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Abstract: Nowadays, the demand for qualified engineers in novel model-based controller design
techniques is rapidly increasing. Therefore, it is necessary to include these up-to-date techniques
in control theory courses. We are confident that this paper provides a motivation for embedding
new linear/bilinear matrix inequality (LMI/BMI) -based approaches in topic-related courses and
student projects. Within this paper a systematic design framework for robust discrete-time gain-
scheduled proportional, summation, and difference (PSD) controller design for uncertain linear
parameter-varying systems is presented. Conditions to satisfy robust stability and performance
requirements are translated to an optimization problem subject to LMI/BMI constraints which
students can easily solve using commercial as well as free and open source software tools
and solvers. Two student project examples are given to illustrate and validate the proposed
methodology.

Keywords: Robust control, Gain scheduling, Linear parameter-varying systems, LMI, BMI,
Lyapunov theory of stability, Guaranteed cost, Matlab, Octave, Scilab/Xcos.

1. INTRODUCTION

It is well known that Proportional, Integral, and Deriva-
tive (PID) and discrete-time Proportional, Summation,
and Difference (PSD) controllers are extensively used in
industry (Åström and Murray, 2011). However, in the past
few years the interest in advanced PID/PSD controller de-
sign techniques has increased gradually. Therefore, today’s
industry need more and more qualified engineers trained
specifically in working with these new techniques. In order
to meet these new demands, it is necessary to include
up-to-date controller design techniques in control theory
courses.

The robust control theory (Veselý et al., 2015) is well
established for linear systems but almost all real processes
are more or less nonlinear. If the plant’s operating region
is small, one can use the robust control approaches to
design a linear robust controller where the nonlinearities
are treated as model uncertainties. However, for nonlinear
processes, where the operating region is large, the above
mentioned controller synthesis may be inapplicable. For
this reason, the controller design for nonlinear systems is
nowadays a very important field of research. Gain schedul-
ing (GS) is one of the most commonly used controller
design approaches for nonlinear systems and has a wide
range of use in industrial applications. Many of the early

? This work has been sponsored by Chalmers Area of Advance
Transportation, by Vinnova under the FFI project MultiMEC and
by Vinnova under FFI project VCloud II.

publications were associated with flight control (Adams
et al., 1992; Nichols et al., 1993) and aerospace (Hyde and
Glover, 1993). Then, gradually, this approach has been
used almost everywhere in control engineering, which was
greatly helped with the introduction of linear parameter-
varying (LPV) systems. LPV systems were introduced first
by Jeff S. Shamma in 1988 to model gain-scheduling. To-
day the LPV paradigm has become a standard formalism
in systems and controls with many publications devoted
to analysis, controller design and system identification of
these models (Shamma, 2012).

Robust and robust gain-scheduled control belongs to im-
portant research topics at our department (Veselý and Ilka,
2013, 2015; Ilka and Veselý, 2015). Research results have
always been included in topic-related courses and student
projects. In this paper, we present a robust discrete-time
gain-scheduled PSD controller design approach for uncer-
tain LPV systems which guarantees the closed-loop sta-
bility and guaranteed cost for a prescribed rate of change
of scheduled parameters. Students can easily design a
robust gain-scheduled PSD controller using commercial as
well as free and open source software tools like MATLAB
(The Mathworks, Inc., 2014), Octave (Octave community,
2015), SciLab (Scilab Enterprises, 2012), and powerful
linear matrix inequality (LMI) (LMILAB (Gahinet et al.,
1994), SeDuMi (Sturm, 1999), SPDT3 (Toh et al., 1999))
and bilinear matrix inequality (BMI) (PENBMI (Henrion
et al., 2005), PenLab (Fiala et al., 2013)) solvers with
efficient programming interface YALMIP (Löfberg, 2004).
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YALMIP is a modelling language for advanced modelling
and solution of convex and nonconvex optimization prob-
lems. It is a free toolbox for MATLAB and Octave. Simula-
tions can be done in MatLab/Simulink or in Scilab/Xcos.
We are confident that this paper provides a motivation
for embedding up-to-date LMI/BMI-based approaches in
control education programs for which free and open source
program tools and solvers can also be used.

The rest of the paper is organized in four sections. Intro-
duction is followed by robust discrete-time GS controller
design in Section 2, where the key notions are introduced
and the robust discrete-time GS controller design problem
is articulated with robust stability and performance condi-
tions. Examples of student projects are given in Section 3,
where the proposed methodology is validated using com-
mercial as well as free and open source program tools and
solvers. Concluding remarks close the paper in Section 4.

The mathematical notations of the paper are as follows.
Given a symmetric matrix P = PT ∈ Rn×n, the inequality
P > 0 (P ≥ 0) denotes the positive definiteness (semi-
definiteness) of the matrix. Matrices, if not explicitly
stated, are assumed to have compatible dimensions.

2. ROBUST DISCRETE GS CONTROLLER DESIGN

2.1 Preliminaries and problem formulation

The following class of discrete-time linear parameter vary-
ing systems is considered through the paper:

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k),

y(k) = Cx(k),
(1)

where x(k) ∈ Rn, u(k) ∈ Rm, and y(k) ∈ Rl are
the state, control input, and the measured output vec-
tors, respectively. The matrix functions A(θ(k)) ∈ Rn×n
and B(θ(k)) ∈ Rn×m are assumed to depend on the
scheduling variable θ(k) ∈ 〈θ, θ〉 ∈ Ω. This variable
θ(k) = [αi, . . . , αNp , β1, . . . , βNu] can be split to a part
where it is assumed that the scheduling parameters αi(k)
i = 1, 2, . . . , Np are constant or time varying and can be
measured or estimated (therefore used in the controller),
and to a part, where the scheduling parameters βj(k),
j = 1, 2, . . . , Nu are constant or time varying but unknown
(uncertain) parameters.

L(θ(k)) = L0 +

Np∑
i=1

Liαi(k) +

Nu∑
j=1

LNp+jβj(k)

= L0 +

p∑
i=i

Liθi(k)

(2)

with L(θ(k)) = {A(θ(k)), B(θ(k))}. In addition A0, B0,
Ai, Bi, i = 1, 2, . . . , p, and C are constant matrices with
appropriate dimensions.

The output feedback gain-scheduled control law is con-
sidered for discrete-time PSD controller in the form:

u(k) =
(
KP (θ(k))e(k) +KS(θ(k))

k∑
i=0

e(i)

+KD(θ(k))(e(k)− e(k − 1))
)
,

(3)

where e(k) = y(k) − w(k) is the control error, w(k) is
the reference signal, and matrices KP (θ(k)), KS(θ(k)),

KD(θ(k)) are controller gain matrices in the form (2) with
L(θ(k)) = {KP θ(k), KSθ(k), KDθ(k)} (for SISO systems
they are scalars). Note that the number of controller gain
matrices is only Np, the rest Nu are equal to zero.

With the assumption that the reference signal w(k) is
bounded, the control law for w(k) = 0 can be rewritten
as follows:

u(k) =
(
KP (θ(k))y(k) +KS(θ(k))

k∑
i=0

y(i)

+KD(θ(k))(y(k)− y(k − 1))
)
,

(4)

We can extend the system with two state variables (Veselý
and Rosinová, 2013):

z1(k) =
∑k−2
i=0 y(i), z2(k) =

∑k−1
i=0 y(i), (5)

furthermore, substituting expressions y(k − 1) = z2(k) −
z1(k) and

∑k
i=1 y(k) = z2(k) +y(k) to the control law (4),

one can obtain:

u(k) =
(

(KP (θ(k)) +KS(θ(k)) +KD(θ(k))) y(k)

+KS(θ(k))z2(k)−KD(θ(k))(z2(k)− z1(k))
)
.

(6)

The control law (6) can be transformed to the following
state space matrix form:

u(t) = F (θ(k))ỹ(k), (7)

where ỹ = [y(k), z1(k), z2(k)]T is the extended measured
output vector and

F (θ(k))T =

[
KP (θ(k)) +KS(θ(k)) +KD(θ(k))

KD(θ(k))
KS(θ(k))−KD(θ(k))

]
.

Substituting the control law (7) to the system (1), the
following closed-loop system is obtained:

x̃(k + 1) = Acl(θ(k))x̃(k), (8)

where x̃(k) = [x(k), z1(k), z2(k)]T and

Acl(θ(k)) = Ar(θ(k)) +Br(θ(k))F (θ(k))Cr(θ(k)),

Ar(θ(k)) =

[
A(θ(k)), 0, 0

0, 0, I
C, 0, I

]
, Cr(θ(k)) =

[
C, 0, 0
0, I, 0
0, 0, I

]
,

Br(θ(k)) = [B(θ(k)), 0, 0]
T
.

2.2 Sufficient Stability Conditions

Quadratic Stability. To ensure quadratic stability the
following Lyapunov function has been chosen:

V (k) = x̃(k)TPx̃(k). (9)

Definition 1. (Apkarian et al., 1995) The linear closed-
loop system (8) for ∀θ ∈ Ω is quadratically stable if there
exist a symmetric positive definite matrix P > 0 and for
the first difference of the Lyapunov function (9) along the
trajectory of closed-loop system (8) holds:

∆V (θ(k)) = x̃(k)T
(
Acl(θ(k))TPAcl(θ(k))

+ P
)
x̃(k) < 0

(10)

Affine Quadratic Stability. To ensure affine parameter-
dependent quadratic stability (Gahinet et al., 1996), the
following Lyapunov function has been chosen:

V (θ(k)) = x̃T (k)P (θ(k))x̃(k). (11)
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The first difference of the Lyapunov function (11) is given
as follows:

∆V (θ(k)) = x̃T (k + 1)P (θ(k + 1)) x̃(k + 1)

− x̃T (k)P (θ(k)) x̃(k),
(12)

where
P (θ(k)) = P0 +

∑p
i=1 Piθi(k). (13)

Substituting θ(k + 1) = θ(k) + ∆θ(k) to P (θ(k + 1)), one
obtains the following result:

P (θ(k + 1)) = P0 +

p∑
i=1

Piθi(k) +

p∑
i=1

Pi∆θi(k), (14)

where if assuming that ∆θi ∈ 〈∆θi,∆θi〉 ∈ Ωt, i =
0, 1, . . . , p, and max |∆θi| < ρi, one can write

P (θ(k + 1)) ≤ P0 +

p∑
i=1

Piθi(k) + Pρ = Pρ(θ(k)), (15)

where Pρ =
∑p
i=1 Piρi.

Based on equations (12), (13), and inequality (15) the
following definition can be formulated:

Definition 2. The linear closed-loop system (8) for θ(k) ∈
Ω and ∆θ(k) ∈ Ωt is affinely quadratically stable if
p + 1 symmetric matrices P0, P1, . . . , Pp exists such that
P (θ(k)) (13), Pρ(θ(k)) (15) are positive defined and for
the first difference of the Lyapunov function (12) along
the trajectory of closed-loop system (8) it holds:

∆V (θ(k)) = z̃T (k)

[
V11(θ(k)), V12(θ(k))
V T12(θ(k)), V22(θ(k))

]
z̃(k) ≤ 0, (16)

where z̃T (k) =
[
x̃T (k + 1), x̃T (k)

]
, furthermore

V11(θ(k)) =Pρ(θ(k)) +N1 +NT
1 ,

V12(θ(k)) =N2 −NT
1 Acl(θ(k)),

V22(θ(k)) =−P (θ(k))−NT
2 Acl(θ(k))−ATcl(θ(k))N2,

where N1, N2 ∈ Rn×n are auxiliary matrices.

2.3 Performance Quality

To assess the performance quality with possibility to
obtain different performance quality in each working point,
a quadratic cost function described in our previous paper
(Ilka and Veselý, 2014) is used:

Jdf (θ(k)) =

∞∑
k=0

(
x̃(k)TQ(θ(k)) x̃(k) + u(k)TRu(k)

+ ∆x̃(k)TS(θ(k)) ∆x̃(k)
)

=

∞∑
k=0

Jd(θ(k)),

(17)

where

Q(θ(k)) = Q0 +

p∑
i=1

Qiθi(k), S(θ(k)) = S0 +

p∑
i=1

Siθi(k),

Qi = QTi ≥ 0, Si = STi ≥ 0, R > 0,

furthermore, Q0, Qi, S0, Si ∈ R(n+2l)×(n+2l), R ∈ Rm×m
are symmetric positive definite (semidefinite) and definite
matrices, respectively.

Definition 3. Consider the system (1) with the control
algorithm (7). If a control law u∗ and a positive scalar J∗d
exist such that the closed-loop system (8) is stable and the
value of closed-loop cost function (17) satisfies Jd ≤ J∗d ,
then J∗d is said to be a guaranteed cost and u∗ is said to
be a guaranteed cost control law for the system (1).

2.4 Robust gain-scheduled PSD controller design

The robust gain-scheduled PSD controller design is based
on the following lemmas:

Lemma 1. Consider the closed-loop system (8). Closed-
loop system (8) is quadratically/affinely quadratically sta-
ble with guaranteed cost if the following inequality holds:

Be(θ(k)) = max
u
{∆V (θ(k)) + Jd(θ(k))} ≤ 0, (18)

for ∀θ(k) ∈ Ω and ∆θ(k) ∈ Ωt. For proof see (Kuncevic
and Lycak, 1977).

Lemma 2. Consider a scalar quadratic function of θ ∈ Rp.

f (θ1, . . . , θp) = a0 +

p∑
i=1

aiθi +

p∑
i=1

p∑
j>i

bijθiθj +

p∑
i=1

ciθ
2
i ,

and assume that f (θ1, . . . , θp) is multi-convex, that is
∂2f(θ)
∂θ2
i

= 2ci ≥ 0 for i = 1, 2, . . . , p. Then f(θ) is negative

for all θ ∈ Ω if and only if it takes negative values at the
corners of θ. (Gahinet et al., 1996)

Using Lemmas 1 and 2 the following theorems are ob-
tained:

Quadratic Stability.

Theorem 1. Closed-loop system (8) is quadratically sta-
ble with guaranteed cost if there exist a positive defi-
nite matrix P > 0 for all θ(k) ∈ Ω, a positive semi-
definite symmetric matrices Gi ≥ 0, i = 1, . . . , p, matrices
Qi, R, i = 0, 1, 2, . . . , p (with assumption that for quadratic
stability Si = 0), and gain-scheduled controller matrices
KPi , KSi , KDi , i = 0, 1, . . . , p satisfying:

M(θ(k)) = M0+

p∑
i=1

Miθi(k) +

p∑
i=1

p∑
j>i

Mijθi(k)

+

p∑
i=1

Miiθ
2
i (k) ≤ 0; ∀θ(k) ∈ Ω,

(19)

Mii ≥ 0; i = 1, 2, . . . , p, (20)

where Mii = Mij +Gi, i = j, and

M0 =

−P +Q0,C
T
r F

T
0 , ATcl0

F0C, −R−1, 0
Acl0 , 0, X−1(P −X)X−1 −X−1

 ,
Mi =

[
Qi, C

T
r F

T
i ,A

T
cli

FiCr, 0, 0
Acli , 0, 0

]
, Mij =

[
0, 0,ATclij
0, 0, 0

Aclij ,0, 0

]
,

Acl0 =Ar0 +Br0F0Cr, Aclij = BriFjC +BrjFiCr,
Acli =Ari +BriF0Cr +Br0FiCr, Aclii = BriFjCr.

Proof. Proof is based on Lemmas 1 and 2. From Bellman-
Lyapunov function (18) we can obtain:

W (θ(k)) = Acl(θ(k))TPAcl(θ(k)) + P

+Q+ CTr F (θ(k))TRF (θ(k))Cr ≤ 0.
(21)

Using Schur complement we obtain:

W (θ(k)) =

W11,W
T
21,W

T
31

W21,W22,W
T
32

W31,W32,W33

 ≤ 0, (22)

W11 =−P +Q(θ(k)),W22 =−R−1,
W21 =F (θ(k))Cr, W32 = 0,
W31 =Acl(θ(k)), W33 =−P−1.
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One can linearise the nonlinear part as follows:

lin(−P−1) ≤ X−1(P −X)X−1 −X−1, (23)

where in each iteration holds Xi = Pi−1 (i – actual
iteration step). After we extend (22) to affine form we
can obtain (19) and (20) by relaxing the multi-convexity
requirement:

M(θ(k)) = W (θ(k)) +
∑p
i=1Giθ

2
i ≥W (θ(k)) (24)

where Gi ≥ 0, i = 1, . . . , p are symmetric semi-definite
auxiliary matrices.

Affine Quadratic Stability.

Theorem 2. Closed-loop system (8) is affinely quadrat-
ically stable with guaranteed cost if p + 1 symmetric
matrices P0, P1, . . . , Pp exists such that P (θ(k)) (13),
Pρ(θ(k)) (15) are positive definite for all θ(k) ∈ Ω with
pre-defined maximal rate of change ρi of scheduled param-
eters θi, furthermore a positive semi-definite symmetric
matrices Gi ≥ 0, i = 1, . . . , p, weighting matrices Qi, Si,
R, i = 0, 2, . . . , p, and controller gain matrices KPi , KSi ,
KDi , i = 0, 1, . . . , p satisfying:

M(θ(k)) = M0+

p∑
i=1

Miθi(k) +

p∑
i=1

p∑
j>i

Mijθi(k)

+

p∑
i=1

Miiθ
2
i (k) ≤ 0; ∀θ(k) ∈ Ω,

(25)

Mii ≥ 0; i = 1, 2, . . . , p, (26)

where Mii = Wii +Gi, furthermore

M0 =

[
W110, W120

W12
T
0 , W220

]
, Mi =

[
W11i, W12i

W12
T
i , W22i

]
,

Mij =

[
W11ij , W12ij

W12
T
ij , W22ij

]
, Wii =

[
W11ii, W12ii

W12
T
ii, W22ii

]
,

W110 = P0 +N1 +NT
1 + S0 + Pρ,

W11i = Pi + Si, W11ij = W11ii = 0,
W120 =N2 −NT

1 Acl0 − S0, W12i = −NT
1 Acli − Si,

W12ij =−NT
1 Aclij , W12ii = −NT

1 Aclii ,
W220 =Q0 + S0 − P0 −NT

2 Acl0 −ATcl0N2

+CTr F
T
0 RF0Cr,

W22i =−Pi −NT
2 Acli −ATcliN2 + CTr F

T
0 RFiCr

+CTr F
T
i RF0Cr +Qi + Si,

W22ij =−NT
2 Aclij −ATclijN2 + CTr F

T
i RFjCr

+CTr F
T
j RFiCr,

W22ii =−NT
2 Aclii −ATcliiN2 + CTr F

T
i RFiCr,

Acl0 =Ar0 +Br0F0Cr, Aclij = BriFjC +BrjFiCr,
Acli =Ari +BriF0Cr +Br0FiCr, Aclii = BriFjCr.

Proof. Substituting the control algorithm (7) to the
quadratic cost function (17) one can obtain:

Jd(θ(k)) = z̃T
[
J11(θ(k)) J12(θ(k))
JT12(θ(k)) J22(θ(k))

]
z̃, (27)

J11(θ(k)) =S(θ(k)), J12(θ(k)) = −S(θ(k)),
J22(θ(k)) =S(θ(k)) +Q(θ(k)) + CTr F (θ(k))TRF (θ(k))Cr

If one substitutes the obtained cost function (27) and the
first difference of Lyapunov function (16) to the Bellman-
Lyapunov function (18), after some manipulation, using
Lemma 2 and by relaxing the multi-convexity requirement
as in Theorem 1, we obtain (25) and (26) which proves
Theorem 2.

2.5 Application in Student Projects

The application of the above described robust discrete-
time gain-scheduled PSD controller design in student
projects allows reaching a reasonable balance between
classical and modern concepts of control theory. These
projects demonstrate that control design is a complex,
interactive and multi-stage process.

The controller synthesis can be done in a computationally
tractable and systematic way using commercial or free
and open source program tools (Matlab, Octave, Scilab,
NSP), powerful LMI solvers (LMILAB, SDPT3, SeDuMi,
Mosek), BMI solvers (PENBMI, PenLab) and efficient
interfaces provided by YALMIP praser.

Theorems 1 and 2 allow for the designer (in our case for
the student):

• to design a robust controller for uncertain discrete-
time linear systems,

• to design a gain-scheduled or robust gain-scheduled
controller for uncertain discrete-time linear para-
meter-varying systems,

• to define and set up different performance quality in
each equilibrium/working point,

• to learn about and use free and open source program
tools and solvers besides the commercially available
ones.

3. STUDENT PROJECT EXAMPLES

In order to show the viability of the previous proposed
method in student projects, the following 2 examples have
been chosen.

Example 1. Consider a simple uncertain linear para-
meter-varying plant (Stewart, 2012):

ẋ(t) = a(γ1)x(t) + b(γ1, γ2)u(t),

y(t) = x(t),
(28)

where γ1 ∈ 〈0, 100〉 is a known, and γ2 ∈ 〈0.9, 1.1〉
is an unknown (uncertain) parameter that changes the
parameters of the plant as follows:

a(γ1) = −6− 2
π arctan

(
γ1
20

)
, (29)

b(γ1, γ2) = 1
2γ2 + 5

π arctan
(
γ1
20

)
. (30)

The task is to design a robust PSD and robust gain-
scheduled PSD controller which guarantees the closed-loop
stability and guaranteed cost for the LPV plant (28) for all
γ1 ∈ 〈0, 100〉, and γ2 ∈ 〈0.9, 1.1〉 using the affine quadratic
stability (Theorem 2 ).

The system (28) can be transformed into the form (1)
with sample time Ts = 0.01 s and rescaled scheduling
parameters:

θ1 =
arctan(

γ1
20 )−a0
a1

∈ 〈−1, 1〉, θ2 = γ2−b0
b1
∈ 〈−1, 1〉,

where the coefficients a0, a1, b0, and b1 are calculated
so as to maintain the scheduling parameters in the
range 〈−1, 1〉:

a0 =
max(arctan( γ120 ))+min(arctan( γ120 ))

2 ,

a1 =
max(arctan( γ120 ))−min(arctan( γ120 ))

2 ,

b0 = max(γ2)+min(γ2)
2 , b1 = max(γ2)−min(γ2)

2 .
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Fig. 1. Simulation results with robust PSD controller (31)

Fig. 2. Simulation results with robust gain-scheduled PSD controller (32)

The discrete-time linear parameter-varying system’s ma-
trices/scalars are as follows:

A0 = 0.5258, A1 = −0.0230, A2 = 0, C = 1,

B0 = 0.1159, B1 = 0.0783, B2 = 1.8079× 10−4.

Using Theorem 2 with weighting matrices Qi = qiI,
q0 = 0.001, q1 = q2 = 0, Si = siI, s1 = 0.1, s2 = s3 = 0,
R = rI, r = 0.001, ρi = 0, i = 1, 2, and ξL ≤ P (θ) ≤ ξU ,
ξL = 1×10−9, ξU = 1×103 we obtained a robust discrete-
time PSD controller in the form (3), where

KP = −3.262562, KS = −3.494751,
KD = 1.228968× 10−1.

(31)

Using Theorem 2 with weighting matrices Qi = qiI,
q0 = 0.0505, q1 = −0.0495, q2 = 0, Si = siI, s1 = 0.0505,
s2 = 0.0495, s3 = 0, R = rI, r = 0.001, ρi = 0, i = 1, 2,
and 1 × 10−9 ≤ P (θ) ≤ 1 × 103 we obtained a robust
gain-scheduled PSD controller in the form

KP (θ) =−4.876325 + 3.290914 θ1,
KS(θ) =−7.304019 + 4.538988 θ1,
KD(θ) = +0.044032− 0.031514 θ1.

(32)

Numerical solution has been carried out by PENBMI 2.1
solver under MATLAB 2014b using YALMIP R20150918.
The simulations were done via SIMULINK. Simulation
results for γ2 = 1 with the robust PSD controller (31)
are shown in Fig. 1 and with the robust gain-scheduled
PSD controller (32) are shown in Fig. 2.

Example 2. The following simple nonlinear system with
an unstable equilibrium point has been chosen to demon-
strate the robust gain-scheduled PSD controller design
with quadratic stability (Theorem 1 ), using only free and
open source program tools and solvers:

ẋ(t) = −x(t)|x(t)|γ + u(t),
y(t) = x(t), −0.5 ≤ u(t) ≤ 0.5, (33)

where γ ∈ 〈0.95, 1.05〉 is unknown (uncertain) parameter.
The task is to stabilize the system under the given control
input constraints. The system (33) can be transformed into
the following form:

ẋ(t) = −a(θ(t))x(t) + bu(t),
y(t) = cx(t), −0.5 ≤ u(t) ≤ 0.5,

(34)

where a(θ(t)) = a0 + a1θ1(t) + a2θ2(t), b = 1, c = 1, and
θ2 ∈ 〈−1, 1〉 is unknown (uncertain) variable, furthermore,

θ1 = |y|−a0
a1
∈ 〈−1, 1〉.

The coefficients a0 and a1 were calculated so as to maintain
the scheduling parameter θ1 in the range 〈−1, 1〉:

a0 = min(|y|)+max(|y|)
2 ; a1 = min(|y|)−max(|y|)

2 .

With the assumption that y ∈ 〈−0.5, 0.5〉, the max (|y|) =
0.5 and min (|y|) = 0 and it follows that a0 = 0.25
and a1 = −0.25. The parameter a2 = 0.1 (computed
from γ). The obtained LPV system (34) was transformed
to discrete-time with sample time Ts = 0.01 s to obtain
the model for controller design in the form (1). Using
Theorem 1 with weighting matrices Qi = qiI, q0 = 0.1,
q1 = q2 = 0, R = rI, r = 5.5 × 105, and ξL ≤ P (θ) ≤ ξU ,
ξL = 0, ξU = 8× 105 we obtained a robust gain-scheduled
PSD controller in the form (3), where

KP (θ) =−1.418184− 9.364592× 10−3 θ1,
KS(θ) =−9.273503× 10−3 − 4.006072× 10−5 θ1,
KD(θ) =−3.011434× 10−3 − 1.173246× 10−5 θ1.

(35)

Numerical solution has been carried out by SeDuMi 1.32
solver under Octave 4.0.0 using YALMIP R20150918. The
simulations were done via Scilab 5.2.2/Xcos. Simulation
results with the robust gain-scheduled PSD controller (35)
are shown in Fig. 3. In the simulation yγ(t), uγ(t), and
θ1,γ(t) are the system output, controller output, and the
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Fig. 3. Simulation results with robust gain-scheduled PSD controller (35)

calculated scheduled parameter θ1, for different values of
the unknown (uncertain) parameter γ ∈ 〈0.95, 1.05〉.

4. CONCLUSION

A novel methodology is presented in the paper for robust
discrete-time gain-scheduled PSD controller design for un-
certain linear parameter-varying systems from educational
perspective. The proposed approach ensures the robust
quadratic or affine quadratic stability and guaranteed cost
for all scheduled parameters and their prescribed maxi-
mal rate of change. The controller synthesis can be done
in a computationally tractable and systematic way. The
proposed LMI/BMI-based controller design methodology
is validated on student project examples using commercial
as well as free and open source program tools and solvers.

REFERENCES

Adams, R., Sparks, A.G., and Banda, S. (1992). A
gain scheduled multivariable design for a manual flight
control system. In First IEEE Conference on Control
Applications, 584–589.

Apkarian, P., Gahinet, P., and Becker, G. (1995). Self-
Scheduled H∞ Control of Linear Parameter-Varying
Systems: A Design Example. Automatica, 31(9), 1251–
1261.

Fiala, J., Kocvara, M., and Stingl, M. (2013). Penlab -
a solver for nonlinear semidefinite programming. Sub-
mitted to Mathematical Programming Computation in
October 2013.

Gahinet, P., Apkarian, P., and Chilali, M. (1996). Affine
parameter-dependent Lyapunov functions and real para-
metric uncertainty. IEEE Transactions on Automatic
Control, 41(3), 436–442.

Gahinet, P., Nemirovskii, A., Laub, A., and Chilali, M.
(1994). The LMI control toolbox. In Proceedings of
the 33rd IEEE Conference on Decision and Control,
volume 3, 2038–2041.
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Ilka, A. and Veselý, V. (2015). Robust switched controller
design for linear continuous-time systems. Archives of
Control Sciences, 25(4), 401–416.

Kuncevic, V.M. and Lycak, M.M. (1977). Control systems
design using Lyapunov function approach, volume in
Russian. Nauka, Moscow.
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bust Controller Design. Felia s.r.o., Bratislava, Slovak
Republic.

Copyright © 2016 IFAC 359


