algorithm. One uses the
existing Scala implementation of RangeFix, while the second uses our preliminary
reimplementation of RangeFix in C. With these two artifacts, we want to evaluate
1. the users’ opinions on such a mechanism as a solution to the configuration problem,
2. how well the existing Scala implementation of RangeFix performs, and 3. if it is
feasible to achieve the same correctness and performance in C with a SAT solver.

The two artifacts have been evaluated in multiple ways. The modified version of
xconfig that calls the Scala implementation of RangeFix has been shown to Linux
users. Through a survey, they have provided us with their opinions and feedback.
By getting the users’ perspective, it is possible to discover if this is a solution to the
problem that is worthwhile to explore further in future projects. Both implemen-
tations of RangeFix have also been evaluated in terms of correctness and perfor-
mance. By evaluating the existing Scala implementation, we can asses its viability
as a dependency-resolution mechanism in xconfig. We also get a reference point to
compare the C implementation against. By evaluating our partial C implementa-
tion, we are able to find out the possibility of achieving a reimplementation of the
algorithm in C, which would have a greater acceptance among the kernel develop-
ers. Together with the survey results, we are also able to determine whether the two
implementations produce satisfying results with regards to the users’ expectations.

In this chapter, we will first present the user survey. It is followed by the eval-
uation of the existing Scala implementation. Next, the evaluation of our partial
C implementation is presented. Observations and conclusions are then made from
these data points. Lastly, threats to validity are also discussed.

6.1 User survey
In this section, our survey conducted with people familiar with configuring the Linux
kernel is presented. The aim of the survey was to contribute to the evaluation of
the configurator demonstrated in Section 5.1. Since the purpose of the artifact is
to assist the users in their tasks, it is important to also get those users’ assessment,
which this survey is meant to do.

47

6. Evaluation

6.1.1 Survey design
Survey goal. The goal of the survey was to evaluate this case study’s direction.
That encompassed the usability and functionality offered by xconfig with fix gen-
eration from the Scala implementation of RangeFix, demonstrated in Section 5.1.
But also how well interactive fix generation has to function to be an improvement
over the method they currently employ to resolve unmet dependencies.

Survey questions. The questions were designed to answer questions within sev-
eral areas. To start with, questions to establish if the participants encounter issues
while configuring the kernel were asked. This data would be compared to the data
gathered by the survey by Hubaux et al. [6], presented in Section 1.1. The next area
was if they consider the help text to configuration options to be useful. The help
text, which was shown in Section 2.2, is the only aid the user is currently given in
xconfig to configure the kernel. It is therefore interesting to evaluate its helpfulness.
Next, the participants were asked how they resolve dependencies using the currently
available tools. This was asked to identify usage patterns, but also to identify what
workflows this thesis’ artifacts compete against. The next area was designed to
establish what time it takes for the participants to resolve a configuration option’s
dependencies. This is of interest because it establishes a baseline that an interactive
conflict-resolution tool would need to be at least as fast as. In the last area, the
appropriateness of the workflow supported by this thesis’ demonstrated artifacts
was asked about. This would provide us with some firm feedback to evaluate the
prototype and identify future work. The complete survey with all its questions can
be found in Appendix A.

Participants. Linux users and developers being familiar with configuring the ker-
nel were asked to participate in the survey. The survey was posted on the kconfig-
sat project’s mailing list, the Linux kernel’s mailing list, and the discussion boards
linuxquestions.org, bbs.archlinux.org and forums.gentoo.org. Eleven people partici-
pated in the survey.

6.1.2 Survey results
The participants were first asked how often they run into issues when trying to
change a configuration option’s value in one of the Linux kernel configurators. The
exact question, answer choices, and participants’ answers can be seen in Figure 6.1.
Seven of the participants did also elaborate on their answer in a free-form text
field. Many of the answers were interesting and are provided in Table 6.1. It is
apparent from these answers that there are occasions when changing a configuration
option’s value is not a straightforward process. It might involve finding out what
forces its lower bound, finding its unmet dependencies in the menus, and parsing its
dependency expression. Furthermore, P2 mentioned that she finds it annoying that
disabling a configuration option also disables and hides the configuration options
that depend on it.

Each configuration option has a help text, which describes what it does and how
to enable it. Participants were asked to answer whether they find this text helpful

48

http://www.linuxquestions.org/questions/
https://bbs.archlinux.org/
https://forums.gentoo.org/

6. Evaluation

Figure 6.1: If the participants ever run into issues when changing a configuration
option.

Table 6.1: Several participants explained their answer in Figure 6.1 in further
detail.

"I frequently find that I can’t find an option I want to enable/disable, because it’s
hidden by another option being set/unset. I also frequently find that I can’t turn
an option off because another option selects it. And finding the appropriate option
typically requires carefully reading the full expressions involved, then searching
for the relevant option by name, and then finding that option through the menu
to change it." (P1)
"Other options depending on the disabled one are suddenly also disabled" (P2)
"Sometimes a new option isn’t explained well enough for me to quickly determine
if I want it or not." (P3)
"Sometimes I search for an option, find it, but cannot enable it because it depends
on something that is disabled. Then I search for the dependencies, enable them
and finally enable the option I wanted." (P4)
"Although rare, I do on occasion miss including an option that turns out needed."
(P5)
"Only when I can’t find the name of a driver or it has unmet dependencies" (P7)
"Finding the correct option in the menu" (P8)

49

6. Evaluation

Figure 6.2: Participants’ ratings of the helpfulness of the configuration options’
help text.

when trying to satisfy any missing dependencies needed to enable a particular option.
Their responses are shown in Figure 6.2. P4 picked the answer choice "Other" and
left the response: "It lists the dependencies so I can find them. Could be better."

We next asked the participants about what method or tool they employ when
trying to satisfy a configuration option’s dependencies. Five participants replied
that they use menuconfig to configure the kernel. To enable a configuration option,
they read the option’s help text within menuconfig and then use the built-in search
functionality to locate its dependencies. P1 also explained that she sometimes resorts
to reading the Kconfig files for figuring out the dependencies:

"[Manually I read] the dependencies in menuconfig’s help or by looking
at the Kconfig file directly, search for the options that aren’t enabled.
menuconfig helps a bit there by noting the states of options, but complex
expressions still require careful staring and manual evaluation." (P1)

P9 added that she uses the terminal command sed to manipulate configuration
options’ values directly in the .config file if she already knows the module’s name.
P5 explained that she finds dealing with mutual exclusive configuration options to
be a challenge during this process:

"Dependencies are rarely an issue since Help helps by listing most. [...]
The greatest problem can be conflicts ie- nVidia proprietary vs/ Rivafb
and the like. Those are less well documented within the kernel Help
sections." (P9)

The participants were then asked to indicate the longest, shortest, and typical
time it takes for them to change a configuration option’s value. The typical time
among the participants was on average 101 seconds, ranging between 30 seconds and

50

6. Evaluation

Figure 6.3: If the participants think xconfig with fix generation would be beneficial.

7 minutes. The shortest time was on average 20 seconds, ranging between 1 second
and 2 minutes. The longest time was on average 11 minutes, ranging between 2
minutes and 1 hour, with most answers being between 2 and 10 minutes.

A video of the modified version of xconfig that calls the Scala implementation
of RangeFix for generating fixes was then shown to the participants, followed by
questions about it. They were first asked whether they would consider such a tool
to be beneficial. The answers to the question are shown in Figure 6.3. The ability to
expand the answer in a free-form text field was also given. Most participants wrote
that it would be useful when attempting to edit either a configuration option whose
dependencies have not been met or when editing a lot of configuration options,
for instance when moving between major releases such as Linux 3.x and Linux
4.x. However, a couple of participants explained that the search functionality in
menuconfig is already enough for them, and one participant asked whether this
would be added to menuconfig too (as opposed to only xconfig).

They were then asked what they consider to be an ideal and maximum compu-
tation time they would wait for fixes to be generated. Most participants responded
that they would prefer the fixes to be generated as soon as possible, within a few
seconds or within a minute. The maximum amount of time some would tolerate
was 2 seconds, 3 seconds, 5 seconds, or less than 10 seconds. Some could tolerate
a longer computation time and said 3 minutes, 3-4 minutes, or 15 minutes. One
person replied 5-10 seconds, but also added that she would be willing to wait longer
and still save time in many scenarios.

The participants were then asked whether they consider the workflow demon-
strated in the video to be an improvement over how they would achieve a similar
task today. The responses are shown in Figure 6.4. 36 % do not consider it to be
an improvement, while 64 % consider it to be an improvement of varying degree.

Lastly in the survey, it was possible to provide feedback about our prototype in a
free-form text field. P1 asked why the fixes have to be applied manually, and thought
it would be beneficial to have an "apply" button to automatically apply a fix. P3 said

51

6. Evaluation

Figure 6.4: If the participants think the supported fix generation workflow would
be an improvement over how they would perform a similar task.

she would like a version of make oldconfig, but that takes a configuration option
and outputs the sequence of the dependent configuration option changes needed to
enable it. There is a Linux program called lspci, which prints detailed information
about all PCI buses and devices in the computer; P7 said that she would like a tie-in
with lspci that suggests configuration options that should be enabled based on the
computer’s hardware.

6.2 The Scala implementation
RangeFix is an algorithm whose purpose it is to generate fixes that resolve con-
figuration conflicts. In Section 5.1, it was demonstrated how the existing Scala
implementation of RangeFix, which supports Kconfig, can assist the user with re-
solving unmet dependencies. With this functionality in place, it is therefore relevant
to evaluate the quality of the fixes. In this section, we evaluate the quality in terms
of correctness and performance. Whether a fix accurately tells the user how to en-
able a configuration option determines its correctness. The time it takes to run the
Scala implementation of RangeFix to generate fixes determines its performance.

6.2.1 Evaluation design
In this subsection, the evaluation design for the Scala implementation of RangeFix
is explained. First, the procedure for the evaluation is presented. Next, how the
fixes were classified in terms of correctness is presented.

6.2.1.1 Procedure

To evaluate the Scala implementation of RangeFix, a set of 200 disabled configura-
tion options were sampled. The selection of configuration options was done randomly

52

6. Evaluation

from the set of configuration options fulfilling the following criteria:
• The configuration option’s type is tristate. Required since it is the only input

type that the existing Scala implementation of RangeFix supports.
• The configuration option has a prompt. Required since these are the only

configuration options that the user can modify directly (invisible configuration
options cannot be changed directly).

• The configuration option is currently set to no. Required since this state says
that the configuration option is currently disabled.

The initial configuration was an allnoconfig with version 2.6.32.70 of the Linux
kernel. That kernel version was selected since 2.6.32 was the last version that the
Scala implementation of RangeFix had been tested with, as explained in Section 4.6.
The total number of configuration options fulfilling the above criteria on the x86
platform with an allnoconfig is 3,416.

For each randomly selected configuration option, the existing Scala implemen-
tation of RangeFix was executed to calculate fixes for how to set it to yes. The
running time was recorded, and the returned fixes were manually tested in xconfig
to see if they were correct. It was observed that there were cases when the program
got stuck and ran for a very long time. The program was therefore terminated if it
did not finish within five minutes, which seemed like a reasonable upper limit.

6.2.1.2 Correctness classifications

The correctness of a generated fix was determined by testing it in xconfig. We
opted for classifying the generated fixes with five labels: correct, too large, too
small, empty, and timeout. For each of the 200 configuration options, the generated
fixes were classified with one of these labels. The classifications are explained in
further detail below.

Correct. If a generated fix was minimal and satisfied the dependencies of the
configuration option it was generated for, it was classified as correct. By being
minimal, the fix does not contain any redundant assignments that the user does
not have to make. Being minimal is a wanted property of a fix [30]. To satisfy the
unmet dependencies is required for the fix to serve its purpose.

Too large. A too large fix was able to satisfy all dependencies of the configuration
option, but contained redundant assignments. This means that the fix worked, since
it was possible to enable the configuration option when the fix had been applied.
But the fix lacked in usability since it was not minimal.

Too small. If a generated fix was too small, it meant that the fix did not contain
the complete set of required assignments. In other words, the configuration option
that the fix was generated for did still have unmet dependencies after the fix had
been applied.

Empty. If the program returned, but with an empty set of assignments, and the
configuration option had unmet dependencies, the result was classified as being

53

6. Evaluation

Figure 6.5: The results from calculating fixes for 200 disabled options.

empty. The distinction from being too small was made because the error probably
originated from a different source.

Timeout. If the program did not return within five minutes, it was classified with
the label timeout. This upper limit was implemented to ensure that the complete
evaluation did not take too long time to run. Furthermore, five minutes felt generous
and is probably a lot longer than a user would be willing to wait.

6.2.2 Correctness results
In this subsection, the correctness of the fixes, generated from the 200 runs, is
evaluated. The results are summarized in Figure 6.5. These outcomes are discussed
below, and various error sources are identified and explained.

6.2.2.1 Correct

In 20.0 % of the cases, the generated fixes were correct. For instance, generating
fixes for the configuration option DRM_RADEON, yielded the fix [DRM_RADEON:=yes,
DRM:=yes, PCI:=yes]. This fix is possible to apply in xconfig, it is minimal, and
successfully sets DRM_RADEON to yes.

However, one usability issue was found, caused by how xconfig is designed and
a choice group no having a configuration option name. It happened when ap-
plying a fix for enabling FB_HGA. One of the four fixes contained the assignment
DRM_I915:=yes, which is not possible to perform in xconfig, even though it has a
prompt and the other assignments in the fix have already been applied. A screen-
shot of the configuration option DRM_I915 in xconfig can be seen in Figure 6.6. The
reason why it cannot be enabled is because it is part of a choice group, and its
parent "Intel 830M, 845G, 852GM, 855GM, 865G" must first be enabled. However,
as we can see in Listing 6.1, a choice has no symbol name, which means that it is

54

6. Evaluation

Figure 6.6: The option DRM_I915 in xconfig.

not possible to refer to it in a fix. However, had the fix been applied automatically
by the configurator, it would have worked without any issues.

6.2.2.2 Too large

In 4.0 % of the cases, the fixes were correct but had usability issues where they con-
tained redundant assignments. The redundancies were both in terms of duplicated
fixes and unnecessary value assignments to configuration options, as explained in
the following two paragraphs.

A case of duplicated fixes occured with the configuration option IPDDP, where
two of its fixes were identical. The returned fixes are shown in Listing 6.2, where
we can see that the second and the fourth fixes contain the same assignments to the
configuration options ATALK, IPDDP, DEV_APPLETALK and NET. A theory to why this
happened, could be that the diagnoses were originally different, but simplifying the
constraints into fixes yielded the same results.

Another redundancy issue is a fix that contains an unnecessary assignment. In
these cases, the assignment was superfluous because the configuration option would
already get the same value from one of its default attributes. For instance, the
fix returned for the configuration option SND_MTPAV is equal to [SND_DRIVERS:=yes,
SND_MTPAV:=yes, SOUND:=yes, SND:=yes]. Explicitly setting SND_DRIVERS to yes
is unnecessary due to its definition, which can be seen in Listing 6.3. SND_DRIVERS
is set by default to yes when its dependency on SND is met. Since setting SND to
yes is part of the fix, it means that the user does not need to manually change that
configuration option’s value. Superfluous assignments were also found in the fixes
for SND_ICE1712, RTC_DRV_DS3234, RTC_DRV_PCAP and SND_MTPAV.

55

6. Evaluation

Listing 6.1: The Kconfig definitions of DRM_I830, DRM_I915 and DRM_I915_KMS.
1 choice
2 prompt "Intel 830M, 845G, 852GM , 855GM , 865G"
3 depends on DRM && AGP && AGP_INTEL
4 optional
5

6 config DRM_I830
7 tristate "i830 driver "
8 ...
9

10 config DRM_I915
11 tristate "i915 driver "
12 depends on AGP_INTEL
13 ...
14

15 config DRM_I915_KMS
16 bool " Enable modesetting on intel by default "
17 depends on DRM_I915
18 ...
19

20 endchoice

Listing 6.2: Five fixes for setting IPDDP to yes.
1 [ATALK :=yes , IPDDP :=yes , DEV_APPLETALK :=yes ,
2 SCSI_FC_ATTRS :!(SCSI_FC_ATTRS == no), ATA :!(ATA == no)]
3 [ATALK :=yes , IPDDP :=yes , DEV_APPLETALK :=yes , NET := yes]
4 [ATALK :=yes , IPDDP :=yes , DEV_APPLETALK :=yes ,
5 SCSI_FC_ATTRS :!(SCSI_FC_ATTRS == no), SCSI :!(SCSI == no)]
6 [ATALK :=yes , IPDDP :=yes , DEV_APPLETALK :=yes , NET := yes]
7 [ATALK :=yes , IPDDP :=yes , DEV_APPLETALK :=yes , SCSI_NETLINK := yes]

Listing 6.3: The Kconfig definition of SND_DRIVERS.
1 if SND
2 ...
3

4 menuconfig SND_DRIVERS
5 bool " Generic sound devices "
6 default y
7 help
8 Support for generic sound devices .
9

10 ...
11 endif

56

6. Evaluation

Listing 6.4: The Kconfig definitions of 64BIT and X86_32.
1 config 64 BIT
2 bool "64- bit kernel " if ARCH = "x86"
3 default ARCH = " x86_64 "
4 ---help ---
5 Say yes to build a 64- bit kernel - formerly known as x86_64
6 Say no to build a 32- bit kernel - formerly known as i386
7

8 config X86_32
9 def_bool !64 BIT

6.2.2.3 Too small

In 10.0 % of the cases, the fixes missed assignments to satisfy the configuration
option’s dependencies. It was primarily caused by the implementation not taking
into consideration if a configuration option is hidden or not. But in one case it
occurred because a default attribute was not properly handled when generating
the fix.

In many cases, configuration options without a prompt were included in the
fixes, i.e. configuration options the user has no ability to change directly. For
instance, wanting to set the configuration option BATTERY_OLPC to yes yields 18
fixes, all of which contain the fix unit assignment X86_32:=yes. However, the con-
figuration option X86_32 has no prompt, as we can see in Listing 6.4 (def_bool
is a shorthand for declaring it as bool and setting its default value), and it is
therefore not possible to apply any of the 18 fixes correctly. The same is true for
USB_SERIAL_MOS7720, where its fixes contain USB_ARCH_HAS_HCD; IPDDP, where one
of its five fixes contains SCSI_NETLINK; PATA_WINBOND_VLB, where three fixes con-
tain ISA; and I2C_PARPORT_LIGHT, where one of its 16 fixes contains FB_DDC. To
solve this, the program would need to take into account if a configuration option
has a prompt or not, and only include those that have prompt in the fixes.

To explain this further, we will look at an example. In Listing 6.5, there are
three configuration options: A, B and C. A depends on B, but B has no prompt. B
is modified indirectly by changing the value of C, which selects B. Setting C to yes
in xconfig, enables the ability to set A to yes. Saving this configuration in xconfig
yields the following .config file:

CONFIG_A=y
CONFIG_B=y
CONFIG_C=y

Even though B has no prompt and cannot be assigned a value directly in xconfig,
its indirect value is saved when the configuration is written to disk. Assume that
we modify the .config directly to:

CONFIG_A=y
CONFIG_B=y

When this configuration is opened in xconfig, the configuration option A is turned off.
Without doing any alterations in xconfig, saving it yields the following configuration:

CONFIG_C is not set
This illustrates that values for invisible configuration options are written to the

57

6. Evaluation

Listing 6.5: A Kconfig model with three configuration options.
1 config A
2 tristate "A"
3 depends on B
4

5 config B
6 tristate
7

8 config C
9 tristate "C"

10 select B

configuration file. However, assigning values to invisible configuration options does
not work in the configurator, nor via the configuration file.

The second found issue causing too small fixes, was that a fix would enable a
conflicting configuration option through a default attribute. Generating fixes for
the configuration option ECHO yielded the fix [STAGING:=yes, ECHO:=yes]. When
enabling STAGING in xconfig, the configuration option STAGING_EXCLUDE_BUILD also
gets enabled due to its default y if STAGING attribute. However, ECHO depends
on the expression STAGING && !STAGING_EXCLUDE_BUILD, which means that the
user does also need turn off STAGING_EXCLUDE_BUILD. The correct fix would there-
fore have been [STAGING:=yes, ECHO:=yes, STAGING_EXCLUDE_BUILD:=no].

6.2.2.4 Empty

In 34.0 % of the cases, RangeFix returned without being able to find any fixes to
the problem. Primarily, it was caused by architecture-specific dependencies being
used in the configuration options shared between the architectures. But behaviour
where diagnoses would only be found occasionally was also observed.

In many cases nothing was returned because of a dependency on a configura-
tion option from another architecture. In the Linux kernel’s source tree, there is
a directory called /arch that contains a subdirectory for each supported architec-
ture. These subdirectories contain architecture-specific configuration options that
are only loaded depending on the target architecture. For instance, when configuring
the Linux kernel for x86, the configuration options from the file /arch/x86/Kconfig
are loaded and presented in xconfig. There are also directories with shared config-
uration options, for instance in the directory /drivers. However, these might still
depend on architecture-specific configuration options.

For instance, when fixes were generated for the configuration MTD_NAND_ATMEL,
nothing was returned. Taking a look at its Kconfig definition, we find that it depends
on ARCH_AT91 || AVR32. These configuration options are only present if the user
is configuring the kernel for either the architecture ARM or AVR32.

This is therefore not strictly an error. However, it is still a usability problem
if there are configuration options where the program does not return anything. To
solve this, the division between architecture-specific and architecture-independent
configuration options would need to be stricter. Alternatively, RangeFix would
need to detect if any of the conflicting configuration options contain an unavailable

58

6. Evaluation

architecture-specific dependency.
Sometimes no diagnoses were found. An example when this happened was for

the configuration option PCMCIA_3C589. However, running RangeFix multiple times
for the configuration option PCMCIA_3C589, it was found that it sometimes was able
to find diagnoses. While sometimes it quit after only the first stage of the algorithm.
This might be due to the order unsatisfiable cores are found in, or due to the order
partial diagnoses are picked. Another possibility is that there is a bug somewhere
in the code.

6.2.2.5 Timeout

The existing implementation of RangeFix taking more than five minutes to run hap-
pened in 32.0 % of the cases. It was either caused by the diagnoses generation never
completing, or by the fix generation not completing due to a too large constraint
set.

Sometimes the program timed out due to the diagnoses generation taking a
very long time. For instance, when diagnoses for NETFILTER_XT_MATCH_MARK were
computed, RangeFix never managed to find a diagnosis that was large enough to
make the model satisfiable. As explained in Section 2.5, a diagnosis is required to
contain at least one configuration option from each unsatisfiable core to be able to
satisfy the constraints. At one point, it was working with a partial diagnosis that
consisted of more than 300 configuration options, and it was still not large enough to
contain one configuration option from each unstatisfiable core. There is probably a
bug behind this issue, because it seems unreasonable that there would be hundreds
of unsatisfiable cores.

In other cases, the third stage of the algorithm took a long time to complete. In
this stage, the generated diagnoses are used in conjunction with the constraints to
generate fixes. To improve the performance of this process, the program only uses
the constraints that involve the configuration options in the generated diagnoses.
However, the set of related constraints might still be very large. For instance,
when fixes for MISDN_NETJET were computed, there were 20 diagnoses and each one
consisted of roughly 7 configuration options. Furthermore, for each diagnosis, 1,375
related constraints were found. All these factors together made it very resource
demanding to simplify the constraints into fixes.

6.2.3 Performance results
As we saw in Figure 6.5, 34 % of the runs resulted in fixes (correct, too large and
too small combined). We will now examine the performance of these runs in further
detail.

The number of iterations done in the first stage of RangeFix for generating the
diagnoses is shown with a Tukey boxplot in Figure 6.7. The median is 6 iterations.
50 % of the executions ran between 4 and 14 iterations. 75 % ran between 2 and 14
iterations. Ignoring the outliers, 100 % ran between 2 and 24 iterations. The outliers
are 30, 34, 39, 47, 1029, 1029, 1030, 1030, 1031, 2006 and 3156. In the majority of
cases, a small number of fixes were generated and these did also require relatively
few iterations. However, there were some cases that required a lot of iterations,

59

6. Evaluation

100

101

102

103

104

It
e
ra
ti
o
n
s

Diagnosis generation,
Scala implementation of RangeFix

Figure 6.7: The number of iterations done generating the diagnoses with the Scala
implementation of RangeFix.

ignoring those executions that ran for more than five minutes. This explains why
the mean is 159.5 number of iterations.

The running time of the program is illustrated with four Tukey boxplots in
Figure 6.8. In the first plot, we can see that the median total running time, from
that it is started until fixes are returned, is 16.15 seconds. The lower three quantiles,
75 % of executions, finish between 10.97 and 20.81 seconds. However, the outliers
are the reason behind the mean running time of 27.89 seconds. In the second plot,
the running time for reducing the constraints is shown, which is a relatively quick
activity. The median time is 0.35 seconds while the mean is 0.34 seconds. The
third plot shows the running time of the activity for generating diagnoses, where
the median is 0.50 seconds and the mean is 1.45 seconds. The fourth plot shows
the running time for converting the diagnoses to fixes, where the median is 3.14
seconds and the mean is 14.14 seconds. The reason why the mean for the three
activities do not add up to the total mean is because there are other activities, such
as parsing the .exconfig input file, that also add some overhead to the program’s
total running time.

60

6. Evaluation

Total
0

20

40

60

80

100

120

140

160

T
im

e
 (
s)

Slicing constraints
0.0

0.1

0.2

0.3

0.4

0.5

Generating diagnoses
0

2

4

6

8

10

12

14

16

Converting to fixes
0

20

40

60

80

100

120

140

Time spent generating fixes, Scala implementation of RangeFix

Figure 6.8: Time spent generating fixes with the Scala implementation of Range-
Fix.

6.3 The C implementation
In this thesis, the feasibility of implementing RangeFix in C using a SAT-based
constraint solver is investigated. We have therefore built such a prototype of the
algorithm, which implements the first stage of the algorithm and is therefore able
to generate diagnoses. In Section 5.2, this partial C implementation of RangeFix
was demonstrated. To be able make an educated decision on how to proceed within
the design science research methodology, it is necessary to evaluate the implemen-
tation’s quality. In this section, we evaluate the quality in terms of correctness
and performance. Whether a diagnosis accurately tells the user what configuration
options whose values are required to be modified to enable a new configuration op-
tion determines its correctness. The time it takes to run the C implementation of
RangeFix to generate diagnoses determines its performance.

6.3.1 Evaluation design
In this subsection, the evaluation design for the C implementation of RangeFix is
explained. First, the procedure for the evaluation is presented. Next, how the
diagnoses were classified in terms of correctness is presented.

6.3.1.1 Procedure

To evaluate the C implementation of RangeFix, a set of 200 disabled configuration
options were sampled. The selection of configuration options was done randomly
from the set of configuration options fulfilling the following criteria:

• The configuration option’s type is either bool or tristate. Required since these
are the two input types that the C implementation of RangeFix supports.

61

6. Evaluation

• The configuration option has a prompt. Required since these are the only
configuration options that the user can modify directly (invisible configuration
options cannot be changed directly).

• The configuration option is currently set to no. Required since this state says
that the configuration option is currently disabled.

The initial configuration was an allnoconfig with version 4.4.10 of the Linux kernel.
The total number of configuration options fulfilling the above criteria on the x86
platform with an allnoconfig is 9,183. Why the kernel version differ from the one
used in the evaluation of the Scala implementation is explained in Section 4.6.

For each randomly selected configuration option, the C implementation of Range-
Fix was executed to generate diagnoses for how to set it to yes. The running time
was recorded, and the returned diagnoses were manually tested in xconfig for cor-
rectness. If it was possible to enable the configuration option by only modifying the
values of the configuration options in the diagnoses, it was considered to be correct.
If the program did not finish within 40 seconds, it was terminated.

The evaluation of our C implementation of RangeFix is limited to the diagnoses,
as opposed to the evaluation of the existing Scala implementation of RangeFix,
where the fixes were evaluated. The reason is that the C implementation is only
a partial implementation of the RangeFix algorithm, since it is missing the second
and the third stages of the algorithm. That is why the evaluation of it is limited to
the diagnoses returned from the first stage.

The timeout was set to only 40 seconds, as opposed to the five minutes that the
existing Scala implementation of RangeFix got. This was due to a memory leak
in the program, which caused it to crash after a few minutes. Efforts were made
to locate the memory leak(s) through manual code inspection and analysis with
Valgrind [48], but turned out unsuccessful.

6.3.1.2 Correctness classifications

The correctness of a generated diagnosis was determined by testing it in xconfig.
As with the Scala implementation, we opted for classifying the generated diagnoses
with the five labels: correct, too large, too small, empty, and timeout. For each of
the 200 configuration options, the generated diagnoses were classified with one of
these labels. The classifications are explained in further detail below.

Correct. If all generated diagnoses for a configuration option were minimal, and it
was possible to enable the configuration option by only modifying the values of the
configuration options in the returned diagnoses, it was classified as correct. By being
minimal, a diagnosis contains only those configuration options that are required to
edit to satisfy the unmet dependencies, which is a wanted property [30].

Too large. With a too large diagnosis, there were redundant configuration options
that the user did not have to change. When one or more of the returned diagnoses
contained redundant configuration options, the result was classified as being too
large.

62

6. Evaluation

Figure 6.9: The results from calculating diagnoses for 200 disabled options.

Too small. If the returned diagnoses did not contain the complete set of required
configuration options to edit the value of, it was classified as being too small. In
other words, to enable the configuration option, the user would have needed to edit
more configuration options than what were returned by the program.

Empty. If the program returned, but with an empty set of diagnoses, and the
configuration option had unmet dependencies, the result was classified as being
empty. As with the Scala implementation, the distinction from being too small was
made because the error probably originated from a different source.

Timeout. If the program did not return within 40 seconds, it was classified with
the label timeout. As already explained, this upper limit was implemented to limit
the total running time. Furthermore, as mentioned previously, it had to be set to
40 seconds due to a memory leak that could not be located.

6.3.2 Correctness results
In this subsection, the correctness of the diagnoses, generated from the 200 runs, is
evaluated. The results are summarized in Figure 6.9. These outcomes are discussed
below, and various error sources are identified and explained.

6.3.2.1 Correct

In 43.0 % of the cases, the returned diagnoses were classified as correct. One such
example was for the configuration option IP_MULTIPLE_TABLES, where the diagnosis
[IP_ADVANCED_ROUTER, NET, INET] was generated. It was considered to be correct
because it was possible to satisfy the dependencies to IP_MULTIPLE_TABLES by only
modifying the values of the configuration options IP_ADVANCED_ROUTER, NET and
INET.

63

6. Evaluation

6.3.2.2 Too large

In 11.5 % of the cases when the diagnoses were too large, it was because they were
not simplified enough. As explained in Section 4.5, a step that was implemented in
the C version of the algorithm was to remove any redundant configuration options
before returning the diagnoses. It was possible to satisfy the dependencies by only
modifying the values of the configuration options in the generated diagnoses. How-
ever, one or more of the diagnoses contained redundant configuration options that
the user did not have touch.

For instance, generating diagnoses for EFI_STUB resulted in the following three
intermediate diagnoses:

• [ACPI, EFI, NLS, PCI, RELOCATABLE, PNP, PCI_GODIRECT]
• [ACPI, EFI, NLS, PCI, RELOCATABLE, PNP, PCI_GOBIOS]
• [ACPI, EFI, NLS, PCI, RELOCATABLE, PNP, PCI_GOOLPC, OLPC, GPIOLIB,

OF]
These diagnoses were simplified into the following two diagnoses that were returned
by the program:

• [EFI, PCI]
• [EFI, PCI, OLPC]

The second diagnosis is redundant, since it is possible to enable the configuration
option EFI_STUB by only modifying the values of EFI and PCI.

Another example of this behaviour is the diagnoses returned for BLK_DEV_CS5520:
• [BLOCK, PCI, IDE]
• [BLOCK, PCI, IDE, DEFAULT_NOOP]
• [BLOCK, PCI, IDE, PARTITION_ADVANCED]
• [BLOCK, PCI, IDE, DEFAULT_NOOP, PARTITION_ADVANCED]

If the diagnosis [BLOCK, PCI, IDE] does already contain enough configuration op-
tions, it is of course unnecessary to also return variations of it that contain additional
configuration options. A diagnosis should consist of a minimal set of configuration
options whose values need to be modified.

6.3.2.3 Too small

In 13.0 % of the cases, when the diagnoses were too small, it was because they were
simplified too much. During the simplification, redundant configuration options
are removed from the generated diagnoses, as explained in Section 4.5. However,
sometimes too many configuration options were mistakenly removed, which resulted
in diagnoses that were missing necessary configuration options.

For instance, checking the logs from the diagnoses generation for the configura-
tion option NET_VENDOR_SIS, we find that the following intermediate diagnoses were
generated:

• [ETHERNET, NETDEVICES, PCI, NET, PCI_GOMMCONFIG]
• [ETHERNET, NETDEVICES, PCI, NET, PCI_GOANY]
• [ETHERNET, NETDEVICES, PCI, NET, PCI_GODIRECT]
• [ETHERNET, NETDEVICES, PCI, NET, PCI_GOBIOS]

They were simplified into the diagnosis [PCI, NET], which was returned by the pro-
gram. However, only modifying the configuration options PCI and NET is not enough

64

6. Evaluation

to be able to enable NET_VENDOR_SIS. To satisfy its dependencies, NETDEVICES does
also need to be part of the diagnosis, which means that ETHERNET and PCI_* were
correctly removed, while NETDEVICES was incorrectly removed. This might be due
to a bug in the SAT encoding of the Kconfig model or in the code that does the
simplification.

6.3.2.4 Empty

In 25.5 % of the cases, when an empty set of diagnoses was returned, it was due to the
configuration option depended on a configuration option for another architecture.
For instance, when diagnoses were generated for the configuration LCS, nothing was
returned. Taking a look at its Kconfig definition, we find that it depends on the
configuration option S390, which is only present if the user is configuring the kernel
for IBM’s S/390 mainframe architecture.

Another example was when diagnoses were generated for the configuration option
MTD_NAND_GPMI_NAND. It depends on the expression MTD && MTD_NAND && MXS_DMA.
Taking a closer look at these dependencies, we find that MXS_DMA depends on the
expression SOC_IMX23 || SOC_IMX28 || SOC_IMX6Q, all of which are only present
if the user is configuring the kernel for the ARM architecture. Even though the
configuration options MTD_NAND_GPMI_NAND and MXS_DMA only serve a purpose on
ARM, they are still present in xconfig when configuring the kernel for x86.

As with the correctness of the Scala implementation, this classification is there-
fore not strictly an error. However, as with the Scala implementation, it is a usability
problem if there are cases when the conflict-resolution quits without any feedback
and forces the user to find the error source by herself.

6.3.2.5 Timeout

In 7.0 % of the cases, when running the program resulted in a timeout, it was because
the generation of diagnoses never finished. One example when this happened was for
the configuration option IXGBEVF, which depends on the expression NETDEVICES &&
ETHERNET && NET_VENDOR_INTEL && PCI_MSI. Examining the partial diagnoses gen-
erated during the program’s execution, we find that they contain these configura-
tion options, including the configuration options to satisfy their dependencies. Even
though the partial diagnoses contain the necessary configuration options, the pro-
gram believes it is still unsatisfiable and continues to run. It must therefore be
something that wrongly triggers a conflict between the configuration options, that
keeps the program running due to falsely detected unsatisfiable cores.

6.3.3 Performance results
67.5 % of the runs resulted in diagnoses being generated and returned (correct, too
small and too large combined). We will examine the performance of these runs in
further detail in this section.

The number of iterations for generating the diagnoses is shown with a Tukey
boxplot in Figure 6.10. The median is 12 iterations and the mean is 21.1 iterations.

65

6. Evaluation

0

20

40

60

80

100

120

140

It
e
ra
ti
o
n
s

Diagnosis generation,
C implementation of RangeFix

Figure 6.10: The number of iterations done for generating diagnoses with the C
implementation of RangeFix.

75 % of the executions ran for less or equal to 30 iterations. There are also some
outliers, that ran for 79, 81, 82, 87, 89 and 138 iterations.

The running time for the program is shown with four Tukey boxplots in Fig-
ure 6.11. In the first plot, we have the total running time for the program, from
its initiation until diagnoses have been generated and are returned. The median is
2.4 seconds and the mean is 4.6 seconds. However, as can be seen in the plot, there
are many outliers, the largest being 35.5 seconds. In the second plot we can see
the time it takes to initialize PicoSAT with the translations of the constraints into
PicoSAT clauses. This is a process whose mean and median are both 0.9 seconds.
Since the constraints are always the same, there is not a big spread between the
runs. In the third plot we have the time it takes to generate the diagnoses. This
is also a relatively quick process, and its median is 0.6 seconds and its mean is 1.1
seconds. In the fourth plot we can see the time it takes for the program to simplify
the diagnoses by removing any configuration options that the user does not need to
set manually. The median for this activity is only 0.6 seconds, but its mean is 2.7
seconds due to many outliers that took as much as 31.3 seconds.

66

6. Evaluation

Total
0

5

10

15

20

25

30

35

40

T
im

e
 (
s)

Setup
0.85

0.90

0.95

1.00

1.05

1.10

Generating diagnoses
0

1

2

3

4

5

6

7

Simplifying diagnoses
0

5

10

15

20

25

30

35

Time spent generating diagnoses, C implementation of RangeFix

Figure 6.11: Time spent generating diagnoses with the C implementation of
RangeFix.

6.4 Observations and conclusions
From the evaluations in the Sections 6.1, 6.2 and 6.3, we can make several observa-
tions. We will therefore comment on the results in the following subsections.

6.4.1 User survey
In the first question, the participants were asked if they ever run into issues while
configuring the kernel. Of the 11 participants, 1 responded frequently, 3 occasionally,
5 rarely, and 2 never. This is somewhat comparable to the survey by Hubaux et
al. [6], where they found that 56 % the participants considered enabling/disabling a
configuration option to be a problem in practice. When we asked our participants to
explain their answer further, reoccurring reasons were locating configuration options
and satisfying dependencies.

To aid in configuring of the Linux kernel, a help text is provided to each configu-
ration option. We asked the participants to rate the help text’s usefulness. 1 replied
that it is not helpful at all, 5 somewhat helpful, 3 helpful, and 1 very helpful. These
numbers correlate somewhat to the ones mentioned in the previous paragraph.

We also asked the participants about the typical, shortest and longest time it
takes them to configure a configuration option. The typical was on average 1.5
minutes, the shortest 20 seconds, and the longest 11 minutes. In the survey by
Hubaux et al. [6], there are not a whole lot of raw numbers being presented. But
we find that 20 % of the Linux user participants stated that they need at least "a
few dozen minutes" on average to figure out how to activate an inactive option. Our
findings were not as bad.

To the survey participants, we showed our modified version of xconfig which has

67

6. Evaluation

functionality for generating and displaying fixes for satisfying unmet dependencies.
8 thought it would be beneficial in only some scenarios, and 3 thought it would not
be beneficial. These numbers are not that surprising, since the implementation is
currently fairly basic and requires one to manually apply the fixes. Furthermore,
it is not always the case that one has to satisfy unmet dependencies to enable a
configuration option. Therefore it makes sense that the participants would only
consider the prototype to be beneficial in some scenarios.

The participants were also asked whether they considered the accomplishment
in the video to be an improvement, where a configuration option and its four depen-
dencies were located and enabled within 2 minutes. 4 participants replied it was not
an improvement, 4 a slight improvement, 3 an improvement and nobody considered
it to be a big improvement. These numbers correlate to the ones commented on in
the previous paragraph, where 8 participants thought the tool would be beneficial
in certain scenarios.

The participants were also given the opportunity to tell their preferred running
time for generating fixes. They replied that they would prefer the fixes to be gener-
ated as soon as possible, which is not very surprising. However, since it is likely not
possible to generate accurate fixes within zero amount of time, we also asked the
maximum amount of time they would be willing to tolerate. The majority replied
with maximums of 10 seconds or less.

6.4.2 The Scala implementation
The correctness of the fixes from the Scala implementation was fairly good. In
34 % of the cases, fixes were returned. 59 % of these were correct, while 41 % were
incorrect. The incorrect ones were primarily caused by the implementation lack-
ing support for differentiating between configuration options with and without a
prompt. Furthermore, there were some with minor usability issues with redundant
configuration options. But overall, the returned fixes looked well.

The Scala implementation of RangeFix was experienced as being fairly slow.
The quickest measured execution was 10.97 seconds, and 75 % of the executions
finished within 20.81 seconds. As we can see, never was the program quicker than
the users’ expectation of it to take less than 10 seconds, which we found out in our
user survey. Furthermore, the running time was rather irregular, with many outliers,
which caused a mean running time of 27.89 seconds. In one instance the program
even ran for more than 2 minutes.

Taking a closer look, we find that the performance irregularities stem from both
the diagnoses generation and fix generation. Generating diagnoses was relatively
quick, with a median of 0.50 seconds, while generating the fixes was slower, with a
median of 3.14 seconds. But the mean times were 1.45 seconds and 14.14 seconds,
respectively, which are a result of the frequent outliers.

We also recorded the number of iterations the algorithm did in its first stage,
where the diagnoses are generated and the constraint solver continuously invoked
to detect unsatisfiable cores. The median was 6 iterations, with the three lower
quantiles being between 2 and 14 iterations. However, they ranged up to 3,156
iterations, with a mean of 159.5 iterations. This explains why the slowest time it

68

6. Evaluation

took to generate diagnoses was 14.5 seconds, compared to the mean of 1.45 seconds.
A source that also has a big negative impact on the performance of the Scala

implementation is overhead from various activities, such as loading the application
and parsing the .exconfig file. The mean for the total running time was 27.89
seconds, for generating diagnoses it was 1.45 seconds, and generating fixes 14.14
seconds. Subtracting those activities from the total, we find that the other activities
consume on average 12.30 seconds.

6.4.3 The C implementation
The correctness of the C implementation’s diagnoses was quite good. In 67.5 %
of the executions, diagnoses were generated. 64 % of these were correct, while 36 %
were incorrect by being too small or big. When nothing was returned, it was because
they contained architecture-specific configuration options, which happened in 25.5 %
of all cases, or because it ran for longer than the 40 seconds limit, which happened
in 7.0 % of all cases.

The performance of the diagnoses generation activity in the C implementation
was comparable to the same activity in the Scala implementation. The mean running
time for generating diagnoses in the C implementation was 1.1 seconds, and the
median was 0.6 seconds. For the Scala implementation, the mean for generating
diagnoses was 1.5 seconds, and the median 0.5 seconds.

The number of iterations done in the diagnoses generation activity differed some-
what. For the C implementation, the mean was 21.1 iterations, and the median was
12 iterations. For the Scala implementation, the mean was 159.5 iterations, and the
median was 6 iterations. The three first quantiles for the C implementation ranged
between 1 and 30 iterations, while the same statistic for the Scala implementation
was between 2 and 14 iterations. The underlying algorithm is the same in both in-
stances, however, factors such as the difference in kernel versions and timeout length
might play a role.

The overhead from initiating the CNF clauses in PicoSAT was very small. The
mean and median were both 0.9 seconds, and does only have to be done once at
xconfig’s startup. In other words, when the Kconfig model has been translated into a
SAT problem, the instance of the SAT problem can be be reused for each subsequent
time the user wants to generate diagnoses. This is possible since xconfig and the
C implementation of RangeFix are both compiled into the same binary. The Scala
implementation of RangeFix, on the other hand, has to be launched from scratch
each time the user wants to generate fixes. A possible solution to reduce some
overhead of starting and initializing the Scala implementation of RangeFix, would
be to make it into a long-running background process that xconfig can communicate
with through a socket.

The overall total running time for the C implementation was decent. The mean
was 2.4 seconds, and the median was 4.6 seconds. However, the implementation is
obviously lacking fix generation, which the evaluation of the Scala implementation
proved to be relatively expensive. Furthermore, the running time of the C imple-
mentation does, as the Scala version, suffer from irregularities. There are many
outliers, that in many cases cause a big negative impact on the running time. The

69

6. Evaluation

activity for simplifying the diagnoses, where redundant configuration options are
removed, did also appear to be costly and consume a big proportion of the C im-
plementation’s total running time. Since the Scala implementation does not need
such a step, it would be wise if the C implementation’s diagnoses generation was
improved in such a way that the need for simplifying the diagnoses is removed.

6.5 Threats to validity
There are internal threats to validity to be aware of. Since the survey was conducted
by submitting it on various online discussion boards and mailing lists, it is based on
a convenience sample, which might have an effect on the selection bias. For instance,
it might be the case that people who engage on these sorts of forums are already
experienced in configuring the kernel, and would therefore not appreciate additional
assistance as much as a newcomer. On the other hand, the people who decided to
participate in the survey might have done it because they have strong feelings about
how the kernel is configured. It is therefore hard to draw any strong conclusions
from such a sample.

Furthermore, the sample size was also fairly small, with only eleven participants.
In the survey conducted by Hubaux et al. [6], where they utilized a similar method
to get in contact with Linux users, they managed to get 97 participants. From a
survey with only eleven participants, it is hard to make any quantitative claims.

There are also confounding variables that play a role in how the participants
replied to the questions in the survey. One such confounding variable is the video
presentation of this thesis’ prototype. In the video, a rehearsed routine is carried
out, which makes it look very easy. In addition, the video has also been tampered
with, where elements have been sped up to shorten the length of the video. Such
factors contribute to the participants’ perception of the tool, and they become more
inclined to give it a more positive rating than they would otherwise.

Another issues with the survey appears in the answer choices to question 13, see
Appendix A and Figure 6.3. The choices the participants were able to pick from were
"not an improvement", "slight improvement", "improvement" and "big improvement".
However, what is missing is a negative scale, where the participants would be able to
express a deterioration in the configurator. It is therefore not possible to distinguish
between (a) those participants who considered it to not be an improvement and were
neutral, and (b) those who considered it to have made the configurator worse. Four
participants selected the answer choice "not an improvement", and it is unknown
within which category of these two they are.

Many of the answer choices also suffer from being dependent on the participant’s
frame of reference. For instance, looking at the first question, see Appendix A
and Figure 6.1, it asks whether they ever run into issues when configuring the
kernel. However, one person might experience one issue per configuration session
and consider it to be a frequent problem, while another person might experience ten
issues per configuration session and consider it to only be a rare problem. Another
example of where this problem appears is in question 8, see Figure 6.3, where the
participant is supposed to select a answer choice to tell whether the prototype seems
to be beneficial or not. However, answering that question depends heavily on the

70

6. Evaluation

participant’s frame of reference. For instance, the participant might be paid by the
hour to configure kernels and interprets a quicker process as something negative
for herself. These two examples illustrate that the interpretation of the results can
differ a lot from the participant’s interpretation of the question.

Due to the discussed differences between the two implemented artifacts, where
they work for different kernel versions and have differing degrees of completeness,
there is also the case of instrument change to be aware of. If they had been im-
plemented for the same kernel version, and had supported the same functionality,
the comparability had been better. On the other hand, as discussed in Section 4.6,
improving the comparability would have required more work.

Construct validity is also something to be aware of. The tests we created to
measure the correctness, performance and usability qualities, might not have be
optimal. There might be better ways to more accurately measure these qualities.
For instance, in a controlled experiment it would have been possible to evaluate the
usability of the demonstrated prototype in a much more accurate and structured
way. It would have been possible to ask the participants to carry out a scenario,
both in the regular configurator and in ours. By doing that, a proper benchmark
would be established and any improvement or deterioration measured.

Since only conflict-resolution for the Linux kernel has been evaluated in this
case study, the generalizability within the domain of software configurators remains
unknown to some extent. This has a negative impact on the external validity.
However, it can be generalized outside the Linux kernel to other projects that also
use the Kconfig language for their feature model.

71

7
Towards a SAT-based
implementation in C

The Linux community would prefer to realize interactive conflict-resolution support
in C and base it on a SAT solver. However, as is apparent by the evaluation of this
thesis project’s C implementation, there are still areas that need to be improved.
In this chapter, we discuss identified challenges that need to be tackled to be able
to finish the realization of such a mechanism. The challenges are categorized into
four categories: 1. integrating the algorithm with xconfig, 2. encoding the Kconfig
model as a SAT problem, 3. realizing the diagnoses generation, and 4. realizing fix
generation.

7.1 Challenge #1: Integrating with xconfig
All Kconfig configurators bundled with the kernel restrict the user from entering
an invalid configuration state [6], as opposed to other configurators that allow the
user to enter an invalid state and use conflict-resolution to provide feedback and
assistance in resolving the conflicts. In Section 2.1, the eCos Configuration Tool and
pure::variants were discussed, and both those configurators use the latter approach
where the configuration is allowed to temporarily enter an invalid state.

The source code of the Kconfig configurators would need a considerable overhaul
to support a workflow where the user can make her desired configuration changes
and afterwards fix any unsatisfied dependencies, because the configurators are cur-
rently engineered around the notion that no invalid states are allowed. As explained
in Section 2.2.1, internally the Kconfig model’s configuration options are loaded in a
tree structure. Whenever the user modifies a configuration option’s value, the con-
figurator recalculates the values of any other configuration options related through
depends on, select and default attributes. For instance, let say there are two
boolean configuration options A and B, where A is set to y and B has an attribute
default y if A; if the user changes the value of A to n, the value of B is also up-
dated and is automatically set to n. (It falls back on n because an unconfigured
configuration option without any satisfied default attributes is implicitly set to n.)
The visibility of the configuration options is also determined by this data structure,
where the evaluation of a configuration option’s depends on expression determines
its visibility.

Our C implementation of RangeFix gets its configuration values from iterat-
ing over the symbol structs in the internal Kconfig data structure, reading each

72

7. Towards a SAT-based implementation in C

symbol’s variable curr, which contains a configuration option’s current value. The
configuration options that the user wants to find fixes for are first modified in the
Kconfig data structure, before diagnoses are generated. However, the Kconfig data
structure is closely tied to the presentation of the configuration options in xconfig,
which means that a better solution would isolate the data structure that the graph-
ical user interface depends on from the data structure that RangeFix needs for its
calculations.

Regardless of what language RangeFix is implemented in, the graphical interface
of the dependency-resolution support in xconfig would also benefit from further work.
The fixes could be presented in a more user friendly way, and applying the fixes could
also be simplified. Rather than having to apply each assignment in a fix manually,
it would be better if the user could, by the press of a button, choose a fix and have
it applied automatically to the configuration. This would be easier to achieve if the
algorithm is ported to C, because by using the Scala implementation, an additional
step where the returned fixes are parsed as strings is necessary. If the underlying
core of the configurator is also changed in such a way that invalid states are possible
to enter, running conflict-resolution continuously to report on any detected conflicts
could also benefit the user. With this prototype, the user has to manually initiate
the fix calculation algorithm for a selected set of configuration options.

7.2 Challenge #2: SAT encoding
The first stage of RangeFix utilizes a constraint solver to find unsatisfiable cores. It
is therefore crucial that the translation of the Kconfig model into a SAT problem
is accurate. At the beginning of this thesis project, a decision was made to base it
upon Satconfig, since that project had already implemented a translation of Kconfig
models into SAT constraint clauses. However, Satconfig was found to contain some
deficiencies in its encoding [49], which we propose a solution to in this section.

7.2.1 Proper tristate expression translation
Satconfig does not make any differentiation between a tristate’s module and yes
states. This means that lower and upper bounds that the Kconfig attributes select
and depends on give rise to are not handled properly. For instance, if a tristate
configuration option depends on A && B, only the first literal in A’s and B’s values
will be considered. In Section 4.1, we saw that the first allocated literal for a
configuration option represents if it has the value y or n, while the second literal
represents if it has the value y and m. Since the second literal is ignored, it means
that the dependency will currently be satisfied regardless of whether A and B are set
to module or yes.

In a tristate expression, five operators are supported: NOT, !A; MIN, A &&
B; MAX, A || B; EQUAL, A = B; and NOT EQUAL, A != B. In the following
sections, a truth table is presented for each operator together with a couple of CNF
formulas that store the operator’s truth value in a variable C. This will enable one
to construct more complex expressions, as later illustrated in Section 7.2.2. By
using this encoding for the dependency expressions, rather than the one currently

73

7. Towards a SAT-based implementation in C

implemented in Satconfig, it should be possible to translate the expressions into
SAT clauses that differentiate between the module and yes states.

7.2.1.1 NOT

The NOT operator produces the inverse of its input, as shown in Table 7.1. To store
its output in a variable C, i.e. C := !A, two constraints need to be formulated—one
constraint for each literal in C. By looking at the truth table in Table 7.1, we can
see that the first literal in !A, i.e. (¬A)1, is equal to A1 → A2. For instance, when
A is set to y, its literals are A1 = true and A2 = false, which yields the value
(¬A)1 = A1 → A2 = true → false = false = 0. In the truth table, we can see
that the second literal in !A, i.e. (¬A)2, does not change from its original value, and
is therefore equal to A2. With these two observations, and by utilizing a Tseytin
transformation [43], the CNF clauses for the two literals in C are:

C1 = A1 → A2 = ¬A1 ∨ A2 ≡ (¬A1 ∨ A2 ∨ ¬C1) ∧ (A1 ∨ C1) ∧ (¬A2 ∨ C1) (7.1)
C2 = A2 ≡ (¬A2 ∨ C2) ∧ (A2 ∨ ¬C2) (7.2)

With these two constraints, it is possible to read the value of !A from the variable
C.

Table 7.1: Truth table of the NOT operator.

A !A
n 0 0 y 1 0
y 1 0 n 0 0
m 1 1 m 1 1

7.2.1.2 MIN

MIN works similarly to the logical AND operator (∧) and returns the smallest value
of its two operands, as depicted in Table 7.2. To be able to read the output from
C, i.e. C := A && B, constraints need to be declared. Finding the constraints is
achieved by identifying patterns in the Karnaugh maps in Table 7.3 and Table 7.4. A
Karnaugh map is used simplify boolean algebra expressions, which it does by taking
advantage of humans’ pattern-recognition capability [50]. In the first Karnaugh
map, we can easily spot that the first literal in A && B is equal to 1 when both A1
and B1 are equal to 1. The second literal in A && B is equal to 1 when either A2 or
B2 is equal to 1. Formulating these observations as constraints for the two literals
in C, with the help of Tseytin transformations [43], we get:

C1 = A1 ∧B1 ≡ (¬A1 ∨ ¬B1 ∨ C1) ∧ (A1 ∨ ¬C1) ∧ (B1 ∨ ¬C1) (7.3)
C2 = A2 ∨B2 ≡ (A2 ∨B2 ∨ ¬C2) ∧ (¬A2 ∨ C2) ∧ (¬B2 ∨ C2) (7.4)

74

7. Towards a SAT-based implementation in C

Table 7.2: Truth table of the MIN operator.

A B A && B
n 0 0 n 0 0 n 0 0
n 0 0 y 1 0 n 0 0
n 0 0 m 1 1 n 0 0
y 1 0 n 0 0 n 0 0
y 1 0 y 1 0 y 1 0
y 1 0 m 1 1 m 1 1
m 1 1 n 0 0 n 0 0
m 1 1 y 1 0 m 1 1
m 1 1 m 1 1 m 1 1

Table 7.3: Karnaugh map of the first literal in A && B.

A
n 0 0 - 0 1 y 1 0 m 1 1

B

n 0 0 0 - 0 0
- 0 1 - - - -
y 1 0 0 - 1 1
m 1 1 0 - 1 1

Table 7.4: Karnaugh map of the second literal in A && B.

A
n 0 0 - 0 1 y 1 0 m 1 1

B

n 0 0 0 - 0 0
- 0 1 - - - -
y 1 0 0 - 0 1
m 1 1 0 - 1 1

7.2.1.3 MAX

MAX works similarly to the logical OR operator (∨) and returns the largest value of
its two operands, as depicted in Table 7.5. To be able to read the output from C, i.e.
C := A || B, constraints need to be declared. To aid us in finding constraints that
enforces that, we have the Karnaugh maps in Table 7.6 and Table 7.7. In Table 7.6
it is easy to spot the following pattern for C1:

C1 = A1 ∨B1 ≡ (A1 ∨B1 ∨ ¬C1) ∧ (¬A1 ∨ C1) ∧ (¬B1 ∨ C1) (7.5)

C2, on the other hand, does not have such an easy formula. There are three regions
in Table 7.7 where C2 is negative, which translates to the clauses:

(A1 ∨B1) ∧ (¬A1 ∨ A2) ∧ (¬B1 ∨B2) (7.6)

There are also three regions where C2 is positive:

(¬A1 ∨ ¬A2 ∨B1) ∧ (A1 ∨ ¬B1 ∨ ¬B2) ∧ (¬A2 ∨ ¬B2) (7.7)

75

7. Towards a SAT-based implementation in C

These clauses yield the following constraints that enforce the correct output value
in C2:

(A1 ∨B1 ∨ ¬C2) ∧
(¬A1 ∨ A2 ∨ ¬C2) ∧
(¬B1 ∨B2 ∨ ¬C2) ∧

(¬A1 ∨ ¬A2 ∨B1 ∨ C2) ∧
(A1 ∨ ¬B1 ∨ ¬B2 ∨ C2) ∧

(¬A2 ∨ ¬B2 ∨ C2)

(7.8)

Table 7.5: Truth table of the MAX operator.

A B A || B
n 0 0 n 0 0 n 0 0
n 0 0 y 1 0 y 1 0
n 0 0 m 1 1 m 1 1
y 1 0 n 0 0 y 1 0
y 1 0 y 1 0 y 1 0
y 1 0 m 1 1 y 1 0
m 1 1 n 0 0 m 1 1
m 1 1 y 1 0 y 1 0
m 1 1 m 1 1 m 1 1

Table 7.6: Karnaugh map of the first literal in A || B.

A
n 0 0 - 0 1 y 1 0 m 1 1

B

n 0 0 0 - 1 1
- 0 1 - - - -
y 1 0 1 - 1 1
m 1 1 1 - 1 1

Table 7.7: Karnaugh map of the second literal in A || B.

A
n 0 0 - 0 1 y 1 0 m 1 1

B

n 0 0 0 - 0 1
- 0 1 - - - -
y 1 0 0 - 0 0
m 1 1 1 - 0 1

7.2.1.4 EQUAL

The EQUAL operator returns y if its two operands are equal and otherwise n, as
depicted in Table 7.8. We want to construct a variable C which contains the value

76

7. Towards a SAT-based implementation in C

of that expression, i.e. C := A = B. We will start with C1, whose pattern in the
Karnaugh map in Table 7.9 translates into the following formula:

C1 = A1 ↔ B1 ∧ A2 ↔ B2 (7.9)

All nine outcomes for C1 in the Kernaugh map in Table 7.9 translate into the
following CNF clauses:

(A1 ∨ A2 ∨B1 ∨B2 ∨ C1) ∧
(A1 ∨ A2 ∨ ¬B1 ∨B2 ∨ ¬C1) ∧

(¬A1 ∨ A2 ∨ ¬B1 ∨ ¬B2 ∨ ¬C1) ∧
(¬A1 ∨ A2 ∨B1 ∨B2 ∨ ¬C1) ∧
(¬A1 ∨ A2 ∨ ¬B1 ∨B2 ∨ C1) ∧

(¬A1 ∨ A2 ∨ ¬B1 ∨ ¬B2 ∨ ¬C1) ∧
(¬A1 ∨ ¬A2 ∨B1 ∨B2 ∨ ¬C1) ∧

(¬A1 ∨ ¬A2 ∨ ¬B1 ∨B2 ∨ ¬C1) ∧
(¬A1 ∨ ¬A2 ∨ ¬B1 ∨ ¬B2 ∨ C1)

(7.10)

However, since there are some undefined values in the truth table, there is room
for minimizing them into smaller clauses. This minimization was achieved by a
brute-force algorithm. The seven remaining CNF clauses are:

(A1 ∨ A2 ∨B1 ∨B2 ∨ C1) ∧
(A1 ∨ ¬B1 ∨B2 ∨ ¬C1) ∧

(A2 ∨ ¬B2 ∨ ¬C1) ∧
(¬A1 ∨B1 ∨ ¬C1) ∧

(¬A1 ∨ A2 ∨ ¬B1 ∨B2 ∨ C1) ∧
(¬A2 ∨B2 ∨ ¬C1) ∧
(¬A2 ∨ ¬B2 ∨ C1)

(7.11)

Lastly, C2 is always negative, which is equal to the CNF clause:

(¬C2) (7.12)

77

7. Towards a SAT-based implementation in C

Table 7.8: Truth table of the EQUAL operator.

A B A = B
n 0 0 n 0 0 y 1 0
n 0 0 y 1 0 n 0 0
n 0 0 m 1 1 n 0 0
y 1 0 n 0 0 n 0 0
y 1 0 y 1 0 y 1 0
y 1 0 m 1 1 n 0 0
m 1 1 n 0 0 n 0 0
m 1 1 y 1 0 n 0 0
m 1 1 m 1 1 y 1 0

Table 7.9: Karnaugh map of the first literal in A = B.

A
n 0 0 - 0 1 y 1 0 m 1 1

B

n 0 0 1 - 0 0
- 0 1 - - - -
y 1 0 0 - 1 0
m 1 1 0 - 0 1

7.2.1.5 UNEQUAL

The UNEQUAL operator returns y if its two operands are equal and otherwise n,
as depicted in Table 7.10. We want to construct a variable C which contains the
value of that expression, i.e. C := A != B. We will start with C1 whose pattern in
the Karnaugh map in Table 7.11 translates into the following formula:

C1 = ¬(A1 ↔ B1) ∨ ¬(A2 ↔ B2) (7.13)

Translating all nine outcomes for C1 from the Kernaugh map in Table 7.11 into CNF
clauses yield us the following formula:

(A1 ∨ A2 ∨B1 ∨B2 ∨ ¬C1) ∧
(A1 ∨ A2 ∨ ¬B1 ∨B2 ∨ C1) ∧

(¬A1 ∨ A2 ∨ ¬B1 ∨ ¬B2 ∨ C1) ∧
(¬A1 ∨ A2 ∨B1 ∨B2 ∨ C1) ∧

(¬A1 ∨ A2 ∨ ¬B1 ∨B2 ∨ ¬C1) ∧
(¬A1 ∨ A2 ∨ ¬B1 ∨ ¬B2 ∨ C1) ∧
(¬A1 ∨ ¬A2 ∨B1 ∨B2 ∨ C1) ∧

(¬A1 ∨ ¬A2 ∨ ¬B1 ∨B2 ∨ C1) ∧
(¬A1 ∨ ¬A2 ∨ ¬B1 ∨ ¬B2 ∨ ¬C1)

(7.14)

However, since there are undefined values in the truth table, there is room for
minimizing them into smaller clauses. The minimization was achieved by a brute-

78

7. Towards a SAT-based implementation in C

force algorithm, and the result is these seven clauses:

(A1 ∨ A2 ∨B1 ∨B2 ∨ ¬C1) ∧
(A1 ∨ ¬B1 ∨B2 ∨ C1) ∧

(A2 ∨ ¬B2 ∨ C1) ∧
(¬A1 ∨B1 ∨ C1) ∧

(¬A1 ∨ A2 ∨ ¬B1 ∨B2 ∨ ¬C1) ∧
(¬A2 ∨B2 ∨ C1) ∧
(¬A2 ∨ ¬B2 ∨ ¬C1)

(7.15)

Lastly, C2 is always negative, which is equal to the CNF clause:

(¬C2) (7.16)

Table 7.10: Truth table of the UNEQUAL operator.

A B A != B
n 0 0 n 0 0 n 0 0
n 0 0 y 1 0 y 1 0
n 0 0 m 1 1 y 1 0
y 1 0 n 0 0 y 1 0
y 1 0 y 1 0 n 0 0
y 1 0 m 1 1 y 1 0
m 1 1 n 0 0 y 1 0
m 1 1 y 1 0 y 1 0
m 1 1 m 1 1 n 0 0

Table 7.11: Karnaugh map of the first literal in A != B.

A
n 0 0 - 0 1 y 1 0 m 1 1

B

n 0 0 0 - 1 1
- 0 1 - - - -
y 1 0 1 - 0 1
m 1 1 1 - 1 0

7.2.2 Use operators in conjunction
Since each operator takes one or two variables as inputs and puts its output in a
new variable, it is possible to recursively translate Kconfig expressions into CNF
constraints. Let us illustrate how this works with an example, (A || B) && (C !=
y). The expression can be viewed as a tree, as depicted in Figure 7.1. We will
traverse the tree in depth-first post-order. Starting with (A || B), we will create
a new auxiliary variable D which is equal to D := A || B. By using the two CNF

79

7. Towards a SAT-based implementation in C

Figure 7.1: The Kconfig expression (A || B) && (C != y) drawn as a binary
tree.

A n
B m
C y
D
E y
F
G

(a) Initial state.

A n
B m
C y
D m
E y
F
G

(b) Step 1.

A n
B m
C y
D m
E y
F n
G

(c) Step 2.

A n
B m
C y
D m
E y
F n
G n

(d) Step 3.

Figure 7.2: How variables, including auxiliary ones, created from the expression
in Figure 7.1, are filled out and yields n.

constraints defined earlier for MAX operator, Formula 7.5 and Formula 7.8, it is
possible to read the result of the operator from D. For (C != y), we will use the
CNF constraints for the NO EQUAL operator, an auxiliary variable E where the
constant y is put, and an auxiliary variable F where the operator’s result is put. The
last operator is MIN, which is found in the bubble at the top of Figure 7.1. Rather
than finding constraints for the complete expression (A || B) && (C != y), we will
instead replace its operands with the auxiliary variables D and F, resulting in the
expression D && F, and use the two CNF constraints we already declared for the MIN
operator. Once again we will create a new auxiliary variable, G, where the resulting
value of the complete expression can be read. Assume we have the assignments A
:= n, B := m and C := y, it results in the initial variable assignments as depicted
by Figure 7.2a. The CNF constraint clauses will then force the SAT solver to
generate the auxiliary variables’ values as depicted by Figure 7.2a, Figure 7.2b and
Figure 7.2c. The end result of the expression is read from G, which is equal to n in
this case.

7.3 Challenge #3: Realize diagnoses
It is during the first stage of the RangeFix algorithm that diagnoses are generated.
Although the first stage of the RangeFix algorithm has been implemented in C in
this thesis, there are still open issues left that need to be resolved for xconfig to have
a satisfying dependency-resolution mechanism.

80

7. Towards a SAT-based implementation in C

7.3.1 Using the internal Kconfig infrastructure for comput-
ing the configuration

A convenient way to read the configuration, including configuration options that
are implicitly set through default and select attributes, is to utilize the internal
Kconfig infrastructure. In the RangeFix algorithm, a constraint solver is invoked to
find an unsatisfiable core in (C\E0), where C is the unsatisfied constraint set and
E0 is a partial diagnosis. The most straightforward way to get the soft constraints,
i.e. the current configuration, is to iterate over the symbol structs in the rootmenu
data structure and copy the curr variable value of each configuration option. By
using this method, it is easy to get soft constraints such as [A:=n, B:=m, C:=y].
With a set operation, it is then possible to compute (C\E0), which the constraint
solver is invoked with. Another advantage with this method is that the internal
Kconfig infrastructure is utilized for parsing the .config file and calculating the
default values and reverse-dependencies, which guarantees that the configuration is
correctly interpreted.

The problem with utilizing the internal Kconfig infrastructure for computing the
complete configuration, including implicitly set configuration options, is that the
configuration will not be updated during the execution of the diagnoses generation
algorithm. In reality, the complements of the partial diagnoses in the configuration
cannot be expected to remain static during the execution of the algorithm. The
inclusion of a configuration option in a partial diagnosis might affect the values of the
configuration options in the complement of the partial diagnosis. The configuration
should therefore instead be recomputed by the internal Kconfig infrastructure during
each iteration of the algorithm. However, the C functions for parsing the Kconfig
model and the .config file—conf_parse and conf_read—only work with the data
structure that is stored in the global variable rootmenu. The same rootmenu data
structure is also what the various Kconfig configurators depend on for displaying
the configuration options’ data, which means there can potentially be unexpected
side effects if the same data structure is used for multiple purposes. Furthermore,
many other miscellaneous functions in the source code are also tailored for there to
only be one such global data structure, which means that making a separate copy
of it would require some effort to implement.

7.3.2 Implicitly configured configuration options
Let us illustrate with an example how building a diagnosis might have ripple effects
on the rest of the configuration. In Listing 7.1, there are three configuration options,
where A depends on both B and C, and C defaults to y if B is equal to n. In Listing 7.2,
two of the configuration options have been configured: A has been set to y and B has
been set to n. C is implicitly set to y by its default attribute. This configuration
does not satisfy the constraints, since B has to be set to y for A to be permitted
to be set to y. During the first iteration of the diagnoses generation, the partial
diagnosis will be an empty set, {}, and the soft constraints will be [A:=y, B:=n,
C:=y]. Since there is a violation, an unsatisfiable core {A, B} will be found. The
two partial diagnoses will therefore be {A} and {B}. Continuing with the partial

81

7. Towards a SAT-based implementation in C

Listing (7.1) A Kconfig model where
A depends on both B and C.

1 config A
2 tristate "A"
3 depends on B
4 depends on C
5

6 config B
7 tristate "B"
8

9 config C
10 tristate "C"
11 default y if B=n

Listing (7.2) A .config configura-
tion file where the configuration op-
tions A and B in Listing 7.1 have been
configured.

1 CONFIG_A =y
2 CONFIG_B =n

diagnosis {B} in the next iteration of the diagnoses generation, the soft constraints
will be [A:=y, C:=y]. No unsatisfiable core will be found this time, since the
configuration will be satisfiable with only these two soft constraints’ assignments.
The information we have at the end of this stage of RangeFix is that it is possible
to satisfy the constraints if the value of configuration option B is changed. It is only
later, in stage three, that a fix will be computed and we will find out that B has to
be set to y to satisfy the configuration. However, that will clearly make C default to
n since its if expression will not be satisfied anymore. Configuration option C can
surely still be manually set to y by the user, but its default, when nothing has been
assigned to it, is n if B!=n. How to properly handle this scenario remains an open
issue.

7.4 Challenge #4: Realize fix generation
When the diagnoses have been generated, the next two stages of the RangeFix
algorithm use the diagnoses to transform the feature model’s constraints into fixes.

7.4.1 Problem formulation
The RangeFix algorithm has three stages and in each of them the constraints, defined
by the Kconfig model, have to be employed in a somewhat different manner.

In the first stage of RangeFix, we need to be able to set the soft constraints, i.e.
the values for a set of configuration options, and identify unsatisfiable cores among
them. As long as these two abilities are available, it does not matter what form the
model’s constraints are in. The SAT encoding described in Section 4.1 creates a lot
of extra literals, meant to simplify the definitions of the constraints. But at this
stage of the algorithm, it is of no significance if the constraints are polluted by such
miscellaneous literals.

In the second stage of RangeFix, we need to have the constraints in such a
form that we are able to substitute configuration options with their values from the
configuration. This means that we cannot work with the CNF clauses of PicoSAT
literals from the previous stage. Such a clause might for instance be 3 4 7 0, which

82

7. Towards a SAT-based implementation in C

does not necessarily map into meaningful configuration option names. Instead, the
constraints need to be in a form on a level higher than clauses of numerical literals.

In the third stage of RangeFix, we need to simplify the modified constraints from
the second stage into fixes. It is therefore important that the modified constraints
are only made up of configuration option names and constants. No miscellaneous
PicoSAT literals, created during the first stage, can be permitted to be part of these
formulas. Literals, such as those telling if a default’s expression is satisfied and
so on, cannot be part of the fixes because they are not possible to represent in a
concrete fix that the user can easily apply. The modified constraints that are inputs
to this stage must therefore be clean from all such noise.

Note that it is only the first stage of the RangeFix algorithm that strictly depends
on a constraint solver. In other words, it is only in the first stage that we need to
transform the constraints into a SAT or SMT problem. In the second and third
stages, we can have the constraints in any representation, as long as we are able to
heuristically minimize them into meaningful assignments that can be interpreted as
a fix by the user.

7.4.2 Attempted approach
The approach that was attempted in this thesis work, with unsuccessful outcome,
was to mimic the examples given in the RangeFix paper. For each configuration
option, constraints for depends on and select were formulated in such a way that
they would be human-readable and have a single truth value. With these two
properties, the belief was that it would be possible to simplify the constraints into
fixes using heuristic rules, and without deniability evaluate if they were violated or
not.

Assume we have the Kconfig model in Listing 7.3, we would then for A depends
on B create the two constraints:

(A=y)→ (B=y) ≡ !(A=y) ∨ (B=y)
≡ A!=y ∨ B=y

(A=m)→ (B=m ∨ B=y) ≡ !(A=m) ∨ (B=m ∨ B=y)
≡ A!=m ∨ B!=n

If A is set to y, it implies that its dependency is satisfied, i.e. that B is also set to y.
But if A is only set to m, it implies that its dependency B is either m or y. The value
of B creates an upper bound for A.

Continuing with the Kconfig model in Listing 7.3, the B select C attribute
would give rise to the following two constraints:

(B=y)→ (C=y) ≡ !(B=y) ∨ (C=y)
≡ B!=y ∨ C=y

(B=m)→ (C=m ∨ C=y) ≡ !(B=m) ∨ (C=m ∨ C=y)
≡ B!=m ∨ C!=n

If B is set to y, it also forces C to have the value y. But if B is set to m, C is forced
to either m or y. The value of B creates a lower bound for C.

83

7. Towards a SAT-based implementation in C

Listing 7.3: A Kconfig file with three configuration options.
1 config A
2 tristate "A prompt "
3 depends on B
4

5 config B
6 tristate "B prompt "
7 select C
8

9 config C
10 tristate "C prompt "

The complete set of constraints for the model in Listing 7.3 is therefore:

(A!=y ∨ B=y) ∧ (A!=m ∨ B!=n) ∧ (B!=y ∨ C=y) ∧ (B!=m ∨ C!=n)

These are the constraints that are needed for the second stage of RangeFix, where the
constraints are transformed into modified constraints. For instance, if the diagnosis
is {A, B} and the configuration is [C:=y], the modified constraints are:

(A!=y ∨ B=y) ∧ (A!=m ∨ B!=n) ∧ (B!=y ∨ y=y) ∧ (B!=m ∨ y!=n)

Minimizing the modified constraints into a fix, by using some basic heuristics, yields:

(A!=y ∨ B=y) ∧ (A!=m ∨ B!=n) ∧ (B!=y ∨ y) ∧ (B!=m ∨ y) ≡
(A!=y ∨ B=y) ∧ (A!=m ∨ B!=n) ∧ (y) ∧ (y) ≡

(A!=y ∨ B=y) ∧ (A!=m ∨ B!=n)

However, there might be room for further improvements in how a fix is minimized.
The problem with this approach becomes apparent when a variable’s value causes

changes to the rest of the configuration. Assume the diagnosis is {B}, the configu-
ration is [A:=y] and C is implicitly set to n, the fix is then:

(A!=y ∨ B=y) ∧ (A!=m ∨ B!=n) ∧ (B!=y ∨ C=y) ∧ (B!=m ∨ C!=n) ≡
(y!=y ∨ B=y) ∧ (y!=m ∨ B!=n) ∧ (B!=y ∨ n=y) ∧ (B!=m ∨ n!=n) ≡

(n ∨ B=y) ∧ (y ∨ B!=n) ∧ (B!=y ∨ n) ∧ (B!=m ∨ n) ≡
(B=y) ∧ (y) ∧ (B!=y) ∧ (B!=m) ≡

(B=y) ∧ (B!=y) ∧ (B!=m)

We can clearly see that there are contradicting assignments, even though it should
be possible to set both A and B to y at the same time.

Setting B to y will also modify the value C, due to the reverse-dependency. C is in
this example currently implicitly set to n, but setting B to y will also set C to y. The
problem is that when we build the fix above, we first assume C to be equal to n, and
leave B without a value. But when the constraints get minimized into a fix, we get
contradicting assignments, which stem from the fact that C cannot be assumed to
be n in all cases. It is from this example clear that it is not that simple to generate

84

7. Towards a SAT-based implementation in C

human-readable propositional constraints from a Kconfig model that are possible to
minimize into fixes.

Another problem with this approach is how one would express default values.
A default is not a constraint per se, since it is just a fallback value for a con-
figuration option that the user has not configured yet. A user is perfectly eligible
to override a configuration option’s default value by explicitly assigning a value to
the configuration option in the .config file. However, changing one configuration
option’s value might satisfy another configuration option’s default if expression.
In other words, configuring an configuration option might also affect other configu-
ration options that have not been configured by the user, that instead rely on their
default value. How to express this concept in a fix is also unclear.

This approach was implemented and tested by us in C. But due to the described
problem of implicitly configured configuration options, it was not possible to mini-
mize the constraints into meaningful fixes.

7.4.3 Alternative approaches
In the previous subsection, we described that our attempted method to generate fixes
by formulating and minimizing propositional formulas from the Kconfig constraints
did not work out. Generating fixes by utilizing the constraint solver from the first
stage of the RangeFix algorithm is an alternative approach that can be investigated.
In the first stage of RangeFix, the Kconfig model is encoded using constraint clauses,
and the configuration options’ values are available through the constraint solver’s
variables. For each diagnosis, it should be possible to generate all permutations of
value assignments to its configuration options. For each permutation, the constraint
solver could be invoked to check if it is an assignment that does not cause any
constraint violations. When each permutation has been tested, it would then be
possible to write a fix that expresses the valid configuration option value assignments
that satisfy the constraints.

For instance, assume that the diagnosis {A, B, C} has been found during the
first stage of RangeFix. That means that it is possible to satisfy the configuration
if those three configuration options are changed. However, we do not know yet how
they need to be changed. If all three configuration options in the diagnosis are
tristates, it means that there are 33 = 27 permutations to test. With the results
from those tests, it might be possible to formulate a fix such as [A = yes, B !=
no, C = mod].

A possible disadvantage with this approach is that it can be very resource de-
manding. If there are many diagnoses and each diagnosis consists of many con-
figuration options, the number of times the constraint solver is invoked might be
huge. On the other hand, the advantage with this method is that it is very simple,
especially since the setup of the constraint solver can be reused from the first stage
of RangeFix.

Another approach for generating fixes that can be investigated is the one that
the existing Scala implementation of RangeFix utilizes. It uses propositional logic
to write the constraints, but it has also added functionality to express if-then-else
statements. For each configuration option, it creates two functions that calculate the

85

7. Towards a SAT-based implementation in C

lower and upper bounds using its propositional logic language. However, how this
approach works in detail is undocumented. Reverse-engineering would therefore
be required if one wants to port it to another language. Furthermore, the Scala
implementation of RangeFix uses a lot of functional programming techniques which
are inherently difficult to copy directly to C, since C is a procedural programming
language.

It would probably be beneficial for solving this problem if an intermediate form
of the constraints was added. As the C implementation of RangeFix is built, it
reads the Kconfig data structure built by the internal Kconfig infrastructure and
immediately feeds PicoSAT with variables and clauses that make up the constraints
imposed by the model. The Kconfig data structure could instead be used to build
an intermediate format of the constraints that is easier to translate into forms that
fit both purposes. By doing this, having to translate the same configuration options,
dependencies, expressions and edge cases multiple times would be circumvented.

86

8
Conclusion

In this case study, we have researched the feasibility of realizing scalable conflict-
resolution for a configuration system as large as the Linux kernel configurator. In
academia, we found the algorithm RangeFix, which had an existing implementation
in Scala. By integrating this implementation of RangeFix with the Linux kernel
configurator xconfig, we evaluated its suitability for resolving configuration conflicts.
Through a survey, which Linux developers and users took part in, we evaluated
whether such a system would be beneficial. We also studied how the algorithm
could be implemented in C, utilizing a SAT-based constraint solver, which would
achieve greater community acceptance.

The existing Scala implementation of RangeFix, we found to be unsuitable in its
current shape to be integrated into the Linux kernel configurators. To start with, it
is highly unlikely that a non-C solution to the problem will ever be accepted into the
mainline Linux kernel branch. Especially a solution written in Scala, which requires
one to install a 70 MB OpenJDK binary and a 110 MB Scala binary. Furthermore,
the source code of the Scala implementation of RangeFix has not been maintained
for quite some time, and compiling it requires old versions of Java and Scala. These
old dependencies are not so easily available on a modern Linux distribution. The
existing Scala implementation also depends on an SMT solver, however, the Linux
community would prefer to base a solution on a SAT solver. The source code would
also need to be further polished. It is currently only implemented as a proof of
concept within a research project setting, and is therefore lacking in documentation
and coding standards. It is also lacking in features, for instance, it is only possible
to resolve unmet dependencies with inputs of the type tristate, not even boolean
inputs are currently supported. In our evaluation, we also found the implementation
to generally perform worse than the users’ expectations. Furthermore, the running
time is also irregular, and for some configuration options it may run for a very long
time. Since we have to run the Scala implementation of RangeFix as an external
program in xconfig, it also poses a challenge in C when its returned fixes, which can
possibly contain complex expressions, must be parsed as strings. The existing Scala
implementation of RangeFix works very well for demonstrating the capabilities of the
algorithm, but it is not production-ready, which neither was its authors’ intention.

Our C implementation of the RangeFix algorithm is neither production-ready.
Only the first stage of the algorithm has been implemented, which means that it
is only able to generate diagnoses, but not fixes. We based our work on Satconfig,
which translates Kconfig models into SAT problems. However, Satconfig was found
to contain deficiencies, such as not handling tristates in dependency expressions
correctly. The performance did also suffer from the same irregularities as the Scala

87

8. Conclusion

implementation did, which might be due to complexities in the Kconfig model or
a case that the RangeFix algorithm does not handle well. However, even if our C
implementation of RangeFix is lacking in several regards, it did prove the principle.
It is possible to implement scalable conflict-resolution support for a software system
as large as the Linux kernel. The Linux community’s requirements were respected,
and the RangeFix algorithm appears to work well for conflict-resolution. However,
our implementation would need more development before it would be acceptable
into the mainline kernel repository.

A reoccurring problem is the many edge cases that exist in the Kconfig language.
What the language lacks, is a complete specification. This explains why implemented
parsers of the language do commonly suffer from deficiencies. In this thesis, we have
observed that the existing implementation of RangeFix did not correctly handle
assignment of values to configuration options without prompts, and Satconfig got
tristates wrong. But other tools, such as Undertaker, Kconfigreader and LVAT, have
also been found to make various errors [21].

To solve the problems inherent in implementing Kconfig language parsers and
feature modeling tools, the language would likely need to be refined. A parallel
can be drawn to the markup language Markdown, which has a plethora of commu-
nity implementations with subtle differences. That sparked the initiative Common-
Mark [51], which attempts to unify the Markdown implementations by providing
an extensive specification, examples, a reference implementation, and a test suite.
A similar initiative for the Kconfig language would probably be healthy. Another
suggestion is to simplify the Kconfig language, and design it for being more easily
translated into logic propositional formulas that can be used by reasoners. Rather
than trying to bolt advanced translations of Kconfig on top the language and the
kernel’s Kconfig infrastructure, it is probably wiser to design the language from the
ground up for being more easily compatible with reasoners.

88

Bibliography

[1] S. Bhartiya, Linux is the largest software development project on the
planet: Greg Kroah-Hartman, CIO, Ed., http://www.cio.com/article/
3069529/linux/linux- is- the- largest- software- development-
project-on-the-planet-greg-kroah-hartman.html, 2016.

[2] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “A study
of variability models and languages in the systems software domain”,
Transactions on Software Engineering (TSE), vol. 39, no. 12, pp. 1611–
1640, 2013.

[3] N. Dintzner, A. Van Deursen, and M. Pinzger, “Analysing feature model
changes using FMDiff”, 2015.

[4] M. Hintermann, “Operating system components for an embedded Linux
system”, Technische Universitat Munchen, 2007.

[5] J. Brodkin, Linux has 2,000 new developers and gets 10,000 patches
for each version, Ars Technica, Ed., http : / / arstechnica . com /
information - technology / 2015 / 02 / linux - has - 2000 - new -
developers-and-gets-10000-patches-for-each-version/, 2015.

[6] A. Hubaux, Y. Xiong, and K. Czarnecki, “A user survey of configuration
challenges in Linux and eCos”, in Proceedings of the Sixth International
Workshop on Variability Modeling of Software-Intensive Systems, ACM,
2012, pp. 149–155.

[7] O. Koren, “A study of the Linux kernel evolution”, ACM SIGOPS Oper-
ating Systems Review, vol. 40, no. 2, pp. 110–112, 2006.

[8] L. Passos, J. Padilla, T. Berger, S. Apel, K. Czarnecki, and M. T. Valente,
“Feature scattering in the large: a longitudinal study of Linux kernel
device drivers”, in Proceedings of the 14th International Conference on
Modularity, ACM, 2015, pp. 81–92.

[9] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wąsowski, “Evolution
of the Linux kernel variability model”, in Software Product Lines: Going
Beyond, Springer, 2010, pp. 136–150.

[10] KernelProjects/kconfig-sat, 2015. [Online]. Available: http : / /
kernelnewbies.org/KernelProjects/kconfig-sat. [Accessed: 8-Feb-
2016].

[11] Kconfig-sat, 2016. [Online]. Available: https://groups.google.com/
forum/#!forum/kconfig-sat. [Accessed: 24-Apr-2016].

[12] KernelProjects/linux-sat, 2016. [Online]. Available: http : / /
kernelnewbies . org / KernelProjects / linux - sat. [Accessed: 24-
Apr-2016].

89

http://www.cio.com/article/3069529/linux/linux-is-the-largest-software-development-project-on-the-planet-greg-kroah-hartman.html
http://www.cio.com/article/3069529/linux/linux-is-the-largest-software-development-project-on-the-planet-greg-kroah-hartman.html
http://www.cio.com/article/3069529/linux/linux-is-the-largest-software-development-project-on-the-planet-greg-kroah-hartman.html
http://arstechnica.com/information-technology/2015/02/linux-has-2000-new-developers-and-gets-10000-patches-for-each-version/
http://arstechnica.com/information-technology/2015/02/linux-has-2000-new-developers-and-gets-10000-patches-for-each-version/
http://arstechnica.com/information-technology/2015/02/linux-has-2000-new-developers-and-gets-10000-patches-for-each-version/
http://kernelnewbies.org/KernelProjects/kconfig-sat
http://kernelnewbies.org/KernelProjects/kconfig-sat
https://groups.google.com/forum/#!forum/kconfig-sat
https://groups.google.com/forum/#!forum/kconfig-sat
http://kernelnewbies.org/KernelProjects/linux-sat
http://kernelnewbies.org/KernelProjects/linux-sat

Bibliography

[13] K. Peffers, T. Tuunanen, C. E. Gengler, M. Rossi, W. Hui, V. Virtanen,
and J. Bragge, “The design science research process: a model for produc-
ing and presenting information systems research”, in Proceedings of the
first international conference on design science research in information
systems and technology (DESRIST 2006), 2006, pp. 83–106.

[14] A. Hubaux et al., “Feature-based configuration: collaborative, depend-
able, and controlled”, PhD thesis, FUNDP, 2012.

[15] D. Batory, D. Benavides, and A. Ruiz-Cortes, “Automated analysis of
feature models: challenges ahead”, Communications of the ACM, vol. 49,
no. 12, pp. 45–47, 2006.

[16] pure-systems GmbH, Variant management with pure::variants, 2006.
[Online]. Available: http : / / www . pure - systems . com / fileadmin /
downloads/pv-whitepaper-en-04.pdf. [Accessed: 14-Apr-2016].

[17] BigLever Software, Product line engineering solutions for systems and
software, 2015. [Online]. Available: http://www.biglever.com/extras/
BigLever_Solution_Brochure.pdf. [Accessed: 14-Apr-2016].

[18] eCos, eCos user guide, 2011. [Online]. Available: http : / / ecos .
sourceware.org/docs-latest/user-guide/ecos-user-guide.html.
[Accessed: 14-Apr-2016].

[19] J. Sincero and W. Schröder-Preikschat, “The Linux kernel configurator
as a feature modeling tool.”, in SPLC (2), Citeseer, 2008, pp. 257–260.

[20] Kconfig language, 2016. [Online]. Available: https://www.kernel.org/
doc/Documentation/kbuild/kconfig- language.txt. [Accessed: 13-
Apr-2016].

[21] S. El-Sharkawy, A. Krafczyk, and K. Schmid, “Analysing the Kconfig
semantics and its analysis tools”, in Proceedings of the 2015 ACM SIG-
PLAN International Conference on Generative Programming: Concepts
and Experiences, ACM, 2015, pp. 45–54.

[22] Conjunctive normal form, 2016. [Online]. Available: https : / / en .
wikipedia.org/wiki/Conjunctive_normal_form. [Accessed: 14-Apr-
2016].

[23] DIMACS challenge—satisfiability: suggested format, 1993. [Online]. Avail-
able: http://www.domagoj-babic.com/uploads/ResearchProjects/
Spear/dimacs-cnf.pdf. [Accessed: 30-May-2016].

[24] C. Kaestner, kconfigreader, 2015. [Online]. Available: https://github.
com/ckaestne/kconfigreader. [Accessed: 14-Apr-2016].

[25] The VAMOS project, undertaker, 2016. [Online]. Available: https://
vamos.informatik.uni- erlangen.de/trac/undertaker. [Accessed:
14-Apr-2016].

[26] S. She and T. Berger, “Formal semantics of the Kconfig language”, Tech-
nical note, University of Waterloo, p. 24, 2010.

[27] S. She, LVAT, 2013. [Online]. Available: https://code.google.com/
archive/p/linux-variability-analysis-tools/. [Accessed: 14-Apr-
2016].

90

http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.biglever.com/extras/BigLever_Solution_Brochure.pdf
http://www.biglever.com/extras/BigLever_Solution_Brochure.pdf
http://ecos.sourceware.org/docs-latest/user-guide/ecos-user-guide.html
http://ecos.sourceware.org/docs-latest/user-guide/ecos-user-guide.html
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://en.wikipedia.org/wiki/Conjunctive_normal_form
http://www.domagoj-babic.com/uploads/ResearchProjects/Spear/dimacs-cnf.pdf
http://www.domagoj-babic.com/uploads/ResearchProjects/Spear/dimacs-cnf.pdf
https://github.com/ckaestne/kconfigreader
https://github.com/ckaestne/kconfigreader
https://vamos.informatik.uni-erlangen.de/trac/undertaker
https://vamos.informatik.uni-erlangen.de/trac/undertaker
https://code.google.com/archive/p/linux-variability-analysis-tools/
https://code.google.com/archive/p/linux-variability-analysis-tools/

Bibliography

[28] S. She, exconfig, 2013. [Online]. Available: https : / / github . com /
matachi/linux-variability-analysis-tools.exconfig. [Accessed:
14-Apr-2016].

[29] S. She, exconfig extracts, 2012. [Online]. Available: https://github.com/
matachi/linux-variability-analysis-tools.extracts. [Accessed:
14-Apr-2016].

[30] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and K. Czarnecki,
“Range Fixes: interactive error resolution for software configuration”,
IEEE Transactions on Software Engineering, 2014.

[31] Y. Xiong and A. Hubaux, RangeFix, 2013. [Online]. Available: https:
//github.com/matachi/rangeFix. [Accessed: 14-Apr-2016].

[32] Microsoft Research, Z3, 2016. [Online]. Available: https://github.com/
Z3Prover/z3. [Accessed: 14-Apr-2016].

[33] V. Nossum, satconfig, 2016. [Online]. Available: https://github.com/
vegard/linux-2.6/tree/v4.3+kconfig-sat. [Accessed: 14-Apr-2016].

[34] A. Biere and J. Kepler, PicoSAT, 2016. [Online]. Available: http://fmv.
jku.at/picosat/. [Accessed: 14-Apr-2016].

[35] K. Bak and K. Ali, “Improving usability of the Linux kernel configuration
tools”, 2010.

[36] C. Zengler and W. Küchlin, “Encoding the Linux kernel configuration in
propositional logic”, in Proceedings of the 19th European Conference on
Artificial Intelligence (ECAI 2010) Workshop on Configuration, Citeseer,
vol. 2010, 2010, pp. 51–56.

[37] M. Walch, R. Walter, and W. Küchlin, “Formal analysis of the Linux
kernel configuration with SAT solving”, 2015.

[38] R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann, “Dead
or alive: finding zombie features in the Linux kernel”, in Proceedings of the
First International Workshop on Feature-Oriented Software Development,
ACM, 2009, pp. 81–86.

[39] A. Hubaux, D. Jannach, C. Drescher, L. Murta, T. Männistö, K. Czar-
necki, P. Heymans, T. Nguyen, and M. Zanker, “Unifying software and
product configuration: a research roadmap”, in Proceedings of the Work-
shop on Configuration (ConfWS’12), Montpellier, France, 2012, pp. 31–
35.

[40] E. K. Abbasi, A. Hubaux, M. Acher, Q. Boucher, and P. Heymans,
“What’s in a web configurator? empirical results from 111 cases”, in
PReCISE-FUNDP, University of Namur, 2012.

[41] Linux Kconfig-SAT integration wiki and mailing list, 2015. [Online]. Avail-
able: https://groups.google.com/d/topic/kconfig- sat/G6HA_
3ecAQI/discussion. [Accessed: 28-Feb-2016].

[42] A. Biere, Fwd: Re: [kconfig-sat] Linux Kconfig-SAT integration wiki and
mailing list, 2015. [Online]. Available: https://groups.google.com/
d/msg/kconfig-sat/G6HA_3ecAQI/n71Nh1WmBQAJ. [Accessed: 14-Apr-
2016].

91

https://github.com/matachi/linux-variability-analysis-tools.exconfig
https://github.com/matachi/linux-variability-analysis-tools.exconfig
https://github.com/matachi/linux-variability-analysis-tools.extracts
https://github.com/matachi/linux-variability-analysis-tools.extracts
https://github.com/matachi/rangeFix
https://github.com/matachi/rangeFix
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://github.com/vegard/linux-2.6/tree/v4.3+kconfig-sat
https://github.com/vegard/linux-2.6/tree/v4.3+kconfig-sat
http://fmv.jku.at/picosat/
http://fmv.jku.at/picosat/
https://groups.google.com/d/topic/kconfig-sat/G6HA_3ecAQI/discussion
https://groups.google.com/d/topic/kconfig-sat/G6HA_3ecAQI/discussion
https://groups.google.com/d/msg/kconfig-sat/G6HA_3ecAQI/n71Nh1WmBQAJ
https://groups.google.com/d/msg/kconfig-sat/G6HA_3ecAQI/n71Nh1WmBQAJ

Bibliography

[43] Tseytin transformation, 2016. [Online]. Available: https : / / en .
wikipedia . org / wiki / Tseytin _ transformation # Gate _ Sub -
expressions. [Accessed: 24-May-2016].

[44] De Morgan’s laws, 2016. [Online]. Available: https://en.wikipedia.
org/wiki/De_Morgan’s_laws. [Accessed: 6-May-2016].

[45] The SMT-LIBv2 language and tools: a tutorial, 2013. [Online]. Available:
http://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf. [Accessed:
1-Mar-2016].

[46] Logical equivalence, 2016. [Online]. Available: https://en.wikipedia.
org/wiki/Logical_equivalence. [Accessed: 6-May-2016].

[47] D. Jonsson, Configuring Linux 2.6.32 using xconfig and RangeFix, 2016.
[Online]. Available: https://www.youtube.com/watch?v=F8RZ8YpBeew.
[Accessed: 23-May-2016].

[48] Valgrind, 2015. [Online]. Available: http://valgrind.org/. [Accessed:
30-May-2016].

[49] D. Jonsson, Editing the wiki to update my project status, 2016. [Online].
Available: https : / / groups . google . com / forum / # ! msg / kconfig -
sat/utCcD2R6sKU/2KXvqKG3HQAJ. [Accessed: 2-Jun-2016].

[50] Karnaugh map, 2016. [Online]. Available: https://en.wikipedia.org/
wiki/Karnaugh_map. [Accessed: 2-Jun-2016].

[51] CommonMark, 2016. [Online]. Available: http://commonmark.org/. [Ac-
cessed: 31-May-2016].

92

https://en.wikipedia.org/wiki/Tseytin_transformation#Gate_Sub-expressions
https://en.wikipedia.org/wiki/Tseytin_transformation#Gate_Sub-expressions
https://en.wikipedia.org/wiki/Tseytin_transformation#Gate_Sub-expressions
https://en.wikipedia.org/wiki/De_Morgan's_laws
https://en.wikipedia.org/wiki/De_Morgan's_laws
http://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf
https://en.wikipedia.org/wiki/Logical_equivalence
https://en.wikipedia.org/wiki/Logical_equivalence
https://www.youtube.com/watch?v=F8RZ8YpBeew
http://valgrind.org/
https://groups.google.com/forum/#!msg/kconfig-sat/utCcD2R6sKU/2KXvqKG3HQAJ
https://groups.google.com/forum/#!msg/kconfig-sat/utCcD2R6sKU/2KXvqKG3HQAJ
https://en.wikipedia.org/wiki/Karnaugh_map
https://en.wikipedia.org/wiki/Karnaugh_map
http://commonmark.org/

A
Survey questions

I

Configuring the Linux kernel
Hi,

We are a group of researchers from Chalmers University of Technology and TU
Darmstadt, and we are part of the kconfig-sat project [1]. We are working on adding
interactive dependency-resolution support to the Linux kernel configurator xconfig. We
would be very thankful if you could take the time to fill out this short survey that will
provide data to help us design and evaluate a better dependency-resolution mechanism.
Filling out the survey should not take more than 5 minutes of your time.

It is possible to fill out the form without a Google account. No names, email-addresses or
other identifying information will be collected or published.

Note that only the fields marked with * are required to be filled out, however, we would of
course appreciate if as many fields as possible are filled out.

Thank you for your time.

[1]: http://kernelnewbies.org/KernelProjects/kconfig-sat

* Required

Encountering configuration issues

Do you ever run into issues when trying to change a configuration option’s value
in xconfig/menuconfig during the Linux kernel configuration process? *
Mark only one oval.

Never

Rarely

Occasionally

Frequently

Don’t know

1.

Please explain your answer to the previous question, stating the issues you run
into if applicable:

2.

Configuring the Linux kernel https://docs.google.com/forms/d/1wZAybQ5vOK...

1 of 5 05/22/2016 01:09 AM

Help text's usefulness

How much help does the configuration option’s help text provide when trying to
change the current configuration to satisfy any missing dependencies needed to
enable a particular option? *
Mark only one oval.

Not helpful at all

Somewhat helpful

Helpful

Very helpful

Other:

3.

Configuration method

When trying to enable a configuration option, please describe the method or tool
you use to satisfy the option's dependencies: *

4.

Time required to change a configuration option's value

Please estimate in minutes (maximum, minimum, and average) the time it takes you to
adjust a disabled configuration option’s value when configuring the kernel.

Longest time it took you: *5.

Shortest time it took you: *6.

Typical time it takes you: *7.

Configuration assistance

Configuring the Linux kernel https://docs.google.com/forms/d/1wZAybQ5vOK...

2 of 5 05/22/2016 01:09 AM

In the video below (45 seconds long) a modified version of xconfig is showcased. It is able
to perform dependency resolution and display to the user what options need to be edited
for the user to enable an option.

Would such a tool be beneficial for you? *
Mark only one oval.

Yes

No

In some scenarios

8.

Configuring the kernel using xconfig with dependency-
resolution support

http://youtube.com/watch?v=4oVzJMhn3Kw

Configuring the Linux kernel https://docs.google.com/forms/d/1wZAybQ5vOK...

3 of 5 05/22/2016 01:09 AM

Can you describe a scenario where you would use such a tool?9.

If not, why is such a tool not beneficial for you?10.

Considering that the term "computation time" describes the time taken from the time you
click "Calculate Fixes" until the list of fixes is displayed.

In your opinion, what is an ideal
computation time? *

11.

Since ideal scenarios do not always
happen, what is the maximum amount of
time you would be willing to wait for
such a list of fixes?

12.

In the video, an option and its four dependencies are located and enabled within
2 minutes. Would you consider that an improvement over how you would
perform a similar task? *
Mark only one oval.

Not an improvement

Slight improvement

Improvement

Big improvement

13.

Configuring the Linux kernel https://docs.google.com/forms/d/1wZAybQ5vOK...

4 of 5 05/22/2016 01:09 AM

Please provide any feedback you have about the tool (e.g., its functionality,
layout, additional features you would like to see, or any other comments you
might have).

14.

Other

If you would be willing to be contacted
for some follow-up questions, please
provide us with your name and email
address:

15.

Configuring the Linux kernel https://docs.google.com/forms/d/1wZAybQ5vOK...

5 of 5 05/22/2016 01:09 AM

	Introduction
	Problem identification and motivation
	Objectives
	Research questions
	Research design

	Background
	Feature modeling
	Kconfig
	Internal Kconfig infrastructure

	Constraint solvers
	Overview of available Kconfig tools
	RangeFix
	RangeFix's three stages
	Generating diagnoses
	Encode a Kconfig model as an SMT problem

	Related works

	Methodology
	Problem identification and motivation
	Objectives of a solution
	Design and development
	Demonstration
	Evaluation
	Communication

	Design and development
	Encode a Kconfig model as a SAT problem
	Configuration option encoding
	Constraints encoding

	Read and set the configuration
	Generate unsatisfiable cores with SAT
	How unsatisfiable cores are generated with SMT
	How to generate unsatisfiable cores with SAT

	Generate diagnoses
	Simplify diagnoses
	Integrate with xconfig

	Demonstration
	Configurator with Scala backend
	Configurator with C backend

	Evaluation
	User survey
	Survey design
	Survey results

	The Scala implementation
	Evaluation design
	Correctness results
	Performance results

	The C implementation
	Evaluation design
	Correctness results
	Performance results

	Observations and conclusions
	User survey
	The Scala implementation
	The C implementation

	Threats to validity

	Towards a SAT-based implementation in C
	Challenge #1: Integrating with xconfig
	Challenge #2: SAT encoding
	Proper tristate expression translation
	Use operators in conjunction

	Challenge #3: Realize diagnoses
	Using the internal Kconfig infrastructure for computing the configuration
	Implicitly configured configuration options

	Challenge #4: Realize fix generation
	Problem formulation
	Attempted approach
	Alternative approaches

	Conclusion
	Bibliography
	Survey questions

