

Department of Computer Science and Engineering

Chalmers University of Technology | University of Gothenburg

Gothenburg, Sweden June 2016

Analysing the Evolution of System

Requirements
A case study of AUTOSAR at Volvo Car Group

Master of Science thesis in Software Engineering and technology

CORRADO MOTTA

The Authors grants to Chalmers University of Technology the non-exclusive right to

publish the Work electronically and in a non-commercial purpose make it accessible

on the Internet. The Authors warrants that he/she is the author to the Work, and war-

rants that the Work does not contain text, pictures or other material that violates copy-

right law.

The Author shall, when transferring the rights of the Work to a third party (for exam-

ple a publisher or a company), acknowledge the third party about this agreement. If

the Authors has signed a copyright agreement with a third party regarding the Work,

the Authors warrants hereby that he/she has obtained any necessary permission from

this third party to let Chalmers University of Technology store the Work electroni-

cally and make it accessible on the Internet.

Analysing the evolution of system requirements – A Case Study of AUTOSAR at

Volvo Car Group

CORRADO MOTTA

© CORRADO MOTTA, June 2016.

Examiner: AGNETA NILSSON

Supervisor: MIROSLAW STARON

Industrial Supervisor: DARKO DURISIC

Chalmers University of Technology | University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Gothenburg, Sweden June 2016

Analysing the Evolution of System Requirements

Master thesis at Volvo Car Group

Corrado Motta

Department of Computer Science and Engineering

Chalmers University of technology | University of Gothenburg

Abstract

BACKGROUND: The evolution of system requirements is an important and inevitable

aspect of software development and maintenance. Being aware of the amount of

changes as well as understanding how to measure them is advantageous not only for

software engineering purposes but also in industrial contexts.

OBJECTIVES: This thesis aims to efficiently analyse the evolution of system require-

ments, by means of quantitative analysis based on a number of software metrics. Our

goal is to facilitate the updates of large software systems with new features.

METHOD: In this paper we perform quantitative analysis of the evolution of system

requirements across multiple versions of large software systems. We rely on the design

research methodology and we evaluate the results of our study in a case study con-

ducted in collaboration with Volvo Car Group.

RESULTS: We defined a set of metrics based on the existing studies, such as the Re-

quirement maturity index, and we refined their input data by building the taxonomy of

changes. Furthermore, we designed a metric, named Accuracy, for testing the reliabil-

ity of the requirements. The empirical results assess the quality of the metrics and offer

a way to monitor the requirements evolution considering the history of changes.

CONCLUSION: We concluded that quantitative analysis of requirements evolution

using the proposed metrics can help different industrial organisations in managing

software evolution by facilitating the adoption of new features in large software systems.

This is achieved by visualizing the extent of the requirements evolution and indicating

which requirements are mostly unstable.

Acknowledgments

First, I would like to thank Dr. Miroslaw Staron for the support and the precious advises

he provided throughout the thesis.

Second, I am deeply grateful to my industrial supervisor, Darko Durisic, who was al-

ways available to finely discuss my findings and to patiently teach me so many things.

The acknowledgments are extended to all the persons who have contributed to this the-

sis, directly and indirectly, and to Volvo Car Group for the great opportunity.

Finally, I would like to express my deepest gratitude to my family. Without them, none

of this would have been possible.

Corrado Motta, June 2016

Contents

1. Introduction .. 1

2. Background .. 2

2.1. Requirements engineering ... 3

2.2. Software requirements specification ... 4

2.3. Requirements hierarchy and traceability ... 5

2.4. Requirements evolution management ... 5

3. Related work... 6

4. Research methodology ... 7

4.1. Research questions .. 7

4.2. Research Method ... 9

4.3. Literature review ... 9

4.4. AUTOSAR analysis .. 10

4.5. Definition of the metrics ... 11

4.6. Evaluation of the metrics on AUTOSAR .. 11

4.6.1. Application of the metrics .. 12

4.6.2. Validation of the results ... 13

5. Metrics definition ... 14

5.1. Taxonomy of changes ... 14

5.2. Metrics ... 15

6. Application of the metrics ... 17

6.1. Case study context ... 17

6.1.1. Automotive system development process and the role of AUTOSAR 17

6.1.2. AUTOSAR requirement structure and conventions 21

6.2. Results ... 22

6.2.1. Micro and macro analysis ... 22

6.2.2. General Results (SQ1, SQ2, SQ3).. 22

6.2.3. Template and Basic Software Requirements results (SQ4, SQ5) 27

6.3. Validation .. 30

7. Discussion.. 33

7.1. Issues and inconsistencies in the AUTOSAR specifications document 33

7.2. Considerations on the results... 34

7.3. Research questions .. 35

7.4. Recommendations ... 37

7.5. Threats to validity.. 37

8. Conclusion .. 38

References ... 40

Introduction

1

1. Introduction

The impact of requirements evolution on large software systems is one of the major

problems which nowadays affects software engineering processes and products [1]. It

can affect projects in multiple aspects, such as cost, effort, time, and its final quality

and reliability. This makes the competition in the global market more arduous, espe-

cially for large companies. Therefore, dealing with the requirements evolution is one of

the primary objectives of large companies in order to be able to update their systems

faster with less cost. Although several solutions have been provided in the last two

decades mostly originating from the academia, requirements evolution is still consid-

ered one of the most challenging problems in the development of large software sys-

tems [2]. Researchers and engineers are induced to focus more on the specific context

by studying the evolution of a single software product and considering it as an issue to

be solved thereby losing the general nature and behaviour of the entire system.

If we look at a real industrial domain such as automotive, we can see that many auto-

motive companies today base the development of their systems on AUTOSAR (Auto-

motive Open System Architecture), a worldwide standard which specifies the general

architecture for the system and its development methodology using a number of differ-

ent types of requirements [3]. The aim of AUTOSAR is to standardize the communica-

tion between OEMs (Original Equipment Manufacturer), who are usually responsible

for designing automotive software systems, and suppliers, who develop embedded soft-

ware deployed to a number of ECUs (Electronic Control Unit). In order to reduce the

effort of updating the automotive systems in terms of time and costs, AUTOSAR pro-

vides a set of requirements that describe the ECU middleware layer (referred to as the

“basic software”) and ECU application software layer. Basic software layer does not

have any functional task itself and it just specifies a number of services necessary to

run the application layer. On the other hand, the application layer consists of a number

of software components that are responsible for executing different vehicle functions

such as automated cruise control. These software components are designed by OEMs

who specific their behaviour by a number of OEM specific system requirements.

The main advantage of using standards, such as AUTOSAR, is to make use of a number

of reliable requirements for the parts of the systems that do not create competitive ad-

vantage, e.g., requirements for the development of middleware that are not OEM spe-

cific (AUTOSAR counts more than 21.000 basic software requirements). On the other

hand, adopting a standard brings new challenges such as dealing with requirements not

owned by OEMs that are constantly evolving requiring updates in the entire system,

according to new versions of the standard. For example, AUTOSAR counts more than

150 partners, including both OEMs and suppliers, and the amount of software in a car

is continuously increasing due to a major complexity of the electronic components [9].

Hence, it becomes necessary to also have a clear knowledge about how AUTOSAR

evolves and how to adopt new AUTOSAR features based on their requirements from

the new releases in a faster way. These features are needed for updating the automotive

software systems with new functionalities such as autonomous drive or car-to-car com-

munication that are heavily discussed today among car OEMs.

Generally speaking, there are at least two types of requirements evolution: Require-

ments evolution through different phases of a software development project and re-

quirements evolution through different releases of a software system. The objective of

this work is to define a set of suitable metrics for quantitative analyses of impact of the

Background

2

requirements evolution on new releases of large software systems. Hence, we define

our main research question as follows:

How can the evolution of system requirements be efficiently measured in order to facil-

itate the adoption of new features during updates of large software systems?

In order to provide the answer to this research question, we first conducted a literature

review on the existing metrics for analysing the evolution of requirements. We were

interested in quantitative approach because it gives us the possibility to automatize the

analysis and thereby provide an early help to the organizations who manage software

evolution. We adopted the RMI (Requirements Maturity Index) metric defined by the

IEEE Standard [4], a refinement of RMI, which considers the total amount of changes,

defined by Anderson and Felici [5], and a series of metrics defined by Shi L. et al. [6]

based on the studies of the requirements history. Additionally, we relied on a set of

change metrics for the system requirements. As the number of changes is not always

presented in the same way, we had to define the taxonomy of changes which specifies

the types of changes that are considered in our research. Finally, we complemented

these metrics by designing another metric, named Accuracy, for measuring the reliabil-

ity of requirements and their disposition to change.

In order to define and evaluate the metrics, this paper provides an investigation in the

automotive domain in a case study at Volvo Cars Group using AUTOSAR standard and

its requirements as unit of analysis. Because of the amount of AUTOSAR specifications

that contain requirements, the analysis of the AUTOSAR requirements evolution was

executed by developing and using a software tool. Furthermore, the tool represents a

mean for the engineers at Volvo Cars Groups to analyse the changes between different

requirements in more details, i.e., the tool provides reports and measures about changes

in different releases for different specifications. By its usage, the engineers can have

practical information about the amount of changes, the content of the requirements

changed, the values or statements modified for each requirement, etc. Furthermore, they

can avoid reading hundreds of pages of specifications and learn what is changed in a

faster way.

The results obtained in our study point out the quality of the proposed approach and

increase our knowledge and awareness of the requirements evolution. Furthermore,

they validate the metrics used, including the accuracy. We showed that using quantita-

tive and automated analysis we can support engineers in assessing the impact of

changes and thereby making the process of adopting new versions faster.

The next sections are organised as follows: Section 2 talks about the theoretical concept

as the basis of this research; Section 3 provides a summary of the related work; Section

4 shows the research methodology we used during this project; Section 5 provides de-

scriptions of the proposed metrics; Section 6 presents the application and validation of

the metrics on the case study; Section 7 provides the discussion of the results; finally,

Section 8 concludes our work and describes our plans for future work.

2. Background

In this section we describe the general terms and concepts used in this paper, namely

the definitions, behaviour, and importance of requirements in software engineering.

Background

3

2.1. Requirements engineering

In this thesis we analysing software requirements. The term is known in software engi-

neering from the beginning. For this reason several definitions and interpretation are

used for describing it. A general but precise definition was defined by Sommerville et

al. [7]:

Requirements are a specification of what should be implemented. They are descriptions

of how the system should behave, or of a system property or attribute. They may be a

constraint on the development process of the system.

This definition highlights the importance of establishing, understanding and document-

ing the requirements during the whole software development process. These important

actions, considered together, form the process named Requirements Engineering. This

process involves a large number of participants. We can identify two macro categories:

The customers, or, in a more general view, the stakeholders (i.e., all the entities that

have an interest or a role in the system), who request features to the system, and the

requirements engineers, who communicate with the stakeholders in order to understand,

elicit and write down the requirements.

The term requirement is not always used with the same meaning. There are different

types of requirements with different levels of abstraction. The lack of separations dur-

ing the requirement elicitation leads to serious errors during the subsequent steps of the

process [8]. There are two different levels of descriptions for the same requirement:

 User requirements. High-level of abstraction. A natural and comprehensible

language is used, together with diagrams and figures in order to explain the pur-

pose of the system and its constraints. The aim of user requirements is to present

the information to the customers as clear as possible.

 System requirements. Low-level description. The system’s function and general

features are explained in detail. System requirements documents are used by all

stakeholders that need to know the system accurately (e.g., software engineers

who are designing the system). They are usually written with a natural language

notation because it does not requires any further knowledge for understanding

them. However, with a natural language, there are several ways for expressing

the same concept and it is not easy to modularise the requirements; this may

lead to misunderstandings. Furthermore, analysing and extracting data from the

document is fairly complicated. System requirements can be also written with

more specific notations, such as Design Description languages, Graphical no-

tations or Mathematical Specifications (e.g., finite state machine)[8].

Then the requirements can be grouped in two types:

 Functional Requirements. Typically they specify the behaviour or a function

that the system shall be able to perform. How the system should react to partic-

ular inputs or how the system should behave in particular situations.

 Non-Functional Requirements. They define the “qualities” or attributes of the

system. These requirements add internal restrictions on the services offered by

the system, or external constraints that the product shall meet. An example of

them is showed in Table 2.1. Non-functional requirements may be even more

critical than functional requirements. If these are not met, the system could be

useless.

Background

4

In some cases, non-functional requirements are used to specify how to design a specific

project, product, and system. For instance, in software engineering, the use of models

and meta-models, that define languages for the models, is usually recommended instead

of a direct code development because it raises the level of abstraction thereby increasing

the understanding of the system and facilitating its testing. To specify the language for

the models and to use it as an input for developing modelling tools for creating the

models and generating code from them, requirements are needed. We can grouped these

requirements in two further groups:

 Design Requirements: All the definitions and the properties that the meta-model

shall meet.

 Constraints: A constraint is a requirement that does not add any new function-

alities to the model. Instead, it inserts controls or restrictions to one or more

features that a tool-based implementation of the meta-model shall meet.

Table 2-1 Types of requirements and examples

Generally, writing requirement is not an easy task and requires experience. Any mistake

or misunderstandings during this phase can lead to errors, often difficult to detect, that

can infect the subsequent steps of the process or, in the worst case, the release of the

system. A good requirement, according to Manfred & Simmons [8], should be feasible

(its implementation shall be possible), valid (the requirement is one that the system

shall meet), unambiguous, modifiable (changes are possible and easy), consistent (not

in conflict with other requirements or external documents, etc.), complete, verifiable

and traceable (it is possible to view the life of a requirement through the whole process,

included the tests). In order to respect all these points, the requirement are written with

a structured language specifications, where the requirement’s form is standardise and

should follows some constraint and rules. It depends strictly on the context and on the

type of requirements.

2.2. Software requirements specification

Software requirements specification (SRS), sometimes called software requirements

document, is the document in which all requirements, functional and non-functional,

are reported. The main characteristic of this document should be its completeness. A

requirements specification is complete if it is understandable by all the stakeholders

who need to consult it (from the manager who required the system to the developers)

and if it includes all the requirements and the responses of the system. Furthermore, a

complete requirements document should also provide some extra contents as tables,

context diagrams, use cases, figures and all it is needed for a full understanding of the

system. For fulfilling these requests, a common structure template is used. The most

Types of requirements Examples

Functional Requirement The user shall be able to log in to the System by

providing his username and password

Non Functional Requirement If the credentials are correct, the user shall be redi-

rected in his personal page within 10 Seconds.

Design Requirement The attribute username of the class User defines the

name inserted by the user during the login.

Constraint The value of the attribute user shall be in the range

[0, 64] (bytes).

Background

5

well-known is the IEEE standard that provide a general guideline for writing a complete

requirements document. According to IEEE [9], the main sections are:

I. Introduction. Explain the purpose of the document, provide an overview of the

structure (i.e., a Table of contents), and list the references and the glossary.

II. General description. This section is more focused on the product. The function-

alities of the product explained in the document, the user features and the gen-

eral constraints.

III. Specific Requirements. List all the functional, non-functional and interface re-

quirements. This chapter is usually long and it strictly depends on the system.

For this reason IEEE does not provide any further sub-sections template in this

section.

IV. Appendices. Further information about the system. For instance, a report about

its evolution or the hardware description.

V. Index. Several indexes could be provided (e.g., index of tables, requirements,

figures, etc.).

2.3. Requirements hierarchy and traceability

During software development processes, requirements are usually elicited by following

structured processes. For having a clear knowledge about how high-level requirements,

such as objectives, main goals, needs, etc., are turned into low-level requirements,

traceability is needed [10]. For example, in a business context, the interest points to the

business objectives and visions whilst in an engineering context the interest may be

focused on the system requirements. It is necessary to keep all the requirements trace-

able in order to maintain a full understanding of the system as well as the ability of

evolve, manage or reuse it [10]. The requirements are usually connected with many to

many relationships and there are different ways to represent them. For example, by

using a matrix in appendix to relevant document or by using hyper-linked documents,

where it is possible to freely move through the statements. Otherwise, a hierarchy of

requirements, grouped in relevant documents, as showed in Figure 2.1, could be pro-

vided, with different level of abstraction and objectives.

2.4. Requirements evolution management

Since most of the systems today are not stable products but need to be changed, im-

proved or upgraded during their life-cycle [11], stakeholders should be aware of the

occurrence of changes. The change management could be subtle in some situations, for

example when a requirement is in relationship with many others and a change may lead

to a chain of changes. For this reason, when a problem is identified or a change proposal

is raised on a requirement, it is very important to analyse it carefully in order to check

Scope

statements

High level requirements

Detailed requirements

(functional, not functional, design etc.)

Figure 2-1 Example of requirements hierarchy

Related work

6

its validity and the cost associated with the change (also in terms of modifications and

feasibility). Then, if the reply is positive, it is possible to proceed with the change mod-

ification.

A change can be required between different steps of the software development process

or between different versions of the software released. Both of them could be problem-

atic and have a negative impact on either the development plan, in the first case, and

the maintenance one, in the second case. As a consequence big changes may cause re-

planning and cost fluctuation. This first aspect is most known as changes management

since the engineers need to check the impact, the motivations, and the efficacy of each

change proposed.

If we consider the use of standards, the changes are represented by new releases of a

standard, where the requirements are already changed and should be understood, se-

lected (sometimes modified again, not considered etc.), and adopted in new version of

the system. This second aspect is mentioned as evolution management because the com-

panies and the engineers involved in this process need to deal with a great number of

changes that come from an external product.

3. Related work

In this section we briefly explain all the papers and methods which had a role in the

choice and design of the metrics used in this study.

Several studies about requirements evolution can be considered for the purpose of this

thesis. Wang, H et al. provide in [12] a general method for studying the requirements

change with a quantitative analysis. Their approach, based on consider each modifica-

tion, addition, and deletion, has been considered as a starting point for this thesis work.

Similar but more exhaustive study has been conducted in the avionics context by An-

derson S. and Felici M. in several papers [2, 5]. Their approach is made of two different

layers named Empirical Analysis (EA) and Product Oriented Refinement (OOR). The

first one is focused on collecting information from the Avionics case study by analysis

of data and relies on the Requirement Maturity index (RMI) metric. The second one aim

to refine the information gathered by focusing on the product. Hence, in these articles

they show how to conduct an Empirical Analysis starting from a general point and

moving to a product-oriented one. From the first layer, we identified two further inter-

esting metrics based on RMI: the Requirement Stability Index (RSI) which considers the

cumulative number of requirement changes and the Historical Requirement Maturity

Index (HRMI), which is also similar to RMI but takes into account the average of all the

changes made so far. We decided to adopt RMI and HRMI since they efficiently show

the stability of the versions and how the stability changes in relation with the past re-

leases. RSI is not considered since great number of changes can lead to negative number

or too meaningless results for our scope.

For measuring the requirements behaviour, we considered the study of Shi l. et al. [6]

which aims to predict requirements that are possible to be changed in the future, basing

on historical information (i.e., previous versions of the software). Although prediction

is outside of the scope of this thesis, several metrics are considered significant for meas-

uring requirements and for analysing trends between changes in different releases. They

constructed six metrics for measuring the history of changes, the pace of change, and

the volatility of each requirement. These measurements are useful since they give re-

sults both for a single requirement or for groups of them using average values, hence

Research methodology

7

we adopted four of them. We added the accuracy for taking in consideration the reliable

aspect of the requirements. In order to study the evolution, Nurmuliani et al. [13] have

provided a taxonomy of changes for categorizing the change types, their reason and

their origin. We took inspiration from it for making our taxonomy of changes.

Lastly, Stark g. et al. [14] proposed a method for analysing the requirements evolution

based on two different steps. After a general overview of the evolution behaviour of the

system, they proceed with a micro view of requirement changes, on one release. Then

they constructed a macro model for foreseeing the effect of requirements change on all

the releases. The models are based on data from historical releases. We adopted this

approach for having a preliminary view of the requirements architecture, the documents

structure and for a first application of the metrics.

In order to understand the field of the case study, several papers have been considered

from the automotive context. For the AUTOSAR perspective, two studies of Durisic et

Al. [15, 16] were useful for improving our knowledge of AUTOSAR, its architecture,

methodology and complexity. More in general terms, Broy et Al. [17] point out the

current role of automotive software and how it is growing but do not mention how to

measure this evolution.

Although there is a significant number of methods related to the analysis of requirement

evolution, only few of them are applied in a real industrial context in which large soft-

ware systems are developed. This thesis aim to combine existing studies with personal

considerations and metrics for providing an efficient way to measure requirements evo-

lution.

4. Research methodology

The aim of this section is to provide general information about the approach and the

procedures used during this thesis project. We adopted the design science research [18]

as methodology for this thesis. The content is organised in two subsections. The first

describes our research questions and the second talks about our research method.

4.1. Research questions

The objective of this study was to efficiently analyse and measure the evolution of re-

quirements and to facilitate the update of large software systems by reducing time and

costs related to it. We proposed a set of metrics for this purpose and we applied them

on AUTOSAR requirements. In order to fulfil this objective we decided to have a main

research question and a series of sub-research questions. The main research question,

as presented in the introduction, is expressed as follow:

How can the evolution of system requirements be efficiently measured in order to facil-

itate the adoption of new features during updates of large software systems?

We want to measure the system in an efficient way. In order to do that we divided the

analysis of requirements evolution in smaller objectives that correspond to a number of

research questions. We aim to analyse each of these sub aspects by selecting or choos-

ing the best metrics and we believe that focusing on smaller goals can bring advantages

in order to make the most efficient measurements. Furthermore, we provide the answer

to the main research question by proceeding step by step in a structured way. Hence, in

this study, efficiently measure the evolution of system requirements is considered the

result of choosing or designing metrics for each aspect of the evolution, testing their

Research methodology

8

effectiveness and gathering all together. The sub research questions are defined both

according to the literature review and our case study context, i.e., they are inspired by

the problems identified in the automotive domain where companies develop their sys-

tems based on the AUTOSAR standard and its requirements. However we decided to

describe the research questions in a general form without talking about the case study

context as they are applicable to other contexts that make use of large software systems

with similar characteristics to the automotive domain. The sub RQs, named SQs, are

defined as follow.

SQ1: Which releases of a software system are most stable and which one change most?

This question is considered useful for pointing out the roles of the releases and their

behaviour. Firstly, the evolution is observed from the releases point of view for being

aware about the amount of changes to a number of requirements and to identify the

trends in their evolution. For doing this, RMI and HRMI metrics shall be applied.

SQ2: Which types of changes are more common and how they are connected to the

releases?

This second research question is a deepening of the first one. After overview the impact

of evolution we start to look within each release in a more specific way trying to find

common pattern among the types of change. For example we do this by checking if the

number of requirements increase for each releases or if the number of removed require-

ments is significant.

SQ3: Which requirements specifications are most unstable?

SQ3 is the last question about evolution at the releases level and it aims to understand

the evolution of requirements for a specific context. The requirements specifications

group requirements in different sets depending on their topics and tasks. For example,

in the AUTOSAR context, AUTOSAR_SWS_SAEJ1939DiagnosticCommunication-

Manager defines the message structures and behaviour of so-called ‘Diagnostic mes-

sages’ (DMs) which are used for diagnostic communication in J1939 networks. We

analyse the stability of each of them and we investigate about their behaviour.

SQ4: Which categories of requirements are most stable and which ones are mostly af-

fected by the evolution of the system?

From this research question we move to study single requirements behaviours. Through

a series of metrics we measure the stability of the requirements, their accuracy, their

frequency of changes and the “age”, i.e., the moment in which they are introduced in

the system. By investigating this data we can answer this research question and the

following one. Here we wonder about the stability of requirements categories such as

functional and design.

SQ5: Which types of requirements are more characterized by subsequent changes and

which one are more reliable?

The objective of this last research question is similar to SQ4 with the difference of

considering the relation between multiple changes. We introduced this question for test-

ing our accuracy metric and for investigating about the behaviours of requirements that

have been already affected by changes. For example, by measuring if there is a relation

Research methodology

9

between the requirements added in a release and the requirements changed in the sub-

sequent version. These types of trend could be used as an alarm signal to the engineers

that need to know when update the system.

4.2. Research Method

The methodology used for this thesis is the design science research methodology, which

is summarized in Figure 4-1, in the white boxes.

We followed five steps directly associated to the design research methodology, listed

in the Figure inside the black boxes and described in the next subsections.

 Awareness of problem and suggestions

I. Literature review – A literature study on the existent metrics and ap-

proaches.

II. AUTOSAR analysis – A general study of AUTOSAR.

 Design and development

III. Definition of the metrics – The selection of the metrics used in the case

study.

 Evaluation and conclusion

IV. Evaluation of the metrics on AUTOSAR

a. Application of the metrics – Apply the metrics to the case study

b. Validation of the results – Validate the metrics from the case

study results.

4.3. Literature review

In order to choose and define our metrics, we conducted a literature review on the al-

ready existent approaches. The literature review is considered of central importance in

order to be aware about the actual “state of the art” or general development achieved in

this specific field. The literature review has been conducted using the key words “re-

quirements evolution”, “requirements change”, and “requirements volatility”. These

three terms look very similar but they have consistent differences. Requirement evolu-

tion concerns the actual evolution of requirements through different version or releases

of a specific software, so it is considered the closest term to this research. Requirement

change is a more general term which can be associated to changes either during the

elicitation of requirement (i.e., during one of the steps in the software development

process) or through the releases. Requirement volatility is a branch of requirement evo-

lution which tries to deal with the unpredictability behaviour of the requirement. The

aim of studying the requirements volatility is to provide a method for foreseeing the

state of requirements in future releases. For instance, try to anticipate what requirements,

Awareness of problem
and suggestions

•1 Literature Review

•2 Case Study Analysis

Design and development

•3 Definition of the
metrics

Evaluation and
conclusion

•4 evaluation of the
metrics

Figure 4-1 Design science research methodology

Research methodology

10

modules or functions are going to change or remain stable in the next version. We con-

sidered these keywords because all of them have in common the idea to measure the

evolution of requirements and to investigate the effects of such evolution. Other terms,

such as managing changes were not considered both because more related to the aspect

of change management rather than evolution management and too generic.

The literature review has been conducted using the snowball method [19]. This method

present some guidelines for writing an efficient and reliable literature review. We chose

a start set of three papers using the key words, and looking for the most relevant, namely

the ones cited by several other articles and also more close to our research. Then, we

proceed backward and forward using respectively the references and the citations.

Google scholar and the servers “IEEE Xplore: digital library” and “Scopus” provide

features as “cited by”, “abstract” and “references” which can be useful for analysing all

the documents. In the snowballing method there are different iteration as well. The first

one is about a cycle of backward and forward analysis from the start set. Then the

second cycle iterates on the outcomes of the first one and so on. A general advice is to

perform at most three or four iterations, both for having a good set of outcomes and for

not going off topic.

4.4. AUTOSAR analysis

After the literature review we analysed requirements evolution in the AUTOSAR con-

text. We used three different ways for gathering information from AUTOSAR:

I. By using some general information sources as [3] or by reading general papers

written on AUTOSAR, such as [15, 16].

II. Through several study sessions with an AUTOSAR expert from VCC.

III. By performing a MICRO and a MACRO analysis on some AUTOSAR require-

ments documents.

The study sessions were performed through the first three months and were organised

either as lectures or as unstructured interviews. These meetings have had a strong rele-

vance for the project. Firstly, they elucidated the complete structure of AUTOSAR.

Secondly, they highlighted the relevance aspects of AUTOSAR for this work. Lastly

they pointed out the reference points for conducting the research. Then, we conduct a

preliminary semi-automatic analysis using two requirements specifications in order to

improve our knowledge about the structure, the form and the features of AUTOSAR.

We called it micro and macro analysis. Micro analysis is a comparison between two

entire requirements specifications. This comparison aims to point out the types of

change, the structure of the document, and the semantic used in the requirements. In

order to perform the comparison we made use of an open source tool named WinMerge

[20], which compares two PDFs and highlights the differences. On the other hand, the

macro analysis is the study of a small set of requirements (e.g., ten in total) through all

their lifecycle in the considered releases. The objective of the macro study is to under-

stand conventions, structural, and semantic changes of AUTOSAR during the consid-

ered releases in order to develop an efficient tool. Both approaches are considered as

suggestions because they give the opportunity to suggest a number of metrics, to test

them and to choose the relevant ones.

Research methodology

11

For being aware of the structure and the semantic of all the specifications we selected

both an SWS and a TPS document. From the study sessions at Volvo Car Group we

agreed to consider the following two requirements specifications:

 AUTOSAR_SWS_COM

 AUTOSAR_TPS_SystemTemplate

Both of them have a relevant role in the AUTOSAR architecture. The first one acts as

an interface for the application (automotive software components) layer, by packing or

unpacking signals and providing a communication transmission control. The second

one is based on the AUTOSAR meta-model and defines the relationship between the

pure software components view on the system and a physical system architecture with

ECU instances.

4.5. Definition of the metrics

The metrics were defined by using the Goal Question Metric Approach (GQM) [21].

Figure 4-2 shows the GQM model applied to this study. The metrics are described in

details in section 5. This model relies on the assumption that for choosing or designing

metrics in an accurate way, the researcher shall follow a goal based workflow. Firstly,

they need to specify the objectives, then, to link them to the data that are considered

significant, and finally, to provide a framework for interpreting the data with respect

to the stated goals [21].

The GQM model is composed by three levels:

I. Conceptual level – One or more goals defined for the study

II. Operational level – A set of questions for characterizing how to achieve the

goals.

III. Quantitative level – A number of metrics associated to each question in order to

quantitatively measure the data and answer the questions.

The GQM approach is used for finding the most efficient metrics in order to answer to

the main research question.

4.6. Evaluation of the metrics on AUTOSAR

The evaluation of the metrics is composed by two steps. First we applied the metrics

on the case study and then we validated them by supplying a survey to AUTOSAR

experts.

Figure 4-2 Goal Question Metric Approach

Research methodology

12

4.6.1. Application of the metrics

The metrics are then applied and tested on AUTOSAR in collaboration with Volvo Car

Group. AUTOSAR counts more than 21.000 basic software requirements in its last

version, hence we needed to automatize the data collection. We built a configurable

tool for gathering data and applying the measurements to the requirements specifica-

tions. The tool compares different versions of specifications in PDF and makes report

on their changes. These types of data are generally called second and third degree [22]

because come from sources not originated for studies but for business purposes. The

data are collected according to their characteristics and to our research questions in the

following way:

 Types of change through all the releases.

 Changes history for each requirement.

 Number of requirements, cumulative number of requirements, number of

changes and cumulative number of changes for each release.

The same values are collected also for the constraints. From these raw data we built a

requirements map for effectively applying all the measurements. The details are showed

in Section 5.

The data collected concern all the releases from the last major version (R4). Table 4.1

shows the considered releases. The decision to study only these releases relies on two

aspects. Firstly, Volvo Cars Group does not have interest in the previous major releases,

since are not used today. Secondly, AUTOSAR had a lot of significant changes in the

last major release. A great number of requirements has been added in one of the last

eight versions from which we can collect enough data for obtaining significant results.

According to AUTOSAR terminology, within a major release we have two types of

updates:

I. Minor release, for which the central digit changes.

II. Revision, for which the last digit change.

Minor releases are showed in the first column of the Table and usually bring new fea-

tures and functionalities inside the major release. The Major releases are usually big

clean-ups that are backwards incompatible. The revisions are listed in the correspond-

ing rows and usually are less significant releases. Minor releases and revisions are

backwards compatible.

Table 4-1 Considered releases of AUTOSAR

Re-

lease

12/2009 04/2011 12/2011 03/2013 08/2013 03/2014 10/2014 07/2015

4.0 R4.0.1 R4.0.2 R4.0.3

4.1 R4.1.1 R4.1.2 R4.1.3

4.2 R4.2.1 R4.2.2

For each release, the requirements specifications studied are the entire set of basic soft-

ware and design requirements, namely all the standard documents named SWS and TPS

that are described in detail in Section 6.1. Although we did not analyse the entire hier-

archy, which may be regarded a further work, the results are considered complete for

Research methodology

13

the auxiliary nature of the upper levels of the hierarchy. By studying the lowest one, it

is possible to collect and analyse data that concern all the objectives and features of

AUTOSAR.

Finally, in the AUTOSAR lowest level, the requirements are mentioned as specifica-

tions items, however the meaning for the purpose of this research remains the same.

Therefore in the results we use indifferently the two terms, requirements and specifica-

tions items, with the same standard meaning.

4.6.2. Validation of the results

The results are validated through a survey supplied to six AUTOSAR experts, from

Volvo Cars Groups, who are involved in AUTOSAR software management process or

other AUTOSAR projects. These surveys aim to assess the reliability and the quality

of the measurements by assessing the results obtained. Since the results are related to

our metrics with the GQM model, their validation is directly associated to the measure-

ments. We designed a process, in Figure 4-3, to perform the validation.

The first phase is called investigation and is made of two steps:

I. Survey creation. We decided to make questions only with multiple answers (ap-

pendix A for details) in order to study the results by percentages of correct an-

swers. The surveys are composed by ten questions, five about general charac-

teristics of AUTOSAR evolution and five about specific behaviours of two soft-

ware requirements documents. We talked with each expert for understanding

which specifications are most suitable for them.

II. Survey results. We supplied the survey and waited for answers. The experts

were not informed about the measured results, so they had to answer with their

expectations. Since they work in different context, the five specific questions

concerned different requirements specifications.

We called the second phase discussion. Here, we interpret the results in the following

two steps:

I. Comparison with metrics results. The questions are related to the measurements

made during this study. We compared the measured results with the expected

results. The five specific questions are evaluated individually and used for as-

sessing also the utility of the tool.

II. Assessment. In this step we discussed both results and we point out correspond-

ences as well as discontinuities between the expectations and the measurements.

Based on the outcomes of this step we can consider the results, and thus the

metrics, validate or not.

Figure 4-3 Validation workflow.

Metrics definition

14

5. Metrics definition

In this section, we describe our interpretation of requirement change, i.e. the taxonomy

of changes, and the metrics we used in the analysis. We chose 5 existing metrics and

we designed one new metric.

5.1. Taxonomy of changes

The usage of the term change in the context of our study is related to three possible

types of requirement changes: addition, modification and deletion. Table 5-1 shows our

interpretation of change-related metrics NoA, NoD, NoM and NoC.

Table 5-1 Types of change considered

Name Description Equation

NoA Number of added and eventu-

ally split requirements
-

NoD Number of deleted and even-

tually merged requirements
-

NoM Number of modified require-

ments
-

NoC Total number of requirements

changed

NoC = NoA + NoD + NoM

It is very important to clearly specify the changes considered in order to correctly un-

derstand the measurements. In this study, the total number of changes is considered as

the sum of all added, modified and deleted requirements. We did not apply weights to

different types of changes since we believe that the effort needed for updating the sys-

tem according to the added, modified and deleted requirements depends more on the

requirements content rather than the type of change. A requirement added could be

critical or have just a minor impact on the system, or a requirement modified could be

an easy property to fix or a complete change in its functionality.

Additionally, there are two other types of changes that are less likely: split and merged

requirements, i.e., when a requirement is divided into two new requirements or vice

versa. Although splitting and merging are two effective types of change, we consider

them as parts of NoA and NoD, respectively, because of the low probability of appear-

ance and the difficulty in detecting and counting them. Furthermore, a requirement split

or merged with another one is usually a consequence of a planned change in the content

of the same requirement.

One of the more important things that should be taken in consideration, when the types

of change are defined, concern the modification concept. We can accurately identify

which specifications are added and deleted whilst defining whether a requirement is

modified needs our judgement. One requirement can have different types of modifica-

tion among different versions. Not all of them should be considered meaningful and

there are no general rules for this purpose. Since the modifications can be valued in a

different way by different researchers, the total number of changes could be affected in

a sensitive way and conduct to complete different results. Table 5-2 shows our taxon-

omy of the main types of modification that usually occur during an analysis of require-

ments modifications. We made this taxonomy by both referring to the literature review

and studying the AUTOSAR context and discussing our finding with the practitioners.

Metrics definition

15

Furthermore, in the last column, we reported our judgment. The sum of the “considered”

rows establish the number of modifications (NoM).

Table 5-2 Taxonomy of modifications

5.2. Metrics

Six metrics for interpreting the data are used in this study. The purpose of our measure-

ments is firstly to have general outcomes about the evolution of requirements and then

to conduct a deeper analysis. We chose and designed metrics based on our objectives,

by following the GQM model.

SQ1, SQ2, and SQ3 aim to study the evolution from the releases point of view. In addi-

tion to the NoC, we selected two metrics for overviewing the evolution. The first one

comes from the IEEE standard [4] and is named Requirement Maturity Index.

𝑅𝑀𝐼 =
𝑅𝑡 − 𝑁𝑜𝐶

𝑅𝑡

This metric studies the stability of each requirement. Rt is the total number of require-

ments for a specific version. Since RMI is calculated for each version, it does not take

count of the historical information about changes but only the NoC among two follow-

ing releases. For this reason, Anderson & Felici [5] considered this metric too pessi-

mistic. So they defined a refinement of RMI which concerns not only the NoC for each

release, but also the average NoC (ANoC), which takes count of all the previous ver-

sions. They called this refinement Historical Requirements Maturity Index.

𝐻𝑅𝑀𝐼 =
𝑅𝑡 − 𝐴𝑁𝑜𝐶

𝑅𝑡

 The average of changes, ANoC, is calculated as the cumulative number of changes

divided by the number of previous versions considered.

For SQ4 and SQ5 we need to observe the evolution by analysing the “life” of each

requirement. For achieving the questions we make use of 4 metrics. In order to effi-

ciently perform these measurements we made a table representing the life of each re-

quirement. An example of how the table looks like is showed below in Table 5-3. Each

Types of

modification

Description judgment

Grammar and form

 corrections

Form and grammar mistakes fixed in a new release. Not considered.

Encoding

 modification

The document can be encoded in different ways and

the output could slightly change.

Not considered.

Form

modification

The form can change. For example the structure of

the requirement ID or how the requirements are

structured (e.g., in tables or just text requirements)

Not considered.

Object’s name

 modification

For instance the change in the name of a function, a

class or a meta-class etc.

Considered.

Title

modification

The title of a requirement (if it has a title) Considered.

Content

 modification

The actual modification in the content of the require-

ment.

Considered.

Reference

modification

The modification in the reference for the traceability

of requirements.

Not considered.

Metrics definition

16

row is a requirement and each column represents a past version of the system. In the

boxes there are different values which correspond to requirements behaviours between

that release and the one before: “1” means added, “2” modified, “3” deleted, “0” un-

changed and “-“ not present/considered. In this example, version 1 is the first release

considered, thus all the requirements do not have a value (i.e., “-”), whilst version 8 is

the last one. Req_n is the requirement id. For example, requirement 1 was added in

version 3, modified in version 5 and deleted in version 6.

Table 5-3 Requirements table example.

 1 2 3 4 5 6 7 8

Req_1 - - 1 0 2 3 - -

.

.

.

Req_n - 1 0 2 2 0 0 2

Three of the following four metrics are selected by the studies of Shi & Al. [6] and are

considered important measurements for the requirements study. The first one is named

sequence, which measures the biggest sequence of consecutive changes (i.e., added,

modified, deleted) for a requirement. We found this measure interesting for analysing

the unstability of requirements which are affected by changes.

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒: 𝑟 = max(𝑁(𝑟, 𝑖)) , (2 ≤ 𝑖 ≤ 𝑛)

N(r,i) denotes the number of versions that r continuously changed from its added ver-

sion to the version i. For example, taking the values showed in Table 5-3, Req_n has a

sequence r=2.

The second metric adopted from [6] is the frequency. Frequency measures the total

times that a requirement has been changed in all of its historic versions. The frequency

is an interesting metric for checking the general unstability of the system or for one

subset of requirement specifications. Further we can compare its outcomes with RMI

ones.

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦: 𝑟 =
1

𝑛 − 1
∑ 𝑖𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑(𝑟, 𝑖)

𝑛

𝑖=2

The result is divided by (n-1) for scaling the result in the range [0-1]. For Example,

Req_n has a frequency of change r=4/(8-1)=0,57 . These two metrics are used for SQ4.

The last metric adopted is the Lifecycle, and aims to check the hypothesis whereby

requirements with short lifetimes are unstable.

𝐿𝑖𝑓𝑒𝐶𝑦𝑐𝑙𝑒: 𝑟 = 𝑛 − 𝑉𝐴 + 1

N is the current number of version, VA the version number of the introduction of the

requirement r. Then the result is increased by one to consider the last version. For ex-

ample Req_n has a lifecycle r= (8-2+1) =7. The lifecycle of a requirement inserted

before the considered releases and still used is labelled as 9.

Application of the metrics

17

Lastly, we built a further requirement named accuracy. We designed this metric for

measuring the reliability of changes. Is based on the idea that a requirement change is

accurate if in the immediate next release we do not have again a change for the same

requirement. This metric, together with lifecycle, are used for answering SQ5.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦: 𝑟 =
∑ (𝑅𝑐(𝑖) → 𝑅𝑠(𝑖 + 1))𝑛−1

𝑖=2

∑ 𝑅𝑐(𝑖)𝑛−1
𝑖=2

R is the requirement and i is the corresponding release. Rc(i) denotes a requirement that

have been added or modified in version i, whilst Rs(i+1) denotes a requirements that is

unchanged in version i+1. For example, Req_n has an accuracy r = (2/3) = 0.66

6. Application of the metrics

The metrics have been applied and validated on AUTOSAR case study with the collab-

oration of Volvo Car Group. This Section starts with the presentation of the study con-

text. Then it describes the evaluation of the metrics by calculating the results of our

metrics and presents the validation results for the metrics.

6.1. Case study context

6.1.1. Automotive system development process and the role of AUTOSAR

The objective of system engineering is to generate a system that represents a design

solution and meet certain needs or requirements. Therefore system engineering trans-

forms the requirements to a system definition. This process is not unique and one-way

but it is iterative or recursive. There are different models used for this purpose. The

Automotive sector has adopted the V-Model [23] for the car electrical systems. The V-

Model guarantees the cooperation of different entities in order to design and develop

software products. In the automotive domain the software and hardware products are

developed by a number of suppliers. The OEMs just design the components by using

specific models and provide a set of requirements specifications to the suppliers. The

communication between OEMs and suppliers is usually critical since the final product

shall meet the model provided by OEMs. For facilitating this communication and for

standardizing the middleware requirements, AUTOSAR architecture has been intro-

duced in 2003.

AUTOSAR is a worldwide development partnership of vehicle manufacturers, suppli-

ers and other companies from the electronics, semiconductor and software industry [3].

As said above, the purpose of AUTOSAR is to standardise and facilitate the communi-

cation between OEMs (i.e., original equipment manufacturer) and automotive suppliers,

through the creation of an open industry software architecture. This standard is used in

the context of the automotive ECUs. In order to achieve these goals, AUTOSAR pro-

vides an ECU architecture made of three layers (Figure 6-1):

I. Application software layer

II. Runtime Environment

Application of the metrics

18

III. Basic Software

The Basic Software contains several modules which are essentials to define the com-

munication between different ECUs, while the Runtime Environment is an abstraction

level for the communication inter and intra ECUs. We can consider both of them, to-

gether with the operating system, as middleware. The middleware provides services to

the AUTOSAR application layer and run the functional part of the software. It does not

have any functional job. For this reason, the middleware is completely standardize by

AUTOSAR, which provides a set of requirements specifications, and adopted by OEMs.

The application software layer is composed by multiple entities called software com-

ponents. The functionality of an ECU or multiple ECUs is driven by these entities. For

maintaining the competition between OEMs, the internal structure and the connection

points of the software components are not standardized by AUTOSAR, but are designed

by OEMs and delivered to suppliers. However, AUTOSAR provides also the domain

model and meta-model used for designing these components.

The usage of this development process requires three different types of requirements:

I. Functional requirements - requirements specified by OEMs for the software

components.

II. Design requirements – requirements and constraints standardized by AU-

TOSAR for modelling the components and setting the tools model-based.

III. Basic software requirements – requirements standardized by AUTOSAR for the

middleware.

Design requirements are grouped in document and packages called TPS specifications,

i.e., AUTOSAR meta-model and templates, whilst the Basic software requirements are

grouped in SWS specifications, i.e., standard basic software. Both of them are standard-

ized by AUTOSAR. On the other hand, functional requirements are specified by OEMs

since they concern functional jobs and introduce competition in the automotive market.

In this study we focus on AUTOSAR, therefore we do not analyse the OEM require-

ments.

One of the AUTOSAR objectives is to guarantees a full traceability for the requirements

by providing a hierarchy made of different levels. Figure 6-2 shows the overall structure

of the requirements specifications architecture in AUTOSAR. The arrow starts from

Figure 6-1 AUTOSAR ECU architecture [4]

Application of the metrics

19

the most specific document and points to the most abstract. The aim is trace a require-

ment from its effective description to the top-level group of belonging. These top level

groups are described in the project objectives. Then the Main requirements package is

still dedicated to general requirements, whilst all the features of AUTOSAR (including

Basic Software (BSW) and the Run Time Environment (RTE)) are discussed in the

homonym document. Below these general guidelines the requirements become more

detailed. A first significant distinction is below the Features. SRS and SWS contain the

requirements for the basic software and the RTE. RS and TPS specify the requirement

templates. The two following subsections clarify this distinction.

Basic software requirements

SRS and SWS are divided into a number of requirements specifications. AUTOSAR

distinguishes between SRS “requirements” and SWS “specifications” in a different

manner than traditional software engineering.

 SRS Requirements. They are generally considered “auxiliary” documents and

are used to specify the higher level requirements for a group of Basic software

Modules. It is usually not necessary to read these requirements for implement-

ing the functionality of different basic software modules and they are mostly

used for traceability of low level requirements to the high level AUTOSAR fea-

tures. For example, the document AUTOSAR SRS CAN contains the higher level

requirements for the following Basic Software Modules: CAN Driver, CAN In-

terface, CAN State manager, CAN transport layer, and CAN Bus Transceiver

Driver.

 SWS specifications. They describe the functionality, API and configuration of

one AUTOSAR module. For the OEMs perspective these packages are usually

most interesting and are considered “requirements” as well.

Design requirements

Since the software component layer in the ECU is not standardised by AUTOSAR but

it is implemented directly by OEMs, there is the need of a common exchange format

between OEMs and Suppliers. AUTOSAR has achieved this objective by introducing

a domain specific meta-model, namely requirements and constraints which specify a

Figure 6-2 The AUTOSAR specifications hierarchy

Application of the metrics

20

shared language for modelling the automotive electrical components [17]. The seman-

tics of the elements of the AUTOSAR meta-model is described in several documents

and packages named templates. For example the ECU Configuration describes the con-

figuration process for each single module of AUTOSAR. Because of the complexity of

AUTOSAR architecture, modules, communication, and dependencies, OEMs are rec-

ommended to use an adequate tool support. The tool strategy and details are out of

scope of AUTOSAR. However AUTOSAR provides the input for the tool and some

constraints, listed in the templates as well as the requirements. The constraints are

meant to be checked by the tools based on the AUTOSAR meta-model. In this thesis

we mention these types of requirements as TPS.

According to the AUTOSAR terminology, SWS and TPS contain “specification items”

and “constraints” whilst RS and SRS contain requirements. However, for the purpose

of this study, we consider the specification items as requirements as well, since, accord-

ing to the theory, they have the same meaning. Furthermore, AUTOSAR also says that

every text in SWS and TPS specifications is mandatory to be fulfilled, so semantically,

the entire text within a specification could be considered a requirement, even though

AUTOSAR does not call it in that way.

For overviewing and fully understanding the AUTOSAR requirement specifications

structure and hierarchy we present an example of the requirements traceability through

different levels of abstraction on AUTOSAR. Figure 6-3 shows the hierarchy traced

from requirements belonging to the basic software module named CAN Driver. CAN

(Controller Area Network) is a well-known bus standard and message-based protocol

used mainly within the automobiles (but also in many other contexts). AUTOSAR pro-

pose a set of basic software requirements wrapped in the AUTOSAR_SWS_CANDriver

specification. In the example, we selected four requirements from the lowest level and

we point out the traceability until the project objectives.

Although here we have mostly one direction with multiple relationships, in AUTOSAR

is common to have multiple to multiple relationships between different levels. In the

example, this happens from main requirements (RS_Main) to the projects objectives

(RS_PO) where RS_Main_00430 refer to two different project objectives, and from

features (RS_BRF) to auxiliary requirements (SRS) where SRS_Can_01154 refers to

two features, RS_BRF_01704 and RS_BRF_01712. An extraction of the requirements

selected for this example is showed in Table 6-1, with their contents, roles, and refer-

ences. From the table is clear the abstraction of AUTOSAR and its traceability. From

Figure 6-3 Example of AUTOSAR hierarchy and traceability for four SWS_Can specification items

Application of the metrics

21

features AUTOSAR starts to generally talk about CAN. In auxiliary requirements AU-

TOSAR specifies that the support and usage of “multiplexed transmission” is handled

by CAN Driver module. Then, in the lowest level, several requirements finally set up

this functionality.

 Table 6-1 Example of requirements traceability.

6.1.2. AUTOSAR requirement structure and conventions

For Basic software specifications and design specifications, each requirement has its

own, unique headline made of three part:

[DocID_Module_ReqId]

Where DocID is the name of the hierarchy role, Module is the module of belonging and

ReqId is the unique number of the requirement. For example [SWS_Can_00385] is the

requirement with the id equals to 385 in the SWS_CanDriver module whilst

[SWS_CanSM_00447] is the requirement with the id equals to 447 in the SWS

CANStateManager.

The requirements may have different structures in AUTOSAR. Project objectives, main,

features, SRS, and RS requirements are showed as tables with a common structure.

Usually the following fields are generally provided: Type, Description, Rationale, Use

Case, Dependencies, Supporting Material (figure 6-4). For SWS and TPS documents

the requirements exist with different flavours. They may be composed just by text, in a

human readable way, or represented by table or even by context diagram, if needed.

Requirement Id Hierarchy role Description References

[SWS_Can_00277] SWS

specifications

The Can module shall allow that the

functionality “Multiplexed Transmis-

sion” is statically configurable (ON |

OFF) at pre-compile time

SRS_Can_01134

[SRS_Can_01134] Auxiliary

requirements

The CAN Driver shall support multi-

plexed transmission
RS_BRF_01704

[RS_BRF_01704] Features AUTOSAR communication shall

support the CAN communication bus
RS_Main_00430

[RS_Main_00430] Main

requirements

AUTOSAR shall support established

automotive communication standards
RS_PO_00004

RS_PO_00009

[RS_PO_00004]

Project

objectives

AUTOSAR shall define an open ar-

chitecture for automotive software
-

Figure 6-4 Structure of RS_PO_00001 in the Project Objectives

Application of the metrics

22

6.2. Results

6.2.1. Micro and macro analysis

In order to provide suggestions for defining the metrics and the taxonomy of changes

needed for performing the measurements (i.e., obtaining preliminary results), we did

the micro and macro analysis.

We proceed first with the micro analysis. Figure 6-5 shows a very short extract of the

results for SWS_COM specifications (see appendix A for details). The table is com-

posed by an entry for each requirement which has been changed. Furthermore, all the

columns represent the attributes of the changes, namely the types of change encountered

between the two specific versions.

On the other hand, the macro analysis is about the history of a small set of specific

requirements through all their life in the last major release. Figure 6-6 shows an extract

of the outcomes for SWS_COM specifications.

 The complete tables are showed in appendix A. We selected 7 requirements in total

and we applied a number of metrics. We use this preliminary study for proposing, sug-

gesting, and testing the metrics in order to understand the most relevant to our purposes.

6.2.2. General Results (SQ1, SQ2, SQ3)

The general results show an overview of the trend and the characteristics of AUTOSAR

and they consider both TPS and SWS specifications, which are showed individually in

the next Section. The chart in Figure 6-7 points out the size of AUTOSAR.

Figure 6-5 Extract of the micro analysis

Figure 6-6 Extract of the macro analysis.

Figure 6-7 Number of requirements for each release in AUTOSAR.

Application of the metrics

23

This diagram shows a clear trend of increase in the number of requirements where each

new release has more requirements than the previous one. Release 4.2.2 counts about

22.000 requirements whilst 4.0.1 has about 14.000. In the last minor release AUTOSAR

counts more than 20.000 requirements.

The Heat map in Table 6-2 gives an idea of the amount of changes in AUTOSAR and

its strong evolution. The table shows the total NoC by comparing all the releases con-

sidered. From the first minor release to the last revision (i.e., 4.0.1 to 4.2.2) AUTOSAR

counts more than 17.000 changes, which means that only 35% of AUTOSAR standard

requirements have remained unchanged.

Table 6-2 Heat map of NoC in AUTOSAR

In order to answer SQ1, we show two graphs. Figure 6-8 provides an overviews of the

NoC in AUTOSAR in major release 4.x.

R-R01 does not show changes since R01 is the first considered version. In this chart

(and in all the following ones) the NoC is calculated between following releases, e.g.,

R01-R02 means the NoC between release 4.0.1 and release 4.0.2. Furthermore, when

we talk about the behaviour of a version, is always referred to the last release of the pair

(e.g. , “R11 has an high NoC” means “between R03 and R11 there is an high NoC”).

In Figure 6-8 we have a general line chart for pointing out where the peaks of NoC are

placed. The main peak is between R03 and R11. Then, other two significant vertices

corresponding to R02-R03 and R13-R21. These three versions are the only ones that

Column1 4.0.2 4.0.3 4.1.1 4.1.2 4.1.3 4.2.1 4.2.2

4.0.1 2399 6278 12543 13151 13699 16503 17195

4.0.2 0 4504 11413 12116 12715 15596 16363

4.0.3 0 0 8302 9227 9902 13025 13908

4.1.1 0 0 0 1626 2803 6533 7820

4.1.2 0 0 0 0 1478 5382 6750

4.1.3 0 0 0 0 0 4262 5786

4.2.1 0 0 0 0 0 0 2002

4.2.2 0 0 0 0 0 0 0

Figure 6-8 NoC in AUTOSAR

Application of the metrics

24

register more than 4.000 changes. Furthermore, we notice that two peaks over three are

placed on the minor releases whilst only one is on a revision.

For a deeper analysis on the stability of the releases we applied one of the metric elicited

with the GMQ approach. In Figure 6-9 we show the results of the HRMI.

Note that in the chart, for a better visualization of the results, we calculated the percent-

age for each HRMI, i.e., greater is the value (up to 100%), more the release is considered

stable. HRMI tries to highlight the historical behaviour of the software, by checking

whether the evolution moves to a better stability or not. The chart shows that after a

first flexion until the lowest peak in R03-R11, the stability starts to increase linearly,

about 2 percentage points for each new release.

The next results concern SQ2 which is about the most common types of change and

their relationships with the releases. With the data collected, we can see that AUTOSAR

is not only continuously changing but also growing. Figure 6-10 presents this behaviour

with a pie chart divided in cumulative NoM, NoA and NoD.

Cumulative NoM (38%) and cumulative NoA (47%) are the main types of change while

the NoD is less significant.

Figure 6-9 Historical requirement maturity index

Figure 6-10 Cumulative NoA, NoM, NoD

Application of the metrics

25

For addressing the types of changes with the respective releases, we provide the chart

in figure 6-11. This column chart is used for completing the answer to SQ2.

The NoD, represented by the red column, is always the lowest of the set of three bars

for each version. Furthermore, it is usually small (i.e., less than 2-3% of changes over

all the requirements), with the only exception for R03-R11. On the other hand, the NoM,

represented by the grey column, has two trends. A first one, until the first minor release,

where the line is equal to or greater than 1500 changes, and a second one, where the

line is always less than 1500 and quite straightforward on its evolution. Lastly, the

number of additions (green columns) is always less than modifications, except for the

three peaks discussed above.

In order to answer to the last “general question”, i.e., SQ3, we measured the evolution

by applying the IEEE metric RMI. As already described in Section 0, RMI aims to

measure the stability of each release independently from the history of changes. We

applied RMI not only to releases but also to AUTOSAR requirement specifications in

order to see which ones are most unstable. Figure 6.12 shows the outcomes of RMI

measured between the releases.

Figure 6-11 NoA, NoD, NoM for each version

Figure 6-12 Requirement maturity index

Application of the metrics

26

We measured RMI between releases for both assessing our perceptions about the peaks

described for SQ1 and choosing between which releases checking the unstability of the

specifications. From this chart (we show the percentage as done before for HRMI), we

recognize the three same peaks already mentioned: the releases with more changes are

also the ones more unstable. On the other hand, AUTOSAR has a significant stability

for releases R11-R12, R12-R13, and R21-R22. All of them have RMI greater than 90%.

Therefore the revisions, with the only exception of R02-R03, are generally less affected

by changes. However, also in the revisions we observe two trends. The values of RMI

between R01 and R03 are lower than the latest.

For answering to SQ3, we collected the requirements specifications and we ranked them

by comparing their RMI. By checking the trend showed in Figure 6-12, we chose to

measure the unstability for the two minor releases (i.e., the changes from R03 to R11,

and R13 to R21). Figure 6-13 shows the outcomes for R03-R11.

Note that three of the bars exceeded 100%. This happens because the RMI takes count

of all the changes, i.e., modifications, additions and deletions, and the latter can lead

the percentage to these values. For example, SocketAdaptor counts 191 NoD, 165 NoA,

and 39 NoM, thus it has 395 NoC. In version 4.1.1 SocketAdaptor has 252 requirements,

hence the NoC is greater than the actual number of requirements. In this minor release

the top changed documents are composed by two design and four basic software spec-

ifications. All of them have a very high RMI, close, or greater, to 100%.

Figure 6-14 shows the RMI for the most unstable specifications from R13 to R21.

Figure 6-13 Most unstable specifications from R03 to R11

Figure 6-14 Most unstable specifications from R13 to R21

Application of the metrics

27

The chart confirm the improving of AUTOSAR specifications in terms of maturity. In

the second minor release the specifications most unstable are all basic software speci-

fications and for all of them the RMI is less than 65%, with the only exception of Syn-

chronizedTimeBaseManager. Furthermore, there are no documents in common in the

two charts. However, we observe that the modules of AUTOSAR mostly recurrent in

the charts concern the communication intra or iter ECUs: SocketAdaptor, Flex Ray,

Ethernet, TcpIp, SAE1939 are specifications, or protocols, related to the transport layer.

6.2.3. Template and Basic Software Requirements results (SQ4, SQ5)

Using several charts and the requirements table, we looked for trends and relations

among consecutive releases. The analysis in this section starts with a general view of

the evolution, individually for TPS and SWS and then moves down to the requirements

level. The results maintain the distinction between TPS and SWS for showing their dif-

ferent scopes and behaviours as well as for answering to the last two research questions,

i.e., SQ4 and SQ5.

In order to provide an answer to SQ4 which concern the behaviour of categories of

requirements, we consider TPS and SWS as two categories: basic software requirements

and design requirements. The constraints are included by the latter. Figure 6-15 shows

the lines chart with the two main types of change for TPS in AUTOSAR.

TPS has always a low NoM even though it presents many additions. However, the NoA

is more significant than the NoM only for the two minor releases and for revision R03.

On the other hand, SWS documents contains both a large number of NoA and NoM, as

showed in Figure 6-16.

Figure 6-15 NoA and NoM in design requirements

Figure 6-16 NoA and NoM in basic software requirements

Application of the metrics

28

A shared behaviour for the two categories is the distribution of the NoA. Also for SWS

the number of additions is more significant than the number of modifications only for

the two minor releases and for R03. However the impact of NoA is different in the two

cases. TPS in the previous major releases does not have almost any requirements, but

just a small set of constraints, whilst SWS had already a large set of requirements. This

is clarified in figure 6-17.

Fig. a shows that although SWS counts a great number of additions, their impact is less

significant if compared with the number of already existent requirements. Fig. b tells

the opposite for TPS and highlights the importance of this major release for the elicita-

tion of design requirements.

We continue our investigation on the most stable and unstable categories by using two

other metrics, namely lifecycle and frequency. Since these metrics are calculated on the

same data of the last two, i.e., sequence and accuracy, we made a Table with the out-

comes of all the measurements, divided by categories, for answering to both SQ4 and

SQ5.

Table 6-3 shows the evolution from the requirements point of view, using the proposed

metrics. We gathered several values as averages between all the requirements, and we

represented these averages with a column in the table. The last column, named effective

sequence is the average of all the sequences which have at least one change in the last

major release.

Table 6-3 Metrics applied to design requirements (TPS) and software requirements (SWS)

By observing the table, we make the following considerations:

 The frequency of changes is very similar between design requirements and soft-

ware requirements.

 The average of the sequence of changes, namely the maximum number of

changes that happens consequently for a requirement through its history, is

higher in TPS, about one change, than in SWS, less than one change.

Specifications Frequency Sequence Lifecycle Accuracy Sequence

(effective)

GENERAL 0.26 0.83 6.90 0.84 1.15

TPS 0.30 1.03 5.15 0.90 1.11

SWS 0.25 0.80 7.14 0.82 1.18

Fig. a. Fig b.

Figure 6-17 Cumulative NoA in the last AUTOSAR major release for SWS and TPS

Application of the metrics

29

 The SWS specifications have a “longer” life than TPS. The majority of them was

introduced in a major release before the last one whilst TPS specifications are

mostly added in R402 and R403

 The accuracy points out that the most reliable specifications are within the TPS

documents.

 The effective sequence contradicts the sequence of changes, which suggested a

bigger number of changes in SWS specifications, and agrees with the accuracy,

by giving the lowest value to TPS.

The sequence is calculated for each requirement, even for those that do not change

through all the releases. This may affect the results and lead them to a value less than

one. If we consider the effective sequence, the results change significantly and SWS

present now a bigger value. Furthermore, the sequence takes count of all the types of

change, hence, also the additions are considered. In TPS, as described above, almost all

the requirements are added in the last major release, and all of them are counted as

changes in the sequence, which means a further increment of a unit.

The last research question SQ5 relies on the changes analysis. We looked for relations

between changes and for behaviours of requirements just changed in the immediate

next release by using the metrics lifecycle and accuracy. We found a relation between

these measurements in the AUTOSAR requirements and we calculated two different

accuracies, one for the requirements with a lifecycle equal to 9 (i.e., the ones that exist

from another major release) and the requirements with a lifecycle less than 9 and greater

than 2 (i.e., until release 4.1.3.). The results are presented in the following Table.

Table 6-4 Accuracy measured with different Lifecycle (LC)

This Table points out the reliable nature of additions (LC<9) both for SWS and TPS,

furthermore, it shows that modifications usually brings other changes to the same re-

quirements.

For assessing this observation, we described a further analysis of additions and modifi-

cations. According to our general results, the main peak of change, both for SWS and

TPS, is placed on the first minor release. Hence, we conducted a deeper research on the

behaviour of the requirements on that version, and we look for any trend or relations.

The pie chart in Figure 6-18 shows the percentage of requirements which are either

added or modified in the minor release considered and immediately changed in the fol-

lowing revisions (i.e., R12 and R13).

Specifica-

tions

Accuracy

(LC==9)

 Accuracy

(3<LC<9)

SWS 0.78 0.85

TPS 0.80 0.91

Application of the metrics

30

The Figure presents the cumulative number of changes registered in revisions R12 and

R13. These changes are divided in requirements already changed in the minor release,

the red side, and novel changes, the green side. Here, we are considering only NoD and

NoM. The 43% of requirements deleted or modified were already changed in the pre-

vious minor release.

Although this can be read as a weakness of AUTOSAR or as poor accuracy in modify-

ing or adding requirements, we need to take into account the amount of changes in the

minor release, around 8.000, and in the revisions, around 1500 for each. Therefore, we

have a significant number of requirements changed multiple times, but a small number

of changes in general. In order to clarify this concept, in the next two charts, in Figure

6-19, we looked for the same types of change, but we compared them with the total

number of requirements changed in minor release R11.

Figure a shows the percentage of requirements added between R03 and R11 and im-

mediately changed in the next two revisions. Figure b does the same with modifications

instead of additions. We observe that requirements added or modified between R03 and

R11 are then modified or deleted in the next two releases for respectively the 11% and

the 21%. The majority of requirements is not changed again, this can be read as an

index of accuracy. Furthermore it is important to notice one time again that the require-

ment added are usually more stable (only 11% of subsequently changes) than the one

modified (21%) in the minor release.

6.3. Validation

This section provides the results of the validation of the metrics and assesses the quality

of the measurements performed in the previous section.

Figure 6-18 consequently changes in R12 and R13 after R11

Fig. a Fig. b

Figure 6-19 Behaviour of changes in the minor release and in the subsequent revisions

Application of the metrics

31

The validation has been conducted by following the schema described in the research

methodology. We involved six experts of AUTOSAR at Volvo Car Group, and we pro-

vide personalized surveys with ten questions, four generals and six specifics. All the

questions are attached in appendix B. Since the experts could not have an accurate

knowledge about the general evolution of the entire set of basic software requirements

and templates, we gave the possibility to answer with the option “I do not know”. The

pie chart in figure 6-20 shows the results of the survey.

All the questions were composed by multiple options with one correct, one considered

“insidious” i.e., close to be correct, and one considered wrong according to our results.

We follow this way in order to quantitative analyse the results and to easily address

their expectations with our results. Only one answer was allowed and only one option

was actually considered correct, except for question n.4 and n.7 where the possible

choices were multiple.

The experts answered to the majority of the questions and all the answers that did not

meet our results, except for one, came from the “insidious” option. Two thirds of the

answers meet our measurements.

The first four questions were generals and relied on our SQ1, SQ2, and SQ3. In figure

6-21, the graph shows the answers of the experts for these questions.

 C means correct (with the green column), I insidious (orange column), NC not corre-

sponding to our measurements (red column), NA not answered (grey column).

Figure 6-20 Survey results

Figure 6-21 Survey results about the first four questions

Application of the metrics

32

This chart indicates a good awareness of the expert about the general evolution of AU-

TOSAR. Their expectations meet our findings for the majority of the topics such as the

most unstable releases, the general behaviours of AUTOSAR and the most common

types of changes. Furthermore, question 4, which was directly associated with SQ3 as-

sess the efficiency of the NoC considered and the reliability of our results. We asked to

choose the AUTOSAR requirement specifications most affected by the evolution from

version 4.0.3 to the last one. We provided a set of answers composed by seven AU-

TOSAR documents: three with a significant NoC, one with a medium NoC and three

with a low NoC. Figure 6.22 shows the results.

Also in this case the expectations of the experts were aligned with our findings.

In the second part of the survey, we focused on two requirements specifications for

each participant. We personalized the questions by maintaining a common structure

between all the surveys, in order to analyse the data. Figure 6.23 shows the results from

question 4 to question 10.

Again the answers meet the results and assess the precision of metrics used for analys-

ing the requirements within a single set. The questions were based on requirements

specifications about both SWS and TPS, and concerned the most common types of

change in a specific document, the behaviours of set of requirements across all the re-

leases and the stability of requirements categories such as basic software and design.

The documents used for the validation are TPS_ECUConfiguration, TPS_SystemTem-

plate, SWS_Com, SWS_ComManager, SWS_FLexRayNetworkManagement, and

SWS_CanManage, see appendix A for details.

Figure 6-22 Results for question 4

Figure 6-23 Survey results about the last 6 questions

Discussion

33

The validation represents an assessment of the findings obtained with the proposed

metrics. The outcomes show a correspondence between the experts’ expectations and

our findings. This means that our set of metrics can indeed be used for measuring the

evolution of system requirements and are therefore applicable for monitoring the

changes and for facilitating their understanding.

7. Discussion

In this section we discuss the results we obtained. Firstly, we describe interesting find-

ings observed during the analysis and the measurements of AUTOSAR such as incon-

sistencies and considerations on the results. Then, we answer the research questions

described in the methodology and we discuss about recommendations and validations.

7.1. Issues and inconsistencies in the AUTOSAR specifications document

We came across several problems during the application of the metrics on the AU-

TOSAR specifications due to its inconsistencies, especially for the first releases. The

high number of changes in the form, the structure, and the conventions used in AU-

TOSAR makes it hard to point out if a requirement has been affected by an actual

change or not. In AUTOSAR the ReqId changed its form either for three or four times

in the last 8 releases, depending on the considered document. For example, the Au-

tosar_SWS_ADCDriver specifications 432 was named ADC432 in releases 4.0.1 and

4.0.2, then it was identified by [ADC432] in release 4.0.3 and finally stabilized in the

following releases with the form [SWS_Adc_00432]. Furthermore not for all the spec-

ifications the ReqId is changed in the same way and even inside the same AUTOSAR

documents there were different versions of the reqId.

Another example is showed in figure 7-1. In this case we use the requirements specifi-

cation named AUTOSAR_SWS_IFXLibrary which specifies the functionality, API and

the configuration of the AUTOSAR libraries. Here the AUTOSAR inconsistencies are

clearly visible. In release 4.0.1 (Fig. a), we can see two requirement: IFX002 repre-

sented by a table and IFX005 which is inside the description of the previous one. In

release 4.0.3 (Fig. b) the reqId form of IFX002 is changed with the addition of the

square brackets. Further, there is also the special character “⌈”, used for wrapping the

content of a requirement. However the changes are applied only to that requirement,

not to the internal one, which has changed the name to IFX003 instead. Lastly in release

4.2.1(Fig. c) the two requirements are completely separated: one with table form and

one with text form. The name is modified again and the special character is used for

both of them. In all three figures, the effective content of requirement [SWS_Ifx_00003]

has not been changed.

As we can see from the presented findings, even though AUTOSAR is one of the most

known standard for automotive systems, there is still a number of inconsistencies in the

last major release. However, we noticed a significant improvement in the last minor

versions, were all the specifications started to follow a common structure. Since in AU-

TOSAR there are several thousands of specifications and it was not feasible to proceed

manually, a tool has been developed with a particular attention for finding and inter-

preting these inconsistencies.

Discussion

34

7.2. Considerations on the results

As described in the metrics definition section, the modifications can be of different

types and need the judgment of the researchers for being considered as changes or not.

During our analysis we found an unexpected behaviour of the NoM metric so we de-

cided to investigate it further.

By applying our measurements, we discovered a trend among the number of modifica-

tions in the last releases. The NoC was straightforward until the last release, when it

showed discontinuity, presented in figure 7-2 a, in a form of a strong increase. There-

fore we decided to analyse, using the tool we developed, different types of modification

from 4.2.1 to 4.2.2 in order to understand the cause of this discontinuity. We discovered

that AUTOSAR has renamed one requirement specification from AUTOSAR_SWS_De-

velopmentErrorTracer to AUTOSAR_SWS_DefaultErrorTracer. As a consequence, all

the requirements which contained the word “development” (in that context, but not

necessarily in the same specifications) have been renamed as well. We collected the

Figure 7-1 Requirement taken from different releases of AUTOSAR_SWS_IFXLibrary.

Fig. a

Fig. b

Fig. c

Discussion

35

data again, this time by excluding this common change, and the new results clearly

show that the straightforwardness is preserved through all the last releases.(Fig b)

The 27% of modifications were related to this change. We decided to perform our anal-

ysis without considering it, since it was not an effective change to the semantic of the

requirements.

7.3. Research questions

Our results confirm that AUTOSAR clearly distinguishes the roles of the releases by

adding new features and functionalities, under the form of requirements, in the minor

releases, and by providing bug fixes and refinements in the revisions. Furthermore, we

assessed that AUTOSAR requirements evolution is characterized by a significant NoC,

mainly composed by additions and modifications, which implies a substantial enlarge-

ment of the standard. Lastly, the metrics stated that AUTOSAR achieved a considerable

maturity in the last versions of the major release by decreasing the total NoC and in-

creasing the accuracy and the HRMI. We provide separated answers for each research

question described in the research methodology.

SQ1: Which releases of a software system are most stable and which one change most?

By reading our results and analysis, we can observe at least two trends:

I. The minor releases are prone to more changes than the revisions

II. The first releases (from 4.0.1 to 4.1.1) are more unstable than the following ones.

The AUTOSAR major release 4.x has been significant in terms of evolution. With a

strong increment of features, stated by the heat map in Table 6-2 and the chart in 6-7,

AUTOSAR experienced a significant number of changes, both additions and modifica-

tions. According to the results, the majority of changes come from the first releases.

This is caused by two factors. Firstly, between R01 and R11, AUTOSAR changed the

structure, the form, and the conventions of the requirements document for several times

as described in 7.1, forcing a complete review of the requirements both in terms of

content and appearance. As a consequence, many requirements were changed in differ-

ent ways. Secondly, AUTOSAR has introduced a huge number of features, such as the

possibility to switch off the ECUs when they are not used, the automated cruise control

and many others. These features not only require the additions of new requirements,

specifications or packages, but also the modifications of many already existent items

for changing across the dependencies, APIs etc. However, after R11, the AUTOSAR

architecture acquired stability and maturity with a less number of changes testified by

the NoC in Figure 6-8 and the HRMI chart in Figure 6-9.

Figure 7-2 NoM for the last releases.

Fig. a Fig. b

Discussion

36

SQ2: Which types of changes are more common and how they are connected with the

releases?

The most common types of changes are additions and modifications. AUTOSAR had

a clear expansion during this major release, with a small number of deletions, except

for the first minor release. We provide these measurements in the charts of the general

results section, in Figure 6-10 and 6-11. Even though the total number of additions is

alike to the total number of modifications, their behaviour through the releases is com-

pletely different. The additions are usually extremely low, with only three high peaks

that correspond to two minor releases and to R03. The modifications are more straight-

forward with similar values through all the releases and without a significant peak. In

conclusion we can assert that in the minor releases (or in the first ones that are more

unstable) AUTOSAR adds a huge number of requirements which likely correspond to

new features, while in all the revisions the main task was to fix bugs and inconsistencies

without expands the architecture and the functionalities.

SQ3: Which requirements specifications are most unstable?

As observed in the results section, in figures 6-13 and 6-14, the most unstable specifi-

cations usually changes taking in considerations different pairs of releases. However

we observed that the majority of unstable specifications are related to ECU communi-

cation. FlexRay, Sae j1939, Ethernet, TcpIp etc. are network protocols which specify

communication buses. The communication between ECUs is one important aspect of

the basic software system. The introduction of new features which require new func-

tionalities for the ECU communication (such as a certain speed or a precise way to

communicate data) bring many changes to the related modules.

SQ4: Which categories of requirements are most stable and which ones are mostly af-

fected by the evolution of the system?

In the AUTOSAR case study we analysed the requirements by diving them in SWS,

software functional requirements, and TPS, design requirements. For both of them AU-

TOSAR provides several packages with many specifications documents. The majority

of the requirements analysed were from SWS. According to the results in Figures 6-15,

6-16, 6-17 and in Table 6-3, we can make the following observation:

Design requirements and basic software requirements are both affected by the evolu-

tion of the system, but their behaviour through all the releases is completely different.

The TPS requirements have been introduced later and are stable, the SWS have been

introduced earlier and are prone to modifications.

For SWS and TPS, the frequencies of changes are pretty similar, however, their require-

ments history followed two different ways. The most of the design requirements have

been added in the last major release. The unstability of the TPS documents and specifi-

cations is given by the addition, which is considered a change as well as the modifica-

tion. Apart from that, the TPS items and constraints are actually stable and accurate

since only few of them are changed after their additions. However we need to consider

an addition as an actual change since they imply effort for being adopted by the engi-

neers in OEMs as well as the modifications. On the other hand, the SWS specifications

have a longer lifecycle, even if there are many additions, and are more affected by

changes, especially by modifications.

Discussion

37

SQ5: Which types of requirements are more characterized by subsequent changes and

which one are more reliable?

According to our study and results, showed in Table 6-4 and Figures 6-18 and 6-19, we

can make two further observations:

I. The requirement changed in the revisions are usually derived from a change in

a minor releases.

II. A requirement added in the last major release is likely not changed again in the

following versions.

We found these behaviours by using the measurements and by comparing different

groups of requirements. In AUTOSAR the requirements added in the last major release

are usually stable and are characterized by high accuracy. On the other hand we noticed

that a great number of changes in the revisions are modifications or deletions of corre-

sponding relevant changes in the minor releases. Generally, modifications may lead to

other changes in the subsequent releases.

7.4. Recommendations

The results and the discussion are based on the case study of AUTOSAR conducted at

Volvo Car Group. Although the objective of this study was to achieve general perspec-

tives and observations on requirements evolution, we had to develop the taxonomy of

modifications and the NoC according to the automotive context. For this reason, in or-

der to apply the proposed metrics in other domains, we believe that the taxonomy of

changes should be refined through the analysis of the analysed industrial context, as we

explained in our research methodology. We believe that the rest of the application and

interpretation of the metrics is applicable to other contexts as well.

7.5. Threats to validity

In order to give a better understanding of this study and of its outcomes, we discuss the

threats to validity, according to Cook and Campbell [24], from four perspectives: Inter-

nal, external, construct and conclusion validity.

Internal validity

Internal validity concerns the accuracy of the results. In our study, this means that the

measurements and the outcomes should not meet randomly. There are three threats to

internal validity that should be considered. The first one was the fact that the measure-

ment process was performed by developing and using a tool for comparing different

specifications in different releases. In order to validate the outcomes, we tested the tool

several times by exporting simple comparison between single specifications and by

comparing them either with a manually revision or with the micro and macro outcomes.

The second threat was related to what is considered as requirements in AUTOSAR

specifications. Not only the specification items and constraints described in this thesis

can be considered as requirements, but also everything written in AUTOSAR specifi-

cations can be considered as a requirement as it is mandatory to be followed when de-

veloping AUTOASR compliant automotive systems. However, AUTOSAR clearly de-

fined as specification items (and constraints) all the important statements contained in

the test. By reading and analysing AUTOSAR specifications we noticed that all the

most significant information are specified as specification items whilst the remaining

Conclusion

38

parts are usually examples, rationales, and figures for a better understanding of the ac-

tual specification items. For this reason, we believe that our results are still valid since

they captured most of the main requirements, and they take into consideration changes

in the actual content of the requirements.

The third threat concerns the considered releases, i.e. we analyse the evolution for only

the major release 4.x. As already explained in the research methodology, this has been

decided according to the needs of our industrial partner Volvo Car Group. Furthermore,

by discussing this scope of releases with an AUTOSAR expert in several study sessions,

we agreed to consider only major release 4.x since it is the newest major release of

AUTOSAR that has been used for many years (since 2009) and it contains most features

and requirements that are currently used by the majority of car OEMs. It also contains

a number of minor releases and revisions which made our evolution analysis possible.

Furthermore, the objective of this thesis is to perform measurements in order to facili-

tate the updates of large software systems based on the changes in the requirements.

Therefore it is not considered significant to analyse very old aspects of evolution.

External validity

External validity concerns generalization of results. An external threat to this study was

concerned with its aim to make general considerations in contraposition with the out-

comes, which are just applied to a single case study. Although we cannot claim a gen-

eralization without testing the proposed metrics on others case studies, we believe that

these metrics would produce valid and good results also in other contexts. The majority

of the metrics are adopted by conducting a literature review on existing studies per-

formed in different contexts and with their own validations.

Construct validity

Construct validity concerns the mismatch between the theory and observations. This

study analysed the accuracy of the measures in the context of its application. We en-

sured this accuracy by relying on the GQM approach, which guarantees an accurate

selection of the metrics.

Conclusion validity

Conclusion validity is the degree to which conclusions and relationships in our data are

reasonable. In our case study the conclusions were derived by applying the metrics on

the data collected, obtaining the results and finally comparing them with the expecta-

tions of the experts, as described in section 6.3. The conclusion was that the results

could describe properly the characteristics of AUTOSAR.

8. Conclusion

In this paper, we present and evaluate the set of metrics that can be used for analysing

the evolution of requirement in large software systems. Most of the metrics are based

on the already existing metrics such as the ones counting the number of changes in the

requirements and their stability. For counting the number of modified requirements

(NoM), we also defined the taxonomy of modifications in order to exclude the changes

that do not have any semantic impact on the system (e.g., change of requirement IDs or

grammar fixes). Finally, we propose a new metric named accuracy that complements

the other metrics in assessing the reliability of requirement documents.

Conclusion

39

We calculate and validate the proposed metrics in a case study at Volvo Car Group

using AUTOSAR requirements evolution as a unit of analysis. We used these metrics

to assess the impact of AUTOSAR requirements changes on the AUTOSAR based au-

tomotive systems. This in turn helped us to provide the answer to our main research

question of how to efficiently measure the evolution of system requirements in large

software systems in order to facilitate their updates with new features.

Our results show that the requirements evolution should be analysed and measured from

different points of view, i.e., from release, specification, and requirement point of view.

From the first two it is possible to observe and understand the nature and the size of the

evolution, whilst from the third it is possible to identify and measure trends and specific

behaviours between different categories or types of requirements.

We also concluded that by applying the set of proposed metrics to different version of

a large software system, it is possible to assess the size of the evolution and list the

specifications affected by this evolution. This knowledge can help organizations re-

sponsible for managing large software systems in understanding the area of the system

where most effort is needed for its update and also to make strategic decision based on

that, e.g., which features shall be supported in new versions of the system. Furthermore,

efficiently measuring and comparing requirements specifications makes the learning

process faster for the engineers involved in the system evolution management and can

help them to adopt new features in a more efficient way.

We identified several area of interests for potential further work. Since the requirement

evolutions is nowadays a challenging process both for the companies and researchers,

this thesis is considered as a pilot work in this field. There are several interesting ways

for improving the set of metrics we proposed or for developing a method for their in-

dustrial application. Some areas we recommend to be further explored are listed below:

I. Validate and test the metrics, especially the accuracy metric as a newly pro-

posed metric, in other industrial contexts or products.

II. Analyse the user point of you. Measure the effort needed for adopting new fea-

tures in the new versions of the system and understanding which requirements

are critical i.e., their changes are considered challenging to be fulfilled.

III. Developing a method, based on our experience, for defining step by step ap-

proach on how to efficiently study the evolution of system requirement in an

industrial context based on the set of metrics.

References

40

References

[1] S.D.P. Harker, K.D. Eason, and J.E. Dobson. “The change and evolution of

requirements as a challenge to the practice of software engineering”. In Pro-

ceedings of the IEEE International Symposium on Requirements Engineer-

ing, pages 266–272, San Diego, California, USA, January. IEEE Computer

Society Press. (1993).

[2] Stuart Anderson and Massimo Felici. “Controlling requirements evolution:

An avionics case study”. In Proceedings of SAFECOMP 2000, 19th Inter-

national Conference on Computer Safety, Reliability and Security, LNCS

1943, pages 361–370, Rotterdam, The Netherlands, Springer-Verlag (2000).

[3] AUTOSAR. Automotive Open system architecture. URL: www.autosar.org,

(2003).

[4] IEEE. Std 982.1 - IEEE Standard Dictionary of Measures to Produce Relia-

ble Software, 1988.

[5] Anderson S. and Felici M., “Requirements evolution from process to prod-

uct oriented management” , in Proceedings 3rd PROFES 2001

[6] Shi L et al. “Learning from Evolution History to Predict Future Requirement

Changes”, in: Proceedings of RE 2013, pp. 135–144.

[7] Sommerville. “Software Requirements”. In Software Engineering Seventh

Edition (2004).

[8] B. Manfred, E. Simmons. “Characteristics of a good Requirement”. In Soft-

ware & Systems Requirements Engineering (2009), pp.9-15.

[9] Software Engineering Standards Committee. “IEEE Recommended Practice

for Software Requirements Specifications”. IEEE Std 830, (1998).

[10] Hull E, Jackson K, Dick J. “Requirements Engineering”, 3rd ed. 2011

[11] Davis, N. Nurmuliani; P. Sooyong; D. Zowghi. “Requirements Change:

What’s the Alternative?”. In Proc. 32nd COMPSAC, pp. 635-638, (2008).

[12] Wang, H.; Li, J.; Wang, Q. and Yang, Y. "Quantitative analysis of require-

ments evolution across multiple versions of an industrial software product",

in Proceedings 17th APSEC, pp. 43-49, 2010.

[13] N. Nurmuliani, D. Zowghi, and S. Fowell, "Analysis of Requirements Vol-

atility during Software Development Life Cycle," in Australian Software

Engineering Conference, 2004, p. 28.

[14] G. Stark, A. Skillicorn, and R. Smeele, "A micro and macro based exami-

nation of the effects of requirements changes on aerospace software mainte-

nance," in Aerospace Conference, 1998. Proceedings.,IEEE, 1998, pp. 165-

172 vol.4.

http://www.autosar.org/

References

41

[15] D. Durisic, M. Staron, M. Tichy, “ARCA - Automated Analysis of AU-

TOSAR Meta-model Changes”, in International Workshop on Modelling in

Software Engineering (2015).

[16] D Durisic, M Staron, M Tichy, J Hansson, “Evolution of Long-Term Indus-

trial Meta-Models--An Automotive Case Study of AUTOSAR Software En-

gineering and Advanced Applications (SEAA)” , 40th EUROMICRO, 2014

[17] Broy M., Kruger I. H., Pretschner A., and Salzmann C., “Engineering Au-

tomotive

Software” Proceedings of the IEEE | Vol. 95, No. 2, February 2007

[18] V. Vaishnavi and W. Kuechler. “Design science research Methods and Pat-

terns”. Second Edition. CRC Press, Boca Raton, FL. 2015

[19] C. Wohlin. “Guidelines for Snowballing in Systematic Literature Studies

and a Replication in Software Engineering”. In Proceedings of the 18th In-

ternational Conference on Evaluation and Assessment in Software Engi-

neering. ACM (2014).

[20] WinMerge Development Team, Version: WinMerge 2.14.0, http://win-

merge.org/ , 2013

[21] V. Basili, G. Caldiera, and H. Rombach. “The Goal Question Metric Ap-

proach. “, Encyclopedia of Software Engineering, Wiley, 1994.

[22] P. Runeson and M. Host. “Guidelines for conducting and reporting case

study research in software engineering”. Empirical Software Engineering,

pp. 131-164, 2009.

[23] S. Balaji, M.S. Murugaiyan. “Waterfall vs V-Model vs Agile: A compara-

tive Study on SDLC”. In International Journal of Information Technology

and Business Management, Vol.2 No.1, (2012).

[24] T. Cook and D. Campbell. “Quasi-Experimentation: Design & Analysis Is-

sues for Field Settings”. Houghton Mifflin, 1979.

http://winmerge.org/
http://winmerge.org/

Appendix A

Appendix A

Micro Results

1) Documents considered : AUTOSAR SWS COM

 Versions compared: 4.2.1 – 4.2.2

 Legend:

o Orange: light modification

o Blue: already existent but without belonging to any requirements.

 Total number of changes: 29 (Relevant: 19):

o Modified: 19 (10)

o Merged: 1

o Deleted: 3

o Added: 6

 Mod Mer Split Dele Add

[SWS_Com_00675]

[SWS_Com_00734]

[SWS_Com_00762]

[SWS_Com_00135]

[SWS_Com_00742]

[SWS_Com_00743]

[SWS_Com_00770]

[SWS_Com_00736]

[SWS_Com_00789]

[SWS_Com_00393]

[SWS_Com_00486]

[SWS_com_00845]

[SWS_com_00863]

[SWS_Com_00838]

[SWS_Com_00578]

[SWS_Com_00864]

[SWS_Com_00865]

[SWS_Com_00348]

[SWS_Com_00861]

[SWS_Com_00858]

[SWS_Com_00862]

[SWS_Com_00001]

[SWS_Com_00260]

[SWS_Com_00475]

[SWS_Com_00670]

[SWS_Com_00726]

[SWS_Com_00766]

[SWS_Com_00859]

[SWS_Com_00814]

Appendix A

2) Document considered : AUTOSAR TPS SystemTemplate (first 300pp)

 Versions compared: 4.2.1 – 4.2.2

 Legend: orange colour – light modification (text/grammar not context)

Table 1

 Total number of changes: 23 (relevant 22)

o Modified: 5 (4)

o Split: 1

o Deleted: 1

o Added: 16

Table 2

 Changes within meta-classes.

 Mod Mer Split Dele Add

[constr_3219]

[constr_3505]

[constr_3215]

[constr_3198]

[constr_3199]

[constr_3081]

[TPS_SYST_02082]

[TPS_SYST_02083]

[TPS_SYST_02084]

[TPS_SYST_02085]

[TPS_SYST_02086]

[TPS_SYST_02087]

[TPS_SYST_02088]

[TPS_SYST_02089]

[TPS_SYST_02090]

[TPS_SYST_01052]

[TPS_SYST_02091]

[TPS_SYST_02079]

[TPS_SYST_02076]

[TPS_SYST_01065]

[TPS_SYST_01066]

[TPS_SYST_01157]

 Nam Pack Base At-

trib.

LinSlaveConfig 3

LinSlaveConfigIdent

EthernetCommunicationCon-

nector

 1

ClientServerToSignalMapping 2

PncMapping 1

Appendix A

Macro results

1) Documents considered : AUTOSAR SWS COM

 Version Compared: from 4.0.1 to 4.2.2

 Requirements analysed: COM696 ; COM 260 ; COM734

Metrics

Frequency, [Change degree]: r=
1

𝑛−1
∑ 𝑖𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑(𝑟, 𝑖)

𝑛

𝑖=2

 COM696: 0,29

 COM260: 0,29

 COM734: 0,71

Sequence, [change degree]: 𝑟 = max(𝑁(𝑟, 𝑖)) , (2 ≤ 𝑖 ≤ 𝑛)

 COM696: 1

 COM260: 2

 COM734: 3

Distance, [length of change time]: r= ∑ (𝑛 − 𝑖)
𝑛

𝑖=2

 COM696: 8

 COM260: 6

 COM734: 13

2) Documents considered: AUTOSAR TPS System Template

 Version Compared: from 4.0.1 to 4.2.2

 Requirements/constraints analysed: [constr_3002], [constr_3018],

[TPS_SYST_01052], [TPS_SYST_01056].

Metrics

 4.0.1 4.0.2 4.0.3 4.1.1 4.1.2 4.1.3 4.2.1 4.2.2

COM696 / MODI-
FIED

/ / / SPLIT-
TED

/ /

COM260 / MODI-

FIED

/ / / / / DE-

LETED(MERGED)

COM734 / ADDED / MODI-
FIED

/ MODI-
FIED

MODI-
FIED

MODIFIED

 4.0.1 4.0.2 4.0.3 4.1.1 4.1.2 4.1.3 4.2.1 4.2.2

constr_3002 ADDED / / / / / / /

constr_3018 ADDED / / MODI-
FIED

/ / / /

TPS_SYST_01052 - - - ADDED MODI-

FIED

/ / MODI-

FIED

TPS_SYST_01056 - - - ADDED MODI-
FIED

/ / /

Appendix A

Frequency, [Change degree]: r=
1

𝑛−1
∑ 𝑖𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑(𝑟, 𝑖)

𝑛

𝑖=2

 constr_3002: 0

 constr_3018: 0,14

 TPS_SYST_01052: 0,5

 TPS_SYST_01052: 0,25

Sequence, [change degree]: 𝑟 = max(𝑁(𝑟, 𝑖)) , (2 ≤ 𝑖 ≤ 𝑛)

 constr_3002: 0

 constr_3018: 1

 TPS_SYST_01052: 1

 TPS_SYST_01052: 1

Distance, [length of change time]: r= ∑ (𝑛 − 𝑖)
𝑛

𝑖=2

 constr_3002: 0

 constr_3018: 4

 TPS_SYST_01052: 3

 TPS_SYST_01052: 4

3) Documents considered: AUTOSAR TPS System Template

 Version Compared: from 4.0.1 to 4.2.2

 Classes analysed: EcuInstance (ECU), SenderReceiverCompositeEl-

ementToSignalMapping (SRCETSM), IPduTriggering (IPDU), FlatIn-

stanceDescriptor (FID)

 Legend of changes: Name(N) - package (P) – Base (B) – Attribute (A)

 4.0.1 4.0.2 4.0.3 4.1.1 4.1.2 4.1.3 4.2.1 4.2.2

ECU / B - As As / / / As /

SRCETSM / - / ADDED / A / /

IPDU - N - A / / / / / A

FID / / As / / / / /

Appendix B

Appendix B

Validation surveys.

I. General questions

1. Which releases of AUTOSAR are prone to more changes and which are most stable?

☐ All the releases are equally prone to changes.

☐ The two main releases (i.e., 4.1.1 and 4.2.1) present more changes than others.

☐ Generally the first releases (4.0.2, 4.0.3, 4.1.1) are more unstable than the last ones

(from 4.1.2 to 4.2.2).

☐ I don’t know

2. In your opinion there are more additions or deletions taking count of all the releases?

☐ Additions, AUTOSAR continues to growth.

☐ Deletions, AUTOSAR has reduced the number of requirements.

☐ Roughly the same number, AUTOSAR maintains a stable number of requirements.

☐ I don’t know

3. Which of the following charts represent better to you the evolution of AUTOSAR

through its requirements?

☐

Appendix B

☐

☐

☐ I don’t know.

4. Based on your knowledge, which documents are mostly affected by changes from

4.0.3 to 4.2.2? (choose more than one answer)

☐ AUTOSAR_SWS_DiagnosticEventManager

☐ AUTOSAR_SWS_CANInterface

☐ AUTOSAR_SWS_OS

☐ AUTOSAR_SWS_EEPROMAbstraction

☐ AUTOSAR_SWS_DiagnosticCommunicationManager

☐ AUTOSAR_SWS_TTCANDriver

☐ AUTOSAR_TPS_SystemTemplate

☐ I don’t know

Appendix B

II. Specific questions

a. Expert 1

The next questions focus on the following documents:

 AUTOSAR_SWS_COM and AUTOSAR_SWS_BSWModeManager.

1. SWS_COM is a document which:

☐ Always changes a lot (e.g., more than half of requirements changed), especially in the

main releases.

☐ Is usually stable, except for the main releases in which it has been strongly changed.

(i.e., a high number of additions, modifications and deletions)

☐ It change quite a lot, more in the “past” (i.e., from 4.0.1 until 4.1.1) but since there are

many requirements we can consider it quite stable.

☐ I don’t know

2. SWS_BSWModeManager is a document which:

☐ Always changes a lot, especially in the main releases.

☐ Is usually stable, except for the release 4.0.3 in which it has more changes. (i.e., a high

number of additions) and the last one (4.2.1 to 4.2.2)

☐ Is complete stable through all the versions.

☐ I don’t know

3. Based on your knowledge, which are the most common type of change in the SWS_

BSWModeManager ? (more than one answer is allowed if necessary)

☐ Additions

☐ Modifications

☐ Deletions

☐ I don't know

4. Based on your knowledge, which are the most common type of modification in the

SWS_COM from 4.0.2 to 4.0.3? (you can write your own on the “others” field, if you

want)

☐ Changes in API specifications

☐ Changes in the functional specifications

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

☐ No enough changes or no common type of changes

☐ I don't know

☐ Others

5. Based on your knowledge, which are the most common type of modifications in the

SWS_COM from 4.0.3 to 4.1.1?

Appendix B

☐ Changes in API specifications

☐ Changes in the functional specifications

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

☐ No enough changes or no common type of changes

☐ I don't know

☐ Others

6. Based on your knowledge, which are the most common type of modifications in the

SWS_COM from 4.1.3 to 4.2.1?

☐ Changes in the function definitions (in the API specifications). For example the sintax,

or the return value

☐ No enough changes or no common type of changes

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

☐ I don't know

☐ Others

b. Expert 2

The next questions focus on the following documents:

 SWS_CANNetworkManagement and SWS_FlexRayNetworkManagement.

1. SWS_CANNetworkManagement is a document which:

☐ Always changes a lot (e.g., more than half of requirements changed), especially in the

main releases.

☐ Is usually stable, except for the main releases in which it has been strongly changed.

(i.e., a high number of additions, modifications and deletions)

☐ Is quite stable in general, even for the main releases which present more changes but

stil not that many.

☐ I don’t know

2. SWS_ FlexRayNetworkManagement is a document which:

☐ Always changes a lot, especially in the main releases.

☐ Is usually stable, except for the main release 4.1.1 in which it has been strongly changed.

(i.e., a high number of additions, modifications and deletions).

☐ Is complete stable through all the releases.

☐ I don’t know

3. Based on your knowledge, which are the most common type of change in the

SWS_CANNetworkManagement? (more than one answer is allowed if necessary)

☐ Additions

Appendix B

☐ Modifications

☐ Deletions

☐ I don't know

4. Based on your knowledge, which are the most common type of modification in the

FlexRayNetworkManagement from 4.0.2 to 4.0.3? (you can write your own on the

“others” field if you want)

☐ Changes in the features of a configuration parameters or switches is reflected in

changes on the requirements

☐ No enough changes or no common type of changes

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

☐ I don't know

☐ Others

5. Based on your knowledge, which are the most common type of modifications in the

FlexRayNetworkManagement from 4.0.3 to 4.1.1?

☐ Changes in the features of a configuration parameters or switches is reflected in

changes on the requirements

☐ No enough changes or no common type of changes

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

☐ I don't know

☐ Others

6. Based on your knowledge, which are the most common type of modifications in the

FlexRayNetworkManagement from 4.1.3 to 4.2.1?

☐ Changes in the features of a configuration parameters or switches is reflected in

changes on the requirements

☐ No enough changes or no common type of changes

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

☐ I don't know

☐ Others

c. Expert 3

The next questions focus on the following documents:

 AUTOSAR_SWS_COM and AUTOSAR_SWS_COMManager.

1. SWS_COM is a document which:

Appendix B

☐ Always changes a lot (e.g., more than half of requirements changed), especially in the

main releases.

☐ Is usually stable, except for the main releases in which it has been strongly changed.

(i.e., a high number of additions, modifications and deletions)

☐ It change quite a lot, more in the “past” (i.e., from 4.0.1 until 4.1.1) but since there are

many requirements we can consider it quite stable.

☐ I don’t know

2. SWS_COMManager is a document which:

☐ Always changes a lot, especially in the main releases.

☐ Is usually stable, except for the release 4.0.3 in which it has more changes. (i.e., a high

number of additions).

☐ Is complete stable through all the releases.

☐ I don’t know

3. Based on your knowledge, which are the most common type of change in the SWS_

COMManager ? (more than one answer is allowed if necessary)

☐ Additions

☐ Modifications

☐ Deletions

☐ I don't know

4. Based on your knowledge, which are the most common type of modification in the

SWS_COM from 4.0.2 to 4.0.3? (you can write your own reasons on the “others”

field, if you want)

☐ Changes in API specifications

☐ Changes in the functional specifications

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

☐ No enough changes or no common type of changes

☐ I don't know

Others:

5. Based on your knowledge, which are the most common type of modifications in the

SWS_COM from 4.0.3 to 4.1.1? (you can write your own reasons on the “others”

field, if you want)

☐ Changes in API specifications

☐ Changes in the functional specifications

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

Appendix B

☐ No enough changes or no common type of changes

☐ I don't know

☐ Others

6. Based on your knowledge, which are the most common type of modifications in the

SWS_COM from 4.1.3 to 4.2.1? (you can write your own reasons on the “others”

field, if you want)

☐ Changes in the function definitions (in the API specifications). For example the syntax,

or the return value

☐ No enough changes or no common type of changes

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

☐ I don't know

☐ Others

d. Expert 4

The next questions focus on the following documents:

 AUTOSAR_SWS_DiagnosticCommunicationManager and AUTOSAR_SWS_Diagnosti-

cEventManager.

1. DCM is a document which:

☐ Always changes a lot especially in the main releases, but even in the others.

☐ Is usually stable, except for the main releases in which it has been strongly changed.

(i.e., a high number of additions, modifications and deletions)

☐ It change a lot in the “past” (i.e., from 4.0.1 until 4.1.1) and now is more stable.

☐ I don’t know

2. DEM is a document which:

☐ Always changes a lot especially in the main releases, but even in the others.

☐ Is usually stable, except for the main releases in which it has been strongly changed.

(i.e., a high number of additions, modifications and deletions)

☐ It change a lot in the “past” (i.e., from 4.0.1 until 4.1.1) and now is more stable.

☐ I don’t know

3. Based on your knowledge, which are the most common type of change in DEM?

(more than one answer is allowed if necessary)

☐ Additions

☐ Modifications

☐ Deletions

☐ I don't know

Appendix B

4. Based on your knowledge, which are the most common type of modification in the

DCM from 4.0.2 to 4.0.3? (you can write your own on the “others” field, if you

want)

☐ Changes in API specifications(e.g., the syntax or the parameters or the description of

the functions and the callout).

☐ Changes in the functional specifications

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

☐ No enough changes or no common type of changes

☐ I don't know

☐ Others

5. Based on your knowledge, which are the most common type of modifications in the

DCM from 4.0.3 to 4.1.1?

☐ Changes in API specifications (e.g., the syntax or the parameters or the description of

the functions and the callout).

☐ Changes in the functional specifications.

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.).

☐ No enough changes or no common type of changes

☐ I don't know

☐ Others

6. Based on your knowledge, which are the most common type of modifications in the

DCM from 4.1.3 to 4.2.1?

☐ Changes in the API specifications). (e.g., the syntax or the parameters or the description

of the functions and the callout).

☐ No enough changes or no common type of changes

☐ Change in AUTOSAR conventions (e.g., SHALL to MUST or changes in the require-

ment name, structure, form etc.)

☐ I don't know

☐ Others

e. Expert 5

The next questions focus on the following documents:

 TPS_SystemTemplate and TPS_ECUConfiguration.

1. TPS_SystemTemplate is a document which:

☐ Always changes a lot, especially in the main releases.

Appendix B

☐ Is usually stable, except for the main releases in which it has been strongly changed.

(i.e., a high number of additions, modifications and deletions)

☐ Doesn’t have a great number of specifications but just constraints.

☐ I don’t know

2. TPS_ECUConfiguration is a document which:

☐ Always changes a lot, especially in the main releases.

☐ The requirements have been introduced early (before 4.0.1), thus the requirements are

more “mature” and it has the 20% -25% of changes at most in the main releases.

☐ The requirements have been introduced early (before 4.0.1), however the requirements

are still unstable and it has 70% -75% of changes in the main releases.

☐ I don't know

3. Based on your knowledge, which are the most common type of change in the system

template? (more than one answer is allowed if necessary)

☐ Additions

☐ Modifications

☐ Deletions

☐ I don't know

4. Based on your knowledge, which are the most common type of modification in the

system template from 4.0.2 to 4.0.3?

☐ Changes in the name of some meta-classes

☐ No enough changes or no common type of changes

☐ Additions of values (e.g., the attribute x of y can have the following values)

☐ I don't know

☐ Others

5. Based on your knowledge, which are the most common type of modifications in the

system template from 4.0.3 to 4.1.1?

☐ Changes in the name of some meta-classes

☐ No enough changes or no common type of changes

☐ Additions of values (e.g., the attribute x of y can have the following values)

☐ I don't know

☐ Others

6. Based on your knowledge, which are the most common type of modifications in the

system template from 4.1.3 to 4.2.1?

☐ Changes in the name of some meta-classes

Appendix B

☐ No enough changes or no common type of changes

☐ Additions of values (e.g., the attribute x of y can have the following values)

☐ I don't know

☐ Others

	Analysing the Evolution of System Requirements
	Acknowledgments
	1. Introduction
	2. Background
	2.1. Requirements engineering
	2.2. Software requirements specification
	2.3. Requirements hierarchy and traceability
	2.4. Requirements evolution management

	3. Related work
	4. Research methodology
	4.1. Research questions
	SQ1: Which releases of a software system are most stable and which one change most?
	SQ2: Which types of changes are more common and how they are connected to the releases?
	SQ3: Which requirements specifications are most unstable?
	SQ4: Which categories of requirements are most stable and which ones are mostly affected by the evolution of the system?
	SQ5: Which types of requirements are more characterized by subsequent changes and which one are more reliable?

	4.2. Research Method
	4.3. Literature review
	4.4. AUTOSAR analysis
	4.5. Definition of the metrics
	4.6. Evaluation of the metrics on AUTOSAR
	4.6.1. Application of the metrics
	4.6.2. Validation of the results

	5. Metrics definition
	5.1. Taxonomy of changes
	5.2. Metrics

	6. Application of the metrics
	6.1. Case study context
	6.1.1. Automotive system development process and the role of AUTOSAR
	Basic software requirements
	Design requirements

	6.1.2. AUTOSAR requirement structure and conventions

	6.2. Results
	6.2.1. Micro and macro analysis
	6.2.2. General Results (SQ1, SQ2, SQ3)
	6.2.3. Template and Basic Software Requirements results (SQ4, SQ5)

	6.3. Validation

	7. Discussion
	7.1. Issues and inconsistencies in the AUTOSAR specifications document
	7.2. Considerations on the results
	7.3. Research questions
	SQ1: Which releases of a software system are most stable and which one change most?
	SQ2: Which types of changes are more common and how they are connected with the releases?
	SQ3: Which requirements specifications are most unstable?
	SQ4: Which categories of requirements are most stable and which ones are mostly affected by the evolution of the system?
	SQ5: Which types of requirements are more characterized by subsequent changes and which one are more reliable?

	7.4. Recommendations
	7.5. Threats to validity
	Internal validity
	External validity
	Construct validity
	Conclusion validity

	8. Conclusion
	References
	Appendix A
	Micro Results
	Macro results

	Appendix B
	Validation surveys.
	I. General questions
	II. Specific questions
	a. Expert 1
	b. Expert 2
	c. Expert 3
	d. Expert 4
	e. Expert 5

