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Dual Mass Flywheel for torsional vibrations damping
Parametric study for application in heavy vehicle.
Gérémy Bourgois
Division of Dynamics, Department of Applied Mechanics
Chalmers University of Technology

Abstract

Torsional vibrations are produced due to the pulsating load from the cylinders.
These vibrations can cause crankshaft cracking, excessive bearing wear or fail-

ure, broken accessory drives, slapping of belts. Currently, engine designers have to
downsize and downspeed the engine in order to satisfy European requirements in
terms of CO2 emissions. These two actions make torsional vibrations more signifi-
cant.

Different technologies are used to reduce these vibrations, one of them is the Dual
Mass Flywheel (DMF). DMF is a complex system containing rotational inertia, tor-
sional stiffness and damping properties. A simplified mathematical model (2 degrees
of freedom) has been developed in order to show the positive effect of a DMF on
the powertrain. This work will focus on heavy vehicles.

Two models have been made: one into Matlab and the other one in the open-source
software Easydyn. The integration in Matlab is computed by a function based on an
explicit Runge-Kutta formula, whereas EasyDyn uses the Newmark method. Both
of them give similar results.

An optimization of the model has been realised into Matlab for the time and fre-
quency domain. The optimization of the time domain is treated by local free-
gradient method using two objective functions (OFs): variation of the output torque
and estimation of the power losses. For the frequency domain two other OFs are
used: Reduction of the maximum value of the amplitude frequency response of the
secondary flywheel and Reduction of the area under the curve of this frequency
response. The optimization leads to similar results: increasing inertia, decreasing
stiffness. Damping should be increased if high resonance peaks should be reduced.

The effect of a more accurate torque expression on the output response is ap-
proached. At higher speeds (1500-2000 RPM), difference can be observed in the
shape of the output responses, from the results obtained from the simplified input
torque.

Keywords: Torsional Vibration, Dual Mass Flywheel, Objective function, Temporal
domain, Frequency domain.
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1
Introduction

In order to respect the environmental standard, engine manufacturers have to
design new engines. The industries have to produce cars, trucks, tractors, etc.,

with low fuel consumption to minimize the CO2 emission. The design of the new
engine consists of downsizing and downspeeding it. As is shown in Figure 1.1,
downsizing means that the number of cylinders are reduced while downspeeding
means that the peak torque is obtained at lower speed.

(a) Downsizing

4,0001,000
Engine speed in rpm

300

100

0

To
rq

ue
 [N

m
]

(b) Downspeeding [12]

Figure 1.1 – Downspeeding and downsizing of an engine.

Unfortunately this new design will affect the crankshaft and the torsional vibrations
become significant. The torsional vibrations come from the crankshaft. In fact,
combustion generates an extremely rapid rise of pressure in the cylinder that results
in a torque with peaks. The pressure applies a force on the top of the piston,
which allows the crankshaft to turn. The pulsating load from the cylinders causes
the vibrations. Various concepts of vibrations absorbers exist to reduce the output
vibrations from the crankshaft. They will be described in the following chapter. One
of them is called the Dual Mass flywheel (DMF). This vibration absorber is placed
between the crankshaft and the gearbox. As its name indicates, it is composed of 2
flywheels which are connected to each other by at least one arc spring. Springs store
energy and allow to provide a continuous motion. This device separates the engine
(primary flywheel) to the gearbox (secondary flywheel). These torsional vibrations
must be reduced because they impact the vehicle ride comfort directly but also the
durability of parts. The interest of the Dual Mass flywheel is to reduce the torque
fluctuations by moving the resonances so that they are not excited in the operating
speed range.
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1. Introduction

1.1 Purpose and Goal
The main purpose of this thesis is to learn more about the Dual Mass flywheel
concept. A state of the art of the different technologies used to reduce the torsional
vibration is realized to develop the knowledge in the torsional vibration area. This
work is focusing on heavy vehicles. The goal of this thesis can be summarized in
the following points:

• Realize a state of the art of the torsional vibration concepts;
• Investigate the Dual Mass flywheel concept:

– Create a model in Matlab for several different scenarios
– Verify the model by using software EasyDyn
– Optimize the DMF flywheel for different scenarios
– Analyse the Dual Mass flywheel in frequency domain

1.2 Delimitations
The most important delimitations of this project are the following:

• The analysis will be restricted to 1-D
• Gravitational energy is assumed to be small compared to the kinetic energy

and is neglected in the models
• Only torsional vibration will be treated
• The project is realized with numerical simulations. Measurements and exper-

imentation are not included
• The non-linearity effects are not taken into account
• The input torque will be assumed as a simple sine function

1.3 Outline of thesis
The present document will begin with a state of the art of the different approaches
which are used to reduce the torsional vibrations.
The second chapter will focus on one of these technologies: Dual Mass Flywheel.
First of all, the engineering and mathematical model are presented. The output
response is then analysed using two different softwares. A sensitive analysis of the
different design parameters is performed. An optimization with the Matlab subrou-
tine fminsearch is then realized. Finally, a frequency domain study is carried out
(in dimension and dimensionless cases).
The last chapter approaches the study of the engine dynamics which is included in
the model in order to have a more realistic input data.
At the end, conclusion and future work are exposed.

2



2
State of the art

There are many torsional vibration absorbers, these can be classified into 3
categories of vibration reduction method:

• Active control: It is an active application of equal and opposite force to the
forces imposed by external vibration. An active damper gives the best vibra-
tion reduction performance. Unfortunately, it is a high cost and it is based on
a complex technology. An active absorber requires an external energy supply,
it has also a lack or robustness and reliability.

• Semi-active control: It is a kind of active control but external power require-
ments are lower than full active control.

• Passive control: It dissipates energy through some kind of motion without
needing an external power source. Usually it consists of a spring and damper.
This absorber ensures a good cost effectiveness.

Engineers have designed several different vibration absorbers. There are various
basic types of torsional vibration reduction devices: conventional Dual Mass Fly-
wheel, planetary Dual Mass Flywheel, hydrodynamic torque converter, Dual Mass
Flywheel with conventional centrifugal pendulum vibration absorbers. The main
function is to isolate the transmission input from the vibration generated by the
engine but vibration damper will also improve the noise behaviour of the vehicle
and reduce fuel consumption.

2.1 Conventional Flywheel
A flywheel is an energy storage unit, composed of a mass which gives a greater
moment of inertia to the global system. Figure 2.1 shows an example of an automo-
bile engine flywheel. The amount energy stored in a flywheel is proportional to the
square of its rotational speed. Flywheel stores energy when torque is applied by the
energy source and restores energy when the energy source is not applying torque to
it. In fact, the engine provides a discontinuous energy, the aim of the flywheel is to
supply a continuous energy which is shown in Figure 2.2. Figure 2.3 shows these
principles for a 4-stroke engine during 1 cycle.

3



2. State of the art

Figure 2.1 – Flywheel of a car engine
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Figure 2.2 – Comparison between the engine and the transmission torque
with/without flywheel for several cycles.
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Figure 2.3 – Benefits of a flywheel during a 4-stroke cycle. (1: Intake, 2:
Compression, 3: Power, 4: Exhaust)
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2. State of the art

2.2 Conventional Dual Mass Flywheel

The Dual Mass Flywheel (DMF) is the most common conventional system. The
DMF consist of two masses [4]:

• The primary flywheel
• The secondary flywheel

Figure 2.4 shows a typical DMF.

6

7

1 Starter ring gear

2 Primary mass

3 Arc springs

4 Plain bearing

1

2

3

4

5

5 Flange

6 Primary cover (cross section)

7 Secondary mass

Figure 2.4 – Dual mass flywheel- DMF [4]

These masses are connected via a spring/damper device and supported by a bear-
ing. The first mass is connected to the crankshaft of the engine and the second
mass is connected to the transmission input. Thanks to bearing, these masses have
an independent radial movement. The primary mass encloses a cavity which forms
the arc spring channel. The spring/damper system is guiding into this arc spring
channel, typically divided into two sections, separated by an arc spring stop which
is represented in Figure 2.5. Grease is applied into the channel to reduce friction
and increase the lifetime of arc springs.
Torque from the engine is transferred via the arc spring and the flange which is fixed
to the secondary mass.
The secondary mass increases the moment of inertia and will decrease the vibration
amplitude.
DMF is also equipped with vents which ensure heat dissipation.
Performances of the DMF are limited by the achievable torsional stiffness of the
spring/damper device.
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1 Primary cover

2 Arc spring stop

3 Primary mass

1

2

3

Figure 2.5 – Spring stop on dual mass flywheel [4]

2.3 Hydrodynamic Torque Converter
The hydrodynamic torque converter offers a way to reduce torsional vibrations for
applications with automatic or continuously variable transmission. Figure 2.6 shows
the hydrodynamic torque converter concept.

Figure 2.6 – Hydrodynamic Torque Converter [5]

This device is based on a fluid coupling which transfers torque from the engine side
to the gearbox side. This hydrodynamic transfer has itself a damping effect but
leads to dissipation of energy [5].
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The hydrodynamic torque converter has the following properties [12]:

• A high-capacity torsional dampers
• A reduction of the rotating masses being accelerated

2.4 Centrifugal Pendulum Vibration Absorbers
(CPVAs)

This device is composed of a series of pendulums suspended from a rotor such that
they can oscillate in a plane perpendicular to the rotational axis [13]. During the
torque fluctuations, masses will oscillate along specific paths relative to the axis of
rotation of the crankshaft. In fact, pendulums will apply a centrifugal force which
tends to increase the inertia of the flywheel. These paths have been the subject
of many studies. CPVAs have the advantage that they stay tuned at all rotation
speeds.
These devices were first used in aircraft engines or helicopter rotors, but they can
now also be used in automotive industries.
Engineers also developed a DMF with CVPA flywheel, the CVPA is mounted on
the secondary flywheel. These flywheels improve the performance of a conventional
DMF.
Unfortunately, the efficiency of the pendulum can be assign by small manufacturing
deviations. Furthermore, problems of Noise,Vibration and Hardness (NVH) can
increase due to improper tuning of pendulum [5], [14]. A DMF with CVPA from
the manufacturer LuK is shown in figure 2.7.

Figure 2.7 – DMF with CPVAs device [6]
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2.5 Triple Mass Flywheel
This concept had been patented in Korea by Lee Hee Rak and Hur Man Dae in
2008 [14]. In 2014, one other kind of triple mass flywheel has been patented [7]. The
flywheel is composed of 3 masses:

• A first mass is connected to the engine side and rotated via the engine torque.
• A second mass will offset torsional vibration of the engine transmitted to the

first mass. Damping springs are placed between the first and the second mass,
providing an elastic force against the relative rotational displacement between
the first and second mass. There is a guide placed between the damping springs
guiding the damping springs during extending/contracting.

• A third mass will offset torsional vibration of the engine transmitted to the
second mass. A second damping spring is disposed between the third mass
and the guide.

All of these elements are represented one Figure 2.8.

10: First mass
20: Second mass
30: Third mass
40: Damping springs
50: Guide

10

30

40

50

40

30

50

40

10

20

Figure 2.8 – Schematic figure of Triple Mass Flywheel [7]

2.6 Planetary gear Dual Mass flywheel
Planetary gear Dual Mass flywheel is similar to DMF: the primary mass is connected
to the secondary mass via an arc spring damper unit but also via a planetary gear
set. Figure 2.9 shows an example of this technology. The planetary gear directly
connected to the primary side helps to create an anti-resonance in the transfer sys-
tem behaviour. This system is manufactured by an German supplier ZF which called
it "SACHS". Figure 2.10 represent the planetary gear dual mass flywheel "SACHS".
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Torsion
springs

Ring
gear

Cushion Primary flywheelPrimary flywheel

Secondary flywheelPlanetary
gear

Figure 2.9 – Planetary gear Dual Mass flywheel concept [8]

Vibrational excitations with frequencies close to the anti-resonance frequency are
reduced very well with these flywheels. For vibrations with other frequencies, the
influence of the DMF transfer behaviour dominates according to [14], [5]. The
planetary gear dual mass flywheel allows to reduce also noise.

Figure 2.10 – Planetary gear Dual Mass flywheel: SACHS [9]

2.7 Electrorheological fluid vibration absorber
Electrorheolgical (ER) fluid is composed of tiny suspended particles into an isolating
dielectric fluid. Their rheological behaviour is heavily influenced by the influence of
an electrical field. ER fluid can play as an absorber role. These absorbers are ad-
vantageous only for frequencies close to resonance, the vibration dampening should
be maximal close to the resonance frequency and minimal for frequency exceeding
1.4 times the fundamental frequency [15]. A passive absorber can not perform this
property but the ER fluid can make an adaptable and flexible absorber. In fact,
when frequency of the excitation force is close to the natural frequency of the sys-
tem, the system absorber is increased by applying an electrical field.
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(a) Without Magnetic Field (b) With Magnetic Field

Figure 2.11 – MR fluid property [10]

On the other hand, when the frequency ratio exceeds 1.4, the system absorber is
reduced to a minimum by not applying an electrical field.
Rheological behaviour of most ER fluid follows the Binhgam model when an elec-
trical field is applied.

2.8 Magnetorheological fluid vibration absorber
Magnetorheological (MR) fluid is a smart fluid which can change their apparent
viscosity under the influence of a magnetic field as Figure 2.11 shows.
When a MR fluid is subjected to a magnetic its apparent viscosity increases. MR
fluid is also an example of semi-active damper. This technology allows very fast
response speeds (order of a millisecond) [16].
Engineers are developing a variant of this absorber, they are studying a damper
incorporating conventional centrifugal pendulum absorber and magnetorhelogical
damper [17].

2.9 Viscous Dampers
A viscous dampers is composed of a housing containing the damper ring and a vis-
cous fluid [18]. The viscous fluid such as silicon oil fills the backlash between the
both parts (flywheel and housing). Figure 2.12 shows a viscous damper.
The viscous fluid dissipates vibration energy in the form of heat. The overheat-
ing is a prominent preoccupation, it can completely destroy the damper and cause
problems in the whole system [19]. Adjusting the internal backlash allows to tune
damping characteristics. Unfortunately, these dampers are designed to protect the
engine crankshaft and not necessarily the driven machinery. Dampers need to be
located at an anti-node of the crankshaft mode.
Viscous dampers have a limited service life, require periodic checks and mainte-
nance. As an order of magnitude, viscous dampers should be replaced every 25000
hours of service [11].
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Damper ring

Figure 2.12 – Viscous damper device [11]

2.10 Torsional balancers
A damper can be placed on the front end of the crankshaft opposite to the flywheel.
This wheel is called torsional balancer. It is generally composed of different pieces.
The damper is simply another mass and a spring tuned to a single frequency [20],
[21].

2.11 Power Split flywheel [3]
The power split flywheel is similar to the planetary gear dual mass flywheel.
A torsional vibration can be reduced by a power split device. The input torque is
split in two torque transmission path, the power splitting will cause a phase shift
between these paths. At the end of this device, torque from different paths are
superposed in a coupling arrangement.

The input torque is split into a first transmission path and a second transmis-
sion path. The first path is composed of a phase shifter arrangement. This device
generates a phase shift between torsional vibrations which are transmitted to the
coupling arrangement via the first torque transmission path. The phase shifter is
an oscillatory system which allows the shift, in ideal case, 180° starting from the
resonant frequency. It comprises a primary mass to which a cover plate is screwed.
The primary mass is connected via a two-spring arrangement to a secondary side of
the oscillatory system. The secondary side can rotate with respect to the primary
side. Several coil springs of a first step connect the primary side to a hub disk. Fur-
ther several coil springs of a second step connect this hub disk to output-side cover
plates. The output-side cover plates are in turn screwed to the ring gear carrier.
Together, they form the secondary side of the oscillatory system.
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An input-side ring gear is also screwed to the ring gear carrier. Then, the torque
from the path 1 is transmitted to the output-side ring gear via a planet gear.

Regarding to Figure 2.13 and the previous explanation, the path A is composed
of these following parts:

• Primary mass (1)
• Springs (2)
• Hub disk (3)
• Springs (4)
• Output-side cover plates (5)
• Ring gear carrier (6)
• Input-side ring gear (7)
• Planet gear (8)
• Output-side ring gear (9)
• Secondary flywheel (10)

Regarding the second path, the planet carrier is directly screwed on the primary
mass. Several rotatable planet gears are secured to this planet carrier by means of
bearings. The planet gear has two sets of teeth with different outer diameters. The
ouput-side toothing has a smaller diameter than the input-side toothing.
The torque is transmitted to the output-side gear via the output-side toothing.

Regarding to Figure 2.13 and the previous explanation, the path B is composed
of these following parts:

• Primary mass (1)
• Planet gear carrier (11)
• Planet gear (8)
• Output-side ring gear (9)
• Secondary flywheel (10)

The different torque transmission paths are superposed in a coupling arrangement to
form the output torque. Thanks to the phase shift in the first path, the alternating
torques erase each other mutually. Finally, the output torque is a constant torque.
All of these elements are represented on Figure 2.13.

However, in a conventional power splitting system, this principle works only for
one speed of the system.
To expand the cancellation point to an speed range, another device can be added
on the secondary side of the oscillatory system. Via this device, changing the speed
of the system changes the effective mass moment of inertia of the secondary side.
This technology uses the centrifugal force, it is composed of a central element and
several concentric mass rings which are supported so as to be rotatable relative to
one another and the central element.
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Figure 2.13 – Power split concept [3]
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3
Dual Mass flywheel approach

According the previous chapter, many approaches are composed of 2 inertias:
Dual Mass flywheel, Centrifugal Pendulum Vibration Absorbers, Planetary

gear Dual Mass Flywheel, Power Split flywheel. The concept of the DMF will be
the subject is this work. In fact, the DMF model could thus be adapted to these
other approaches in a future work.
An engineering model will be developed from which the mathematical model will be
deduced. Three different cases will be treated. Different output properties will be
analysed:

• Time history of the deflection angle between both flywheels and its time deriva-
tive

• Time history of the deflection angle between the secondary flywheel and the
gearbox input shaft and its time derivative

• Time history of the gearbox input torque
A sensitive analysis and an optimization are also realised. Finally a study of the
frequency domain is approached.

3.1 Engineering Model
As mentioned previously, and shown in Figure 3.1 the dual mass flywheel is com-
posed of:

• A primary flywheel (1)
• A spring (2)
• A flange (3)
• A secondary flywheel (4)

2

3

4

1

Figure 3.1 – DMF from [1]
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3. Dual Mass flywheel approach

The flange is screwed to the secondary flywheel. The flange and the flywheel will
thus be assumed as one part. The primary and the secondary flywheel will be
considered as disks of inertia J1 and J2 respectively.
These 2 flywheels are connected to each other by a torsional spring and a torsional
damper. The Dual Mass flywheel is affected by a torque Me(t), the engine torque.
A counter torque is opposite to the engine torque and applied on the rear end of the
driveline.
In order to be more general, we will call this system a Dual Mass Torsional Vibration
Dynamic absorber (DMTVDA).

ϕ(t)v

Mv(t)
c1 c2

k1 k2

Me(t)

ϕ(t)
2

ϕ(t)
1

J1 J2Engine Gearbox

Figure 3.2 – Spring-damper element DMF model

Figure 3.2 shows a DMTVDA model, where:
• Me(t) is the torque at the rear end of the crankshaft of the engine acting upon

the shaft of the DMTVDA.
• ϕ1(t) is the absolute angle of rotation of the first Inertial Functional Compo-

nent (IFC) of DMTVDA.

• ϕ̇1(t) = dϕ1(t)
dt

is the absolute angular speed of rotation of the first IFC of
DMTVDA.

• ϕ̈1(t) = d2ϕ1(t)
dt2

is the absolute angular acceleration of the first IFC of DMTVDA.
• ϕ2(t) is the absolute angle of rotation of the second IFC of DMTVDA.

• ϕ̇2(t) = dϕ2(t)
dt

is the absolute angular speed of rotation of the second IFC of
DMTVDA.

• ϕ̈2(t) = d2ϕ2(t)
dt2

is the absolute angular acceleration of the second IFC of
DMTVDA.

• ϕv(t) is the absolute angle of rotation of the gearbox input shaft.
• ϕ̇v is the absolute angular speed of rotation of the gearbox input shaft.
• k1 is the torsional stiffness coefficient for the shaft between the first and the

second IFC.
• c1 is the torsional damping coefficient for the shaft between the first and the

second IFC.
• k2 is the torsional stiffness coefficient of the output shaft of the DMTVDA.
• c2 is the torsional damping coefficient of the output shaft of the DMTVDA.
• Mv(t) is the gearbox input torque.
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3.2 Mathematical model
Using the free body diagram, the following equations of motion can be deduced:

J1ϕ̈1 + c1(ϕ̇1 − ϕ̇2) + k1(ϕ1 − ϕ2) = Me(t) (3.1)

J2ϕ̈2 + c1(ϕ̇2 − ϕ̇1) + k1(ϕ2 − ϕ1) + c2(ϕ̇2 − ϕ̇v) + k2(ϕ2 − ϕv) = 0 (3.2)

where c2(ϕ̇2 − ϕ̇v) + k2(ϕ2 − ϕv) is gearbox input torque Mv(t).
These equations can be written in matrix form:[

J1 0
0 J2

](
ϕ̈1
ϕ̈2

)
+
[
c1 −c1
−c1 c1 + c2

](
ϕ̇1
ϕ̇2

)
+
[
k1 −k1
−k1 k1 + k2

](
ϕ1
ϕ2

)
=
(

Me(t)
k2ϕv + c2ϕ̇v

)
(3.3)

Appendix B shows that this equation can be expressed by using dimensionless design
parameters.

3.2.1 Assumptions
The limitations are the following:

• The model will consider the Dual Mass flywheel and the output shaft joined
to the gearbox

• A six-cylinder truck engine will be considered
• The engine torque will be assumed as a sum of a constant torque and a sine

function:
Me(t) = M0 +M1 × sin(ωet+ α1)

• The angular displacement and velocity of the gearbox side can be given by:
ϕv = ωvt and ϕ̇v = ωv. It means that there are no vibrations at gearbox side.

3.2.2 Parameters
The system parameters are:

• J1, J2
• k1, k2
• c1, c2
• ωe, ωv
• α1
• M0,M1
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3.2.3 Solving strategy
The equation system can be easily solved by ODE45 function using Matlab. But
ODE45 requires a first-order differential equation [22].
It is necessary to rewrite the previous matrix equation 3.3 in the form of:

ẏ(t) = Ay(t) +Bf(t) (3.4)

where:
• y(t) =

[
y1 y2 y3 y4

]T
– y1 = ϕ1
– y2 = ϕ2
– y3 = ϕ̇1
– y4 = ϕ̇2

• f(t) =
[
0 0 Me(t) k2ϕv + c2ϕ̇v

]T
The following equations can be obtained:

ẏ1 = y3

ẏ2 = y4

J1ẏ3 + c1(y3 − y4) + k1(y1 − y2) = Me(t)
J2ẏ4 + c1(y4 − y3) + k1(y2 − y1) + c2(y4 − ϕ̇v) + k2(y2 − ϕv) = 0

(3.5)

Equation 3.4 can be obtained where:

A =
(

0 I
−M−1K −M−1C

)
(3.6)

B =
(

0 0
0 M−1

)
(3.7)

where
• 0 is a 2× 2 zero matrix
• I is a 2× 2 identity matrix

The resolution requires an initial vector of the parameters. In order to avoid a long
transient time, the initial angular velocity ϕ̇10 and ϕ̇20 are imposed at the value of
ϕ̇v = ωv, the angular displacements will be imposed to be zero. The initial vector
y0 is thus equal to: y0 =

[
0 0 ωv ωv

]T
.
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3.3 Programming environment
Two different softwares have been used:

• Matlab
• EasyDyn

Matlab (Matrix Laboratory) [23], it is a commercial software which is used for nu-
merical calculations. Matlab allows matrix manipulations, plotting curves, etc.
EasyDyn [24] is an open-source program which is used to study a multi-body dy-
namic system. It can predict how the mechanical system moves under the influence
of forces.
EasyDyn comprises two main components:

• A C++ library for the simulation of problems represented as a second-order
differential equations form

• CAGeM which generates the kinematics of a multibody system from the po-
sition matrices

Two different environments (Matlab and EasyDyn) allow the verification of output
results and assure the consistency of the results. In this way, a comparison will be
performed. In this work, the Matlab code integrates the system using the ODE45
function, while EasyDyn uses the Newmark method.

3.4 Test cases
Different test cases will be studied which will try to approach a dual mass flywheel
of a truck engine. The speed range usually used in the truck engine studies extends
from 900 RPM to 2000 RPM. A 4-stroke 6-cylinder engine is commonly mounted
in the trucks. The number of cylinder affects the excitation frequency. The load
from each cylinder will have a cycle corresponding to two crankshaft revolutions.
During one crankshaft revolution half the cylinders will fire. This means that the
main excitation frequency will correspond to the engine speed times one half of the
number of cylinder.
As reminder, the engine torque is represented by:

Me(t) = M0 +M1 × sin(ωet+ α1) (3.8)

Good assumptions for M0 and M1 are 300 and 500 Nm, respectively. In order to
have a sufficient scope, three different cases will be studied:

1. A simulation at a low speed: 900 RPM which corresponds to 15 Hz.
2. A simulation at medium speed: 1500 RPM which corresponds to 25 Hz.
3. A simulation at high speed: 2000 RPM which corresponds to 33.333 Hz.
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Therefore, these different frequencies will be multiplied by three and the following
engine torques will be used:

Me1(t) = 300 + 500× sin(45× 2πt) (3.9)

Me2(t) = 300 + 500× sin(75× 2πt) (3.10)

Me3(t) = 300 + 500× sin(100× 2πt) (3.11)

To perform the simulation the velocity from the gearbox side has to be imposed. An
acceptable value is to use one third of the engine speed. ωv in the expression of the
angular velocity from the gearbox side, ϕ̇v = ωv, will thus be assumed as equal to
ωe
3 . We could demonstrate that the mean engine torque does not affect the torque
variations, the same could be said for ωv.

3.4.1 Initial parameters
The initial values of the design parameters have to be imposed. According to a
master’s thesis [25], the following values will be assumed as initial values:

• J1 = 1.8 kg.m2

• J2 = 0.6 kg.m2

• c1 = 30 Nms/rad
• c2 = 1 Nms/rad
• k1 = 20 000Nm/rad
• k2 = 11 000Nm/rad

3.4.2 Torsional vibration analysis
In the interest of analysing the torsional vibrations, different measures will be com-
pared:

• Time history of the deflection angle between both flywheels and its time deriva-
tive

• Time history of the deflection angle between the secondary flywheel and the
gearbox input shaft and its time derivative

• Time history of the gearbox input torque

This information has been obtained by using the Matlab code which is placed in
Appendix C. The integration with ODE45 can not be used with its standard pa-
rameters. In fact, the standard value of the relative tolerance is 1 × 10−3 which
does not offer enough accuracy in our case. A tolerance value of 1× 10−5 has been
imposed. Figure 3.7 shows the impact of this tolerance on the returned values by
ODE45. Peaks appear on the chart of time history of the deflection angle between
the primary and secondary flywheel with a poor tolerance. They disappear with a
better tolerance.
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From Figures 3.3 to 3.6 we can observe that with an increase of the velocity, the
fluctuation of the different parameters is going down.
For the first scenario, we can see from Figures 3.4 and 3.6 that the peak to peak
value for the difference between the angular displacement of the first and secondary
flywheel is around 0.016 rad while the peak to peak value of the deflection angle
between the secondary flywheel and the gearbox input shaft is around 0.009 rad.
Moreover, the time derivative of the deflection angle between the secondary flywheel
and the gearbox input shaft is twice as small as the time derivative of the deflection
angle between the flywheels. The perturbations are thus reduced at the output of
the Dual Mass flywheel.

The engine torque has an oscillation amplitude of 500 Nm. We can see all the
benefits of the dual mass flywheel: the gearbox input torque has a very small oscil-
lation amplitude:

• 100 Nm for the first scenario

• 7 Nm for the second scenario

• 3 Nm for the third scenario

Figures from 3.3 to 3.5 also compare the output functions from the Matlab Model
to the output functions obtained by EasyDyn. As a reminder, Easydyn use the
Newmark integration. Notice that the Newmark integration uses a tolerance of
1× 10−4 which is sufficient to obtain good results without noise.
All the details concerning the EasyDyn model are placed at Appendix D.
As regards the gearbox input torque and the angular displacement/velocity, similar
results are obtained: the average and the peak-to-peak values of the 3 different
scenarios show good agreement. Moreover, no time offset can be observed between
those two models which shows the accuracy of the results.
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Figure 3.3 – Difference between the angular displacement ϕ1 − ϕ2.
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Figure 3.4 – Difference between the angular velocity ϕ̇1 − ϕ̇2.
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Figure 3.5 – gearbox input torque
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Figure 3.6 – Angular displacement/velocity between the secondary flywheel and
the gearbox.
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Figure 3.7 – Deflection angle between the flywheels (ϕ1 − ϕ2) using the Matlab
model with different tolerances.

Nevertheless, a right value of the stiffness and the damper coefficients has to be
chosen. A wrong value of them can cause bad output properties.
If the Dual Mass flywheel is replaced by a Single Mass flywheel, Figure 3.8 can show
that the initial example does not have as nice output properties as we expected.
In fact, if the dual mass flywheel is replaced by a single mass flywheel, we can observe
that the torque fluctuations are lower by using only one mass. For this comparison,
all the inertia from the second flywheel is moved to the first one assuming the same
properties of the gearbox input shaft (c2 and k2).
Fortunately, Figure 3.8 also shows that it is possible to obtain better properties by
using right value of the design parameters.
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3.4.3 Selection of objective functions
As the previous figures show the gearbox input torque fluctuations are well reduced,
but it might be possible to obtain better output properties. In order to optimize
the DMTDVA, objective functions (OFs) are chosen, they will depend on:

• the following design parameters:
– J1, J2, k1, k2, c1, c2

• a given set of Engine Operational Scenarios (EOS):
– Me1(t), Me2(t), Me3(t)

• the output angular velocity:
– ωv

The objective functions will be measured once the transient time is established. No-
tice that the transient time increases with the increase of the inertia (J1, J2) and the
primary stiffness coefficient (k1) while it decreases with the increase of the secondary
stiffness coefficient (k2) and the damping coefficients (c1, c2).

3.4.3.1 Objective function 1

The main purpose of the DMTDVA is to reduce variation of the gearbox input
torque. The first OF, called OF1 is:

OF1 =

√√√√ 1
N − 1

N∑
i=1

(Mv(i)−Mvmean)2 (3.12)

It is the corrected sample standard deviation. In fact, the standard deviation is a
measure which quantifies the dispersion of a set of data. That way, the smaller OF1,
the better the torque fluctuations are reduced.

3.4.3.2 Objective function 2

By reducing vibration, some energy is lost, in the interest of quantifying this energy,
the following objective function, called OF2 is introduced:

OF2 = mean
(1

2c1(ϕ̇2 − ϕ̇1)2 + 1
2c2(ϕ̇2 − ϕ̇v)2

)
(3.13)

This function will thus take into account the losses coming from the dampers.

3.5 Sensitivity analysis
In this section, the influence of the design parameters on the OFs mentioned previ-
ously will be studied.
This analysis has been performed for the three scenarios. That way, the influence
of the engine speed can also be considered.
At first glance, we can notice that the parameters for a high engine speed do not
affect the losses. The shape of the curve for the 900 RPM scenario differs from the
other curves.

24



3. Dual Mass flywheel approach

The curves of the variation of the damping coefficients c1 and c2 have the same
global curves for the different scenarios. However, a low engine speed will have a
bigger negative impact on the torque fluctuation.
As the previous torsional vibration analysis shows, torque fluctuations decrease with
the increase in the engine speed. In fact, the curve from the third scenario is situated
below the second scenario which is below the first one.
Finally, from the sensitivity analysis of the design parameters, the following obser-
vations can be made:

• Damping coefficients: Figures 3.10 outline that the increase in c1 will de-
crease the torque fluctuations. The gearbox input torque depends on the
deflection angle and its time derivative between the secondary flywheel and
the gearbox side. The design parameters c2 and k2 are fixed. The increase of c1
increases the deflection angle between the flywheels while the transient time is
reduced. The deflection angle between the secondary flywheel and the gearbox
input shaft has the same behaviour as the other deflection angle. Figure 3.9
shows this effect for a value of c1=0 Nm.s/rad and c1=38 Nm.s/rad.
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Figure 3.9 – Time history of the deflection angle for different damping coefficient
values.

That way, torque fluctuations are increased. Notice that the opposite effect
appears in the first scenario. In fact, the frequency of the first scenario (45
Hz) is close to an eigenfrequency of the system. Eigenfrequencies are outlined
later in this document.
Figure 3.10 shows increasing c1 will produce bigger losses. Actually the loss
expression directly depends on c1.
Increasing c2 increases the torque fluctuations. In fact, the gearbox input
torque directly depends on c2: the increase in c2 returns a higher value of
the first part of the gearbox input torque (c2(ϕ̇2 − ϕ̇v)) while the second part
(k2(ϕ2 − ϕv)) changes lightly.

• Inertia: Figures 3.12 and 3.13, we can observe that for low values of J1 there
is a drop of the torque fluctuation. But for higher value, the torque fluctuation
tends to zero. Similar results are obtained for the secondary inertia J2.
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One peak is observed for the first scenario (900 RPM) at each inertia.
The peaks occur for a value of 0.3 and 0.5 kg.m2 for the primary and secondary
flywheel, respectively. They come from the eigenfrequencies which are studied
in Section 3.7.

• Stiffness coefficients: Figures 3.14 and 3.15 show the influence of the stiff-
ness parameters. The shape of the curves are again similar to both parameters.
A peak occurs for a value close to 3 ×104 Nm/rad for the first scenario. For
the other scenarios the increase in k1 and k2 will slightly affect the torque
fluctuation and the losses. Figures also show that the lower the stiffness value,
the better output properties. Nevertheless, there is a physical limit. If the
stiffness decreases, the motion between the 2 flywheels will increase and lead
to a large-sized flywheel. In fact, it is not conceivable to have completely
compressed springs which lead to undesirable bump. For this reason, manu-
facturers use two-step springs which are composed of 2 springs with different
stiffness.

From these figures we can see that the excitation frequency affects the properties of
the system. Figure 3.16 shows the impact of the input frequency on the OFs. Two
peaks appear on the chart, they correspond to the eigenfrequencies of the mechanical
system which are:

• fn1 = 9.3 Hz
• fn2 = 38.8 Hz

This chart shows the interest to avoid the eigenfrequencies which occur more torque
fluctuations and more losses.
The charts can not be explained more with the time domain information but the
study of the frequency domain will clarify them.
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Figure 3.10 – Influence of c1 on the OFs

3.5.1 Conclusion
Some curves have a peak which is linked to the eigenfrequencies. The frequency
analysis will be realised later.
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Figure 3.11 – Influence of c2 on the OFs
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Figure 3.12 – Influence of J1 on the OFs
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Figure 3.13 – Influence of J2 on the OFs

In general, to reduce the torque fluctuations we can act on the followings actions:
• Decreasing the damping and stiffness coefficients
• Increasing the inertias
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Figure 3.14 – Influence of k1 on the OFs
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Figure 3.15 – Influence of the stiffness coefficient k2 on the OFs.
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Figure 3.16 – Influence of the input frequency on the OFs.

Optimization with the fminsearch function of Matlab has been realized in the
following section. The optimization should confirm the previous conclusions.
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3.6 Optimization

We have seen that for some values of the design parameters, the gearbox input
torque fluctuations and the losses have a less significant impact. This section will
try to optimize the DMTDVA. Optimization of the both previous OFs has been
performed using the fminsearch function of Matlab. fminsearch will search the
local extrema of an objective function of several variables. This function is based
on the simplex method of Lagarias [26]. For further information the reader can be
referred to [27].
fminsearch function requires:

• A function to optimize
• Initial values of the parameters used in this function

It is necessary to use bounds in order to avoid physically non-understandable values.
Lower and upper bounds are added to this function.
The functions to optimize are being the OFs.
The initial values used are the values used in the previous simulations (according to
[25]):

• J1 = 1.8 kg.m2

• J2 = 0.6 kg.m2

• c1 = 30 Nms/rad
• c2 = 1 Nms/rad
• k1 = 20 000Nm/rad
• k2 = 11 000Nm/rad

With regard to the lower and upper bounds, a reasonable range is to use +/- 50 %
on these initial values. In this way, the software can not return negative values, too
high or too low values which ensure that the system is realistic.
Optimization has been performed for 3 input frequencies: 45 Hz, 75 Hz and 100 Hz.

The different results of the optimization are shown in Table 3.1 and 3.2 for OF1
and OF2 respectively. We can see that each optimization returns approximately the
same result. That way, an optimization of OF1 provides an optimization of OF2
and vice versa.
The upper bounds of the inertia are reached. In fact, increasing the inertia improves
the properties. But the inertia can not be too large, since there is a limited amount
of available space.
The lower bounds of the stiffness are also reached. But a torsional spring with a
too low stiffness is not possible for the reasons mentioned above. Apart from the
choice of the optimal value of c2, the results of the optimization are in agreement
with the previous sensitivity analysis. In fact, the optimal value c2 is not the upper
bounds as we could expect. It is important to remind that fminsearch is a local
method. Note also that fminsearch provides a better optimization that fmincon
for our problem. fmincon is also a local method but it is a gradient methods.
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J1
[kg.m2]

J2
[kg.m2]

k1
[Nm/rad]

k2
[Nm/rad]

c1
[Nms/rad]

c2
[Nms/rad]

OF1
[Nm]

OF2
[Nm.rad/s]

Lower bounds 0.9 0.3 1.00E+04 5.5E+03 15 0.5

Initial values 1.8 0.6 2.00E+04 1.10E+04 30 1
900 RPM 36.54
1500 RPM 2.44
2000 RPM 0.77

900 RPM 38.72
1500 RPM 4.07
2000 RPM 1.85

Upper bounds 2.7 0.9 3.00E+04 1.65E+04 45 1.5
900 RPM 2.7 0.9 1.0E+04 5.5E+03 15 0.88 1.83 2.47
1500 RPM 2.7 0.9 1.0E+04 5.5E+03 15 1.44 0.22 0.67Returned Values
2000 RPM 2.7 0.9 1.0E+04 5.5E+03 15 1.5 0.08 0.35

Table 3.1 – Optimization of OF1 for 3 different scenarios

J1
[kg.m2]

J2
[kg.m2]

k1
[Nm/rad]

k2
[Nm/rad]

c1
[Nms/rad]

c2
[Nms/rad]

OF1
[Nm]

OF2
[Nm.rad/s]

Lower bounds 0.9 0.3 1.00E+04 5.5E+03 15 0.5

Initial values 1.8 0.6 2.00E+04 1.10E+04 30 1
900 RPM 36.54
1500 RPM 2.44
2000 RPM 0.77

900 RPM 38.72
1500 RPM 4.07
2000 RPM 1.85

Upper bounds 2.7 0.9 3.00E+04 1.65E+04 45 1.5
900 RPM 2.7 0.9 1.00E+04 5.5E+03 15 0.5 1.83 2.47
1500 RPM 2.7 0.9 1.00E+04 5.5E+03 15 1.29 0.22 0.67Returned Values
2000 RPM 2.7 0.9 1.00E+04 5.5E+03 15 1.5 0.08 0.35

Table 3.2 – Optimization of OF2 for 3 different scenarios

3.6.1 Implementation of the optimal values into the math-
ematical model

The first objective function has the objective of reducing the torque fluctuations.
Figures 3.17 and 3.18 illustrate the benefits of the optimization for the first scenario.
In fact, these figures show that the fluctuations of the angular displacement, the an-
gular velocity and the gearbox input torque are reduced.
The torque fluctuations are well reduced as well as the fluctuations of angular dis-
placement/velocity. All the time, a mechanical part is subjected to fatigue. That
way, the optimization will reduce this phenomenon. By reducing the vibrations, the
driving comfort is also improved. Figures also show that a phase shift occurs be-
tween the initial and optimal case due to the reduction of the damping coefficients.
Figures 3.17 (a) and (c) shows that another average value of the deflection angles
is obtained. In fact, the optimization reduces the values of the stiffness coefficients.
A modification of the stiffness properties leads to a modification of the equilibrium
position of the dual mass flywheel. Figure 3.18 shows that for the initial case the
peak-to-peak amplitude value is 103.4 Nm, the optimization reduce it until 5.2 Nm.
The torque fluctuations are thus reduced by a factor of 20. Similar results are ob-
tained for the second and third scenario. Appendix E exposes these different results.
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Figure 3.17 – Benefits of the optimization on the different deflection angles and
their time derivatives.
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Figure 3.18 – Benefits of the optimization of the gearbox input torque.
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3.7 Frequency analysis
The system has 2 degrees of freedom, 2 eigenvalues are thus expected. If a propor-
tional damping is assumed, it means that [C] = α[M ] + β[K]. The characteristic
equation is:

det(λ2[M ] + λ[C] + [K]) = 0 (3.14)

The roots of this equation can be given as:

λk = −ξkωk + jωk
√

1− ξ2
k (3.15)

with:
• ωk =

√
Im2(λk) +Re2(λk) (the pulsation)

• ξk = −Re(λk)
Im2(λk) +Re2(λk)

(the damping rate)

The degree of freedom of the system is 2, 2 × 2 pairs of poles λk will be obtained.
From these poles, the pulsations and the damping rate can be deduced.

For the different cases of study, the same inertia, damping and stiffness matrix
are used and thus the same eigenvalues will be obtained:

• ωn1 = 58.6291 rad/s which corresponds to fn1 = 9.3Hz
• ωn2 = 243.4370 rad/s which corresponds to fn1 = 38.8Hz

These frequencies are below the excitations frequencies (45 Hz to 100 Hz). We have
to ensure that values from the optimization do not move them inside the range from
45 Hz to 100 Hz.
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3.7.1 Sensitivity analysis of the eigenfrequencies

3.7.1.1 Eigenfrequencies values

This subsection will show the influence of the design parameters on the eigenfre-
quencies. Each parameters will be varied one by one. It is necessary to impose one
value on the other parameters, when one is varied. The imposed values are the same
as the previous.

• Inertia: The increase in the inertia will decrease the value of the eigenfrequen-
cies. Figure 3.19 shows that the decrease of the secondary inertia has a bigger
impact on the eigenfrequencies than the primary inertia. One explanation of
that is that when J1 is taken as a variable, the fixed value of J2 is 0.6 kg.m2

while for the variation of J2 the fixed value of J1 is bigger (1.8 kg.m2). For low
values of inertia, there is an exponential decrease of the frequencies with the
increase in the inertia. After a value of 6 kg.m2, the second eigenfrequency is
no longer affected while the first eigenfrequency is steadily decreasing.

• Stiffness coefficient: Figure 3.20 shows the influence of the stiffness coeffi-
cients, k1 and k2 on the eigenfrequencies. The increase of stiffness will increase
the value of the eigenfrequencies. The second eigenfrequency is more affected
by the stiffness than the second one. The attentive reader can also remark
that if k1 is equal to 3E+04 Nm/rad, an eigenfrequency appears at 45 HZ
which explains the peak that we obtain at Figure 3.14 for the first scenario
which corresponds to 45 Hz.
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Figure 3.19 – Influence of inertia on the eigenfrequencies.
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Figure 3.20 – Influence of the stiffness.

From Figures 3.19 and 3.20, we can deduce that the eigenfrequencies are affected
by the stiffness coefficients and the inertia.
Here, we only analyse at the eigenfrequencies values but it is also interesting to
analyse how the amplitude of the frequency response varies for different design pa-
rameters.

3.7.1.2 Amplitude of the frequency response

Figures 3.21 and 3.22 show the amplitude of the frequency response. This frequency
response is in a dimensionless space. The expression will be detailed further down.
Note that, the x-axis is limited to 80 Hz because nothing different happens after
this value.
We have a look at the influence of the design parameters on the this frequency
response.
Two different values of each design parameters are selected: a low and a high value.
From Figure 3.21 (a) and (b), we can clearly see that the peak of the secondary
eigenfrequency will disappear for high value of c1. This can explain the decrease
in the torque fluctuation with the increase in the damping factor c1 for the first
scenario in Figure 3.10. Figure 3.21 (c) and (d) shows the impact of c2 (for low and
high value) on the frequency response.
Figure 3.21 (e), (f) and Figure 3.22 (a) and (b) show that the increase of k1 and
k2 will move the peaks as we deduced from the eigenfrequencies. However, the
amplitude of these peaks are also affected.
Figure 3.22 (c) and (d) shows that the increase of J1 will reduce the width of the
first peak but it will also increase the amplitude of the second one.
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Figure 3.21 – Influence on the frequency response of the secondary flywheel .
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Figure 3.22 – Influence on the frequency response of the secondary flywheel .

3.7.1.3 Eigenfrequencies with the optimization of OF1 and OF2

This part will pay attention to the different values obtained from the optimization
of OF1 and OF2. In fact, these values will move the eigenfrequencies, and it is
important that the eigenfrequencies do not appear in the commonly used range (45
Hz to 100 Hz).
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fn1[Hz] fn2[Hz]
Inital 9.33 38.74

Optimization 5.38 22.38

Table 3.3 – Eigenfrequencies obtained with the optimization

By looking at Table 3.3, the values of the eigenfrequencies are out of the used range.
Moreover, the eigenfrequencies are moved to lower values, distancing the frequency
range of use.

3.7.2 Frequency resolution
The equations of motion were obtained at the section 3.2 where they are solved
in the time domain. The resolution in the frequency domain is approached in this
subsection.

J1ϕ̈1 + c1(ϕ̇1 − ϕ̇2) + k1(ϕ1 − ϕ2) = Me(t) (3.16)
J2ϕ̈2 + c1(ϕ̇2 − ϕ̇1) + k1(ϕ2 − ϕ1) + c2(ϕ̇2 − ϕ̇v) + k2(ϕ2 − ϕv) = 0 (3.17)

with c2(ϕ̇2 − ϕ̇v) + k2(ϕ2 − ϕv), the gearbox input torque, Mv(t).
If the primary mass is excited by an external harmonic torque: Me(t)=Mee

jωt, the
steady-state harmonic responses can be written as:

ϕ1(t) = Φ1e
jωt and ϕ2(t) = Φ2e

jωt (3.18)

Introducing these expressions into Equations 3.16 and 3.17:

J1(−ω2Φ1e
jωt)+ c1((jωΦ1e

jωt)− (jωΦ2e
jωt))+k1(Φ1e

jωt−Φ2e
jωt) = Mee

jωt (3.19)

J2(−ω2Φ2e
jωt) + c1((jωΦ2e

jωt)− (jωΦ1e
jωt))

+ k1(Φ2e
jωt − Φ1e

jωt) + c2(jωΦ2e
jωt) + k2(Φ2e

jωt) = Mv1e
jωt (3.20)

These equations can then be written as:

Φ1(−ω2J1 + jωc1 + k1)− Φ2(jωc1 + k1) = Me (3.21)

Φ2(−ω2J2 + jωc1 + k1 + jωc2 + k2)− Φ1(jωc1 + k1) = Mv1 (3.22)
This equation system can be written in a matrix format:[

−J1ω
2 + jωc1 + k1 −k1 − jωc1
−jωc1 − k1 −J2ω

2 + jωc1 + k1 + jωc2 + k2

](
Φ1
Φ2

)
=
(
Me

Mv1

)
(3.23)

[
A
] (

Φ
)

=
(
M
)

(3.24)
This system can be solved via Cramer’s rule:

Φ1 = Me(−J2ω
2 + jωc1 + k1 + jωc2 + k2)−Mv1(−jωc1 − k1)

Det(A) (3.25)
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Φ2 = Mv1(−J1ω
2 + jωc1 + k1)−Me(−jωc1 − k1)

Det(A) (3.26)

With:

Det(A) = (−J1ω
2 + c1jω+ k1)(−J2ω

2 + jωc1 + k1 + k1 + jωc2 + k2)− (−jωc1− k1)2

(3.27)
To come back in the time domain we just need to multiply Φ1 and Φ2:

• by ejωt, to have the angular displacement
• by jωejωt, to have the angular velocity
• by - ω2ejωt, to have the angular acceleration

We can compare the different results from the frequency domain to the time domain
from Matlab. In order to realize the comparison, the scenario 1 is taken but the
mean speed and engine torque will be assumed as equal to 0. The difference of
the angular displacement/velocity between the primary and secondary flywheel is
compared at Figure 3.23. For both models we obtain the same curves: same peak-
to-peak value is obtained as well as the mean value. We do not see a phase shift
between these models.
In fact, a phase shift of 90 degrees should appear because the torque in time domain
the engine torque is equal to 500 × sin(ωt). But from the frequency to the time
domain, the mean torque is multiplied by ejωt. At time t=0, the mean torque is
equal to zero in the first case but equal to 500 in the second case. The results on
Figure 3.23 are just multiply by −i to have the same phase.

One of the goals of a Dual Mass Flywheel is to move the peaks in order to avoid
resonance into the used range. But it is also interesting reduce the amplitude of the
peaks and the area under the curve of the frequency response.

3.7.2.1 Selection of objective functions

This objective function should measure the maximum peak of the curve into the
range of use. In fact the purpose is to ensure a response curve which is as flat as
possible. A new objective function, called OF3 can be found:

OF3 = max ( peaks ) (3.28)

This function can be easily introduced into Matlab via the findpeaks function.
The area under the frequency response curve can also be reduced, a fourth objective
function can be found:

OF4 =
∫ 100Hz

45Hz
Φ2df (3.29)

The integration will be performed by trapz function of Matlab.
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model.
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(b) ϕ̇1 − ϕ̇2 with the Matlab time domain
model.
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(c) ϕ1 − ϕ2 with the Matlab frequency
domain model.
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(d) ϕ̇1 − ϕ̇2 with the frequency domain
model.

Figure 3.23 – Comparison between the time domain and the frequency domain.

3.7.2.2 Optimization with fminsearch

An optimization has been performed with fminsearch using OF3 and OF4 as func-
tion to optimize. However, OF3 does not work in this case because no peak occurs in
the used range with the initial values placed in Table 3.4. Only OF4 has thus been
optimized with fminsearch. The lower and upper bounds used are the same as the
optimization of OF1 and OF2. Table 3.4 is a summary table of the lower/upper
bounds, initial values used for the optimization with fminsearch. Table 3.4 also
gives the optimized values. Figure 3.24 shows the frequency response for the initial
values of the secondary flywheel. Figure 3.24 explains the role of OF4 and shows
that no peak occurs in the range of use.

3.7.2.3 Comparison with the other optimizations

A comparison of the different optimal values obtained with the optimization of OF1,
OF2 and OF4 using fminsearch function can be easily done.
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Figure 3.24 – Frequency response of the secondary flywheel.

J1
[kg.m2]

J2
[kg.m2]

k1
[Nm/rad]

k2
[Nm/rad]

c1
[Nms/rad]

c2
[Nms/rad]

OF4
[ ]

Lower bounds 0.9 0.3 1.00E+04 5.5E+03 15 0.5
Initial values 1.8 0.6 2.00E+04 1.10E+04 30 1 5.5E-04
Upper bounds 2.7 0.9 3.00E+04 1.65E+04 45 1.5

Returned Values 2.7 0.9 1.0E+04 5.5E+03 15 0.5 7.6E-05

Table 3.4 – Optimization of OF4 with fminsearch

The great thing is that all the optimizations return approximately the same values
of the design parameters. It could be possible to have objective functions which are
opposite to each other but fortunately this is not the case.
The optimization of the time domain has the same effect as the optimization of
frequency domain:

• Increase the inertia
• Reduce the stiffness coefficients
• Reduce the damping coefficients

3.7.3 Dimensional analysis
A dimensional analysis is performed in this part. This analysis allows to avoid
a choice of the order of magnitude of the different parameters of the mechanical
system. From Equation 3.26, Φ2 can be split in 2 parts:

Φ2 = Φ21 + Φ22 (3.30)

Φ21 = Mv1(−J1ω
2 + jωc1 + k1)

Det(A) (3.31)

Φ22 = −Me(−jωc1 − k1)
Det(A) = Me(jωc1 + k1)

Det(A) (3.32)

The same applies for Φ1, which can be split in 2 parts:

Φ1 = Me(−J2ω
2 + jωc1 + k1 + jωc2 + k2) +Mv1(k1 + jωc1)

Det(A) (3.33)
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Φ=Φ11 + Φ12 (3.34)

Φ11 = Me(−J2ω
2 + jωc1 + k1 + jωc2 + k2)

Det(A) (3.35)

Φ12 = Mv1(k1 + jωc1)
Det(A) (3.36)

The objective is to improve the output performance. The frequency amplitude
of the secondary flywheel (Φ2) will be treated. For the interested reader, the
dimensional analysis is performed for the first flywheel at Appendix .

Φ21

Mv1

k2

= −ω2J1 + c1jω + k1

(−J1ω2 + c1jω + k1)(−J2

k2
ω2 + jω

c1

k2
+ k1

k2
+ jω

c2

k2
+ k2

k2
)− (k1 + jωc1)2

k2
(3.37)

If, the numerator and denominator are divided by J1:

Φ21

Mv1

k2

=
−ω2 + c1jω

J1
+ k1

J1

(−ω2 + c1jω

J1
+ k1

J1
)(−J2

k2
ω2 + jω

c1

k2
+ k1

k2
+ jω

c2

k2
+ k2

k2
)− (k1 + jωc1)2

k2J1
(3.38)

These following dimensionless variable will be assumed:

ω1 =
√
k1

J1
(3.39)

ω2 =
√
k2

J2
(3.40)

ψ = ω1

ω2
(3.41)

Ω = ω

ω2
(3.42)

µ = J1

J2
(3.43)

ξ1 = c1

2J1ω1
(3.44)

ξ2 = c2

2J2ω2
(3.45)

The numerator can be written as:

− ω2 + c1jω2ω1

J12ω1
+ k1

J1
= −ω2 + 2ξ1ω1jω + ω1

2 (3.46)

Regarding the denominator:

(−ω2 + c1jω

J1
+ k1

J1
)(−J2

k2
ω2 +jω

c1

k2
+ k1

k2
+jω

c2

k2
+ k2

k2
)− (k1 + jωc1)2

k2J1
= ab−c (3.47)
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a can be written as:

(−ω2 + c1jω

J1
+ k1

J1
) = (−ω2 + c1jω2ω1

J12ω1
+ ω2

1) = (−ω2 + 2jωξ1ω1 + ω2
1) (3.48)

b can be written as:

(−J2

k2
ω2 +jω c1

k2
+ k1

k2
+jω c22

k2 2
+ k2

k2
) = (− ω2

ω22 +jω c12J1ω1

ω2 2 J2 2J1ω1
+ k1

k2
+jω c22

ω2 2 J2 2
+1)

(3.49)
= (−Ω2 + 2jΩµξ1ψ + ψ2µ+ 2jΩξ2 + 1) (3.50)

And c can be written as:

(k1 + jωc1)2

k2J1
= 1
k2J1

(k2
1 + 2k1jωc1 − ω2c2

1) (3.51)

= k2
1

k2J1
+ 2k1jωc12ω1

k2J12ω1
− ω2c2

12ω1

k2J12ω1
= ψ2µω2

1 + 4ψ2µjωω1ξ1 −
2ξc1ω

2

k2
(3.52)

= ψ2µω2
1 + 4ψ2µjωω1ξ1 − 4ξ2

1ω
2µψ2 (3.53)

Finally, equation 3.37 can be written as:

Φ21
Mv1

k2

=
−ω2 + 2ξ1ω1jω + ω12

(−ω2 + 2jωξ1ω1 + ω2
1)(−Ω2 + 2jΩµξ1ψ + ψ2µ+ 2jΩξ2 + 1) − ψ2µω2

1 − 4ψ2µjωω1ξ1 + 4ξ2
1ω

2µψ2

(3.54)
If, the numerator and denominator of equation 3.54 are divided by ω2, the expression
can be reduced as:

Φ21
Mv1

k2

=
−Ω2 + 2jξ1Ωψ + ψ2

(−Ω2 + 2jΩξ1ψ + ψ2)(−Ω2 + 2jΩµξ1ψ + ψ2µ+ 2jΩξ2 + 1) − ψ4µ− 4ψ2µjΩξ1ψ + 4ξ2
1Ω2µψ2 (3.55)

By identification, Φ22

Me

k2

can easily be found:

Φ22
Me

k2

=
2jξ1Ωψ + ψ2

(−Ω2 + 2jΩξ1ψ + ψ2)(−Ω2 + 2jΩµξ1ψ + ψ2µ+ 2jΩξ2 + 1) − ψ4µ− 4ψ2µjΩξ1ψ + 4ξ2
1Ω2µψ2 (3.56)

Finally, introducing equation 3.55 and 3.56 into equation 3.34, the following ex-
pression can be obtained:

Φ2[ ] = Φ21 [ ] + Φ22 [ ]

= −Ω2 + 4jξ1Ω + 2ψ2

(−Ω2 + 2jΩξ1ψ + ψ2)(−Ω2 + 2jΩµξ1ψ + ψ2µ+ 2jΩξ2 + 1)− ψ4µ− 4ψ2µjΩξ1ψ + 4ξ2
1Ω2µψ2

(3.57)

This equation 3.57 represents the response Φ2 of the secondary flywheel.
An example is applied to Equation 3.57 with the initial values included in Table
3.5. The attentive reader can see that they are the same values used in the section
3.6. Figure 3.25 shows the plot of this example. The two eigenfrequencies can be
refounded: two peaks occur at each eigenfrequencies.
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Parameters Values
k1 20000 [Nm/rad]
k2 11000 [Nm/rad]
c1 30 [Nm.s/rad]
c2 1 [Nm.s/rad]
J1 1.8 [kg.m2]
J2 0.6 [kg.m2]

Table 3.5 – Values used for the example
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Figure 3.25 – Frequency response of the secondary flywheel.
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Figure 3.26 – Impact of the Dual Mass flywheel (normal and large scale).

It is also interesting to show the impact of the DMF on the frequency response.
Without the Dual Mass flywheel, the engineering model is composed of one inertia
and one spring and damper between the single flywheel and the gearbox which
represent the property of the output shaft. This model is shown at Figure 3.27.
Figure 3.26 shows the impact of the DMF: with the single flywheel only one peak
occurs while the DMF creates two resonance peaks on both sides of the initial peak
(in our case, they have a lower amplitude).
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ϕ2

J2Engine Gearbox

Figure 3.27 – Single Mass flywheel

3.7.3.1 Sensitivity analysis on the response of the secondary flywheel

This part analyses the sensitivity of the dimensionless parameters. The response of
the secondary flywheel depends only on the following parameters:

• Ω, ξ1, ξ2, µ, ψ
Three different cases are choosing to show their influence on the frequency response:

• Initial values, the values from the tables 3.5 are replaced in the different di-
mensionless parameters.

• Maximum values, the maximum of the dimensionless parameters are taken by
choosing the parameters of the tables 3.5 multiplied or divided by 0.5 with the
aim of having a maximum value of the dimensionless parameters.

• Minimum values, the minimum of the dimensionless parameters are taken by
choosing the parameters of the tables 3.5 multiplied or divided by 0.5 with the
aim of having a minimum value of the dimensionless parameters.

According to Figure 3.28 we can conclude that:
• The increase of the inertia ratio µ moves the peaks towards smaller Ω values.
• The increase of ψ will significantly increase the amplitude frequency response,
ϕ2.

• The damping factors ξ1 and ξ2 have the same impact on the response of the
secondary flywheel, when they increase the peaks are decreased. But ξ1 has a
higher impact than the second damping factor.

Actually, we have a contradiction between the previous conclusions. In fact, we
saw that increasing the damping coefficient is beneficial for the frequency response
amplitude. Whereas previously, the optimization reduced the damping coefficient.
In fact, the damping coefficients have no effect when the eigenfrequencies are far
from the frequency excitation. But the system has to go through low frequencies to
reach high frequencies. Therefore it is important to reduce as well as possible the
peaks at low frequencies.
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Figure 3.28 – Influence of the dimensionless parameters on the response of the
secondary flywheel

3.7.3.2 Optimization of the dimensionless expression

The optimization uses another way, fmincon is not used anymore.
The objective functions OF3 and OF4 depend only on the following parameters:

• Ω, ξ1, ξ2, µ, ψ
The frequency response depends only on these five parameters. It is necessary to
constrain different parameters.
According to the paper [25], the inertia ratio µ is imposed to 3 and the secondary
damping factor, ξ2, is assumed as equal to 0.0062.
ψ and ξ1 were varied from 0 to 1 and 0 to 2, respectively (increment of 0.01). Ω
is varied from 0 to 2. A plot of the frequency response can be obtained for the
increment of each ψ and ξ1.
The maximum of the peaks (OF3) and the area under each curve (OF4) are recorded.
The variation of OF3 and OF4 according to ψ and ξ1 can be obtained on Figure
3.29 and 3.30, respectively.
The minimum value of each plot can be calculated, an optimal value of ψ and ξ1 is
therefore obtained for OF3 and OF4.
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Figure 3.29 – Influence of ψ and ξ1 on OF3
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Figure 3.30 – Influence of ψ and ξ1 on OF4

For the optimization of OF3, the following values are obtained:
• ξ1optOF 3 = 2
• ψoptOF 3 = 0.05

For the optimization of OF4, the following values are obtained:
• ξ1optOF 4 = 0.6
• ψoptOF 4 = 0.25

If these optimized values are introduced into Equation 3.57, the benefits of the
optimization can be observed. Figure 3.31 demonstrates the good effect: the peak
and the area of the frequency response are well reduced.
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Figure 3.31 – Frequency response with optimal values deduced from OF3 and OF4
optimization.
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4
Engine Dynamics

Until now, a simple sine function has been used to represent the input torque.
But in reality, the input torque has a more complex expression. This part

will study the engine dynamics to deduce its expression and show its impact on the
output response.

4.1 Assumptions
In this chapter we will assume that :

• The engine is running at constant speed
• The crankshaft is rigid
• The inertias of the conrod and the crank are neglected
• The friction forces are neglected

4.2 Piston motions
The position of the piston can be described by x = x1 + x2.

F
x1

x2
conrod

l

r

x

cylinder
piston

crank

gas pressure

ωt

β

δ

Figure 4.1 – Silder-crank mechanism

49



4. Engine Dynamics

Where x1 = r × cos(ωt)
Moreover, x2

2 + (r × sin(ωt))2 = l2 by Pythagoras.
That means that x2 =

√
l2 − (r × sin(ωt))2.

Finally, the expression of the position of the piston can be deduced:

x = r × cos(ωt) + l

√
1− r2

l2
× sin2(ωt) (4.1)

If the Taylor expansion of
√

1− x is used, the second term of the right-hand side of
this equation becomes:

l

√
1− r2

l2
× sin2(ωt) = l

(
1 + 1

2 × (−r
2

l2
× sin2(ωt)))

)
(4.2)

Using the Simpson formulas sin2(ωt) = 1− cos(2ωt)
2 , the expression of x becomes:

x = r × cos(ωt) + l ×
(

1 + 1
2
−r2

l2
1− cos(2ωt)

2

)
(4.3)

x = r ×
(
cos(ωt) + r

4l cos(2ωt)
)

+ l − r2

4l (4.4)

Assuming that ω is constant, we can obtain the following expression for the velocity
and acceleration of the piston.

ẋ = −rω
(
sin(ωt) + r

2l sin(2ωt)
)

(4.5)

ẍ = −rω2
(
cos(ωt) + r

l
cos(2ωt)

)
(4.6)

4.3 Forces acting on the piston
Four forces action on the piston can be enumerated:

1. The inertia force: Finertia = mẍ

2. The force due the gas pressure: Fgas = 1
4πD

2 × pcyl
• with D, the bore diameter
• with pcyl, the pressure inside the cylinder

3. The friction force: Ffriction. In our case the friction force will be neglected.
4. The force from rod: Frod.

Balance of forces in vertical direction:

Finertia + Fgas + Ffriction + Frod × cos(β) = 0 (4.7)

Frod = 1
cos(β)

(
−mẍ− 1

4πD
2pcyl − Ffriction

)
(4.8)

Torque acting on the crankshaft is given by Torque = r × F .

F = cos(δ)× Frod = cos(δ)
cos(β)

(
−mẍ− 1

4πD
2pcyl − Ffriction

)
(4.9)
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where:
• δ = 180 - 90 - ωt - β = 90 - ωt - β

• β = arcsin(r
l
sin(ωt))

Knowing that lsin(β) = asin(ωt), the following expression can be deduced:

Torque = r × (A×B) (4.10)

Where:

• A =
cos

(
90− (ωt)− arcsinsin(ωt)

R

)
cos

(
arcsin(asin(ωt)

l
)
)

• B =
(
0.25πD2pcyl −m× r × ω2

[
cos(ωt) + 1

R
cos2(ωt)

])
Assuming that R is the rod ratio which is equal to: l

r
.

The previous equation becomes for 6-cylinder engine:

Torque = r ×
6∑
i=1

(Ai ×Bi) (4.11)

Where:

• Ai =
cos

(
90− (ωt− αi)− arcsin

sin(ωt− αi)
R

)
cos

(
arcsin(asin(ωt−αi)

l
)
)

• Bi =
(
0.25πD2pcyl −m× r × ω2

[
cos(ωt− αi) + 1

R
cos2(ωt− αi)

])
Where αi is the phase angle,
– α1= 0 °
– α2= 120 °
– α3= 240 °
– α4= 360 °
– α5= 480 °
– α6= 600 °

In fact the crankshaft of a 4-stroke engine has to turn through 720° to complete
a 4-stroke cycle. Considering that a 6-cylinder engine is analysed, the phase angle
between each force is given by 720/6.
Some characteristics of a Volvo truck engine have been obtained, they are placed in
Table 4.1. Moreover, the evolution of the pressure with the crank angle is necessary.
The cylinder pressure as a function of crankangle has been assumed to have the
shape shwon in Figure 4.2.
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Figure 4.2 – Crank angle evolution of the pressure inside a cylinder

Characteristics Values
Diameter of the bore 130 mm
Length of the crank 80 mm
Length of the conrod 270 mm
Weight of the piston assembly 5 kg

Table 4.1 – Main characteristics of the piston
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Equation 4.3 is plotted on Figure 4.3 for 3 different scenario. This figure also com-
pares the different contributions of the torque.

• Torque from the gas pressure
• Torque from the inertia
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(a) 900 RPM.
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(b) 1500 RPM.
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(c) 2000 RPM.

Figure 4.3 – Crank angle history of the torque for 3 different scenarios.

Regarding to Figure 4.3 we can observe that the main contribution of the engine
torque comes from the gas torque but increasing the input velocity will increase the
contribution of the inertia torque.
Figure 4.4 shows the crank angle history of the torque for a 6-cylinder engine for
the first scenario. Six peaks can be observed. They correspond to the power of each
cylinder.
The behaviour of the dynamic output responses of the system with a more accurate
expression of the engine torque is analysed. The initial and optimized values of the
design parameters obtained in the previous chapter have been used. A comparison
of the dynamics responses for the initial and optimized case have been realized. Re-
sults for the engine speed of 900 RPM are plotted from Figure 4.5 to 4.7. For the
engine speed of 1500 and 2000 RPM, the reader may refer to Appendix F.
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Figure 4.4 – Torque produce by a 6-cylinder engine.

First of all, we can see that the shape of the curves is very similar to the shape of the
curves obtained in the previous chapter at subsection 3.6.1. Same conclusions can be
deduced from these figure. Actually, the optimization reduces all the fluctuations:

• from the deflection angle (and its time derivative) between the flywheels
• from the deflection angle (and its time derivative) between the secondary fly-

wheel and the gearbox side
• from the gearbox input torque

The average of the deflection angle between the flywheels for the optimization case
is different from the one of the initial case. We also observe this difference for the
deflection angle between the secondary flywheel and the gearbox side. There is still
a phase shift between the initial and optimized case.
For this first scenario we can thus observe that a more accurate expression of the
engine torque does not add much information in our model. In fact, even if the
engine torque is not exactly a sine function the output response looks like a simple
sine function.
However, the shape of the curve of the time history of the time derivative deflection
angle between the secondary flywheel and the gearbox side for the second and third
scenario looks different.
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Figure 4.5 – Time history of the deflection angle and its time derivative between
the flywheels.
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Figure 4.6 – Time history of the deflection angle and its time derivative between
the primary flywheel and the gearbox.
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Figure 4.8 – DFT diagram comparing the engine and the gearbox input torque.

To assure that we have a similarity between the engine torque and the gearbox input
torque a representation of vibration has been done with the help of DFT.
The use of the power spectrum (PS) is chosen given that a periodic signal is used.
The power spectrum corresponds to twice the squared magnitude of the Fourier se-
ries coefficients versus frequencies. In fact, the most suitable spectral representation
for periodic signals in terms of signal power is the power spectrum. The interested
reader can find more details on this reference [20]. The DFT diagram in Figure 4.8
compares the engine torque and gearbox input torque for the 1500 RPM scenario.
Figure 4.8 shows the link between the engine torque and gearbox input torque. In
fact each peak of the gearbox input torque corresponds to a peak of the engine
torque. Note that, a new peak for the gearbox input torque appears at very low
frequencies which probably due to the fact that the steady state was not totally
reached. To avoid this effect a longer simulation time should be used but this time
could be very long which causes a longer calculation time. Regarding Figure 4.8, the
magnitude of the other peaks are reduced significantly. This DFT analysis allows
to assure the similarity of between the engine and gearbox input torque.
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Conclusion and Future Work

One solution to reduce torsional vibration is the Dual Mass flywheel.
A simplified model of a Dual Mass flywheel has been developed inMatlab and

in the open-source software EasyDyn. Both models give similar results. Three dif-
ferent engine scenarios (900, 1500 and 2000 RPM) have been chosen for the analysis.

A distinction between the frequency and temporal domains has also been done:
• Time domain:

Two objective functions (OFs) have been defined with the aim of having better
damping properties at the crankshaft output. In fact, in the best case, the
vibration induced by the engine should be cancelled at the output of the DMF.
The first OF is OF1 which estimates the gearbox input torque fluctuations.
With the first objective function optimization, good results can be obtained:
the torque fluctuation is reduced to 5% of the initial case.
The secondary OF is OF2 and estimates the power losses.

• Frequency domain:
Two objective functions have been proposed in order to estimate the peak am-
plitude of the secondary flywheel response .
OF3, the third OF of our study, will calculate the maximum of the peaks.
A fourth OF, OF4 will calculate the area under the curve of the amplitude
response of the secondary flywheel.

The optimization for the different OFs return the same results. Decreasing stiffness
and increasing the moment of inertia improve the output response. Finally we can
also conclude that increasing the damping reduce the peaks of the eigenfrequencies
which benefits the output behaviour.

The use of a simplified input torque (sinusoidal) is enough to understand the dynamic
output response. Nevertheless the differences observed at higher speed (1500 and
2000 RPM), highlight the importance of including more realistic input torque
expression.

Some suggestions for future work:
• Extend this model to a full powertrain model
• Validation of the model by comparison of measured data
• Study the fatigue life of the components
• Take into consideration the non-linearity effects
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A
Dimensional analysis Φ1 case

The same procedure is applied to Φ1

Φ11

Me

k2

= (−J2ω
2 + jωc1 + k1 + jωc2 + k2)

(−J1ω2 + c1jω + k1)(−J2

k2
ω2 + jω

c1

k2
+ k1

k2
+ jω

c2

k2
+ k2

k2
)− (k1 + jωc1)2

k2
(A.1)

Equation A.1 has the same denominator as Equation 3.37. The flowing equations
will focus on the numerator (N) of Equation A.1, if the numerator and denominator
are divided by J1, the numerator can be written as:

N = −J2ω

J1
+ k2

J1
+c2jω

J1
+k1

J1
+jωc1

J1
= −ω

2

µ
+ω

2
2J2ξ12ω1

c1
+J2ξ22ω2jω

J1
+ω2

1+jωc12ω1

J12ω1

= −ω
2

µ
+ ω2

2ξ
2
1

µ
+ ξ22ω2jω

µ
+ ω2

1 + jωξ12ω1 (A.2)

As done for Φ2, the expression will be divided by ω2
2. In this case, the previous

equation becomes:

N = −Ω2

µ
+ ξ2

1
µ

+ +2ξ2Ω
µ

+ ψ2 + 2jΩξ1ψ (A.3)

Equation A.1 can thus be reduced as:

Φ11

Me

k2

=

Ω2

µ
+ ξ2

1
µ

+ +2ξ2Ω
µ

+ ψ2 + 2jΩξ1ψ

(−Ω2 + jΩξ1 + ξ2)(−Ω2 + 2jΩµξ1 + ψ2µ+ 2jΩξ2 + 1)− ψ4µ− 4ψ2µjΩξ1 + 4ξ2
1Ω2µ

(A.4)
Φ12 can be found by identification to Equation 3.32:

Φ12

Moutput1

k2

= 2jξ1Ωψ + ψ2

(−Ω2 + jΩξ1 + ξ2)(−Ω2 + 2jΩµξ1 + ψ2µ+ 2jΩξ2 + 1)− ψ4µ− 4ψ2µjΩξ1 + 4ξ2
1Ω2µ

(A.5)
Finally, the dimensionless equation of Φ1 can be obtained:

Φ1[ ] = Φ11 [ ] + Φ12 [ ]

=

Ω2

µ
+ ξ2

1
µ

+ 2ξ2Ω
µ

+ 2ψ2 + 4jΩξ1ψ

(−Ω2 + jΩξ1 + ξ2)(−Ω2 + 2jΩµξ1 + ψ2µ+ 2jΩξ2 + 1)− ψ4µ− 4ψ2µjΩξ1 + 4ξ2
1Ω2µ

(A.6)
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B
Design parameters in
dimensionless space

J1, J2, k1, k2, c1, c1 are called design parameters. As these parameters are dimen-
sional, that requires to decide the magnitude of the different element of the system.
It is interesting to have a mathematical model in dimensionless form in order to
have a more general model.
The chosen dimensionless parameters are ξ1, ξ1, µ :

ω1 =
√
k1

J1
and ω2 =

√
k2

J2
(B.1)

ξ1 = c1

2J1ω1
and ξ2 = c2

2J2ω2
(B.2)

µ = J1

J2
(B.3)

Equation 3.1 can be written as:

ϕ̈1 + 2ξ1ω1(ϕ̇1 − ϕ̇2) + ω2
1(ϕ1 − ϕ2) = Me(t)

J1
(B.4)

In the same way Equation 3.2 can be written as:

ϕ̈2 + µ2ξ1ω1(ϕ̇2 − ϕ̇1) + µω2
1(ϕ2 − ϕ1) + 2ξ2ω2(ϕ̇2 − ϕ̇v) + ω2

2(ϕ2 − ϕv) = 0 (B.5)

A matrix form can again be obtained:

[
1 0
0 1

](
φ̈1
φ̈2

)
+
[

2ξ1ω1 −2ξ1ω1
−2ξ1ω1µ 2ξ1ω1µ+ 2ξ2ω2

](
φ̇1
φ̇2

)
+
[
ω2

1 −ω2
1

−ω2
1µ ω2

1µ+ ω2
2

](
φ1
φ2

)
=

 Me(t)
J1

ω2
2ϕv + 2ξ2ω2ϕ̇v


(B.6)[

M
] (φ̈1
φ̈2

)
+
[
C
] (φ̇1
φ̇2

)
+
[
K
] (φ1
φ2

)
=

 Me(t)
J1

ω2
2ϕv + 2ξ2ω2ϕ̇v

 (B.7)

with :
M , the inertia matrix;
C , the damping matrix;
K , the stiffness matrix.
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C
Matlab code

C.1 Integration file

C.1.1 Main

clear all
close all
clc
%%%%%%%%%%%%%%%%%%%%%%%%
%%% Global Values %%%
%%%%%%%%%%%%%%%%%%%%%%%%
global A
global C
global K
global B
global M
global xi_2
global omega_2
global J1
global c2
global k2

%%%%%%%%%%%%%%%%%%%%%%%%
%%% Time parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%
t_end=150;
space=1000001;
t=linspace(0,t_end,space);
%%%%%%%%%%%%%%%%%%%%%%%%%
OF_index=round(0.5*space):space; % specify the beginning of the

measurement of the Objectives functions

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Engine parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

M_0=300;
M_1=500;
w_1=100*2*pi;
phi_1=0;
M_e=@(t) (M_0+M_1*sin(w_1*t+phi_1));

V



C. Matlab code

%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Load parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%%

w_2=w_1/3;
phiV=@(t) w_2*t;
d_phiV= w_2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Choice of the study %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

choice=1; % 1 = Dimension Space 2 = Dimension less Space

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if choice==1
%Dimension space

%Parameters
k1=2e4;% N.m/rad
J1=1.8;%Kg.m^2
k2=1.1e4;% N.m/rad
J2=0.6;%Kg.m^2
c1=30;%N.m/(rad/s)
c2=20;%N.m/(rad/s)
% To enter en vector :
% x=[2.69999999998828 0.899999999994571 10000.0000002360

5500.00000001733 15.0000000005116 0.885053281818175]
% J1=x(1);
% J2=x(2);
% k1=x(3);
% k2=x(4);
% c1=x(5);
% c2=x(6);
% Definition of the intertia, damping and stiffness matrix
M=[J1 0;

0 J2];
C=[c1 -c1;

-c1 c1+c2];
K=[k1 -k1;

-k1 k1+k2];
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if choice==2
% Dimension less space

%Parameters
xi_1=0.079057;%c1/(2*J1*omega_1);%0.2 ; %c1/(2*J1*omega_1);%
xi_2=0.006155;%c2/(2*J2*omega_2);%;%0.3;%c2/(2*J2*omega_2);%
omega_1=105.4093;%sqrt(k1/J1);%0.0137;%sqrt(k1/J1);%0.5; %sqrt(k1/J1);%
omega_2=135.40;%sqrt(k2/J2);%0.0484;%sqrt(k2/J2);%0.3; %sqrt(k2/J2);%
mu=3;%5.3598;%0.0102;%J1/J2;%0.05;%J1/J2;%

VI



C. Matlab code

J1=1.8;

% Definition of the intertia, damping and Stiffness matrix
M=[1 0;

0 1];
C=[2*xi_1*omega_1 -2*xi_1*omega_1;

-2*xi_1*omega_1*mu 2*xi_1*omega_1*mu+2*xi_2*omega_2];
K=[omega_1^2 -omega_1^2;

-omega_1^2*mu omega_1^2*mu+omega_2^2];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Rewrite the second order differential equations %%
%%%% into a first order differential equations %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A= [zeros(2) eye(2);

-M\K -M\C];
B= [zeros(2); M^(-1)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Integration with ODE45 %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Specify tolerance
options = odeset ( 'Abstol ' ,1e-6, 'Reltol ' ,1e-6) ;
% Start of integration with ODE45
[t,X] = ode45(@(t,y) funoptim(t,y,choice,M_e,phiV,d_phiV),t,[0;0;d_phiV

;d_phiV],options);

% With X :
% X(:,1) = phi1
% X(:,2) = phi2
% X(:,3) = dphi1
% X(:,4) = dphi2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% To have the acceleration values %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i = 1:length(t)
tmp = fun(t(i),X(i,:)',choice,M_e,phiV,d_phiV);
acc(i,:) = tmp(3:4);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Calculation of the vehicle torque %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:length(t)
if choice==1
Mv1(i)=c2*(X(i,4)-d_phiV);
Mv2(i)=k2*(X(i,2)-phiV(t(i)));
end
if choice==2
Mv1(i)=2*xi_2*omega_2*J1/mu*(X(i,4)-d_phiV);
Mv2(i)=omega_2^2*J1/mu*(X(i,2)-phiV(t(i)));
end
Mv(i)=Mv1(i)+Mv2(i);
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C. Matlab code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Calculation of power %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
power_a(i)=(M_e(t(i))*X(i,3));
power_b(i)=(Mv(i)*d_phiV);
vec_Me(i)=M_e(t(i));
vec_phiV(i)=phiV(t(i));
dphiV(i)=w_2;
relativepower_a(i)=M_e(t(i))*(X(i,4)-X(i,3));
relativepower_b(i)=Mv(i)*(dphiV(i)-X(i,4));
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Objective Function 1 Torque variation %%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Old function
% Mv_average=mean(Mv);
% for i=1:length(t)
% Mv_temp(i)=Mv(i)-Mv_average;
% end
% Mv_squared= Mv_temp.*Mv_temp;
% OF1= sqrt(1/t_end*(trapz(Mv_squared)));
% OF1 ( Standard deviation )
OF1=std(Mv(OF_index));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Objective Function 2 Losses %%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Calculation of the dissipations due to the damping
if choice==1
OF2=mean(1/2*c1*(X(OF_index,4)-X(OF_index,3)).^2+1/2*c2*(X(OF_index,4)-

d_phiV).^2);
end
if choice==2
OF2= mean(J1/mu*mu*xi_1*omega_1*(X(OF_index,4)-X(OF_index,3)).^2+J1/mu*

xi_2*omega_2*(X(OF_index,4)-dphiV').^2);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Objective Function: Losses + torque Fluctuations %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Choice of a coefficient alpha
alpha=0.5;
OF=alpha*OF1+(1-alpha)*OF2;

C.1.2 Function used

function dy = funoptim(t,y,choice,M_e,phiV,d_phiV)
%syms omega_1 omega_2 xi_1 xi_2 mu
global A;
global B;
global xi_2;
global omega_2;
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C. Matlab code

global J1;
global c2
global k2

% Definition of the force vector
if choice==1
F=[M_e(t); c2*d_phiV+k2*phiV(t)];
end
if choice==2
F=[M_e(t)/J1; 2*xi_2*omega_2*d_phiV+omega_2^2*phiV(t)];
end

%%% First order differential equations system
dy=A*y+B*F;

C.2 Optimization file

C.2.1 Main file

clear all
close all
clc %clear out old variables

OFchoice=2;%1 = OF1 %2 = OF2
iteration=0;
tic
for frequency= 0:1:100

iteration= iteration+1;
xopt1(iteration,:)=fminsearchbnd(@(x) OFdimension(x,OFchoice,frequency)

,[1.8,0.6,2e4,1.1e4,30,1],[0.9,0.3,1e4,5500,15,0.5],[2.7,0.9,3e4
,16500,45,1.5]);

end
toc

C.2.2 Function used

function optimization= OFdimension(x,Optimization_choice,frequency)

%%%%%%%%%%%%%%%%%%%%%%%%
global A
global B

J1=x(1);
J2=x(2);
k1=x(3);
k2=x(4);
c1=x(5);
c2=x(6);

%%%%%%%%%%%%%%%%%%%%%%%%
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%%% Time parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%
t_end=30;
space=30001;
t=linspace(0,t_end,space);
%%%%%%%%%%%%%%%%%%%%%%%%%
OF_index=round(0.9*space):space;

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Engine parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

M_0=300;
M_1=500;
w_1=frequency*2*pi;

phi_1=0;
M_e=@(t) (M_0+M_1*sin(w_1*t+phi_1));
%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Load parameters %%%
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Variation of the load

w_2=w_1/3;
phiV=@(t) w_2*t;
d_phiV= w_2;

%%%%%%%%%%%%%%%%%%%%
% Definition of the intertia, damping and Stiffness matrix
M=[J1 0;

0 J2];
C=[c1 -c1;

-c1 c1+c2];
K=[k1 -k1;

-k1 k1+k2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Rewrite the second order differential equations %%
%%%% into a first order differential equations %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A= [zeros(2) eye(2);

-M\K -M\C];
B= [zeros(2); M^(-1)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Integration with ODE45 %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
options = odeset ( 'Abstol ' ,1e-6, 'Reltol ' ,1e-6) ;
[t,X] = ode45(@(t,y) funOFdimension(t,y,M_e,phiV,d_phiV,c2,k2),t,[0;0;

d_phiV;d_phiV],options);

% With X :
% X(:,1) = phi1
% X(:,2) = phi2

X
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% X(:,3) = dphi1
% X(:,4) = dphi2

% %%%%%%%%%% Vehicle torque + Losses calculation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Calculation of the vehicle torque %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:length(t)
Mv1(i)=c2*(X(i,4)-d_phiV);
Mv2(i)=k2*(X(i,2)-phiV(t(i)));
Mv(i)=Mv1(i)+Mv2(i);
vec_Me(i)=M_e(t(i));
vec_phiV(i)=phiV(t(i));
dphiV(i)=w_2;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Objective Function 1 Torque variation %%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculation of OF1 for each value of the parameter

if Optimization_choice==1
optimization=std(Mv(OF_index))
end
Optimization_choice=2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Objective Function 2 Losses %%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculation of OF2 for each value of the parameter
if Optimization_choice==2
optimization=mean(1/2*c1*(X(OF_index,4)-X(OF_index,3)).^2+1/2*c2*(X(

OF_index,4)-d_phiV).^2)
end

C.3 Real Torque expression

clear all
close all
clc

%pressure
crankangledegree=load('crankangle.mat');
pressurebar=load('pressure.mat');

PressureCrankangle(:,1)=pressurebar.pressure;
PressureCrankangle(:,2)=crankangledegree.crankangle;

Pressurecrankangle2(:,1)=pressurebar.pressure(1:end-1);
Pressurecrankangle2(:,2)=crankangledegree.crankangle(1:end-1);
Longpressurecrankangle = repmat(Pressurecrankangle2,2,1);
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%Bore
Bore=130*10^-3;%82*10^-3;%130*10^-3;%m
%Weight of piston assembly
m=5;%0.75;%5;%kg
%Crank
a=80*10^-3;%46.6*10^-3; %80*10^-3;%m
%Conrod
l=270*10^-3;%m
%Rod ratio
R=l/a;%3.15;%l/a;%
%l=a*R;
RPM=1500;
f=RPM/60;
omega=f*2*pi;

friction=0;
z=0;
phi=[0 120 240 360 480 600];
for theta=0:1:720
z=z+1;
vec(z)=theta;
Torque6cylinder=0;
for i=1:6
beta=asin(a/l*sin(degtorad(theta+phi(i))));
delta=degtorad(90-(theta+phi(i))-radtodeg(beta));
acceleration=a*omega^2*(cos(degtorad(theta+phi(i)))+a/l*cos(2*degtorad(

theta+phi(i)))-(a/l)^3*cos(4*degtorad(theta+phi(i))));
pressure=Longpressurecrankangle(1+theta+phi(i),1)*10^5;
part1=1/4*pi*Bore^2*pressure;
part2=-m*acceleration;
part3=-friction;
Frod=1/cos(beta)*(part1+part2+part3);
F=cos(delta)*Frod;
Torque=a*F;

Torque6cylinder = Torque6cylinder + Torque;

end
Torquereal(z)=Torque6cylinder;
end

repeat=1000;
Torquelongtime = repmat(Torquereal,1,repeat);
Thetalong=0:length(Torquelongtime)-1;
plot(Thetalong,Torquelongtime,'LineWidth',2)
xlabel('Crank angle [degree]')

ylabel('Torque [Nm]')
grid on

mean(Torquelongtime)

vectortime=Thetalong*60/(RPM*360);
for i=1:length(vectortime)-1
dt(i)= vectortime(i+1)-vectortime(i);
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end
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D
EasyDyn model

D.1 General data of the studied mechanism

The system comprises 2 bodies (defined by the global variable nbrbody). Each body
is called Sj (j from 0 to 1). The number of degrees of freedom of the system is 2
(nbrdof). The configuration parameters are denoted by qi (i from 0 to 1).

The inertial data, given by the user, consist of the inertia tensor ΦG,Si of each body
i expressed with respect to the center of gravity.

ΦG,S0 =

 1.79985 0 0
0 0.899925 0
0 0 0.899925

 , in kg.m2

ΦG,S1 =

 0.59995 0 0
0 0.299975 0
0 0 0.299975

 , in kg.m2

D.2 Complete kinematics calculed by CAGeM

The following parameters have been calculated from the user’s file DMF.mu and with
a CPU time of 0 second.

Homogeneous transformation matrix of each body

T0G,S0 =


1 0 0 0
0 cos (q0) − sin (q0) 0
0 sin (q0) cos (q0) 0
0 0 0 1


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T0G,S1 =


1 0 0 0.05
0 cos (q1) − sin (q1) 0
0 sin (q1) cos (q1) 0
0 0 0 1



The time derivative of these matrices

Ṫ0G,S0 =


0 0 0 0
0 −q̇0 sin (q0) −q̇0 cos (q0) 0
0 q̇0 cos (q0) −q̇0 sin (q0) 0
0 0 0 0



Ṫ0G,S1 =


0 0 0 0
0 −q̇1 sin (q1) −q̇1 cos (q1) 0
0 q̇1 cos (q1) −q̇1 sin (q1) 0
0 0 0 0



The velocity of the center of gravity of each body

~vG,S0 =

 0
0
0



~vG,S1 =

 0
0
0



The acceleration of the center of gravity of each body

~aG,S0 =

 0
0
0



~aG,S1 =

 0
0
0


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The rotation velocity of each body

~ωS0 =

 q̇0
0
0



~ωS1 =

 q̇1
0
0



The rotation acceleration of each body

~̇ωS0 =

 q̈0
0
0



~̇ωS1 =

 q̈1
0
0



D.3 Definition of external efforts
External efforts different from gravity have been defined in the file DMF.AppEff.cpp,
automatically included in DMF.cpp (procedure AddAppliedEfforts()), and listed
below

//constants
double k1=2e4, c1=30, k2=1.1e4, c2=1, ve=2*3.141592653589793*100, vv=ve/3 ;

//Torque
body[0].MG+=body[0].T0G.R.ux()*(300+500*sin(ve*t));
body[1].MG-=body[1].T0G.R.ux()*(c2*(qd[1]-vv)+k2*(q[1]-vv*t));

// Torsional spring
body[0].MG+=body[0].T0G.R.ux()*(-k1*(q[0]-q[1]));
body[1].MG-=body[1].T0G.R.ux()*(-k1*(q[0]-q[1]));

// Torsional damping
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body[0].MG+=body[0].T0G.R.ux()*(-c1*(qd[0]-qd[1]));
body[1].MG-=body[1].T0G.R.ux()*(-c1*(qd[0]-qd[1]));

D.4 Simulation
The routine NewmarkIntegration performs the integration of the equations of mo-
tion up to time FinalTime by regular time intervals equal to StepSave and with the
maximum allowed time step StepMax defined in the file dp3.cpp. The following
values are used:

• FinalTime equal to 30 s,
• StepSave to 0.0001 s,
• StepMax to 0.0001 s.,

The initial conditions are qd0 = we
3 , qd1 = we

3 , the others being equal to zero.
Where we = 2π×frequency, frequency= 45,75 or 100 Hz depending of the scenario
of study.

D.5 Visualization
An animation is available via EasyAnim. Figure D.1 represent a print screen of the
visualization.

Figure D.1 – Visualization via EasyAnim

D.6 User’s MuPAD code
//

// Copyright (C) 2003 Olivier VERLINDEN
// Service de Mecanique rationnelle, Dynamique et Vibrations
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// Faculte Polytechnique de Mons
// 31, Bd Dolez, 7000 MONS (Belgium)
// Olivier.Verlinden@fpms.ac.be

// This file is part of EasyDyn

// EasyDyn is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option) any
// later version.

// EasyDyn is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.

// You should have received a copy of the GNU General Public License
// along with EasyDyn; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// FACULTE POLYTECHNIQUE DE MONS
//
// service de Mecanique Rationnelle, Dynamique et Vibrations
//
//
// -----------------------------------------------
// fichier utilisateur
// (ecrit en language MuPAD)
//
//
// Ir. Georges KOUROUSSIS - mars 2003
// Modification : Bourgois Geremy Juin 2016
//
//

// Title of the application
title:="Simulation of a Dual Mass Flywheel":

// Definition of nbrdof : Number of degrees of freedom
// nbrbody : Number of bodies
// nbrcont : Number of constraints (unused in this version).
nbrdof:= 2:
nbrbody:= 2:

// Gravity vector
gravity[1]:=0:
gravity[2]:=0:
gravity[3]:=0:

// Eventual constants
r:=0.13:
l:=0.05:

// Inertia characteristics

mass[0]:=213:
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mass[1]:=71:

Ixx[0]:=1/2*mass[0]*r^2:
Ixx[1]:=1/2*mass[1]*r^2:

Iyy[0]:=1/4*mass[0]*r^2:
Iyy[1]:=1/4*mass[1]*r^2:
Izz[0]:=1/4*mass[0]*r^2:
Izz[1]:=1/4*mass[1]*r^2:

// Definition of the position matrices

T0G[0]:=Trotx(q[0]):
T0G[1] := Trotx(q[1])*Tdisp(l,0,0):
// Initial conditions
qi[0]:=0:
qi[1]:=0:
qdi[0]:= vv:
qdi[1]:= vv:
// Simulation parameters
FinalTime:=10:
StepSave:=0.0001:
StepMax:=0.0001:

SIMPLIFY:=1:
// Set FORCES to 1 in case you want to include *.AppEff.cpp into procedure
// AddAppliedEfforts() to define forces other than gravity
FORCES:=1:
// Set ANIM to 1 in case you want CaGEM to generate the skeleton code
// for visualization and animation of the system
ANIM:=1:
// Set STATIC to 1 in case you want CaGEM to generate the code
// to search for static equilibrium before integration
STATIC:=0:
// Set PLOT to 1 in case you want CaGEM to generate the GNUPLOT code
// to plot the evolution of position, velocity and acceeration
PLOT:=1:
// SET LATEX_FR to 1 if you want the LaTeX report in French
LATEX_FR:=1:
// SET LATEX_EN to 1 if you want the LaTeX report in English
LATEX_EN:=1:
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Optimization results

E.1 1500 RPM scenario

29.9 29.91 29.92 29.93 29.94 29.95 29.96 29.97 29.98 29.99 30
Times [s]

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032
Initial Case
Optimization

(
1-

2
) 

[ra
d]

ᵠ
ᵠ

(a) ϕ1 − ϕ2

29.9 29.91 29.92 29.93 29.94 29.95 29.96 29.97 29.98 29.99 30
Times [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Initial Case
Optimization

(d
1-

d
2)

 [r
ad

/s
]

ᵠ
ᵠ

(b) ϕ̇1 − ϕ̇2

29.9 29.91 29.92 29.93 29.94 29.95 29.96 29.97 29.98 29.99 30
Times [s]

0.025

0.03

0.035

0.04

0.045

0.05

0.055
Initial Case
Optimization

(
2-

v
) 

[ra
d]

ᵠ
ᵠ

(c) ϕ2 − ϕv

29.9 29.91 29.92 29.93 29.94 29.95 29.96 29.97 29.98 29.99 30
Times [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Initial Case
Optimization

(d
2-

d
v)

 [r
ad

/s
]

ᵠ
ᵠ

(d) ϕ̇2 − ϕ̇v

Figure E.1 – Benefits of the optimization on the different deflection angles and
their time derivatives. (1500 RPM scenario)
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Figure E.2 – Benefits of the optimization of the output torque (1500 RPM
scenario).
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Figure E.3 – Benefits of the optimization on the different deflection angles and
their time derivatives.(2000 RPM scenario)

XXII



E. Optimization results

149.9 149.91 149.92 149.93 149.94 149.95 149.96 149.97 149.98 149.99 150
Times [s]

298.5

299

299.5

300

300.5

301

301.5

To
rq

ue
[N

m
]

Initial Case
Optimization

Figure E.4 – Benefits of the optimization of the output torque. (2000 RPM
scenario)
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Optimization results with a real

expression of the Torque

F.1 1500 RPM scenario
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Figure F.1 – Benefits of the optimization on the different deflection angles and
their time derivatives. (1500 RPM scenario)
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Figure F.2 – Benefits of the optimization of the output torque (1500 RPM
scenario).

F.2 2000 RPM scenario
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Figure F.3 – Benefits of the optimization on the different deflection angles and
their time derivatives. (1500 RPM scenario)
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Figure F.4 – Benefits of the optimization of the output torque (20000 RPM
scenario).
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