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Abstract
Diatoms are eukaryotic microalgae that contain genes from various sources, including bac-

teria and the secondary endosymbiotic host. Due to this unique combination of genes, dia-

toms are taxonomically and functionally distinct from other algae and vascular plants and

confer novel metabolic capabilities. Based on the genome annotation, we performed a

genome-scale metabolic network reconstruction for the marine diatom Phaeodactylum tri-
cornutum. Due to their endosymbiotic origin, diatoms possess a complex chloroplast struc-

ture which complicates the prediction of subcellular protein localization. Based on previous

work we implemented a pipeline that exploits a series of bioinformatics tools to predict pro-

tein localization. The manually curated reconstructed metabolic network iLB1027_lipid
accounts for 1,027 genes associated with 4,456 reactions and 2,172 metabolites distributed

across six compartments. To constrain the genome-scale model, we determined the organ-

ism specific biomass composition in terms of lipids, carbohydrates, and proteins using Fou-

rier transform infrared spectrometry. Our simulations indicate the presence of a yet

unknown glutamine-ornithine shunt that could be used to transfer reducing equivalents gen-

erated by photosynthesis to the mitochondria. The model reflects the known biochemical

composition of P. tricornutum in defined culture conditions and enables metabolic engineer-

ing strategies to improve the use of P. tricornutum for biotechnological applications.

Introduction
Diatoms are unicellular photosynthetic eukaryotes ubiquitous in marine and freshwater habi-
tats and are responsible for about 20% of the photosynthetic carbon fixation on Earth [1].
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Diatoms are evolutionary evolved from secondary endosymbiosis and harbor many genes of
bacterial origin [2] which is predicted to give these microalgae a wide range of metabolic func-
tions that are distinct from plants, green algae, and red algae [3]. Some of these distinct func-
tions include the formation of silica nanostructures [4], the incorporation of an assimilatory
urea cycle [5], and the breakdown of fatty acids in mitochondria and peroxisomes [6]. Diatoms
also produce high intracellular concentrations of ω-3 fatty acids and other valuable compounds
of biotechnological interest [7].

The marine diatom Phaeodactylum tricornutum is an emerging model diatom because of its
relatively small genome (27.4 megabases) [2], ease of cultivation, and amenability to genetic
engineering. Indeed, genetic systems in P. tricornutummay be the most advanced in microal-
gae, with the recently developed ability to assemble whole chromosomes in yeast [8], knock-
out genes using TALEN technology [9,10], and introduce stable nucleus-localized episomes the
size of small chromosomes via conjugation [11]. Previously developed technologies include
transgenic gene overexpression [12] and gene expression knockdown using RNA interference
or antisense transcript interference [13]. The development of these genetic engineering systems
means that computationally directed experimental manipulations of the diatom genome are
not only possible, but necessary.

One promising strategy that investigates the yet unexplored metabolic capabilities of dis-
tinct organisms such as P. tricornutum is the metabolic network reconstruction, which enables
computational analysis of systems-level responses. Genome-scale metabolic network recon-
structions are derived from the annotated genome and contain information about all known
metabolic reactions in an organism including the stoichiometry, subcellular localization, and
the gene products by which they are catalyzed. The reconstruction process itself is laborious
and iteratively and described, for example, in detail in [14]. The reconstructed network can be
transformed into a genome-scale model of metabolism that can be used to predict metabolic
phenotypes which are represented by flux distributions and have proven to be useful tools, for
example, in the analysis of biological network properties, model-driven discovery, metabolic
engineering and strain design [15,16].

Here, we report the reconstruction of a detailed and compartmentalized genome-scale met-
abolic model for P. tricornutum which provides a comprehensive insight into yet unexplored
metabolic capabilities. We constrained the model with organism-specific biomass equations
generated by Fourier transform infrared spectroscopy. The model predicts the presence of a
surprising chloroplast glutamine-ornithine shunt that transfers reducing equivalents generated
by photosynthesis to the mitochondria. Our findings demonstrate the utility of whole genome
metabolic reconstructions to uncover unexpected biochemistries and to provide an important
in silico template for directing future metabolic engineering efforts.

Materials and Methods

Functional genome annotation
The genome annotation of Phaeodactylum tricornutum was obtained from JGI (http://genome.
jgi-psf.org/Phatr2/Phatr2.home.html). We used the “finished chromosomes” (Phatr2) and
“unmapped sequence” (Phatr2_bd) protein sequences to generate the draft reconstruction.
While working on the reconstruction, an updated genome annotation, Phatr3, with refined
gene models and improved functional annotation became available and exploited as well.
Using a Phatr2 to Phatr3 gene ID mapping table provided by the JCVI, the Phatr2 gene IDs in
the reconstruction were replaced by their corresponding Phatr3 IDs. Phatr3 is available at
Ensembl Protistis (http://protists.ensembl.org/Phaeodactylum_tricornutum/Info/Index).
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The P. tricornutum genome annotation contains many putative enzymes with unknown
function. To facilitate the manual curation of our draft reconstruction we used protein BLAST
(with default settings) to reannotate the predicted proteins. Using the BLAST command line
tool we created a local BLAST database containing all reviewed UniProtKB/SwissProt
sequences having protein evidence at the protein or transcript level [17]. Using an in-house
IPython Notebook script we performed a bidirectional best hits analysis between the predicted
P. tricornutum proteins and the created UniProt BLAST database.

Subcellular localization prediction pipeline
To predict a subcellular localization for each protein we used a refined version of a previously
developed pipeline. We used the updated Phatr3 protein sequences as input for TMHMM 2.0
[18], Mitoprot II 1.101 [19], SignalP 3.0 [20], SignalP 4.0 [21], TargetP 1.1 [22] and HECTAR
[23]. All programs were run using default settings. The resulting files were parsed using in-
house bash scripts and integrated into a single pipeline which was implemented using IPython
Notebook and Pandas.

We extended the pipeline by i) removing nuclear targeted proteins using predictNLS [24],
ii) screening for chloroplast periplasm targeting prior to evaluating for the occurrence of an
endoplasmic reticulum (ER) retention signal, iii) searching for the peroxisome signal in the
very last three C-terminal amino acids, and iv) allowing concomitant localization of proteins to
mitochondria and peroxisome. More details on the prediction pipeline are given in Section A
in S1 File.

Organism-specific biomass composition
Based on the experimental approach of Mayers et al. [25] and [26–29], we determined the bio-
mass composition in terms of lipids, fatty acid methyl ester (FAME), carbohydrates, and pro-
teins using traditional biochemical methods while also examining the Fourier transform
infrared (FTIR) spectrometry profiles of lyophilized and homogenized cell pellets. The bio-
chemical measurements were used in a calibration against their corresponding FTIR peaks,
with the methods described in detail in Section B in S1 File. These dual measurements were
then used to develop linear models with spectra peak height and P. tricornutum biochemical
composition (essentially linear correlation curves) as done by Mayers et al. [25].

By conducting these measurements over a growth curve including samples from nitrogen
replete during exponential growth phase to nitrogen starved during stationary phase, we were
able to achieve large changes in the cellular contents for all of these cellular components in
smooth gradients (Tables A-C in S2 File). This, in turn, allowed us to develop models correlat-
ing FTIR spectra peak heights to cellular composition, thereby facilitating higher-throughput
determinations of cellular biomass composition (Fig A in S1 File, Section B in S1 File). Based
on our experimental data (Tables A-C in S2 File) and previous work [30–38] the biomass equa-
tion was set up as described in Section C in S1 File and Tables D-L in S2 File. The experimental
workflow is depicted in Fig B in S1 File.

Network reconstruction and modeling simulations
Since the general reconstruction process has been described in detail elsewhere [14] we only
provide procedural details specific to this work. To build a draft reconstruction, three reference
models from related photosynthetic organisms were exploited; one network for Chlamydomo-
nas reinhardtii (iRC1080 [39]), and two genome-scale models for Synechocystis sp. PCC6803
(iJN678 [40] and Knoop [41]). Before reconciling the reference networks, we removed the
compartmental pH from iRC1080 and implemented all metabolites at a pH of 7.1. This step
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facilitated the metabolite reconciliation of the reference networks based on metabolite formu-
las. We also made sure that none of the reference networks contained nested gene reaction
associations and expanded each reaction into several reactions, each under the control of only
one enzyme. We reconciled the reference network’s metabolite and reaction abbreviations
using the modelBorgifier Toolbox [42]. We used iRC1080 as the template model and subse-
quently compared iJN678 and Knoop to the template model.

Starting from the P. tricornutum genome annotation Phatr2 (Phatr3 was not yet available)
and the reconciled reference networks we obtained a draft reconstruction based on homology
using the RAVEN Toolbox [43]. Before proceeding with the manual curation, we i) checked
reactions associated to genes from Chlamydomonas or Synecchocystis for which no homologs
in P. tricornutum were found and verified whether these reactions are present in P. tricornutum
or not, ii) merged expanded reactions, iii) removed compartments not relevant for P. tricornu-
tum, e.g., the eyespot, iv) removed duplicated metabolites and reactions which were introduced
due to incorrectly reconciled information, and v) edited annotations.

We manually curated the draft reconstruction pathway-by-pathway and verified the given
information and added any missing information using the COBRA Toolbox [44]. Besides the
genome annotation, several other resources were exploited, such as primary literature, Diatom-
Cyc [45], KEGG [46], and UniProt [17]. Information regarding transport proteins was
obtained from TransportDB [47] and TCDB [48].

For each reaction in the P. tricornutum reconstruction, the involved metabolites were char-
acterized according to their chemical formula and charge determined at a pH of 7.3 using Mar-
vinSketch (ChemAxon, http://www.chemaxon.com/products/marvin/marvinsketch). The pH
was presumed to be constant across all compartments due to missing information for P. tricor-
nutum. All reactions were elementally and charge balanced. Reaction reversibility was chosen
based on published reconstructions such as iRC1080 or according to databases such as BIGG
[49] or SimPheny™ (Genomatica Inc., San Diego, CA).

Protein subcellular localization was assigned based on the prediction pipeline and indirect
physiological evidence. If available, protein localization data from experiments with transgenic
diatoms expressing protein-fluorescent protein fusions was exploited. Gene-reaction associa-
tions were identified from the literature, genome annotation, or genome sequence using
BLAST and formulated as Boolean logic statements. Based on the biological evidence found we
assigned a confidence score to each reaction reflecting the available information and evidence
for its inclusion [14]. Here, the confidence scores range from 1 to 5, with 1 being low confi-
dence and 5 representing very high confidence (see Table N in S2 File).

Since naming might be ambiguous, different identifiers were used to annotate the reactions
and metabolites. Reactions were annotated with EC numbers and KEGG reaction identifiers,
metabolites were annotated with KEGG compound, ChEBI, and InChI identifiers.

Each reaction was associated with at least one subsystem similar to the subsystem naming
convention used in the KEGG database [46]. Exchange reactions were added to enable uptake
and secretion of extracellular metabolites for the purpose of simulations.

Quality control was performed during the reconstruction process. We ensured that ATP
could not be produced without inputs. This was tested according to established standards [14]
by optimizing the flux through the ATP maintenance reaction while closing CO2 and photon
uptake. To validate that NAD(P) production did not occur without nutrient uptake we intro-
duced an artificial reaction NAD(P)H!NAD(P) + H and again closed CO2 and photon
uptake. If we found ATP production in the absence of nutrients, we identified all reactions con-
tributing to the flux and produced a metabolic map using Escher [50] in order to distinguish
between type III pathways and reactions involved in ATP production. The reactions involved
in ATP production were reviewed manually.
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Modeling simulations
Mathematically, the reconstruction is represented by the stoichiometric matrix S (m x n)
where m is the number of metabolites and n is the number of reactions. The entries in the stoi-
chiometric matrix, sij, represent the stoichiometric coefficients for the participation of the ith

metabolite in the jth reaction. A negative value indicates consumption of metabolite i in reac-
tion j whereas sij > 0 represents production of metabolite i. Flux balance analysis (FBA, [51])
was used to solve the linear programming (LP) problem under steady-state criteria represented
by the equation S�v = 0 where v is a vector of reaction fluxes.

To constrain the space of possible solutions, the biomass objective function accounting for
the ratios of biomass components (e.g., lipids) and biomass precursors (e.g., amino acids) as
well as energetic requirements to produce 1 g of biomass, is optimized for.

One challenge of metabolic models for phototrophic organisms is applying constraints such
as nutrient uptake, photon absorption and product secretion to simulate phenotypic behavior.
Phototrophic metabolism was simulated by constraining the maximal nitrogen and carbon
uptake according to our experimental data. The nitrogen uptake was set based on cellular nitro-
gen levels determined by elemental analysis assuming that excreted metabolites were negligible
during exponential growth (Table L in S2 File). Carbon uptake was enforced by setting the
lower bound of the CO2 exchange reaction to the experimentally determined total organic car-
bon (Table L in S2 File).

LP calculations were performed using the Gurobi Optimizer Version 6.0.4 (Gurobi Optimi-
zation Inc., Houston, Texas) solver in MATLAB (The MathWorks Inc., Natick, MA) with the
COBRA Toolbox [44].

Carbon partitioning
Dark period culture measurements were taken after the cells completed division; evidenced by
consistency in the cell counts between dark and light period samples. Therefore, we hypothe-
sized all biomass increases during the light period resulted from assimilation of extracellular
nutrients. Elemental analysis indicated the culture fixed 1.57 mM C and assimilated 0.535 mM
N during the light phase on culture day 5 (samples 8 and 9, see Table L in S2 File). These values
were used as the upper bounds for CO2 and NO3 uptake. The ATP maintenance reactions were
set to a range of 0–1 mM based on experimental results indicating negligible maintenance
requirements [52].

However, unlike the traditional biomass function where the stoichiometry is pre-deter-
mined, dynamic allocation of fixed carbon was possible through the implementation of
demand reactions for a β-1,3-glucose molecule representing the diatom storage glycan, chry-
solaminarin, and TAG(16:1Δ9/16:1Δ9/16:0), the most abundant storage TAG observed dur-
ing nutrient replete growth in P. tricornutum [37]. Additional demand reactions included
ammonia (nh4_h) and DMSP (dmsp_c). Photon uptake was varied from 0 to 50 mM photon
to determine the super-saturating photon uptake value of 22 mM at which the simulations
were performed. The objective function was set to maximize CO2 uptake with a secondary
objective of minimizing the Manhattan norm of the flux vector representing the cell’s strategy
to minimize the sum of flux values [53]. To simulate energetic coupling between the plastid
and mitochondria, the model was constrained with the inequality vNADHOR_m−C�vPSI_u � 0
where vNADHOR_m is the flux through the oxidative phosphorylation complex I, vPSI_u is the
flux through photosystem I (a proxy for total electron flow), and C> 0 represents the mini-
mal fraction of total photosynthetically fixed electrons that have to be directed to the
mitochondria.

Genome-Scale Model of a Model Diatom
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Results and Discussion

Metabolic network reconstruction
Genome-scale network reconstructions are biochemically, genetically and genomically structured
knowledge-bases which provide a framework to analyze and predict genotype-phenotype relation-
ships. The reconstruction process is divided into four main steps [14] and summarized in Fig 1.

First, we generated a draft reconstruction based on the P. tricornutum genome annotation
and protein homology to template organisms having reconstructions [39–41]. Diatoms are tax-
onomically and functionally distinct from other algae and vascular plants; in fact, many nuclear
genomic contents are more closely related to metazoans, demonstrating the diversity of diatom
metabolism [2]. Although the diversity complicated the generation of a homology-based draft
reconstruction, it also makes diatoms, such as the model organism P. tricornutum, attractive
candidates for the analysis of cellular processes at a systems level, as they add to the biochemi-
cal diversity of microbes in a biotechnology setting, thereby increasing available production
systems. Second, the draft reconstruction was manually curated and refined using additional
resources such as the genome annotation, subcellular localization predictions and external
databases (see Materials and Methods). Once the manual curation was completed, the recon-
struction was converted into a mathematical model in the third step. We added the biomass
objective function and defined system boundaries (i.e., carbon and nitrogen uptake) according
to experimental results (see Materials and Methods). Qualitative tests were performed during
the manual curation and the final step of model refinement and analysis. We verified that all
biomass components and vitamins for which P. tricornutum is autotrophic could be produced

Fig 1. Metabolic network reconstruction workflow. In step one we obtained a draft reconstruction based on P. tricornutum’s genome annotation
and reference reconstructions. This draft reconstruction was manually curated using several resources such as an improved genome annotation,
subcellular localization predictions and external databases. All reactions were elementally and charge balanced, QC/QA was performed and a biomass
objective function was defined before transforming the reconstruction into a computational model. In an iterative process, the in silico predictions are
compared with experimental observations to validate and improve the metabolic model.

doi:10.1371/journal.pone.0155038.g001
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under realistic growth conditions. Blocked pathways could be resolved with the addition of one
or two reactions; in most cases transport reactions between intracellular compartments were
missing. Furthermore, we ensured that ATP could not be produced without inputs. We also
performed several in silico tests to assess the consistency of our model and verify that known
physiological behaviors can be computationally reproduced. Diatoms are able to utilize a vari-
ety of nitrogen sources, both inorganic (such as nitrate and ammonium [54]) and organic (e.g.
amino acids or urea [55]). Therefore, we examined the ability of the model to simulate biomass
production on different nitrogen sources. Biomass was not produced in the presence of histi-
dine, tryptophan, cysteine, or methionine as sole nitrogen sources in our initial in silicomodel,
which contradicted literature results [55]. Histidine catabolism is not well understood in dia-
toms or plants and was not incorporated in the model at first. Since we could not identify genes
that are involved in histidine catabolism in P. tricornutum, we added histidine catabolism as
one lumped, low confidence reaction degrading histidine and water into ammonium, formam-
ide and glutamate. Formamide is split into formate and ammonium with formate accumulating
during histidine catabolism in silico; a demand reaction was added to allow the accumulated
formate to leave the system. Biomass production for growth on methionine or cysteine as sole
nitrogen sources was achieved by adding a demand reaction for dimethylsulphoniopropionate
(DMSP). DMSP levels are known to increase with light intensity or nitrogen starvation but its
metabolism is not well understood in diatoms and while the biosynthetic pathway is currently
unknown [56], a sensible starting point would be an amino acid with an already reduced sulfur
atom. Indole accumulation prohibited growth on tryptophan as nitrogen source. To account
for the unknown indole degradation, a demand reaction was added. With these changes, the
model could simulate biomass production using the different nitrogen sources tested.

Leveraging a genome-scale model in the exploration and contextualization of lipid metabo-
lism requires an accurate representation of the metabolic pathways and intermediate metabo-
lites. To this end, a lipid module was developed (iLB1027_lipid, see S3 File) that encompasses
the full range of lipid metabolites and metabolic reactions. This module allows incorporation
of experimental fatty acid and lipid class characterization to be reflected in the biomass compo-
sition. Incorporation of experimental FAME data was possible via a linear optimization based
data fitting algorithm (see Materials and Methods). After fitting the model to the data, the devi-
ation from the experimental values to the model was 350 times lower in the lipid module com-
pared to the core model. This result demonstrates the utility of the lipid module when
investigating fatty acid and lipid metabolism in P. tricornutum.

The curated genome-scale metabolic network for P. tricornutum including the lipid module,
iLB1027_lipid, accounts for 1,027 genes associated with 4,456 reactions and 2,172 metabolites
distributed across six compartments (Tables M-O in S2 and S3 Files). Compared to the draft
reconstruction, the number of genes (446 genes) was more than doubled during the manual
curation phase. All reactions are associated with at least one of 90 subsystems which can be cate-
gorized into ten groups, e.g., carbon or lipid metabolism (Fig 2). Additionally, a core model with
substantially reduced lipid metabolism (iLB1025) was constructed. The reduced lipid metabolism
subsystem accounts for 1,029 reactions compared to 3,325 reactions involved in lipid metabolism
in iLB1027_lipid. The core model yields comparable flux distributions and is suitable, for exam-
ple, if detailed data on the lipid composition under the simulated condition are missing.

Prediction of enzyme subcellular localization
One challenging aspect of eukaryotic reconstructions is the subcellular localization prediction
of proteins. Due to their endosymbiotic origin, photosynthetic heterokonts including diatoms
possess chloroplasts that are surrounded by four membranes. This complex structure concurs

Genome-Scale Model of a Model Diatom
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Fig 2. Reconstruction characteristics iLB1027_lipid. (A) Reactions per subsystem. Most reactions are
involved in lipid metabolism. Our FTIR measurements underline the fact that the lipids make up the highest
fraction of biomass. Due to the presence of multiple compartments and the fact that many pathways are split
among compartments, many reactions are attributed to intracellular transport. The modeling subsystem contains
ATP maintenance, biomass, demand, sink, and exchange reactions. (B) Percent reactions and metabolites per
compartment. Most reactions and metabolites are present in the cytosol, followed by chloroplast and
mitochondria in the case of reactions and mitochondria and chloroplast for metabolites. Peroxisome,
extracellular space, and thylakoid contain less than 5% and 8% of all reactions and metabolites in the
reconstruction, respectively.

doi:10.1371/journal.pone.0155038.g002
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with distinct plastid targeting signals in diatoms that restrict the use of available subcellular
prediction tools for other eukaryotes. We enhanced a previously developed pipeline which
combined different bioinformatics programs to predict the subcellular localization of proteins
in diatoms [57] (see Fig 3, Materials and Methods, and Section A in S1 File).

To evaluate the accuracy of the improved pipeline, we compared our predictions to Sunaga
et al.’s results and experimentally validated subcellular protein localizations taken from
[5,12,58–64]. By using the refined pipeline, 15 out of 19 subcellular localization predictions
coincided with experimental data as summarized in Table 1.

The table compares predictions of protein localizations to experimental data. For all consid-
ered proteins, Phatr2 and Phatr3 IDs and the status of the gene model in Phatr3 are given. If
the gene models were modified, the pipeline predictions for both gene models are given. We
distinguish between two versions of the in silico pipeline; original refers to the version as pub-
lished by Sunaga et al. [57] and the improved version is the one presented in this study. Entries
for which the improved pipeline or usage of Phatr3 gene models improved the prediction are
formatted italic. Discrepancies between prediction and experimental localization are shown in
bold. ER: Endoplasmic reticulum.

Determination and modeling of biomass composition
In order to mathematically solve the genome-scale model using FBA, the observed cellular phe-
notype is manifested as a biological objective function [51]. This objective function is a metabolic

Fig 3. Subcellular localization prediction pipeline. Schematic representation of the implemented subcellular localization prediction pipeline for
Phaeodactylum tricornutum adapted from previous work [57]. Subcellular compartments are given in ellipses and bioinformatics programs are displayed
in rectangles. Our added steps are highlighted in gray. The ER retention signal is (K/D)-(D/E)-E-L in the protein C-terminal region. A protein is categorized
as peroxisomal if the signal (S/A/C)-(K/R/H)-(L/M) or S-S-L is found in the C-terminal region.

doi:10.1371/journal.pone.0155038.g003

Genome-Scale Model of a Model Diatom

PLOSONE | DOI:10.1371/journal.pone.0155038 May 6, 2016 9 / 22



T
ab

le
1.

V
al
id
at
io
n
o
ft
h
e
in

si
lic

o
su

b
ce

llu
la
r
lo
ca

liz
at
io
n
p
re
d
ic
ti
o
n
p
ip
el
in
e.

P
ro
te
in

ID
S
ta
tu
s

P
h
at
r3

E
xp

er
im

en
ta
l

P
re
d
ic
ti
o
n
o
ri
g
in
al

p
ip
el
in
e

P
re
d
ic
ti
o
n
im

p
ro
ve

d
p
ip
el
in
e

T
ar
g
et
P

M
it
o
P
ro
t

N
o
te

P
h
at
r2

P
h
at
r3

lo
ca

liz
at
io
n

P
h
at
r2

P
h
at
r3

P
h
at
r2

P
h
at
r3

F
ru
ct
os

e-
bi
sp

ho
sp

ha
te

al
do

la
se

P
ha

tr
_8

25
_b

d
30

40
98

K
ep

t
C
hl
or
op

la
st

[5
8]

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

E
R

0.
25

07

G
ly
ce

ra
ld
eh

yd
e-

3-
ph

os
ph

at
e

de
hy

dr
og

en
as

e

P
ha

tr
_2

53
08

30
12

92
K
ep

t
M
ito

ch
on

dr
io
n
[5
9]

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

0.
96

47

G
ly
ce

ra
ld
eh

yd
e-

3-
ph

os
ph

at
e

de
hy

dr
og

en
as

e

P
ha

tr
_2

21
22

30
86

78
K
ep

t
C
hl
or
op

la
st

[5
9]

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

0.
94

6

T
ra
ns

al
do

la
se

P
ha

tr
_2

07
79

30
42

41
K
ep

t
C
hl
or
op

la
st

[5
8]

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

M
ito

ch
on

dr
io
n

0.
97

17

G
lu
ta
m
in
e
sy

nt
he

ta
se

P
ha

tr
_2

23
57

31
07

69
K
ep

t
M
ito

ch
on

dr
io
n
[1
2]

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

0.
99

72

G
lu
ta
m
in
e
sy

nt
he

ta
se

P
ha

tr
_5

10
92

30
66

24
K
ep

t
C
hl
or
op

la
st

[1
2]

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

E
R

0.
43

99

C
ar
ba

m
oy

lp
ho

sp
ha

te
sy
nt
ha

se
P
ha

tr
_2

41
95

30
95

85
M
od

ifi
ed

M
ito

ch
on

dr
io
n
[5
]

C
yt
op

la
sm

M
ito

ch
on

dr
io
n

C
yt
op

la
sm

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

0.
95

88
A
s
m
en

tio
ne

d
by

S
un

ag
a
et

al
.,
th
e
P
ha

tr
2

ge
ne

m
od

el
is
in
co

m
pl
et
e.

U
sa
ge

of
P
ha

tr
3

ge
ne

m
od

el
yi
el
ds

co
rr
ec

tp
re
di
ct
io
n.

F
ru
ct
os

e-
1,
6-
bi
sp

ho
sp

ha
ta
se

P
ha

tr
_5

42
79

31
16

63
K
ep

t
C
hl
or
op

la
st

[5
8]

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

E
R

0.
16

45
P
ha

tr
2
ID

27
93

sh
or
te
r
ve

rs
io
n
of

54
27

9.

Δ
12

de
sa
tu
ra
se

P
ha

tr
_4

84
23

30
05

52
K
ep

t
C
hl
or
op

la
st

[6
0]

E
R

E
R

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

0.
81

3
U
sa
ge

of
im

pr
ov

ed
pi
pe

lin
e
yi
el
ds

co
rr
ec

t
pr
ed

ic
tio

n.
N
ot
e
th
at

w
e
co

ul
d
no

t
re
pr
od

uc
e
S
un

ag
a
et

al
.'s

re
su

lt
us

in
g
th
e

or
ig
in
al

pi
pe

lin
e.

A
T
P
as

e
δ
su

bu
ni
t

P
ha

tr
_2

06
57

30
19

64
M
od

ifi
ed

C
hl
or
op

la
st

[6
1]

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

N
o

pr
ed

ic
tio

n

P
tC
A
1

P
ha

tr
_5

13
05

30
68

74
K
ep

t
C
hl
or
op

la
st

[6
2]

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

E
R

0.
51

89

T
rio

se
ph

os
ph

at
e

tr
an

sl
oc

at
or

P
ha

tr
_2

46
10

30
89

68
K
ep

t
C
hl
or
op

la
st

[6
3]

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

E
R

0.
62

11

C
A
-I

P
ha

tr
_3

53
70

30
38

71
K
ep

t
C
hl
or
op

la
st

[6
4]

E
R

E
R

C
hl
or
op

la
st

C
hl
or
op

la
st

M
ito

ch
on

dr
io
n

0.
46

48
U
sa
ge

of
im

pr
ov

ed
pi
pe

lin
e
yi
el
ds

co
rr
ec

t
pr
ed

ic
tio

n.

C
A
-I
I

P
h
at
r_
44

52
6

31
16

60
M
o
d
ifi
ed

C
h
lo
ro
p
la
st

[6
4]

E
R

E
R

E
R

E
R

E
R

N
o

p
re
d
ic
ti
o
n

W
ro
n
g
p
re
d
ic
ti
o
n
.

C
A
-I
II

P
h
at
r_
55

02
9

30
09

68
M
o
d
ifi
ed

C
h
lo
ro
p
la
st

[6
4]

E
R

N
o
p
re
d
ic
ti
o
n

E
R

N
o
p
re
d
ic
ti
o
n

-
N
o

p
re
d
ic
ti
o
n

F
o
r
P
h
at
r_
55

02
9,

th
e
p
ip
el
in
e
p
re
d
ic
ts

en
d
o
p
la
sm

ic
re
ti
cu

lu
m

in
st
ea

d
o
f

ch
lo
ro
p
la
st
.T

h
e
im

p
ro
ve

d
g
en

e
m
o
d
el

30
09

68
w
as

ex
te
n
d
ed

at
th
e
N
-t
er
m
in
u
s

an
d
d
o
es

n
o
t
st
ar
t
w
it
h
m
et
h
io
n
in
e

an
ym

o
re
.M

it
o
p
ro
t
d
o
es

n
o
t
p
re
d
ic
t

lo
ca

liz
at
io
n
if
th
e
p
ro
te
in

d
o
es

n
o
t
st
ar
t

w
it
h
m
et
h
io
n
in
e
an

d
,t
h
er
ef
o
re
,t
h
e

p
ip
el
in
e
d
o
es

n
o
t
p
re
d
ic
t
lo
ca

liz
at
io
n
fo
r

th
e
P
h
at
r3

g
en

e
m
o
d
el
.

P
tC
A
2

P
ha

tr
_4

54
43

31
19

19
K
ep

t
C
hl
or
op

la
st

[6
2]

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

C
hl
or
op

la
st

E
R

0.
47

62

C
A
-V
I

P
h
at
r_
54

25
1

30
36

35
K
ep

t
C
h
lo
ro
p
la
st

[6
4]

E
R

E
R

E
R

E
R

E
R

0.
39

87
B
o
th

p
ip
el
in
e
ve

rs
io
n
s
p
re
d
ic
t

en
d
o
p
la
sm

ic
re
ti
cu

lu
m

in
st
ea

d
o
f

ch
lo
ro
p
la
st
.

C
A
-V
II

P
h
at
r_
42

57
4

30
48

57
M
o
d
ifi
ed

C
h
lo
ro
p
la
st

[6
4]

E
R

E
R

E
R

E
R

E
R

N
o

p
re
d
ic
ti
o
n

B
o
th

p
ip
el
in
e
ve

rs
io
n
s
p
re
d
ic
t

en
d
o
p
la
sm

ic
re
ti
cu

lu
m

in
st
ea

d
o
f

ch
lo
ro
p
la
st
.

C
A
-V
III

P
ha

tr
_2

00
30

31
18

77
K
ep

t
M
ito

ch
on

dr
io
n
[6
4]

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

M
ito

ch
on

dr
io
n

0.
93

2
P
ha

tr
2
ID

35
30

4
sh

or
te
r
ve

rs
io
n
of

20
03

0.

do
i:1
0.
13
71
/jo
ur
na
l.p
on
e.
01
55
03
8.
t0
01

Genome-Scale Model of a Model Diatom

PLOSONE | DOI:10.1371/journal.pone.0155038 May 6, 2016 10 / 22



reaction in the model that is maximized or minimized in order to achieve a desired phenotypic
state. In order to simulate cellular growth, the macromolecular constituents of the cell are defined
as the objective function (see Table L in S2 File). This biomass objective function accounts for all
known cellular components and their fractional contributions to the overall cellular biomass,
defines the anabolic requirements for cell division, and provides mass balance.

The biomass composition used in heterotrophic genome-scale models is typically fixed based
on experimentally derived values at a given culture condition [65]. However, phototrophic
organisms have a dynamic biomass composition that changes not only across the diel cycle, but
also along the duration of the culture. In P. tricornutum, biomass changes in the light period is
dominated by the generation of carbon storage compounds, while the dark period is dominated
by the anabolic processes necessary for cell division [66]. There is also dramatic remodeling of
the cellular biomass composition that accompanies nutrient limitation in diatoms [67].

High confidence intracellular flux predictions are dependent on the biomass composition
being accurately reflected during the simulation. To this end, we determined P. tricornutum’s
biomass composition over a growth curve that resulted in nitrogen deprivation after the high
accumulation of biomass (Fig 4). Selected samples of this growth curve were examined using
time consuming biochemical methods for determining lipid, carbohydrate, and protein content
of the cells. Parallel samples were used to develop linear models relating FTIR peaks to biomass
composition (Fig A in S1 File). These calibrated models were then used to determine the bio-
mass composition for all time points. The linear models are most robust when a large gradient
for biomass composition values (i.e., percent lipid, protein, and carbohydrate) are achieved,
thus our experiment was designed to maximize the changes in content. Nitrogen starvation,
low CO2, and low light all can contribute to high lipid content and all three scenarios were
achieved in our engineered culture experiment, resulting in very high lipid values at the end of
the experiment (Fig 4C). The lipid values are elevated relative to previous experiments that
examined more realistic bioproduction conditions, but this was planned and resulted in the
expected fashion. We were able to achieve large changes in the cellular contents for all of these
cellular components in smooth gradients.

Additionally, FAME data at each sample point was incorporated into the biomass composi-
tion via a linear optimization based fitting algorithm to ensure changes in fatty acid biosynthe-
sis were taken into consideration during simulations (see Materials and Methods and Section B
in S1 File). Interestingly, diatoms store large amounts of nitrogen in the cell in the form of inor-
ganic compounds [30], probably in the vacuole [68]. A demand reaction for NO3 was added to
account for cellular nitrate that has not yet been assimilated into other biomass components
such as proteins but is included in the dry weight measurements. By defining the cellular com-
position at each sampling point, differences in the metabolic network usage could be analyzed
along the duration of the culture.

Commonly, maximizing the biomass equation is selected as an appropriate objective function
for the growth phenotype. Since cell division in P. tricornutum is relegated to the dark period when
cells are grown in a light-dark regimen, the common biological objective function of maximizing
growth is not applicable to simulations during the light period. Thus, maximizing carbon uptake
was selected as the biological objective function that best represents the cellular phenotype during
the light period. Mass balance was achieved by allowing fixed carbon to accumulate as either carbo-
hydrates or neutral lipids in accordance with previous observations of P. tricornutum [66].

Comparison to other models
Several metabolic models for P. tricornutum have been constructed to date (Table 2). Kroth
and coworkers investigated the localization of enzymes and pathways involved in carbohydrate
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Fig 4. FTIR spectrum and culture data. A typical FTIR spectrum for Phaeodactylum tricornutum is shown in (A). Peaks
corresponding to lipids, proteins and carbohydrates are highlighted (see Table A in S1 File for specific wavelengths). Panel (B)
shows the growth curve and photosynthetic efficiency of the culture used for model calibrations and the biomass objective function.
The decline in Fv/Fm indicates the onset of nitrogen starvation (n = 1). Percent dry weight of the cells in terms of carbohydrates,
lipids, and proteins according to FTIR spectra and the calibrated linear model (n = 5, error bars represent five independent FTIR
scans) is displayed in (C).

doi:10.1371/journal.pone.0155038.g004
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metabolism [69]. This model served as foundation for the first genome-scale model for P. tri-
cornutum which was presented in form of a detailed pathway/genome database named Dia-
tomCyc [45]. DiatomCyc comprises a high number of pathways and offers different software
tools, e.g. for network analysis, but it lacks subcellular compartments which are important to
account for distinct environments required for different metabolic processes. A smaller and
compartmentalized version of the DiatomCyc metabolic network was used to compute elemen-
tary flux modes and investigate light-dependent changes in P. tricornutum’s metabolism
[70,71]. Here, little information about the reconstruction process is given and reactions and
metabolites are poorly annotated. Kim et al. developed the most recent genome-scale metabolic
network for P. tricornutum and explored flux distributions for autotrophic, mixotrophic and
heterotrophic growth conditions [72]. For all three modes, the same biomass objective function
was exploited. The prediction of protein localization was based on MitoProt [19] and TargetP
[22]. Reactions are annotated using EC numbers which might be ambiguous and hamper clear
identification of reaction mechanism or model comparison based on reaction content. Gene
reaction associations are not formulated as Boolean rules making it impossible to distinguish
between isozymes, enzyme complexes, or subunits. No information about the performance of
quality control or mass and charge balancing is given.

Here, we based our reconstruction effort on the updated and improved genome annotation
which yields more precise localization predictions due to refined gene models. Compared to

Table 2. Characteristics of available models for Phaeodactylum tricornutum.

Property Kroth et al.
[69]

DiatomCyc [45] Hunt et al. [71] Kim et al.
[72]

iLB1027_lipid
(this study)

Reactions 88 1719 metabolic
reactions 67
transport reactions

318 849 (not
including
biomass
equation)

4456
(iLB1025:
2156)

Metabolites Not available 1173 335 587 2172
(iLB1025:
1704)

Genes 151 1613 680 607 1027
(iLB1025:
1025)

Compartments Cytoplasm,
Mitochondria,
Chloroplast,
Endoplasmic
reticulum,
Peroxisome

Cytoplasm Cytoplasm,
Mitochondria,
Chloroplast,
Peroxisome

Cytoplasm,
Mitochondria,
Chloroplast
(stroma and
lumen),
Peroxisome

Cytoplasm,
Mitochondria,
Chloroplast
(stroma and
thylakoid),
Peroxisome

Reconstruction
software

Not available Pathway Tools CellNetAnalyzer MOST COBRA
Toolbox,
COBRApy

Availability No
mathematical
model
available

Online access SBML SBML SBML, MAT

Notes Carbohydrate
metabolism

Genome-wide
model, not
compartmentalized

Simplified and
compartmentalized
version of
DiatomCyc; see
[70] for simulations

Genome-wide
model, GPRs
not in
Boolean
format

Genome-wide
model,
detailed lipid
metabolism

Metabolic model characteristics are compared between four available models for P. tricornutum and the

one presented in this study.

doi:10.1371/journal.pone.0155038.t002
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predictions of each bioinformatics tool, the sophisticated protein localization pipeline more
often coincides with experimental findings (Table 1). Since diatom metabolism and conse-
quently biomass components strongly vary with growth conditions (Fig 4), we determined P.
tricornutum’s biomass composition over a growth curve that resulted in nitrogen deprivation
after the high accumulation of biomass.

In order to assess iLB1027_lipid’s overall model coverage, we compared the ratio of genes
accounted for in the reconstruction to genes predicted in the genome against the genome size
for different eukaryotic organisms, namely Arabidopsis thaliana, Brassica napus, Chlamydomo-
nas reinhardtii, Zea mays, Saccharomyces cerevisiae,Homo sapiens andMus musculus (Fig 5).
The considered reconstructions span a large range in genome size. The iLB1027_lipid model
includes a higher ratio of genes in reconstruction per genes in genome (10%) than the median
of all models (6%). B. napus (bna572+) has a comparable ratio of genes in the reconstruction
(996) to predicted genes in the genome (9873) but contains far fewer reactions (671). The only
model with a higher ratio belongs to the well-studied model organism S. cerevisiae, though this
model iTO977 also contains fewer total reactions.

Carbon partitioning
Recently, there has been a focus on using diatoms for biotechnological applications such as bio-
fuel production, because of their high rate of neutral lipid accumulation [80,81]. Maximization
of lipid biomass is a prerequisite for optimizing biofuel production in diatoms. Typical strate-
gies for neutral lipid accumulation in P. tricornutum involve environmental stress, such as
nitrogen or phosphorous limitation [37]. However, nutrient stress induced TAG accumulation
also initiates growth arrest. TAGs store not only fixed carbon but also photosynthetically
derived reducing equivalents. Storage of photosynthetically derived electrons into biomass also
serves as photoprotection in diatoms [82].

Using the genome-scale model, we investigated the light-dependent partitioning of fixed
carbon between storage carbohydrates and storage lipids, as shown in Fig 6A. Carbon fixation
increased linearly with photon flux until saturation at the upper bound of CO2 uptake (experi-
mentally determined, see Materials and Methods). Demand reactions added to the model
allowed dynamic allocation of carbon and redox power into storage compounds and ensured

Fig 5. Genes in reconstruction over predicted genes in genome against genome size for selected eukaryotic metabolic reconstructions. The
three reconstructions with the highest ratio of genes in reconstruction per genes in genome are highlighted. bna572+ has a comparable ratio as iLB1025
and iLB1027_lipid, iTO977 has a higher ratio. Compared to iTO977 and bna572+, iLB1025 and iLB1027_lipid contain more reactions. The number of
reactions in the respective reconstructions is used to scale the circle diameters. Note the discontinuous x-axis. Abbreviations: AraGEM: Arabidopsis
thaliana [73]; bna572+: Brassica napus [74]; AlgaGEM: Chlamydomonas reinhardtii [75]; iRC1080:Chlamydomonas reinhardtii [39]; iRS1563: Zea mays
[76]; iLB1025 and iLB1027_lipid: Phaeodactylum tricornutum, this study; iTO977: Saccharomyces cerevisiae Sc288 [77]; Recon2: Homo sapiens [78];
iMM1415:Musmusculus [79].

doi:10.1371/journal.pone.0155038.g005
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mass balance with nutrient uptake. Resources could be fixed into biomass via nitrate reduction
into ammonia, sulfate reduction into DMSP, carbohydrates or a representative TAG (see Mate-
rials and Methods). Prior to saturation at a photon uptake of 16 mM, all of the fixed carbon
was stored as carbohydrates (see Fig 6A). Upon saturation, excess redox potential was stored as
lipid and then as ammonia when all fixed carbon has been stored as TAG. No accumulation of
DMSP was predicted.

Energetic coupling between mitochondria and plastid
A recent, in depth characterization of photosynthetic electron flux in P. tricornutum enabled
high quality constraints to be applied to the photosystem (Table 3). Results in Bailleul et al.

Fig 6. Light-dependent carbon partitioning. (A) Simulations indicated as photon uptake exceeds carbon uptake, excess redox potential is stored
in triacylglycerol. The saturation of carbon uptake is shown in black. (B) Percent of carbon fixed in TAG against percent of metabolite flow through
NADHOR (vNADHOR; EC 1.6.5.3,1.6.99.3) over metabolite flow through PSI (vPSI; EC 1.97.1.2) at a super-saturating photon uptake of 22 mM.
According to our simulations TAG accumulation is inversely proportional to energetic coupling. TAG accumulation is prohibited when at least 35% of
photosynthetically fixed electrons are redirected to the mitochondria.

doi:10.1371/journal.pone.0155038.g006

Table 3. Photosynthetic electron flow constraints as determined by Bailleul et al. [83].

Abbreviation Description Constraint

CEF_h Cyclic electron flow around PSI LB = UB = 0.3 mM

FNOR_h Ferredoxin:NADP+ Oxidoreductase 5% electron flow to Mehler reaction

CBFC_u Cytochrome b6f complex 5% of electron flow to PTOX

PTOX_h Plastid terminal oxidase Default bounds set to 0 flux

MEHLER_h Mehler reaction Default bounds set to 0 flux

Constraint e-flow Energetic coupling of mitochondria and plastid νNADHOR—C � νPSI � 0

The model abbreviations refer to in silico reaction or metabolite identifiers. Abbreviations: LB, lower bound

of reaction flux; UB, upper bound of reaction flux; νNADHOR, metabolite flow through the mitochondrial

NADH:ubiquinone oxidoreductase; νPSI, metabolite flow through photosystem I, a proxy for total electron

flow; C, a scalar value representing the percent of photosynthetically derived electrons coupled to

mitochondrial respiration.

doi:10.1371/journal.pone.0155038.t003
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indicated cyclic electron flow (CEF_h) accounted for approximately 30% of total electron flow
at low irradiances and as low as 5% at high irradiances [83]. Fixing the CEF reaction bound-
aries to 0.3 mM approximated these ratios. Water-water reactions (plastid terminal oxidase
(PTOX, EC 1.10.3.11), and Mehler reaction) constituted approximately 10% of the total elec-
tron flow. To allow the electron flow into these reactions to scale with photon uptake in silico,
5% of electron flow through the cytochrome b6f complex (CBFC_u) was routed to elemental
oxygen mimicking the electron drain to PTOX while 5% of the electron flow through photosys-
tem I (PSI_u) was committed to a Mehler-like reaction. Combined, these accounted for the
10% of electron flow to water-water reactions. Independent PTOX and Mehler reactions in the
model are blocked by default but the boundaries can be adjusted to fit experimental results that
deviate from the 10% value. In accordance with Bailleul et al.’s findings, the model predicts the
use of mitochondrial oxidative phosphorylation to balance ATP and NADPH ratios.

The model did not initially predict the use of the alternative oxidase (AOX, EC 1.10.3.11) to
vent excess reducing equivalents. Our results predicted that flow of reductant from the plastid
to the mitochondria was dependent on the ATP needs of the cell; however the results of Bailleul
et al. suggest that this ratio is fixed over a range of low to moderate light intensities. To simulate
the observed energetic coupling between the mitochondria and plastid, an inequality constraint
was added to the model. This constraint forced a minimum amount of the photosystem flux to
be routed to the mitochondrial electron transport chain. Upon adding energetic coupling, the
model predicted AOX was a primary electron sink at high irradiances. Additionally, the ener-
getic coupling affected accumulation of neutral lipid biomass. Storage of lipid biomass was
inversely proportional to energetic coupling with TAG accumulation being abolished when at
least 35% of photosynthetically fixed electrons were redirected to the mitochondria at super-
saturating photon uptake (Fig 6B). Since lipid biosynthesis is dependent on plastid localized
reducing power, it is possible that energetic coupling of the mitochondria and plastid is an
inherent limit on the accumulation of neutral lipids, as predicted by the model. These results
indicate that disrupting the energetic coupling of the plastid to the mitochondria while upregu-
lating plastid lipid biogenesis and taking advantage of increased NADPH pools in AOX knock-
down lines may result in increased TAG accumulation during exponential phase while
alleviating the observed growth defect [83]. This would allow for the decoupling of growth pro-
cess (e.g. nutrient limitation) from TAG production and increase overall yields of biofuel
precursors.

The mechanism by which reducing equivalents are shuttled to the mitochondria during
energetic coupling is still unknown. In addition to the malate shuttle as proposed by Bailleul
et al., our reconstruction uncovered a previously undescribed plastid ornithine biosynthetic
pathway (Fig 7) that may represent an important metabolic connection between plastid and
mitochondria. The compartmentalization pipeline indicated plastid targeting of acetylgluta-
mate kinase (AGK_h, EC 2.7.2.8), N-acetyl-γ-glutamyl-phosphate reductase (AGPR_h, EC
1.2.1.38), acetylornithine transaminase (ACOAT_h, EC 2.6.1.11), and ornithine acetyltransfer-
ase (GACT_h, EC 2.3.1.35). Biomass yield simulations suggested that in silico the ornithine-
glutamine shuttle is used to transfer reducing equivalents generated by photosynthesis to the
mitochondria. Four photosynthetically derived electrons are used; two by the oxidation of fer-
redoxin molecules by plastid glutamate synthase (GLTS_h, EC 1.4.7.1) and two via oxidation
of NADPH by AGPR_h. Ornithine is then proposed to be shuttled from the plastid to the
mitochondria. The activity of 1-pyrroline-5-carboxylate dehydrogenase (P5CDH_m, EC
1.2.1.88) and glutamine dehydrogenase (GLUDH2_m, EC 1.4.1.2) produce NADH further sug-
gesting that this novel ornithine-glutamate pathway coupling these two organelles is possible.

Storage of metabolites such as glutamine and ornithine could serve a photoprotective role
by sequestering reducing equivalents as well as assimilated nitrogen. Indeed when
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intermediates of this ornithine shuttle were allowed to accumulate during simulations, the
model predicted they were preferred over TAG biosynthesis. Ornithine concentrations were
previously investigated in the context of the diatom ornithine-urea cycle (OUC) [5]. Although
one of the most abundant metabolites in the cell, ornithine levels were not correlated with

Fig 7. Chloroplastic ornithine cycle as revealed by the model.Metabolic network usage of a chloroplastic ornithine
cycle is shown under a saturating photon constraint of 16 mM allowing maximum carbon uptake. Minor reactants and
products are omitted for visual clarity (i.e., water, protons and phosphate). Metabolite and reaction abbreviation suffixes
indicate cellular compartment; c, cytosol; h, chloroplast; m, mitochondria. Reversible reactions are indicated by
arrowheads at both ends. The filled arrowhead indicates the direction in which the reaction is running, i.e. from substrate
(open arrowhead) to product (filled arrowhead). Abbreviations used: ACOAT, acetylornithine transaminase; AGK,
acetylglutamate kinase; AGPR, N-acetyl-δ-glutamyl-phosphate reductase; GACT, glutamate N-acetyltransferase; GLNA,
glutamine synthase; GLTS, glutamate synthase (ferredoxin dependent); GLUDH2, glutamine dehydrogenase (NAD
dependent); GLUSA, glutamate semialdehyde degradation (spontaneous); OAT, ornithine aminotransferase; P5CDH,
1-pyrroline-5-carboxylate dehydrogenase; acorn, N-acetylornithine; acglu, N-acetyl-L-glutamate; acg5p, N-acetyl-L-
glutamate 5-phosphate; acg5sa, N-Acetyl-L-glutamate 5-semialdehyde; adp, ADP; akg, α-ketoglutarate; atp, ATP; fdxox,
ferredoxin (oxidized); fdxrd, ferredoxin (reduced); gln__L, L-glutamine; glu__L, L-glutamate; glu5sa, L-glutamate
5-semialdehyde; nad, NAD+; nadh, NADH; nadp, NADP+; nadph, NADPH; nh4, ammonium ion; orn, ornithine; 1pyr5c,
(S)-1-Pyrroline-5-carboxylate.

doi:10.1371/journal.pone.0155038.g007
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OUC intermediates, which indicated a possible alternative function [5]. We hypothesize stor-
age of reducing power and electron transport into the mitochondria, potentially coupled to
OUC consumption, is this alternative function.

Conclusion
Our assembled reconstruction represents the current, comprehensive biochemical, genetic, and
genomic knowledge about P. tricornutum and contains information such as reaction stoichi-
ometry and associations between genes and reactions. We especially focused on lipid metabo-
lism since diatoms are attractive candidates for industrial-scale lipid production [67,84]. The
reconstruction is anticipated to facilitate model-driven exploration of the organism’s complex
metabolism and hypothesis generation. Furthermore, the manually curated metabolic network
facilitates visualization and analysis of different data types including metabolomics, fluxomics
or common genomic data such as RNA-Seq. We have demonstrated that the model reflects the
known biochemical composition of these algae in defined culture conditions (Fig 4) and that it
enables the study of light-dependent carbon partitioning (Fig 6). Diatoms thrive in highly
dynamic environments and this model will provide a template for future studies that aim to
understand how diatoms balance photosynthesis and heterotrophic metabolism over light-
dark cycles or the stochastic supply of nutrients. This model will also enable metabolic engi-
neering strategies to improve the use of P. tricornutum for biotechnological applications.
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