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Abstract

Quantifying the differential expression of genes in various human
organs, tissues, and cell types is vital to understand human physio-
logy and disease. Recently, several large-scale transcriptomics
studies have analyzed the expression of protein-coding genes
across tissues. These datasets provide a framework for defining
the molecular constituents of the human body as well as for
generating comprehensive lists of proteins expressed across tissues
or in a tissue-restricted manner. Here, we review publicly available
human transcriptome resources and discuss body-wide data from
independent genome-wide transcriptome analyses of different
tissues. Gene expression measurements from these independent
datasets, generated using samples from fresh frozen surgical speci-
mens and postmortem tissues, are consistent. Overall, the different
genome-wide analyses support a distribution in which many
proteins are found in all tissues and relatively few in a tissue-
restricted manner. Moreover, we discuss the applications of
publicly available omics data for building genome-scale metabolic
models, used for analyzing cell and tissue functions both in physio-
logical and in disease contexts.
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Introduction

The global classification of the human proteome with regard to its

spatiotemporal expression patterns and its functions represents

one of the major challenges for studying human biology and

disease (Lamond et al, 2012). Recently, genomic, transcriptomic,

and proteomic technologies have been employed to analyze the

human proteome on a genome-wide level. Genome annotation

efforts, such as Ensembl (Cunningham et al, 2015) and Gencode

consortium (Harrow et al, 2012) in the Encode project (Nilsson

et al, 2015), have identified approximately 20,000 genes coding

for proteins, and the UniProt consortium (UniProt, 2015) has

manually annotated the majority of these genes. On the transcript

level, expression levels of human genes have been monitored to

study the effects of diseases, treatments, and developmental stages

using microarray-based gene expression profiling (Brawand et al,

2011; Petryszak et al, 2015). Recently, several efforts have been

published with the quantitative analysis of RNA levels based on

next-generation sequencing in samples representing most of the

major organs and tissues in the human body (Fig 1), including

the Fantom consortium (Yu et al, 2015), the Human Protein Atlas

(HPA) consortium (Uhlen et al, 2015), and the genome-based

tissue expression (GTEx) consortium (Keen & Moore, 2015). On

the protein level, several large-scale studies based on mass spec-

trometry analysis have also been published (Kim et al, 2014;

Wilhelm et al, 2014), and these studies have been complemented

with antibody-based protein profiling using tissue microarrays

containing samples representing most major tissues and organs in

the human body (Fagerberg et al, 2014; Uhlen et al, 2015). Most

of the quantitative data on the expression of protein-coding genes

are based on recent transcriptomics studies based on RNA-seq.

Here, we review some of the publicly available human transcrip-

tome resources and discuss tissue data from independent research

groups.

An interesting aspect of the integration of omics technologies is

the sampling that depends on the sensitivity and the resolution of

each technology. Consequently, the analysis of tissue samples is

normally performed on a mixture of cell types using transcriptomics

and mass spectrometry-based proteomics, whereas in situ

hybridization techniques, successfully applied for mapping the

distribution of transcripts in the brain (Hawrylycz et al, 2012), and

more qualitative approaches involving antibody-based profiling

allow analyzing single cells in their natural environment to reveal

the differences in protein expression levels between neighboring

cells. Thus, antibody-based protein profiling complements quantita-

tive transcriptomics and proteomics, based on a mixture of cell

types, to reach single-cell resolution in the analysis of gene expres-

sion in complex tissues. Recently, single-cell technologies have been
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developed for transcriptomics (Tang et al, 2009), but no global

analysis across many tissues has yet been published using such

methodology. In the near future, the possibility to move to single-

cell analyses of tissues for transcriptomics and proteomics will allow

analyzing cell-to-cell variability, which is particular interesting, that

is, in the context of cancer. Moreover, the development of more

quantitative assays for immunohistochemistry using fluorescent

probes will be valuable for providing quantitative data for

whole-cell modeling (Stadler et al, 2013).

The correlation between mRNA levels and the corresponding

protein levels is an important issue for the comparability of the dif-

ferent omics-based technologies, and the presence or absence of

such correlation on an individual gene/protein level has been

debated in the literature for many years (Anderson & Seilhamer,

1997; Tian et al, 2004; Gry et al, 2009; Maier et al, 2009, 2011;

Lundberg et al, 2010; Schwanhausser et al, 2011). However, a

comparison of steady-state levels of mRNA and proteins in human

cell lines using RNA-seq and quantitative triple-SILAC analysis

showed good genome-wide correlations when the mRNA and

protein levels of an individual gene were compared in three sepa-

rate cell lines (Lundberg et al, 2010). These observations were

supported by Kuster and coworkers (Wilhelm et al, 2014) compar-

ing mass spectrometry data from different tissues with RNA-seq

data obtained from the HPA consortium (Uhlen et al, 2015). Again,

the steady-state levels for individual genes correlated across several

tissues. Overall, these studies suggest that the amount of a given

protein in a cell or tissue is, in general, reflected by the correspond-

ing mRNA level, although this gene-/protein-specific ratio may vary

greatly between different gene products depending on various

factors, mainly translational rates and protein half-lives (Eden et al,
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Figure 1. Global transcriptomics analysis of human tissues and organs.
Overview of the tissues and organs analyzed using RNA-seq by the Human Protein Atlas consortium (HPA, green), tissues studied with cap analysis gene expression (CAGE)
within the FANTOM consortium (purple), and tissues analyzed using RNA-seq by the genome-based tissue expression consortium (GTEx, orange). Altogether, 22 tissues
and organs were studied with both the HPA and FANTOM datasets, while 21 tissues overlapped between the HPA and GTEx datasets.
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2011), and the transcript level for a given gene might therefore be

used to predict the corresponding protein level. This hypothesis

needs to be confirmed by more in-depth studies using quantitative

measurements at both the RNA and protein levels. However, it

suggests that next-generation sequencing of the transcriptome is a

powerful tool for indirect measurements of protein expression

levels, thus forming an attractive link between the field of genomics

and proteomics.

Analyses of the human transcriptome by
different methods

Several genome-wide transcriptome profiling methods have been

used for identifying and quantifying global gene expression

patterns, each allowing for a quantitative analysis of RNA tran-

scripts. Whole-body maps based on microarray analyses have been

launched, such as BioGPS (Wu et al, 2009), and these have recently

been followed by several tissue-based data portals based on RNA-

seq. Some of these publicly available repositories for transcrip-

tomics data are summarized in Table 1 with a focus on datasets

from RNA-seq experiments. The resources include repositories for

external data, such as Expression Atlas from the European Bioinfor-

matics Institute (EBI) and Gene Expression Omnibus from the

National Center for Biotechnology Information (NCBI), as well as

repositories with internally generated transcriptome data, such as

the GTEx, the Human Protein Atlas, and the Allen Brain Atlas. In a

recent study (Danielsson et al, 2015), the concordance of RNA-seq

data from four large-scale efforts was compared based on gene

expression measurements for ostensibly similar samples (specifi-

cally, human brain, heart, and kidney samples). The authors

concluded that human tissue RNA-seq expression measurements

appear quite consistent, considering that samples cluster by tissue

rather than laboratory of origin given simple preprocessing

transformations.

An alternative approach to RNA-seq, named cap analysis gene

expression (CAGE), has been described by the Fantom consortia

(Yu et al, 2015) and allows for quantitative measurements of tran-

scripts based on sequencing the 50-end of capped mRNA molecules.

The correlation between RNA-seq and CAGE for transcriptome

analysis was recently investigated (Yu et al, 2015), and the tran-

scriptome of 22 tissues was analyzed using both methods (Fig 1)

based on 79 RNA-seq (HPA) and 27 CAGE (FANTOM) samples.

Tissue-to-tissue comparisons showed a high genome-wide correla-

tion between the two datasets (Yu et al, 2015). Interestingly,

discrepancies between the two datasets can largely be explained by

gene model annotation issues or technical artifacts inherent in the

respective methodologies. As an example, the HPA data excluded

mRNA without poly-adenylation tails and it is therefore not surpris-

ing that many histone genes were lacking in the RNA-seq data, but

are present in the CAGE data. Conversely, CAGE peaks mapping

more than 500 base pairs from the transcriptional start site are lack-

ing in the CAGE dataset, as well as CAGE peaks mapping to two or

more locations on the genome, which are removed from the dataset.

Thus, the two methods are complementary and it would be attrac-

tive to integrate data obtained by these two approaches to refine

gene models and to improve the interpretation of gene expression

values.

Classification of all human protein-coding genes based on
tissue profiling

The different omics-based analyses of the human proteome have

allowed the classification of protein-coding genes with regard to

tissue-restricted expression. In the analysis performed by the HPA

consortium (Fagerberg et al, 2014; Uhlen et al, 2015), a cutoff of 1

FPKM (Hebenstreit et al, 2011) was used to indicate the presence or

absence of transcripts for a particular gene in a tissue. Based on this

definition, all human protein-coding genes were classified into (i)

genes with an elevated expression in one or several tissues, (ii)

genes expressed in all analyzed tissues, (iii) genes with mixed

expression found in several, but not all tissues, and (iv) genes not

detected in any tissues. The elevated genes were further stratified

into “tissue enriched”, “group enriched”, or “tissue enhanced”. The

term “tissue specific” was avoided as it depends on the definition of

cutoff values, and only few genes, including well-known proteins

such as insulin, PSA, and troponin, were found to be exclusively

expressed in a single tissue type (Uhlen et al, 2015). A classification

of all protein-coding genes is shown in Table 2 (cutoff of 0.5

FPKM).

The classification of the human protein-coding transcriptome

showed that almost half of the genes were detected in all tissues

(45%), while 13% showed a mixed expression (Fig 2A). Approxi-

mately one-third of the genes showed a tissue elevated expression

with 13% of the genes enriched in one of the analyzed tissues. Only

5% of the genes were not detected in any of the analyzed tissues. A

further analysis of the number of genes with a tissue elevated

expression (Fig 2B) showed that the testis has by far the highest

number of tissue-enriched genes followed by the brain (cerebral

cortex) and liver.

The recently published RNA-Seq data generated by the GTEx

consortium (Bahcall, 2015; GTEx Consortium, 2015; Gibson, 2015)

allow for an independent tissue-based classification of the human

proteome. The GTEx dataset includes more than 1,600 postmortem

samples from mostly overlapping, but in some cases unique, tissues

compared to the HPA consortium (Fig 1). For example, the GTEx

dataset includes more tissue samples from the brain, blood, and

nerves, which are not included in the HPA dataset. As illustrated in

Fig 2C, the overall tissue-based classification based on the GTEx

dataset and an identical cutoff of 0.5 FPKM is similar to that of the

HPA with 45% of the genes expressed in all tissues, 14% showing a

mixed expression, 12% being tissue-enriched expression, and 5% of

the genes not detected in any of the analyzed tissues. With respect

to tissue-elevated genes (Fig 2B and D) the testis is again observed

to contain the largest number of tissue-enriched genes, followed by

the brain (cerebellum, cortex, and pituitary), skin, and liver. The

values for the HPA and the GTEx datasets can be found in

Table EV1.

Tissue-enriched genes vs. ubiquitously expressed genes

Tissue-enriched genes identified by the analysis of the HPA data

(Uhlen et al, 2015) based on the definitions shown in Table 2 can

be found for all tissues in the interactive HPA database (www.

proteinatlas.org/humanproteome/tissue+specific). A functional

Gene Ontology analysis of the tissue-enriched genes in the HPA
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dataset has been performed and the results are consistent with

the function of each tissue (Uhlen et al, 2015). As an example,

genes elevated in liver encode secreted plasma and bile proteins,

detoxification proteins, and proteins associated with metabolic

processes and glycogen storage (Kampf et al, 2014), whereas

genes elevated in adipose tissue encode proteins involved in

lipid metabolic processes (Mardinoglu et al, 2014b) and genes

elevated in skin encode proteins associated with functions

related to the barrier function (squamous cell differentiation and

cornification), skin pigmentation, and hair development (Edqvist

et al, 2015). In order to further validate these lists, we have

compared the overlap of tissue-enriched genes identified using

the independent HPA and GTEx datasets. The number of tissue-

enriched genes in the different tissues and the overlap between

the two datasets are shown in Figs 2E and 3A, and Table EV2.

Overall, it is reassuring that there is a significant overlap in the

tissue classification of the genes based on the two independent

datasets. The fact that similar results are obtained when using

fresh frozen tissue (HPA) and postmortem tissue (GTEx)

suggests negligible effects of the sampling procedures used by

the GTEx consortium on RNA degradation. In the comparison,

note that in the HPA dataset, the brain contains only one tissue

(cerebral cortex), while the corresponding GTEx dataset is based

on three different tissues (cerebellum, cortex, and pituitary). The

large discrepancy for skin can be explained by the fact that the

sampling of skin in the HPA was based on shave biopsies

including mainly epidermis (Uhlen et al, 2015), while the GTEx

consortium also included the underlying dermis, most likely

containing skin adnexal structures such as hair follicles and

sweat glands.

Table 1. Data resources for RNA expression data with relevance for human protein-encoding genes.

Resource Affiliation Description Link (URL) References

Human Protein
Atlas

Science for Life Lab
(Sweden)

Tissue-based RNA data based on surgically
removed tissues (RNA-Seq)

http://www.proteinatlas.org/ (Uhlen et al, 2015)

GTEx Broad Institute (USA) Tissue-based RNA data based on postmortem
samples (RNA-Seq)

http://gtexportal.org/home/ (Keen & Moore, 2015)

FANTOM Riken Institute (Japan) Tissue-based RNA data based on CAGE http://fantom.gsc.riken.jp/ (Yu et al, 2015)

RNA-Seq Atlas J. Gutenberg University
(Germany)

A reference database for gene expression
profiling in normal tissue by next-generation
sequencing

http://medicalgenomics.org/
rna_seq_atlas

(Krupp et al, 2012)

Allen Brain Atlas Allen Institute (USA) An anatomically comprehensive atlas of the
adult human brain transcriptome

http://human.brain-map.org/ (Hawrylycz et al, 2012)

Evolution of gene
expression

University of Lausanne
(Switzerland)

The evolution of gene expression levels in
mammalian organs

http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE30352

(Brawand et al, 2011)

AltIso MIT (USA) Alternative isoform regulation in human
tissue transcriptomes.

http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE12946

(Wang et al, 2008)

Expression Atlas EBI (UK) Repository for RNA expression data
(both microarray and RNA-Seq)

https://www.ebi.ac.uk/gxa (Petryszak et al, 2015)

ArrayExpress EBI (UK) International functional genomics public
data repositories

http://www.ebi.ac.uk/arrayexpress/ (Rustici et al, 2013)

Illumina Body
Map

Illumina (USA) RNA-Seq of 16 human individual tissues http://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-513/

(Rustici et al, 2013)

Gene Expression
Omnibus

NCBI (USA) Repository for RNA expression data
(both microarray and RNA-Seq)

http://www.ncbi.nlm.nih.gov/geo/ (Barrett et al, 2013)

Table 2. Classification of all human protein-coding genes based on transcript expression levels in tissues and organs. The columns HPA and GTEx
indicate the number of genes identified in the different categories using the datasets (Keen & Moore, 2015; Uhlen et al, 2015) from these two
consortia.

Category Definition HPA GTEx

Tissue enriched At least fivefold higher mRNA levels (FPKM) in a particular tissue as compared to all other tissues 2,359 2,289

Group enriched At least fivefold higher mRNA levels in a group of tissues (2–7) 1,208 1,307

Enhanced At least fivefold higher mRNA levels in a particular tissue as compared to the average levels in all tissues 3,227 3,077

Expressed in all Detected in all tissues 8,385 8,459

Mixed Detected in at least two tissues, but not in all, and not part of any of the categories above 2,484 2,537

Not detected Not present in any of the analyzed tissues (under cutoff) 1,021 1,015

Total Total number of genes analyzed 18,684 18,684

Total elevated Total number of tissue-enriched, group-enriched, and tissue-enhanced genes 6,794 6,673
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Genes identified as “expressed in all tissues” are expected to

be either “housekeeping” genes for which the protein product is

needed in every cell, such as proteins involved in transcription,

translation, and energy metabolism, or genes expressed in cell

types that are present in all tissue types, such as lymphocytes,

macrophages, fibroblasts, and endothelial cells. HPA and GTEx

data largely overlap for this category as well, with 7,563 genes

identified as “expressed in all” by both resources (Fig 3B).

Between 800 and 900 genes were only identified in one of the

two datasets, and a more detailed analysis shows that the vast

majority of these genes were identified as “mixed” by the other

dataset (Fig 3B). This suggests that these genes move between
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Figure 2. Classification of all protein-coding genes using transcriptomics data.
(A) Pie chart showing the number of genes that fall into each expression specificity category, based on the classifications of HPA (32 tissues, 137 samples) (with a cutoff of 0.5
FPKM). (B) The number of protein-coding genes classified as tissue enriched (dark blue), group enriched (medium blue), and tissue enhanced (light blue) based on the
HPA dataset. (C) Pie chart showing the number of genes that fall into each expression specificity category, based on the classifications of GTEx (30 tissues, 2,510 samples) (Keen
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enhanced in the same tissue in both datasets are shown in blue; genes only enriched in one of the datasets are shown in yellow (only HPA) or orange (only GTEx).
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categories based on the relatively arbitrary FPKM cutoff and

indicates that expression in a single tissue below the detection

threshold makes a gene move from “expressed in all” to

“mixed”.

The variation in protein profiles between individuals

A relevant question arising is the level of interindividual variation

in gene expression levels. A comparison of individual variation for

“housekeeping” genes (defined as expressed in all analyzed tissues)

and genes with a more tissue-restricted expression using GTEx data

is presented in Fig 3C for three different tissues (lung, brain, and

skin) that are represented by a large number of biological replicates.

For all three tissues, the coefficient of variation (CV) in the

“expressed in all” category shifted toward the lower side, suggesting

that genes expressed in all tissues seem to vary less between indi-

viduals for a particular tissue as compared to genes with a tissue-

restricted expression pattern. This illustrates that the proteins found

in all tissues are expressed at relatively similar levels across the

analyzed tissues, suggesting, as perhaps expected, that these

proteins that are involved in “basic functions” are required at

similar concentrations in the various tissue types.

Building genome-scale metabolic models for
human tissues

High-quality genome-wide proteomics and transcriptomics data can

be used for generating and improving context-specific biological
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networks including protein–protein interaction (PPI), regulatory,

signaling, and metabolic networks (Papin et al, 2005; Qian et al,

2005; Bossi & Lehner, 2009) in order to gain further insights into

the differences in cellular functions across tissues. Genome-scale

metabolic models (GEMs) that can be reconstructed directly from

proteomics or transcriptomics data are particularly well suited for

the analysis of biological functions, since they can be applied to

examine the metabolic functions associated with a given cell type.

Several studies have recently reported the use of proteomics data

to reconstruct GEMs for analyzing metabolic processes across dif-

ferent cell and tissue types in humans (Mardinoglu & Nielsen,

2015; O’Brien et al, 2015; Yizhak et al, 2015; Bjornson et al, 2016)

and mice (Mardinoglu et al, 2015b). GEMs contain thousands of

biochemical reactions and their catalyzing protein-coding genes in

a cell/tissue, which generate a complex network of molecular

interactions capturing the metabolic functions of this cell/tissue

(Fig 4A). This reaction network is converted into a computational

model using a stoichiometric (S) matrix and can be applied for the

analysis of physiological data collected from both healthy and

diseased states (Mardinoglu & Nielsen, 2012; Mardinoglu et al,

2013b).

The first human GEMs, Recon1 (Duarte et al, 2007) and EHMN

(Ma et al, 2007), were developed nearly 10 years ago and have

now grown to the level where they can be used for predicting the

metabolic response of cell/tissue to a given perturbation. These

integrative models allowed the identification of new drug target

candidates by theoretical analyses (Frezza et al, 2011), and many

enzymes have already been proposed as drug targets for cancer

treatment (Yizhak et al, 2015). Recently, more comprehensive

generic human GEMs including Recon2 (Thiele et al, 2013) and

HMR2 (Mardinoglu et al, 2014a) were constructed by integrating

the components of the first generic human GEMs with manually

reconstructed context-specific GEMs. Recon2 covers the content of

the HepatoNet, a manually reconstructed GEM for hepatocytes

(Gille et al, 2010), whereas HMR2 covers the content of both

HepatoNet and iAdipocytes1809, a manually reconstructed GEM

for adipocytes (Mardinoglu et al, 2013a). HMR2 also includes the

extensive description of lipid metabolism present in human adipo-

cytes and hepatocytes. The number of reactions, metabolites, and

genes incorporated in each model as well as the conceptual evolu-

tion of global reconstructions of human metabolism is presented

in Fig 4B. As illustrated in Fig 4B, HMR2 is the most comprehen-

sive global reconstruction of human metabolism and this model

together with other generic models of human metabolism has

served as a basis for the reconstruction of context-specific GEMs

(Fig 4C).

Context-specific GEMs were generated by manually curating the

existing literature as well as by using various algorithms that have

been reviewed elsewhere (Machado & Herrgard, 2014). For

instance, the recently developed tINIT algorithm enables the recon-

struction of simulation-ready GEMs based on proteomics data and

metabolic functions that are known to occur in the cell/tissue of

interest (Agren et al, 2014). The implementation of a metabolic

function related to bile acid synthesis into the liver-specific GEM is

shown as an example in Fig 4D. Recently, 32 tissue-specific GEMs

for healthy human tissues were generated by integrating RNA-seq

data from the HPA in combination with the tINIT algorithm and

they were used to compare the metabolic differences between these

tissues (Uhlen et al, 2015). GEMs reconstructed based on RNA-seq

data successfully predicted tissue-specific functions. For instance,

the liver GEM was the only model that could successfully perform

metabolic functions related to bile acid synthesis. Moreover, the

liver GEM was able to perform all defined human metabolic func-

tions and it was the largest GEM in terms of incorporated reactions,

metabolites, and genes, reflecting its high metabolic activity

compared to the other analyzed tissues. A list of the various cell-/

tissue-specific GEMs that have been generated so far, either in

physiological or in disease states, is presented in Table 3.

Applying context-dependent GEMs for analyzing
human diseases

Context-specific GEMs in combination with omics data obtained in

disease-specific contexts have been used to elucidate the metabolic

capabilities of cells/tissues involved in metabolism-related disorders

including obesity (Mardinoglu et al, 2013a, 2014b, 2015a), non-

alcoholic fatty liver disease (NAFLD) (Mardinoglu et al, 2014a;

Hyötyläinen et al, 2016), type 2 diabetes (T2D) (Varemo et al,

2015), and aging (Yizhak et al, 2013), as well as to determine

unique metabolic properties of cancer cells (Agren et al, 2012; Gatto

et al, 2014; Nam et al, 2014) and even individual cell lines (Yizhak

et al, 2014a,b; Gatto et al, 2015; Ghaffari et al, 2015) and tumors

(Agren et al, 2014). Each of these studies advanced our understand-

ing of the molecular mechanisms underlying these diseases and

allowed the discovery of drug targets or biomarkers that can be used

for designing effective treatment strategies.

Recently, a GEM for skeletal myocytes was reconstructed using

cell type-specific RNA-seq data and incorporating cell type-specific

proteomics data from the HPA. First, the presence/absence of each

enzyme in myocytes was determined and based on this information

the corresponding metabolic reaction was incorporated into the

myocyte-specific GEM (Varemo et al, 2015). The model was

employed for characterizing the metabolic alterations in skeletal

muscle in response to T2D based on the meta-analysis of six

published datasets on T2D muscle gene expression. The metabolic

alterations observed in the skeletal muscle T2D patients involved

differences in pyruvate oxidation, tetrahydrofolate metabolism, and

branched-chain amino acid catabolism.

The interplay between a large number of biological pathways

and the significant variation between patients makes it extremely

difficult to identify effective drug targets and biomarkers for meta-

bolic diseases. Personalized GEMs that account for interindividual

differences as well as for the unique characteristics of disease

progression in each individual (Agren et al, 2014) present a poten-

tial solution to these issues. In a recent study, personalized cancer

GEMs for six hepatocellular carcinoma (HCC) patients as well as

83 healthy cell-specific GEMs were reconstructed using the tINIT

algorithm to integrate proteomics data from the HPA and meta-

bolic functions that are present in human cells (Agren et al,

2014). Based on these personalized GEMs, anticancer drug targets

that can be used for inhibiting the HCC tumor growth in each

patient were identified. One of the targets, predicted to be effec-

tive in all patients, was experimentally validated in human HCC

cancer cell lines. Overall, the observation that fat oxidation was

increased in the analyzed HCC tumors indicated that targeting this
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metabolic process could be used for developing treatment

strategies for HCC.

Another recent application of GEMs in the context of HCC is

presented in the study of Björnson et al (2015). In this case, gene

expression data from approximately 360 HCC tumors and 50 non-

cancerous liver samples were analyzed using a HCC-specific GEM.

Interestingly, a group of patients showed an increased fat oxida-

tion, whereas another group showed a decreased fat oxidation.

The fact that HCC tumors from different patients may have

completely opposite metabolic programming highlights that careful

stratification of HCC patients and personalized medicine

approaches are highly advantageous for developing effective treat-

ment strategies. Overall, these studies provide valuable insights

into inter- and intratumor heterogeneity and point out that it

might be extremely difficult to treat all different HCC patients with

a single drug. This drug can be effective in the right context, that

is, in a given patient or patient group. Therefore, personalized

GEMs and their predictions of a patient’s response to different

drugs can be extremely useful for guiding precision medicine

approaches.
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Figure 4. Genome-scale metabolic models for human cells/tissues.
(A) GEMs incorporate the known biochemical reactions and their catalyzing enzymes in a particular cell/tissue type. The information related to the reaction–gene association
is used for the reconstruction of context-specific GEMs. (B) The continuously increasing number of reactions, metabolites, and genes included in generic human GEMs and
manually curated cell-/tissue-specific GEMs generated in the recent years is shown. (C) High-throughput omics data including proteomics, transcriptomics, and
metabolomics have been used for reconstructing cell-/tissue-specific GEMs based on generic human GEMs. (D) The metabolic tasks that are known to occur in a given human
cell/tissue need to be defined to generate functional cell-/tissue-specific GEMs. The definition of the metabolic task related to bile acid synthesis in the liver is
presented. Glucose, cysteine, phenylalanine, oxygen (O2), and phosphate (Pi) must be taken up, whereas urea, water (H2O), and carbon dioxide (CO2) must be secreted in order
to successfully simulate bile acid synthesis in liver GEM.
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Concluding remarks

Here, we reviewed some of the publicly available human transcrip-

tomics data resources with a focus on the expression data for

protein-coding genes. Tissue-restricted and tissue-enriched genes

can be consistently defined in a genome-wide manner by two inde-

pendent datasets generated using either fresh surgically removed

tissues or postmortem tissues taken within 24 hours after the death

of the individual. Thus, comprehensive lists of protein-coding genes

can be compiled for all the major tissues of the human body (see

Table EV1), with their quantitative expression profiles generated by

deep sequencing of the transcriptome.

The use of high-quality proteomics and transcriptomics data in

combination with metabolic modeling allows for functional analyses

in the context of different pathologies, for example, by comparing

GEMs reconstructed using data from healthy and diseased subjects.

On the one hand, a comparison of the healthy vs. diseased GEM

topology can provide insights into how cancer metabolism differs

from metabolism of the healthy tissue (Gatto et al, 2014; Björnson

et al, 2015; Zhang et al, 2015). Furthermore, GEMs can be used for

identifying drug targets (Agren et al, 2014), and therefore, their inte-

gration with omics data generated in a clinical setup can be applied

to guide precision medicine in different disease types. Further

improvement and expansion of GEMs to cover other biological

processes, for example, protein secretion pathways and protein

synthesis (Feizi et al, 2013), will allow this modeling framework to

capture dysfunction of key cellular pathways in a range of different

pathologies, potentially leading to the identification of new

treatment strategies and biomarkers.

The transcriptomics data can be complemented with immunohis-

tochemistry to define protein localization in the subcompartments

of each tissue and organ down to the single-cell level (www.pro-

teinatlas.org). Moreover, extending these tissue profiles to include

splice variants and protein modifications is important for improving

Table 3. List of generic and cell-/tissue-specific human GEMs.

Model name Application References

Generic human GEMs

Recon1 Integration of genomic and bibliomic data (Duarte et al, 2007)

EHMN Integration of genomic and bibliomic data (Ma et al, 2007)

HMR Integration of previous generic human GEMs and publicly available databases (Agren et al, 2012)

Recon2 Community-based reconstruction of human metabolism (Thiele et al, 2013)

HMR2 Incorporation of extensive lipid metabolism into the generic human GEM (Mardinoglu et al, 2014a)

Cell-/tissue-specific GEMs

Red blood cell Analysis of the metabolic loads in red blood cells (Wiback & Palsson, 2002)

Mitochondria Study of the human mitochondrial metabolism (Vo et al, 2004)

Fibroblasts Metabolic alterations in Leigh syndrome (Vo et al, 2007)

HepatoNet1 Investigation of hepatic enzyme deficiencies (Gille et al, 2010)

Computational liver model Discovery of biomarkers of liver disorders including hyperammonemia
and hyperglutaminemia

(Jerby et al, 2010)

Kidney Prediction of causal drug off-targets that impact kidney function (Chang et al, 2010)

Brain (three neuron
types and astrocytes)

Revealing the metabolic alterations in Alzheimer’s disease (Lewis et al, 2010)

IAB-AMQ-1410 Analysis of the host–pathogen interactions with Mycobacterium tuberculosis (Bordbar et al, 2010)

Multitissue (hepatocytes,
myocytes, and adipocytes)

Revealing the metabolic alterations in T2D (Bordbar et al, 2011a)

Erythrocyte (iAB-RBC-283) Revealing the complexity in the functional capabilities of
human erythrocyte metabolism

(Bordbar et al, 2011b)

69 cell-specific GEMs Studying the metabolic differences between healthy cells and cancers (Agren et al, 2012)

126 tissue-specific GEMs Comparative analysis between healthy tissues and tumor (Wang et al, 2012)

CardioNet The effect of oxygen and substrate supply on the efficiency of
selected metabolic functions of cardiomyocytes

(Karlstaedt et al, 2012)

iAdipocytes1809 Revealing the metabolic differences in obese subjects (Mardinoglu et al, 2013a)

Tissue-specific GEMs Studying the metabolic differences between healthy tissues and cancers (Nam et al, 2014)

Liver GEM Studying urea metabolism in liver tissue (Vlassis et al, 2014)

83 cell-specific GEMs Defining the major metabolic functions in human cell types (Agren et al, 2014)

iHepatocytes2322 Revealing the metabolic alterations in response to NAFLD (Mardinoglu et al, 2014a)

iMyocyte2419 Revealing the metabolic alterations in response to T2D (Varemo et al, 2015)

32 tissue-specific GEMs Global analysis of the metabolic functions in major human tissues (Uhlen et al, 2015)
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our understanding of the role of the isoform proteome and post-

translational modifications in human physiology and disease.

Finally, spatial proteomics using fluorescent-based antibody profil-

ing (Marx, 2015) can provide even higher resolution with precise

localizations of the corresponding proteins down to subcellular

compartments and various substructures. The integration of

transcriptomics data with other large-scale data, such as mass

spectrometry-based proteomics, antibody-based profiling, and

metabolomics, can thus generate an important molecular knowledge

base for systems biology of human health and disease.

Expanded View for this article is available online.
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