ULTRA LOW EMISSION TECHNOLOGY INNOVATIONS FOR MID-CENTURY AIRCRAFT TURBINE ENGINES

GT2016-56123 Tomas Grönstedt Thursday, June 16, Seoul, 2016

ⁱⁿ sion The ULTIMATE project is funded by the European Union H2020 programme under GA no. 633436.

- Irreversibility

 Categorizing losses & "The big three"
- ULTIMATE technologies
- Project approach
- Impact

The heat engine

- We add heat (\dot{Q}_{added}), usually through combustion of a fuel, to generate something useful (W):
 - Electric power
 - Jet velocity to generate thrust for the aircraft

$$\eta = \frac{\dot{W}}{\dot{Q}_{added}}$$

Losses in a 2015 state-of-the-art turbofan

One needs to attack the "the Big Three"

- Combustor irreversibilities (1)
- Core exhaust heat losses (2)
- Excess of kinetic energy in the bypass flow (3)

Exergy, denoted ε, of a steady stream of matter is equal to the **maximum amount of work** obtainable when the stream is brought from its initial state to a state of **thermal and mechanical** equilibrium with its environment.

The red cross-hatched areas may be captured – HOW ???

Grönstedt, T., Irannezhad, M., Lei, X., Thulin, O., Lundbladh, A., "First and second law analysis of future aircraft engines". *Journal* of Engineering for Gas Turbines and Power", 136 (3), 2014

The ULTIMATE project consortium

Develop propulsion "systems

concepts" with the potential to

fulfil the SRIA 2050 key challenges

Major challenge (all relative to the year 2000)

- ➡ 75% reduction in CO₂
- 90% reduction in NO_x during cruise
- Reduction of noise by 15 dB

ULTIMATE Alone

- 18% reduction in CO₂
- 20% reduction in NO_x during cruise
- 3 dB reduction in Noise

Initial ULTIMATE SRIA 2050 CO₂ target breakdown

Propulsion systems with a SRIA 2050 target potential

1: Meeting societal and market needs	2: Maintaining and extending industrial leadership	3: Protecting the environment and the energy supply	4: Ensuring safety and security	5: Prioritising research, testing capabilities and education
 European citizens informed mobility choices. 90% of travellers within Europe door-to-door within 4 hours. A coherent ground infrastructure is developed. Flights land within 1 minute of the planned arrival time. An air traffic management system is in place at least 25 million flights 	 The whole European aviation industry is strongly competitive, delivers the best products and services worldwide and has a share of more than 40% of its global market. Europe has retained leading edge design, manufacturing and system integration capability and jobs flagship projects cover the whole innovation process Streamlined systems of engineering, design, manufacturing, certification 50% reduction in the cost of certificationnewstandards 	 CO2 emissions per passenger kilometer have been reduced by 75%, NOx by 90% and perceived noise by 65%, all relative to the year 2000. Aircraft movements are emission-free when taxiing. Air vehicles are to be recyclable. Europe centre of excellence sustainable alternative fuels Europe is at the forefront of atmospheric research 	 European Air Transport System has less than one accident per ten million Weather and other environmental hazards evaluatedmitigated Air Transport manned and unmanned safely operate in the same airspace. boarding and security measures through security controls without intrusion. Air vehicles are resilient by design to current and predicted security threat The Air Transport System has a fully secured data network 	 European research and innovation strategies are jointly defined by all Stakeholders involves the complete innovation chain A network of multi- disciplinary technology clusterscollaboration between industry, universities and research institutes. Strategic European aerospace test, simulation and development facilities are identified, maintained and further developed
ULTIMATE measurable objectives				
 Short & long range missions Flexible missions, 30000-45000 ft alt. Gate-to-gate better than state of the art 	 Propulsion system, technology and top-level module requirements to TRL 2 Advanced whole engine analysis, Ph.D's & senior researchers with deep knowledge of multi-disciplinary Exploiting working process 	 CO₂: 18% reduction NO_x: 20% reduction 3 dB reduction from ULTIMATE propulsion technologies alone Breakdown of goals – airframe/propulsion system 	 Show that propulsion systems are judged tolerant of inclement weather (ice, hail, rain, inlet temperature) have sufficient system redundancy 	 Develop the European academic network of Centres of Excellence in conceptual engine design Multi-objective, multidisciplinary analysis for radical propulsion systems
concepts	roadmaps	Optimizing powerplants	weather and safety redundancy	to collaborate

Exploit synergies between radical engine configurations

- Constant volume type combustion.
- Bottoming cycles
- Intercooling
- When designing real cycles loss source attacking is more complex
 - Optimization blurs the view
 - Some innovations may attack both loss source 1 and loss source 2

- Intercooling & recuperation
 - Advanced low pressure system technology

... together with an advanced tube and wing configuration

Figure 3: a) Year 2050 Advanced Tube and Wing (ATW) aircraft

- High aspect ratio wings
- Foldable wing tips
- Laminar flow
- Advanced materials

Recent large improvements shown for configurations with less radical powerplants:

- Boeing estimated a 54% reduction with a truss-braced high AR wing concept "SUGAR High"
- MIT's "double bubble", close to 71% reduction (use of boundary layer ingestion)

Development of radical concepts applicable in a range of scenarios:

- Blended wing body
- Horizontal double bubble
- Prandtl joined wing
- Turbo-electric and hybrid propulsion
- Hydrogen, methane and biofuel propelled concepts

Figure 4: a) Piston based "composite cycle" . b) Pulse detonation core. c) Nutating disc

Source 1 – some historical achievements

	BSFC @TO SL	Power-to-Weight
Compound Engines	(lb/shp-hr)	ratio (kW/kg)
Wright R-3350 piston engine (1941) ¹	0.38	1.35
Napier Nomad 2 engine (1954) ²	0.35	1.44
Turboprop Engines		
Allison T-56 turboprop engine (1955) ¹	0.52	4.00
RR AE 2100 (1994) ³	0.41	4.53
Europrop TP400 (2009) ³	0.35 (CR)	4.41

Source 1 - The composite cycle

- + 30% weight increase
- 15% fuel burn

S. Kaiser, S. Donnerhack, A. Lundbladh, A. Seitz, "A Composite Cycle Engine Concept with Hecto-Pressure Ratio", 51st AIAA/SAE/ASEE Joint Propulsion Conference, Propulsion and Energy Forum, (AIAA 2015-4028).

Attacking loss source #2

Bottoming Rankine cycle

Figure 5: Bottoming Rankine cycle concept

Recuperation

Figure 6: Recuperator conceptual design

Intercooling

Figure 7: Intercooler integration

Re-heat

- ••• Possible synergies with
 - Intercooling
 - Recuperation
 - Rankine bottoming

13/06/2016

Recuperation

- Alternative recuperation
 - Staged heat recovery (SHR)
 - HEX between IPT-LPT **and** downstream LPT
 - Concept for compact heat exchange
- Secondary fluid systems in recuperation concepts

Recuperator conceptual design

Intercooling

Loss source 3 – excess kinetic energy

Attacking loss source #3

- ultra-thin adaptive inlet
- adaptive external shapes
- circumferentially retractable concepts
- variable pitch fan rotors,
- variable bypass and core nozzles, variable inlet guide vanes

Intra-European configuration

Powerplant for intercontinental configuration (the Rolls-Royce UltraFan concept for 2025 is used to illustrate this configuration)

- Open-Rotor architecture for the Intra-European configuration
- Geared architecture for the intercontinental configuration

Retractable nacelle concept

- Boxprop concept and open rotor concepts being explored
- Boxprop
 - Potentially low noise emissions at competitive efficiencies

R. Avellán, A. Lundbladh, *"Boxprop, a forward-swept joined-blade propeller"*, ISABE-2013-1108

- Evaluating the effect of ultra-thin adaptive inlet & adaptive external shapes
- Variable pitch fan concept

Figure 13. ULTIMATE technology screening and development process

Specific Range (SR) – distance flown per unit weight of fuel burned

Capture the most critical system performance aspects while avoiding a full mission analysis

$$SR = a \frac{\mathsf{M}\frac{L}{D}}{SFC \cdot W}$$

- *a* Speed of sound
- M Mach number
- L/D Lift to Drag ratio
- *W* Weight
- *SFC* Specific Fuel Consumption

Impact

- Y2050 introduction
- Potential reduction from ULTIMATE technologies
 - 3 billion tonnes of CO2 reduction in the 25 years beyond entry into service

- Great potential exist to improve cycle efficiency with advanced core concepts
- A categorization of losses based on a "lost work potential" was used for radical powerplants
 - A process for down-selection based on the categorization and specific range
- Several advanced core engine concepts outlined
 - Concepts for integration with more efficient and silent propulsors outlined