
Handling and Analyzing Marine Traffic
Data

Master of Science Thesis in the Programme Computer Science – algorithms, languages
and logic

ERIC AHLBERG, JOAKIM DANIELSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Handling and Analyzing Marine Traffic Data
ERIC AHLBERG, JOAKIM DANIELSSON

© ERIC AHLBERG, JOAKIM DANIELSSON, 2016.

Supervisor: Luis Felipe Sánchez Heres, Department of Shipping and Marine Tech-
nology
Examiner: Graham Kemp, Department of Computer Science and Engineering

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: "APL Post-Panamax container ships" by National Oceanic & Atmospheric
Administration from the California Publication of the National Oceanic & Atmo-
spheric Administration, used under Public Domain / Converted to ASCII using
http://picascii.com

Typeset in LATEX
Department of Computer Science and Engineering
Gothenburg, Sweden 2016

ii

Handling and Analyzing Marine Traffic Data
ERIC AHLBERG, JOAKIM DANIELSSON
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
With the emergence of the Automatic Identification System (AIS), the ability to
track and analyze vessel behaviour within the marine domain was introduced.
Nowadays, the ubiquitous availability of huge amounts of data presents challenges
for systems aimed at using AIS data for analysis purposes regarding computability
and how to extract valuable information from the data. This thesis covers the
process of developing a system capable of performing AIS data analytics using
state of the art Big data technologies, supporting key features from a system
called Marine Traffic Analyzer 3. The results show that the developed system has
improved performance, supports larger files and is accessible by more users at the
same time. Another problem with AIS is that since the technology was initially
constructed for collision avoidance-purposes, there is no solid mechanism for data
validation. This introduces several issues, among them is what is called identity
fraud, that is when a vessel impersonates another vessel for various malicious
purposes. This thesis explores the possibility of detecting identity fraud by using
clustering techniques for extracting voyages of vessels using movement patterns and
presents a prototype algorithm for doing so. The results concerning the validation
show some merits, but also exposes weaknesses such as time consuming tuning of
parameters.

Keywords: AIS, Marine Traffic, Big data, Algorithms.

iii

Acknowledgements
We would like to express our gratitude towards Luis Felipe Sánchez Heres for
sparking the initial idea, for engaging in fruitful discussions and for providing
swift and valuable feedback throughout the whole thesis. We would also like to
thank Fredrik Olindersson for sharing his expertise in the marine domain.

Eric Ahlberg, Joakim Danielsson, Gothenburg, May 2016

v

Contents

Contents vii

List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction 1
1.1 Background . 1
1.2 Related work . 2
1.3 Aim . 3
1.4 Limitations . 3

2 Theoretical background 5
2.1 State of the art for Big data: processing and storage 5

2.1.1 Computing abstractions . 5
2.1.2 Locality-sensitive hashing 7
2.1.3 Z-order curve . 7
2.1.4 Distributed file system . 8

2.2 Cluster analysis . 8
2.2.1 Generalized Density Based Spatial Clustering of Applica-

tions with Noise . 9
2.3 AIS data description . 10
2.4 Ship handling terms . 10

3 Method 13
3.1 Handling: Development of a large scale data analysis system 13

3.1.1 Requirements and admissible solutions 13
3.1.2 Technique survey . 15
3.1.3 Integration . 15

vii

Contents

3.1.4 Evaluation . 15
3.2 Analysing: Development of initial applications for the system 16

3.2.1 MTA3 Parallel . 16
3.2.2 AIS message validation . 17

4 Results and discussion 19
4.1 Handling: Development of a large scale data analysis system 19

4.1.1 Requirements . 19
4.1.2 Technique survey . 20
4.1.3 Integration . 22

4.2 Analysing: Development of initial applications for the system 29
4.2.1 MTA3 Parallel . 29
4.2.2 AIS message validation . 35

4.3 Ethical considerations . 44

5 Conclusions 47
5.1 Development of a large scale data analysis system 47
5.2 AIS message validation . 47

6 Future work 49
6.1 MTA3 Parallel . 49
6.2 AIS message validation . 50

References 51

A Implementation of algorithms I
A.1 Ship handling algorithms . I

A.1.1 Risk of collision . I
A.1.2 Closest point of approach and time to closest point of approach I
A.1.3 Risk of collision (parallelized) II
A.1.4 Risk of collision (parallelized and optimized) II

A.2 Temporal hashing . III
A.2.1 Contributions to the timehash [26] package III

A.3 Clustering . IV
A.3.1 GDBSCAN . IV
A.3.2 Post processing algorithm for validating a cluster VII

viii

List of Figures

2.1 Simple case of a Z-order curve, by interleaving the binary represen-
tation of the axis, each square represents a distinct combination. . . 7

2.2 Example of a Z-order curve applied to a map, where the latitude-
longitude values are mapped from two dimensions to one dimension
to allow for hashing of two-dimensional values. 8

4.1 Overview of the interface which allows the user to select a specific
data set and interactively choose a region and filter out vessels ac-
cording to time period, minimum speed and vessel type. 24

4.2 Overview of the interface where risk of collision calculations are
started. The input fields allow the user to specify which of the
situations that are of interest. 25

4.3 Overview of the interface which displays information about running
and finished jobs as well as the results from each job. 25

4.4 Overview of the interface where the user can choose a data set
and plot selected vessel paths according to identification number
(MMSI) and time period. Each data point is clickable and provides
detailed information. 26

4.5 Overview of the interface for handling data sets, where the user is
able to upload data sets to the distributed file system. 27

4.6 A speed comparison of MTA3 and two versions of MTA3 Parallel,
with and without sampling. As can be seen, MTA3 shows an early
trend of rapidly increasing runtimes and lacks support for files larger
than 54 MB. 34

4.7 A speed comparison of MTA3 and two versions of MTA3 Parallel,
with and without sampling, only concerning the file sizes with which
MTA3 is compatible. 35

4.8 Clustering of two vessels travelling in opposite directions (head on)
using dummy data. 39

4.9 Clustering of three vessels using a predicate for capturing position
and time. 40

ix

List of Figures

4.10 Result from the post processing algorithm applied to Figure 4.9b
where the voyage in the middle contains two vessels with different
identification numbers, thus resulting in an identity fraud. Vessels
with different identity numbers are marked with distinct colors and
markers. 41

4.11 Geographical representation of AIS data from a fishing boat travel-
ling similar voyages, but during different time periods. 42

4.12 Clustered AIS data from a fishing boat travelling similar voyages,
but during different time periods. The data is correctly clustered
into several voyages using the position, time and course. 42

4.13 The issue of clustering data with irregularities in the transmission
rates, where a voyage is incorrectly clustered into three voyages. . . 44

x

List of Tables

4.1 Hardware specification of the local cluster. 20
4.2 Overview of evaluated computing environments. 21
4.3 Overview of evaluated computing frameworks. 22
4.4 Overview of evaluated user interfaces. 22
4.5 Overview of the endpoints of the REST backend. 28

xi

List of Tables

xii

List of Algorithms

1 Closest point of approach and time to closest point of approach . . 30
2 Risk of collision . 30
3 Risk of collisions . 31
4 Risk of collisions (optimized) . 31
5 GDBSCAN . 38
6 Validate cluster . 38

xiii

List of Algorithms

xiv

1
Introduction

To motivate the relevance of the work and why it is an interesting field of study,
this chapter provides a background to the marine domain and the problems of
interest. In addition, to get an overview of what has been investigated in the area,
a review of related work in the field is provided. Finally, the aim clarifies the focus
of this thesis whereas the limitations cover what had to be disregarded in order to
reach the goals within the given time frame.

1.1 Background

Nowadays, merchant vessels use Automatic Identification System (AIS) transpon-
ders to broadcast information about position, course, speed and its navigational
status. Originally, the purpose was solely collision avoidance, but as with many
new technologies, other applications quickly emerge. For instance, decision mak-
ers across industries rely on AIS data for monitoring ship activity worldwide, and
there are a number of applications, e.g. companies trading with commodities an-
alyzing global commodity flows for growth prediction in specific regions [1]. AIS
data is also used by governmental agencies to discover vessels performing illegal
activities such as fishing in prohibited areas or smuggling [1]. In the future, many
more applications in different areas are expected to emerge.
Currently, a challenge for users of AIS data is the rate at which new data is

generated. Since vessels transmitting AIS messages are moving, messages have
to be sampled often enough to realistically model the situation, which may be
once every few seconds. For instance, in the Baltic Sea, this adds up to about
6,000,000,000 messages in a year, increasing the demands on the systems trying to
use this data for serious marine traffic analyses.
In addition, since AIS was initially built to complement radar in collision avoid-

ance, security was not a major concern. However, with new applications, there has
been an increase in ways that users maliciously modify messages. For instance,
it is not uncommon that vessels intentionally disable the AIS transponder when
approaching illegal fishing waters, but there are also vessels that purposely ob-

1

1. Introduction

scure their destination for strategic purposes. Another example is what is known
as spoofing, i.e. users that create ghost ships where none exist, something that
may create political tension in certain areas [1]. Since users of AIS data perceive
it as a reliable source of information, this is increasingly becoming an issue and
there is a demand for ways of verifying the validity of AIS messages.

1.2 Related work

A study by Harati-Mokhtari et al. sheds light on the problem of unreliable AIS data
and states that “mariners cannot wholly trust the equipment” and that “this could
further jeopardise AIS usage and data quality” [2], showing the importance of the
problem at hand. Another organization is the U.S. Department of Transportation
which claims that about half of the vessels in their waters have erroneous AIS
data. Of these errors, one third are identification errors, one third measurement
errors and one third are a combination of the two [3].
Closely related to this thesis is a study by Abghari and Kazemi which investi-

gates the potential of using open data sources in maritime surveillance and pro-
poses a framework for what is called Anomaly Detection, namely to detect events
that do not conform to expected behaviour [4]. In the maritime setting, this could
for instance mean an event where a vessel has requested a pilot but has not used
the service, something that the coast guard would want to investigate.
An organization which has shown interest in the issue of validating AIS messages

using static analysis is the Danish Maritime Safety Administration (DaMSA) [5].
By inspection of the AIS messages, the DaMSA has developed a procedure to
detect vessels with erroneous International Maritime Organization (IMO) numbers
or Maritime Mobile Service Identity (MMSI) numbers. However, analyzing the
MMSI number is only one of many ways for validating AIS messages, and exploring
and identifying other ways is an objective of this thesis.
At Chalmers’ department of Shipping and Marine Technology, AIS data is used

in research, e.g. by replaying interesting scenarios from real situations in a simu-
lator, but also to analyze how vessels handle critical situations in relation to the
regulations of the studied area. This latter part is the main application area of a
system called Marine Traffic Analyser 3 (MTA3) [6], which was developed at the
department. This system is used as a basis in this thesis when determining key
features to implement in a new system. Currently, the system runs on a single
computer and the limited amount of memory and computation speed has become
a bottleneck when handling large amounts of data. In addition, the system does
not offer any procedure for determining whether AIS messages are valid or not,
something that may lead to insecurity in the analysis.

2

1. Introduction

1.3 Aim
Since the current system has reached its limits with regards to performance and
scalability, the main goal of this thesis was:

• To develop a new system for handling and analyzing AIS data of a larger
scale that supports key features from the existing system.

Because of the insecurity of the validity of AIS messages, an additional goal was:
• To explore validation methods for AIS data and their implementation in the

system.

1.4 Limitations
Since systems can constantly be refined, prioritizations were needed to make this
thesis feasible to complete within the given time. Thus, the limitations for this
thesis were:

• Since focus was on developing a system for handling and analyzing AIS data
of a large scale to facilitate more advanced use cases, it was not a priority to
port the old application in its entirety.

• Developing a functionality capable of determining validity with complete
certainty is a hard task. Therefore the intention was to use heuristics to
assign some kind of trustworthiness.

• The possibility of acquiring new hardware or buying computing time was not
dismissed, but the intention was to use existing hardware and open-source
software as much as possible.

3

1. Introduction

4

2
Theoretical background

This chapter aims to provide the reader with the necessary theoretical material
needed to understand relevant techniques which have been used during the work
of this thesis.

2.1 State of the art for Big data: processing and
storage

Since the field of Big data has been extensively studied, especially in the last
decade, many techniques both regarding processing and storage have been de-
veloped. This section covers theory which is central to understand the Big data
techniques used in this thesis.

2.1.1 Computing abstractions
Many of the existing techniques for parallelization stem from the same patterns
and concepts. This section intends to explain the central abstractions needed to
understand later chapters.

MapReduce

With Google’s attempt to index the entire web, the need for processing large data
volumes became apparent. Many special-purpose programs for different types of
processing were developed and needed to run in a distributed environment on
hundreds of computers. However, even with simple programs, the code needed
for parallelization, fault tolerance and data distribution made the programs un-
necessarily complex. To mitigate this issue, the MapReduce abstraction [7], based
on the map and reduce primitives from functional programming languages, was
proposed.
The main MapReduce program works on files and runs on multiple computers

with a specific node acting as the master and the others as workers. The master

5

2. Theoretical background

splits up the input file into smaller chunks and assigns map and reduce tasks to
the workers. The map workers read and process their chunk of the data, write
the intermediate results to disk and tell the master where the results are located.
With information from the master and using remote procedure calls, the reducers
are now able to find their respective data, process it and append the results to an
output file.
To summarize; by writing mapper and reducer functions, the programmer is

relieved from the burden of having to write code for dealing with parallelization,
fault tolerance and data distribution and can focus on solving the task at hand.

Resilient Distributed Datasets

While MapReduce provides many desirable features including parallelization, fault
tolerance and data distribution, it is based on a model which repeatedly reads
from disk and writes to disk, operations which take a long time. This imposes a
limitation especially noticeable in iterative algorithms where the results have to
be written to disk in each iteration. To mitigate this issue, a Resilient Distributed
Dataset (RDD) [8] introduces a distributed memory abstraction which provides
the same benefits as MapReduce, e.g. parallelization, fault tolerance and data
distribution, but with in-memory speeds.
An RDD is a read-only, partitioned collection of items and can be created either

by initializing with data from disk or by transformations such as map, filter and
join which can be applied to multiple data items in an RDD at once. Another type
of operation which can be applied to an RDD is what is called actions, e.g. count,
collect and save. The conceptual difference between transformations and actions
is that a transformation states how the underlying data should be transformed
which means that it does not extract any data, whereas an action will extract
the results, something that will start the actual computations. Furthermore, the
user is able to specify persistence of an RDD, meaning that if a user knows that a
certain RDD will be needed multiple times, explicit control of persistence allows
for persisting the RDD in memory to improve performance of repeated usage of
the same data. In addition, it is also possible to manually control the partitioning
of the data, allowing for optimizations based on data locality. To provide fault
tolerance, RDDs use a concept called lineage. This means that if an RDD is lost
there exists enough information from the other RDDs to recompute that specific
partition, resulting in data recovery without the need to do costly replication.

6

2. Theoretical background

2.1.2 Locality-sensitive hashing

In order to speed up data lookups, a technique called hashing is often used. A
common strategy is to use a hash table which groups items into buckets according
to keys. When searching for an item, the key is used to determine in which bucket
to look to avoid searching through the whole space of items. However, conventional
hashing does not say anything about how similar items are mapped. This is where
the concept of locality-sensitive hashing (LSH) [9] comes into play. LSH makes use
of similarity metrics to maximize the probability that similar items are grouped
into nearby buckets, something that is desirable if one wants to make use of a hash
table without losing the similarity relation of the data.

2.1.3 Z-order curve

Conventional hashing maps a one-dimensional value to a specific bucket, but if
one wants to use hashing for multidimensional data such as coordinate points
while preserving locality, one needs to use different techniques. Among them is
the Z-order curve [10]. For coordinate points in a geographic coordinate system,
this works by simply interleaving the binary representation of the latitude and
longitude in order to create a one-dimensional representation, which can then be
used in a hash table. This is visualized in Figure 2.1, where e.g. latitude 0 and
longitude 1 would belong to the lower right square. The general idea for this can
be seen in Figure 2.2, where the concept has been applied to a map.

10 11

00 01

1

0

0 1

Figure 2.1: Simple case of a Z-order curve, by interleaving the binary represen-
tation of the axis, each square represents a distinct combination.

7

2. Theoretical background

1010 1011

1000 1001

1110 1111

1100 1101

0010 0011

0000 0001

0110 0111

0100 0101

11

10

01

00

00 01 10 11

Figure 2.2: Example of a Z-order curve applied to a map, where the latitude-
longitude values are mapped from two dimensions to one dimension to allow for
hashing of two-dimensional values.

2.1.4 Distributed file system
One way to allow for storage of large data sets reliably as well as to provide
the ability to stream data to user applications at a high bandwidth is to use
a Distributed File System (DFS). Common features of a DFS are redundancy
and location-independent addressing, where redundancy improves the reliability
of the data by simply replicating data on multiple nodes in the system. The
actual file transfers in a distributed file system are achieved through the usage
of network protocols such as Ethernet. Location-independent addressing allows
a user to access data in the same way as in a regular file system, i.e. without
being concerned about where in the network the actual data resides. In addition,
a DFS provides many desirable features commonly found in regular file systems,
e.g. listing of directories, a permissions model etc.

2.2 Cluster analysis
The main objective of cluster analysis, or clustering, is to group sets of objects into
clusters, such that the objects of each cluster are in some way more similar than

8

2. Theoretical background

objects within other clusters. Clustering is used in several fields which concern
information extraction from data sets, among them exploratory data mining and
machine learning. Since clustering is not a specific algorithm, there exist methods
of all kinds. The variant which has been the most important in this thesis has
been density-based clustering where clusters are defined as regions consisting of
a higher density of points compared to other regions. This section describes the
specific algorithm used for density-based clustering in this thesis.

2.2.1 Generalized Density Based Spatial Clustering of Ap-
plications with Noise

In [11], Ester et. al introduce the Density-based spatial clustering of applications
with noise (DBSCAN) algorithm. The main objective of the DBSCAN algorithm
is to cluster regions with many nearby points (dense regions) as well as to mark
outliers as noise. The main components for accomplishing this are the following:

• The radius that decides the points which are considered as neighbors to a
specific point.

• The minimum number of points that is considered a cluster.
In contrast to many other clustering algorithms, DBSCAN provides two valuable
properties especially important in this thesis:

• It is not a priori required to estimate the number of clusters the data set
consist of.

• The ability to cluster regions of arbitrary shape.
However, drawbacks of the DBSCAN algorithm are both that the definition of a
neighborhood is limited to a radius, but also that the number of points is what de-
termines the density of a cluster. To improve this, the same authors introduced the
Generalized Density Based Spatial Clustering of Applications with Noise (GDB-
SCAN) in [12]. GDBSCAN extends the notion of a neighborhood to any notion of
a neighborhood of an object as long as the binary predicate determining similarity
between objects is reflexive and symmetric. In essence, this has the effect that it
is possible to cluster objects using both their spatial and nonspatial attributes. In
addition, GDBSCAN generalizes how one can determine the density of a cluster
using other measures than the minimum number of objects that is considered a
cluster. For instance, if one is clustering polygons, it might be more suitable to
cluster the polygons using the intersection metric rather than just the number of
polygons in each cluster. Another possibility is to cluster objects based on e.g.
a range of a certain nonspatial attribute, meaning that objects within that range
will be clustered together.
In terms of efficiency, the performance depends mainly on the implementation.

Since each object in the data set needs to be inspected and have its neighborhood

9

2. Theoretical background

calculated, a naïve implementation of GDBSCAN has a time complexity in the
order of N2, where N is the number of objects. However, using spatial indexing
structures, the time complexity for retrieving the neighborhood can be reduced
to log(N) implying a time complexity of O(N log(N)), achieving sufficient perfor-
mance even for large data sets.

2.3 AIS data description

AIS messages contain extensive information about a ship’s attributes and status.
However, only a few of these are related to the ship’s movements and therefore,
most of the parameters are not used in this thesis. Some of the ones used are rather
self explanatory, such as timestamp, heading, longitude, latitude, etc., whereas
some of them are more complicated, and explained below.

Maritime Mobile Service Identity Each vessel has a unique identification
number called Maritime Mobile Service Identity (MMSI) which is used for distin-
guishing one vessel from another.

Course Over Ground In contrast to the heading, Course Over Ground (COG)
is the direction of a vessel when wind and currents are taken into account. COG
uses the units of a compass, i.e. degrees clockwise from north.

Speed Over Ground The speed of a vessel is given by the Speed Over Ground
(SOG) parameter, taking wind and currents into account.

2.4 Ship handling terms

To understand the domain specific problems in this thesis, a few terms from the
maritime domain are explained here.

Navigation terms Determination of directions between ships or objects at sea
can be done in different ways. One way is to use the bearing, defined as the
clockwise angle between north and the direction to the target. Another way is to
use the relative bearing, defined as the clockwise angle between the own vessel’s
heading and the direction to the target.

10

2. Theoretical background

Detecting risk of collision There exist two common metrics that are especially
important when analysing risk of collision situations between vessels. These are
the Closest Point of Approach (CPA) and the Time to Closest Point of Approach
(TCPA). CPA is defined as the minimum distance between two vessels if they both
continue with the same course and speed, whereas TCPA is the time until the CPA
is reached.

11

2. Theoretical background

12

3
Method

This chapter is divided into two parts, where the first part covers the workflow
when developing the data analysis system and the second part covers the develop-
ment of the initial applications for the system.

3.1 Handling: Development of a large scale data
analysis system

This section describes how the work was conducted when determining the require-
ments from the users as well as the strategy for narrowing down the range of
admissible solutions. In addition, this section covers how the technique survey
was conducted as well as the strategy for integrating the solutions into a complete
system.

3.1.1 Requirements and admissible solutions
To get a fully functional and well performing system there were some relevant
parameters that had to be specified. It was important to have a functional specifi-
cation early in order to know which sort of techniques were required. This section
describes how the functional specification was developed and how the techniques
of the different parts were evaluated.

Functional specification

Starting off, the plan was to identify system requirements such as key functionality
in collaboration with users of the current system. This was done using an approach
inspired by the “20 queries” law defined by Gray, mentioned by Szalay and Blakeley
in [13]. To reach a common ground upon which developers and users of the system
can communicate about features and trade-offs, the approach suggests that the
users of the system formulate the most important questions that they would like
to pose to the system. This part resulted in documentation of what the user

13

3. Method

expected from the system and helped to get a good grasp of the end goal of the
system.

Computing environment

In order to deliver a system which adheres to its requirements, it is important to
select a suitable computing environment. Since the main objective of the system
developed in this thesis was Big data analysis, performance and the ability to
handle large files were naturally the key metrics. Even though the possibility
of buying new hardware or computing time was not dismissed, it was desirable
to use available resources. Additionally, it was important that the environment
supported adding more hardware without introducing additional complexity, since
this allows the system to scale. Finally, since the goal was that the end product
should be usable by users with varying amounts of computer experience, a low
complexity would be advantageous. The metrics that were considered important
when evaluating the computing environment were therefore performance, price,
scalability and complexity.

Computing framework

Since speedup was the main objective, the performance of the framework was
highly prioritized, but because of the limited time frame of this thesis, it was de-
sirable that the framework supported a language that were familiar to the authors
of this thesis. Another desirable feature was a mature framework with rich docu-
mentation, many code examples and a good compatibility with other techniques.
The initial computations were batch oriented, but since there was a possibility of
more stream oriented computations in the future, the framework should ideally
support both. To conclude, when evaluating the computing framework, the met-
rics that were important were programming language, processing type, features as
well as compatibility.

User interface

To make the system as usable as possible it was desirable to develop a user interface
that requires as little understanding of the underlying functionality as possible.
However, since the user interface was not the main focus, the development phase
was not supposed to be prohibitively time consuming. Since the system will be
further developed in the future, maintainability was an important parameter as
well. Therefore, the metrics that were considered in the evaluation of the user
interface were development time, ease of use and maintainability.

14

3. Method

3.1.2 Technique survey
Using the functional specification defined by the user and the proposed range of
admissible solutions, the work during the technique survey consisted of using key
parameters for evaluating and deciding on suitable technologies within the different
parts of the system.

3.1.3 Integration
Building a system capable of handling large data volumes entails a certain com-
plexity. In addition, since the field of Big data is constantly evolving with continu-
ous emergence of new frameworks and techniques, there are numerous challenges.
First, there is the risk of developing an overly complex system, which only works
if every single component is functional. Second, if a user of the system would
like to upgrade a component, it is not desirable having to replace the complete
system. To avoid issues like this, the intention was to draw inspiration from the
fifth law by Gray [13], called "working to working" when integrating the techniques
into a complete system. This means focusing on modularity, where each of the
components can be replaced without interfering with the rest of the system, using
a service-oriented architecture. Furthermore, the plan was to get a prototype up
and running quickly, something that would allow experimentation with the system
before polishing each separate part.

3.1.4 Evaluation
After implementing the system, a number of tests were made in order to test the
system’s correctness and performance. This section covers which tests that were
decided to be made to fulfill these criteria.

Correctness

A key part of the evaluation was to ensure the correctness of the system. This was
done by using unit tests to ensure the correctness of the underlying functions and
by comparing the output against the output from MTA3 to ensure the correctness
of the whole system, i.e. that the same relevant situations were detected.

Performance

To assess the performance, the system was evaluated by comparing it against the
performance of MTA3. This was done both with respect to execution time and
the capability of handling large amount of data. However, since the system only

15

3. Method

contains a subset of the features of MTA3, the evaluation only considered these
features.

3.2 Analysing: Development of initial applica-
tions for the system

This section covers how the work progressed when developing an application with
the purpose of assessing the performance of the system as well as an application
for validating AIS messages.

3.2.1 MTA3 Parallel
In order to test the performance of the system, an application with key func-
tionality from MTA3 amenable to parallelization using the chosen techniques was
implemented. Since there was not enough time to port all functions from MTA3, it
was important to prioritize which functions to implement. This section describes
how the selection of functions was made as well as the strategy for parallelization.

Selection of key functionality

The functions that were chosen to be ported from MTA3 were chosen both using
the functional specification (see Section 3.1.1), but also to have a good way of
benchmarking the performance of the entire system in order to expose potential
bottlenecks. Additionally, since the theoretical speedup of a function is limited by
its longest sequential part according to Amdahl’s law (originating from [14]), it
was important to choose functions that were not inherently sequential in order to
be able to benefit from parallelization.

Improvement of the algorithms

To improve the performance of the developed application, there were opportunities
both to optimize the domain specific algorithms by studying them in detail, but
also to focus on optimizing the parallelized versions implemented in the chosen
framework. Since the users of the systems are experts in the specific domain
and well aware of the details of the algorithms, it was decided that the system
would benefit the most if the work of this thesis focused on optimizations related
to parallelism, i.e. how to efficiently leverage the computing environment and
framework to achieve maximum speedup.

16

3. Method

3.2.2 AIS message validation
Since the AIS ecosystem is built upon the fact that anyone can broadcast AIS
messages, it is easy to manipulate the AIS transmitter to send erroneous data. As
mentioned in Section 1.1, two of the most common AIS manipulation methods are
shutting off the transmitter and “spoofing”. In addition to these, identity fraud,
GPS manipulation and obscuring destinations are the most common methods of
manipulation [1].
This section covers how the problem of validating manipulated AIS data was

approached using the following four steps: how a problem of a suitable scope was
selected, how it was approached, how the solution was implemented and finally,
how the solution was evaluated.

Problem selection

First, through discussions with a domain expert, an interesting and relevant prob-
lem had to be selected. To achieve this, an investigation of the domain for previous
attempts at solving the problem of AIS validation was conducted. After the inves-
tigation, the plan was to find an approach which should be possible to implement
within the given time frame.

Literature survey

After narrowing down the task, a literature survey of interesting techniques was
performed in order to get an overview of potential algorithms and what might be
applicable to the problem at hand.

Implementation

The plan for the implementation part was to focus on getting an initial attempt
at solving the problem up and running before implementing a parallelized version
on the system.

Evaluation

The problem of AIS validation has been studied before, but to the knowledge of
the authors of this thesis, there is no data consisting of documented cases of invalid
data openly accessible. In addition, there is no measure of how often the specific
problem occurs in real situations, which means that it might be too time consuming
to use real data. Therefore, the evaluation focused on constructing dummy data
to realistically model interesting scenarios which could be a sign of invalid AIS
messages, and thereby get an indication of how well the solution performs.

17

3. Method

18

4
Results and discussion

This chapter covers the results and discussions related to the work of this thesis.
The results are divided into two separate sections where the first part covers the
system specific results and the second part covers the analysis specific results.
Finally, the chapter ends with a discussion about ethical considerations in the
context of Big data analysis within the maritime domain.

4.1 Handling: Development of a large scale data
analysis system

This section covers the results of constructing a large scale data analysis system
using the “20 queries” methodology, the results from the technique survey as well
as how the techniques were integrated into a complete system.

4.1.1 Requirements
As a result of the "20 queries" method, the developer of the MTA3 program system
came up with the following queries that the system should be able to answer:

• Find situations within a range of six nautical miles where the CPA was below
a specific distance.

• Find situations within a range of six nautical miles where the TCPA was
below a specific time.

• Find situations within a range of six nautical miles where the course change
was larger than a specific degree.

• Find situations where the relative bearing was within a given range in de-
grees.

• Find situations where the course difference was within a given range in de-
grees.

• Find situations where the speed difference was within a given range in knots.
• When did a situation, fulfilling specific criteria, occur?
• Where did a situation, fulfilling specific criteria, occur?

19

4. Results and discussion

• Find vessels according to vessel type(s).
• Which vessels were involved in the situation?
• What was the closest distance between the vessels?

Using these results, a good view of what kind of features that were desirable and
how to prioritize the work was achieved.

4.1.2 Technique survey
This section describes the outcome of the survey, including which of the techniques
were chosen as well as motivations to why.

Computing environment

As a result from the survey, it was decided to use the local cluster that was
available at the institution. To maximize the performance, a distributed file system
(described in Section 2.1.4) called The Hadoop Distributed File System [15] was
used. The local cluster consisted of six nodes: one head node and five compute
nodes and a technical specification of the nodes can be seen in Table 4.1.
An alternative which was considered was to use an optimized desktop applica-

tion, which would give the benefits of straight-forward development compared to
a multi-node system such as a cluster. However, a desktop application has certain
drawbacks, e.g. single point of failure, memory limitations and vertical scaling
which in this case would require specialized hardware.
Another solution would be to use a cloud computing environment where variable

computing power can be bought depending on the requirements. However, before
paying for computing power, it is desirable to see how parallelizable a problem is
to make sure it is a worthwhile investment. Therefore, the choice fell on a local
cluster, even though this entails additional complexity when setting up the cluster
environment or when adding new hardware. Table 4.2 shows a summary of the
computing environments and the parameters they were evaluated by.

Computing framework

After weighing the advantages and drawbacks, it was evident that the computing
framework Apache Spark [16] was the most promising alternative. Apache Spark

Table 4.1: Hardware specification of the local cluster.

Type CPU RAM Storage
Head node Single, 2.4 GHz 8 GB 500 GB
Compute node Dual, 2.8 GHz 16 GB 250 GB

20

4. Results and discussion

Table 4.2: Overview of evaluated computing environments.

Environment Performance Price Scalability Complexity
Desktop Low Low Low Low
Local cluster High Low High High
Cloud computing Very high Low-High High Medium

is based on the RDD abstraction described in Section 2.1.1.
In the evaluation of computing frameworks, the most important metric was that

the computations would be batch-oriented, excluding frameworks such as Apache
Storm [17] and Apache Flink [18] which are oriented towards streaming. However,
since a natural step in the development of the system would be support for stream
processing, it was important to choose a framework which supports both processing
types. With this in mind, MapReduce [19] (described in Section 2.1.1) which only
supports batch processing, could be excluded.
The two remaining candidates were Google Cloud DataFlow [20], based on [21],

and Apache Spark. A desirable feature of Apache Spark is that it provides an in-
terpreter, which enables interactively running computations on the data set under
analysis. Another advantage was the possibility to use the Python programming
language, partly since it is generally considered to be an easy language to learn,
and would thus ease the development and maintenance for future users of the
system but also that the authors of this thesis had previous experience with the
language. In addition, Python is also well known for being a language with a large
set of libraries providing extensive functionality. Furthermore, since Apache Spark
uses in-memory computations instead of saving results to disk in each iteration like
MapReduce, the performance is very high - especially for iterative algorithms. Ta-
ble 4.3 shows the different computing frameworks that were considered and the
parameters they were evaluated by.

User interface

To provide a user-friendly interface together with the possibility to run the system
from any computer connected to the network, a web application was chosen.
An alternative which was considered but dismissed was to let the user interact

with the system using the command line, since such a solution would make it hard
for inexperienced users to interact with the system. Another alternative to increase
the ease of use was to develop a desktop application, but this has the drawback of
having to distribute new versions each time the application is updated. In addition,
it would require manual installation of the application on every computer. With
a web application, when new features are added, it is sufficient to update the web
application instead of forcing the user to update, eliminating the issue of having

21

4. Results and discussion

Table 4.3: Overview of evaluated computing frameworks.

Framework Language Type Compatibility
Google
Cloud
Dataflow

Java Batch, streaming Google ser-
vices

Apache
Spark

Java,
Scala,
Python

Batch, streaming Hadoop
ecosystem

Apache
Storm

Any lan-
guage

Streaming Hadoop
ecosystem

Apache
MapRe-
duce

Any lan-
guage

Batch Hadoop
ecosystem

Apache
Flink

Java, Scala Streaming Hadoop
ecosystem

Table 4.4: Overview of evaluated user interfaces.

User interface Development time Ease of use Maintainability
Command line Low Low Hard to upgrade
Desktop application Medium High Hard to upgrade
Web application Medium High Easy to upgrade

to keep different versions of the application in sync. Table 4.4 shows a summary
of the user interface candidates and which parameters they were evaluated by.

4.1.3 Integration
This section covers how the different components were integrated into the system.

Web frontend

To allow for easy access to the most important functionality of the system by
multiple users at the same time, a simple web frontend was developed. Using
HTML, CSS and JavaScript, the web front end translates a user’s intentions to
HTTP requests which are then processed by the web backend. The web interface
is divided into five tabs: info, new job, job status, path plotter and handle data.
The info tab consists of a simple landing page with a summary of the capabilities

of the system.
In the new job tab, a user is able to upload a data set or choose an existing

data set and then execute either a filter operation or a calculation. The part of

22

4. Results and discussion

the web interface that concerns filtering can be seen in Figure 4.1. The purpose
of a filter is self-explanatory, i.e. it takes a data set and filters out all messages
fulfilling one or more condition(s). A common use case could be that the user is
interested in studying a certain geographical area during a specific time period,
something that is easily accomplished by using a filter. The calculation operation
performs calculations within combinations of vessels, e.g. the distance between all
vessels in a data set, a much more computationally intensive task. This part of
the interface can be seen in Figure 4.2. A benefit of separating this into its own
section is that since the data set needs to be scanned while filtering a data set, it is
easy to calculate the number of messages and provide a time estimation for more
costly calculations, a feature that is desirable when execution times span from
hours to weeks. The components of the filter section are forms enabling the user
to input text data and a map which provides the user with the option to specify a
geographical region from a map as depicted in Figure 4.1. The latter functionality
was implemented by leveraging the Google Maps JavaScript API which displays
an interactive map and allows the user to draw a rectangular box to specify the
area of interest, something that can be used to construct a condition that filters
out messages from a certain area.
The job status tab serves two purposes, where the first is to complement the

Spark Web UI, which provides a detailed overview of all running jobs, including
details about performance, environment settings etc. This is key for a developer
of Spark applications and a system administrator, but for users only interested in
specific AIS analytics it is perhaps a bit overwhelming. Second, the purpose is
to provide the user with the functionality of extracting the results from the jobs.
With this in mind, a more basic interface which displays the currently running jobs
as well as the finished jobs along with their results was chosen for implementation.
This interface can be seen in Figure 4.3.
The path plotter interface provides a simple way for a user to choose a data set

and plot one or more vessels’ voyages, providing information about each specific
data point. In addition, the interface provides a way to evaluate the correctness
of the risk of collision calculations since vessel paths can be investigated in detail.
The interface is displayed in its entirety in Figure 4.4.
The part called handle data, which can be seen in Figure 4.5, simply displays an

overview of all files that are available for analysis, and gives the user the ability to
upload additional files.

23

4. Results and discussion

Figure 4.1: Overview of the interface which allows the user to select a specific
data set and interactively choose a region and filter out vessels according to time
period, minimum speed and vessel type.

24

4. Results and discussion

Figure 4.2: Overview of the interface where risk of collision calculations are
started. The input fields allow the user to specify which of the situations that are
of interest.

Figure 4.3: Overview of the interface which displays information about running
and finished jobs as well as the results from each job.

25

4. Results and discussion

Figure 4.4: Overview of the interface where the user can choose a data set and
plot selected vessel paths according to identification number (MMSI) and time
period. Each data point is clickable and provides detailed information.

26

4. Results and discussion

Figure 4.5: Overview of the interface for handling data sets, where the user is
able to upload data sets to the distributed file system.

27

4. Results and discussion

Web backend

To provide the web client with the ability to access the capabilities of the clus-
ter, upload files and see the status of running jobs, the web backend exposes a
Representational State Transfer (REST) API with the endpoints listed in Table
4.5.
The REST API translates HTTP verbs (GET, POST, PUT, DELETE, etc.) to

actions on actual jobs on the cluster. For instance, a GET request to the /jobs
URL retrieves a list of all running jobs and a POST request to /jobs starts a
job on the cluster using the parameters contained in the request. A complication
which occurred was that even though jobs may have long running times, the server
must immediately respond to the client to avoid freezing the user interface. This
is handled through the usage of a Python library called Celery [22] which uses
message passing to implement an asynchronous job queue, allowing for the web
server to start a job in the background while asynchronously responding to the
client. Additionally, the Spark framework uses something called a Spark Context
which handles the connection to the cluster. This context is used when expressing
the computations, e.g. creating RDDs, transforming RDDs and performing actions
on RDDs. However, a limitation is that the framework only supports having one
context per application, meaning that concurrent users of the system must use the
same context. In addition to mitigating the issue of freezing the user interface, the
asynchronous job queue is used for handling the shared Spark Context to avoid
concurrency issues as well as to provide a simple First-In-First-Out job queue.

Table 4.5: Overview of the endpoints of the REST backend.

URL HTTP Method Purpose
/jobs GET Fetches info about all jobs
/jobs/:id GET Fetches info about a specific job
/jobs POST Starts a new job
/files GET Fetches info about all available data sets
/files/:id GET Fetches info about a specific data set
/files POST Adds a data set
results/:file_id GET Fetches results from processing a data

set with id file_id

28

4. Results and discussion

4.2 Analysing: Development of initial applica-
tions for the system

The application that was developed for testing the system was the part of MTA3
which concerns risk of collision situations at sea. In addition, an application for
validating AIS messages was developed. This section contains the results from the
development as well as the evaluation of the applications, regarding both correct-
ness and performance.

4.2.1 MTA3 Parallel
The first part of the application concerns determining risk of collision situations
between vessels. This section covers how the algorithms were implemented and the
evaluation including correctness, performance and output comparison with MTA3.

Algorithms

This section covers the most important algorithms for determining risk of collision
situations using the same approach as in MTA3, as well as parallelized versions of
the algorithms. For brevity, the algorithms are described in high level pseudocode.
The implementations of the algorithms can be seen in their entirety in Appendix
A.

CPA and TCPA A key algorithm for determining risk of collision is the al-
gorithm for determining CPA and TCPA using two AIS messages. Let mi and
mj denote the messages from vessel i and vessel j, respectively. Note that the
algorithm ignores the timestamps of the messages, but this is handled further on
in the optimized version which takes the timestamps of the messages into account.
The algorithm can be seen in Algorithm 1.

29

4. Results and discussion

Algorithm 1 Closest point of approach and time to closest point of approach
1: function CPA_TCPA(mi, mj)
2: vi ← velocity of mi using speed and course
3: vj ← velocity of mj using speed and course
4: relative_velocity ← vi − vj

5: relative_velocityx ← x component of relative_velocity
6: relative_velocityy ← y component of relative_velocity
7: if relative_velocityx 6= 0 or relative_velocityy 6= 0 then
8: heading ← direction of relative_velocity
9: speed← length of relative_velocity

10: bearing ← clockwise angle from north to mj’s position seen from mi

11: relative_bearing ← relative bearing between mi and mj

12: distance← distance between mi’s position and mj’s position
13: CPA← distance ∗ sin(|relative_bearing|)
14: TCPA← (distance ∗ cos(|relative_bearing|))/speed
15: return (CPA, TCPA)

Risk of collision The determination of a risk of collision situation depends on
the CPA and TCPA between two vessels. Let mi denote a message from vessel i
and mj denote a message from vessel j. Let cpa denote the CPA and tcpa denote
the TCPA between the first and the second vessel. Let the variables cpa_limit
and tcpa_limit denote the maximum distance of the CPA and the maximum time
for the TCPA to count as a risk of collision situation. The algorithm can be seen
in Algorithm 2.

Algorithm 2 Risk of collision
1: function ROC(mi, mj, cpa_limit, tcpa_limit, time_limit)
2: t_diff← time difference between mi and mj

3: if t_diff ≤ time_limit then
4: (cpa, tcpa)← CPA_TCPA(mi, mj)
5: return 0 ≤ cpa ≤ cpa_limit & 0 ≤ tcpa ≤ tcpa_limit

To determine the risk of collision between vessels, one can calculate the CPA
and TCPA between all pairs and filter out the pairs which do not satisfy risk of
collision. Let M denote the set of all messages and the variables cpa_limit and
tcpa_limit denote the maximum distance of the CPA and the maximum time for
the CPA for counting as a risk of collision situation. The algorithm can be seen
in Algorithm 3.
Since this solution generates all pairs of messages and calculates the risk of

collision between each pair, this will return the correct results. However, with

30

4. Results and discussion

Algorithm 3 Risk of collisions
1: function ROCS(M, cpa_limit, tcpa_limit, time_limit)
2: pairs← generate all possible pairs in M
3: cpa_tcpa← map the CPA function on each pair in pairs
4: situations← filter out items in cpa_tcpa where ROC returns true
5: return situations

a time complexity of O(M2), this solution quickly becomes infeasible when the
number of messages grows.

Risk of collision (optimized) The optimized version of the algorithm for ex-
tracting all risk of collision situations can be seen in Algorithm 4, where M denotes
the set of all messages and the variables cpa_limit, tcpa_limit and time_limit
denote maximum CPA distance, maximum TCPA time and maximum time differ-
ence between messages for counting as a risk of collision situation.

Algorithm 4 Risk of collisions (optimized)
1: function ROCS(M, cpa_limit, tcpa_limit, time_limit)
2: buckets← hash each message and assign to its respective bucket
3: all_situations← empty list
4: for bucket ∈ buckets do
5: situations← ROCS(bucket, cpa_limit, tcpa_limit, time_limit)
6: all_situations← all_situations + situations

7: return all_situations

The main idea behind the optimization is that in order to speed up the calcula-
tions, an option is to sacrifice precision for performance, i.e. when looking at the
risk of collision between vessels, it is only interesting to observe “nearby” vessels.
Thus, it may be worthwhile to avoid calculating the risk of collision between ves-
sels in Gothenburg, Sweden and Wellington, New Zealand to decrease the number
of computations. In our case, “nearby” has two meanings: nearby in space and
nearby in time. The optimization uses both space and time metrics by applying
a technique for spatial and temporal hashing called spatiotemporal hashing [23].
The technique involves hashing the items (in our case messages) by space and time
into buckets, using the concept of locality-sensitive hashing described in Section
2.1.2. However, even though the resulting time complexity is O(B ∗ max(B)),
where B is the number of buckets and max(B) is the size of the largest bucket,
the worst case is still O(M2), where M is the number of messages, since there
exists at least a theoretical possibility that all messages are from the same time

31

4. Results and discussion

interval and within the same geographical space and therefore end up in the same
bucket.
In detail, the technique for spatial hashing that is used is called geohash [24]

and it is an application of a Z-order curve, described in Section 2.1.3. Geohash
involves dividing the geographical space into squares, where the size of each square
is determined by the desired precision, ranging from meters to kilometers. Then,
the vessel’s two-dimensional coordinate point is hashed to a one-dimensional value
which represents the square the vessel belongs to. An issue is that it is not enough
to hash vessels to a specific square and then compare within the square, since if
a vessel is near the edge of the square, it is not unlikely that there are vessels in
a nearby square that are within risk of collision. This means that vessels within
a square must be compared against vessels within its specific square as well as all
eight surrounding squares. However, since nearby points are hashed into nearby
geohashes, it is easy to use the geohash scheme to do a proximity search when
determining risk of collision between the vessels.
For temporal hashing, a similar approach called timehashing can be used. With

timehashing, all messages with a timestamp within a specific time interval are
hashed to the same bucket. Analog to the case of spatial hashing, there is the
issue that it is not sufficient to compare vessels within the same time interval
since there may be risks of collisions with vessels within nearby time intervals.
However, since the scheme for hashing is known and the fact that the time is in
one dimension, a comparison between adjacent time intervals can be conducted,
resulting in a total of three time intervals per vessel.
To conclude, by combining spatial and temporal hashing into spatiotemporal

hashing, each message will be placed in 33 buckets. Compared to the naïve ap-
proach, this uses more buckets and therefore more memory, but since the messages
are spread out within the buckets, this decreases the size of the largest bucket. In
addition, since the performance is determined by the size of the largest bucket,
this results in a significant speedup.
The Spark implementation of the algorithm can be seen in Appendix A.1.4. The

functionality for spatial hashing was implemented using the library python-geohash
[25]. Temporal hashing was implemented using the Python library timehash [26]
after the addition of a few missing features which were required for our particular
application. This contribution can be seen in Appendix A.2.1.

Correctness

The correctness of the system was ensured using two different methods: unit
testing and output comparison. The output was compared both against MTA3’s
output and the output from a naïve solution, the latter to ensure that the opti-
mizations did not throw away any relevant situations.

32

4. Results and discussion

Tests In order to ensure the correctness of the ported functions from the MTA3
software, unit tests were developed, where the implementations of the CPA and
TCPA functions were tested against the implementations used in the MTA3 soft-
ware. However, minor deviations which are believed to come from precision in
rounding, were found, but since these deviations were small, they were considered
negligible in terms of the end results. In the future, the unit tests can be used as
regression tests when extending the functionality of the system.

Output analysis To ensure that the situations which MTA3 registers are reg-
istered by MTA3 Parallel as well, comparisons of the outputs were made. Ideally,
the same situations would be registered and therefore only relevant results from
MTA3 Parallel would be saved for later analysis in MTA3. When comparing the
results, there were situations which MTA3 Parallel registered but MTA3 did not.
To understand why, a number of these situations were investigated in detail to-
gether with the domain expert and developer of MTA3 using the path plotter in
the web interface, displayed in Figure 4.4. Additionally, since MTA3 has to sample
in order to get reasonable performance, there is a risk of throwing away data that
contains key information. When studying these situations manually, it was con-
cluded that this was indeed the case and the situations were correctly registered
as interesting situations by MTA3 Parallel, but not by MTA3.

Comparison of optimized and naïve solution To ensure that the optimized
code did not discard any relevant situations, comparisons were made against a
naïve solution which simply checks all combinations. The risk of the optimization
is that the time window and the geographical space is too small, resulting in missed
situations. By inspecting the output from the different algorithms, it was evident
that the output from the naïve algorithm consisted of a few more risk of collision
situations. The reason for this was concluded to be due to the fact that the
naïve algorithm compares messages with a larger distance than six nautical miles,
which is the upper limit from the given functional specification (see Section 4.1.1).
However, since all the missed situations were outside the spatial range given in the
functional specification, the optimized algorithm was deemed correct.

Performance

The second part of the evaluation concerns the performance of MTA3 Parallel.
This was done by comparing the performance against MTA3 with respect to two
metrics: speed and file size.

Speed comparison The speed comparisons were made with six files ranging
from 17 MB to 1.3 GB, where the range was determined for compatibility reasons

33

4. Results and discussion

with MTA3. Since MTA3 samples the input data for performance reasons, i.e.
it uses one message per vessel every sixth minute, a sampling function in MTA3
Parallel was implemented to achieve a measure of the performance with approxi-
mately the same amount of computations. As is evident in Figure 4.6, the runtime
of MTA3 shows an inclination to rapidly grow with increased file size at an early
stage and lacks support for file sizes larger than 54 MB. This is even more clear in
Figure 4.7, which shows a performance comparison only considering the file sizes
which MTA3 was able to handle. Evident in Figure 4.6 is that MTA3 Parallel
and MTA3 Parallel with sampling handle larger files at lower runtimes. However,
MTA3 Parallel shows a trend where the runtime increases considerably when the
files approaches a certain size. This increase is believed to be due to the drawbacks
of hashing - namely that the performance on datasets with a high concentration of
vessels in certain regions will be determined by the number of vessels in the region
with the highest concentration. This is not as evident in the latter case, which is
mainly believed to be due to all the data points that are being discarded because
of the sampling step, but would likely occur when run on files of larger sizes. To
mitigate the issues of handling regions with a high concentration of vessels, an
improvement of the underlying algorithm which would balance the regions, e.g.
using spatial indexing structures, is believed to be greatly beneficial.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

2,000

4,000

6,000

8,000

10,000

File size (GB)

T
im

e
(s
)

MTA3
MTA3 Parallel
MTA3 Parallel (with sampling)

Figure 4.6: A speed comparison of MTA3 and two versions of MTA3 Parallel,
with and without sampling. As can be seen, MTA3 shows an early trend of rapidly
increasing runtimes and lacks support for files larger than 54 MB.

34

4. Results and discussion

0.02 0.03 0.04 0.05

0

500

1,000

File size (GB)

T
im

e
(s
)

MTA3
MTA3 Parallel
MTA3 Parallel (with sampling)

Figure 4.7: A speed comparison of MTA3 and two versions of MTA3 Parallel,
with and without sampling, only concerning the file sizes with which MTA3 is
compatible.

4.2.2 AIS message validation
Malicious modification of AIS messages is not a new problem and there are many
different types, e.g. the top five most common, mentioned in Section 3.2.2. Tam-
pering with any of these can in some sense be seen as decreasing a message’s
validity. This section covers how this problem was approached, presents a survey
of potential solutions and the resulting solution.

Approach

To be able to fit the task of validation into the scope of this thesis, it was decided
that the approach should be limited to the issue called identity fraud. During this
thesis, the alternatives which were initially considered for detecting identity fraud
were:

• Static validation, i.e. checking that the messages conform to the syntax of
an AIS message.

• Validation using external data sources, e.g. using information from a port
to check if a docked vessel really is the one it says it is.

Static validation was a viable option, but considering that this has been done by
the DaMSA in [5], it was discarded. Using external data sources was considered
an option and investigated, but since the task was to validate AIS messages, it
was apparent that there was a need for a different source of information. After
surveying the domain and discussing with domain experts, it was concluded that

35

4. Results and discussion

data sources that could vouch for the validity of an AIS message were neither
openly available nor easily accessible.
After discarding the previous alternatives, an interesting approach was proposed

by the supervisor Luis Felipe Sánchez Heres, namely to analyze the movement pat-
terns of vessels. To the knowledge of the authors of this thesis and the supervisor,
this had not been explored to this date. The idea is that given the position and
time of messages, it is possible to decide which messages that together make up
a voyage of a vessel without observing any details like identification number, etc.
Then, by using a post processing step, one can recognize potential frauds, for
instance where a vessel has changed its identification number.

Literature survey

The task of extracting information for determining a voyage from a vessel’s move-
ment pattern could potentially be tackled in many different ways. The approach
that was chosen in this thesis was clustering, using the GDBSCAN algorithm
described in Section 2.2.1.
There exist many clustering algorithms and before settling on GDBSCAN, a

survey of potential candidates with the purpose of getting a good overview of the
differences and what would be the most suitable approach was conducted. The
clustering methods that showed suitable during the initial survey were K-Means
[27], Affinity propagation [28], Spectral clustering [29] and DBSCAN.
When evaluating the clustering algorithms, the following was especially impor-

tant:
• Vessels have different rates for transmitting messages, resulting in certain

areas having a significantly higher concentration of data points. Therefore,
the clustering algorithm should handle clusters of varying sizes.

• There is no way to know beforehand how many voyages a given data set
consists of and the cluster algorithm should not require the user to supply
an estimate of how many clusters the data set holds.

• The rules for deciding whether an item belongs to a cluster depends on
specific fields of an AIS message and the algorithm should handle clustering
using custom attributes, e.g. time and position.

A widely used method for clustering is K-Means, but since K-Means clusters data
into the form of Voronoi cells rather than the shape of a trail and requires an a
priori estimate of how many clusters the data set consists of, it was determined
that K-Means would not yield optimal results.
For the same reasons as K-Means, the Affinity propagation algorithm was also

discarded.
Spectral clustering allows for clustering of more general shapes, but has the same

requirement of estimating the numbers of clusters in the data set, thus it was also

36

4. Results and discussion

discarded as a viable alternative.
More promising was the DBSCAN clustering algorithm, partly since the clus-

ters can be of any shape, but also since it naturally clusters points according to
their spatial vicinity. Unfortunately, DBSCAN only supports clustering using a
distance metric, but there are alternatives which all stem from the DBSCAN algo-
rithm which mitigate this. Among them are the ST-DBSCAN [30] and GDBSCAN
algorithms, where the main difference is that the ST-DBSCAN algorithm concerns
clustering using spatiotemporal attributes, whereas the GDBSCAN algorithm is
the more general variant, allowing for clustering using both spatial and nonspa-
tial attributes as long as the predicate for clustering two items is reflexive and
symmetric. With this in mind, the choice naturally fell on GDBSCAN.

Implementation

Since the clustering algorithm only concerns the task of extracting information
about which messages that belong to a certain voyage, the complete problem of
identifying a possible identity fraud is not solved. To solve this, the strategy was
to complement the clustering algorithm with a post processing step which would
analyze each cluster and recognize possible identity frauds. Thus, the complete
procedure for solving the problem can be summarized as follows:

• Cluster the data according to position and time, where each cluster represents
the voyage of a vessel. Since the input data could potentially be collected
during a large time period and contain data from high traffic routes, this
was done to separate messages from the same position but with different
timestamps. The course attribute was used to make sure vessels which travel
the same path at the same time but in opposite directions would not be
clustered together.

• For each cluster, analyze the messages using a post processing algorithm
which looks at the identification number and timestamp of the messages in
order to mark specific voyages as possible identity frauds.

When using the GDBSCAN algorithm, there are two main parts that need to
be determined. First, to discern between noise and a cluster, the cardinality of
a cluster has to be defined. In our case, the minimum number of messages was
used as the cardinality measurement. Second, an essential part is to construct a
predicate which decides whether two messages belong to the same cluster or not.
Since the task in our case was to cluster the voyages of vessels, a predicate which
makes use of a vessel’s position, time and course had to be constructed. The
predicate which decides whether two messages belong to the same neighborhood
was constructed using the following attributes:

• The distance which determines if messages are classified as neighbors.
• The time difference which determines if messages are classified as neighbors.

37

4. Results and discussion

• The course limit which determines if the messages shall be classified as one
vessel travelling in one direction or two vessels travelling in different direc-
tions.

An implementation of the algorithm can be seen in Algorithm 5. The complete
implementation, including the procedure for expanding a cluster can be seen in
Appendix A.3.1. A specific issue which became evident was that messages from
two vessels travelling in parallel were often clustered together. To mitigate this,
an algorithm which analyzed the messages’ time stamps was implemented, using
a Python version of the Maximum number of overlapping intervals algorithm from
[31]. The logic behind this was that if two vessels within the same cluster are send-
ing messages more or less at the same time, it is an indication that the messages
are from two different voyages. See Algorithm 6 for pseudocode and Appendix
A.3.2 for the complete code.
After running the clustering algorithm, the resulting clusters should only contain

messages from one vessel. By scanning the results for clusters which consist of
different identification numbers, it is possible to recognize potential frauds.

Algorithm 5 GDBSCAN
1: function GDBSCAN(points, pred, card, w_card)
2: cluster ← 0
3: for p ∈ points do
4: if p.cluster == UNCLASSIFIED then
5: expand← expand_cluster(points, p, cluster, pred, card, w_card)
6: if expand == true then
7: cluster ← cluster + 1
8: return points

Algorithm 6 Validate cluster
1: function validate_cluster(cluster)
2: mmsis← unique mmsis in cluster
3: start_times← empty list
4: end_times← empty list
5: for mmsi ∈ mmsis do
6: messages← all messages in cluster for mmsi
7: start_times← start_times ++ earliest_date(messages)
8: end_times← start_times ++ latest_date(messages)
9: return length(mmsis) == max_overlap(start_times, end_times)

38

4. Results and discussion

(a) Geographical representation of the
input data.

(b) The algorithm correctly separates
the input data into two voyages,
marked with distinct colors and mark-
ers.

Figure 4.8: Clustering of two vessels travelling in opposite directions (head on)
using dummy data.

Evaluation

To expose the capabilities and flaws of the algorithm, the strategy was to construct
data which aims to model scenarios which could occur in reality. The correctness
evaluation of the algorithm was separated into three different parts:

• Ensure that data points are clustered correctly using dummy data.
• Ensure that the post processing algorithm correctly recognizes possible iden-

tity frauds in the resulting clusters.
• Ensure that data points are clustered correctly using real data.

For the first part, the following scenarios were used:
• Two vessels travelling during the same time period and in the same area

(within the distance threshold), but with opposite directions. This scenario
is displayed in Figure 4.8. The correct thing would be to cluster the data
into two different voyages. With the input data shown in Figure 4.8a, the
results of the clustering algorithm can be seen in Figure 4.8b, where different
voyages are marked with distinct colors and markers. By inspection, one can
see that the algorithm recognizes the course difference and correctly clusters
the input data into two different voyages.

• Data from three vessels, which is displayed in Figure 4.9, should be clustered
into three separate voyages, with respect to time, position and course. By
observing the results in Figure 4.9b, it is evident that the data has been
correctly clustered into three voyages.

39

4. Results and discussion

(a) Geographical representation of the
input data.

(b) Result from clustering where three
voyages, marked with distinct colors
and markers, have been separated.

Figure 4.9: Clustering of three vessels using a predicate for capturing position
and time.

For the second part, the following scenario was used: three vessels are travelling
in the same direction with a pairwise distance larger than the clustering threshold.
Two of the voyages are valid, while on the third voyage, the vessel has changed its
identity number during the trip. The goal of the algorithm is first to cluster the
data points into three different voyages, and then to recognize the voyage which
contains the identity fraud. Figure 4.9a displays the input data before clustering.
In Figure 4.9b, the algorithm has clustered the data into three separate voyages,
while in Figure 4.10, one can see that the post processing algorithm has marked
two different identity numbers in voyage number two, which is a sign of a possible
identity fraud.

40

4. Results and discussion

Figure 4.10: Result from the post processing algorithm applied to Figure 4.9b
where the voyage in the middle contains two vessels with different identification
numbers, thus resulting in an identity fraud. Vessels with different identity num-
bers are marked with distinct colors and markers.

Finally, the algorithm was tested on a small set of real data. In Figure 4.11, the
geographical representation of the AIS data from a fishing boat which is regularly
traveling similar paths but at different times, is presented. The clustered data is
presented in Figure 4.12, where we can see that the AIS data has been clustered into
several voyages, correctly taking into account the difference in time. The different
voyages are probably a result of the vessel shutting of the AIS transmitter while
being at port, hence starting a new voyage each time it has gone out to sea.
Since identity frauds are rare, the algorithm would likely need to run on large

amounts of real data to find such a situation which has occurred in reality. How-
ever, since the focus has been on developing an experimental version to investigate
the potential of such an algorithm, performance has not been prioritized and with
a quadratic time complexity, it is not feasible to run on large sets of real data
without optimizing the algorithm.

41

4. Results and discussion

Figure 4.11: Geographical representation of AIS data from a fishing boat trav-
elling similar voyages, but during different time periods.

Figure 4.12: Clustered AIS data from a fishing boat travelling similar voyages,
but during different time periods. The data is correctly clustered into several
voyages using the position, time and course.

Capabilities and limitations

During the experimental implementation, the algorithm has shown promising re-
sults when tested on some types of situations. The following covers what the
42

4. Results and discussion

algorithm correctly handles:
• Handles clustering of AIS data which has been evenly transmitted into voy-

ages.
• Separates voyages consisting of messages from the same time period which

have been erroneously clustered together. This could occur when vessels are
moving close to each other in parallel.

• Handles clustering of vessels with a large course difference, something that
occurs e.g. if two vessels are travelling in the opposite direction (head on).

• Handles clustering of vessels travelling in the same area, with the same
course, but during different time periods.

When implementing the solution for clustering voyages, a number of issues sur-
faced. The following points are the limitations of the algorithm:

• When the data coverage is limited, the algorithm has difficulties. Since the
exact borders of AIS areas are unknown, it makes it hard to differentiate
between a suspicious situation, i.e. an identity fraud and e.g. a vessel which
appears at the border of the AIS coverage area, since both situations looks
as if a vessel suddenly appeared, whereas only the first situation is fraudu-
lent. This may result in false positives which have to be handled after the
clustering phase by manual analysis of the situations, a mundane and time
consuming task.

• Difficulties with transmission gaps. Since communication issues arise and the
fact that vessels may intentionally disable their AIS transmitter, a gap in the
data feed can result in one voyage being clustered into multiple voyages. This
issue can be seen in Figure 4.13, where one voyage has been clustered into
three voyages due to gaps in the transmission. This is a drawback which
has shown to be hard to address, since increasing the neighborhood area in
order to allow for gaps in the data feed also means that the accuracy of the
clustering algorithm decreases.

• Difficulties with disparate movement patterns of vessels. Since vessels travel
at, sometimes significantly, different speeds and have varying maneuver ca-
pabilities, the formula for determining suitable parameters for algorithm spe-
cific parameters such as neighborhood etc. is not universal. This means that
a parameter set may work well when clustering vessels travelling at a low
speed, while the same parameter set may be unsuitable for vessels travelling
at a higher speed.

43

4. Results and discussion

Figure 4.13: The issue of clustering data with irregularities in the transmission
rates, where a voyage is incorrectly clustered into three voyages.

4.3 Ethical considerations

With immense amounts of AIS data and advances in the field of Big data, it is
now possible to track vessels all over the globe. While this presents a number
of interesting applications, the ethical questions connected to this matter should
not be overlooked. For instance, if AIS messages can be used to recognize vessels
performing illegal fishing in prohibited areas, what would stop e.g. pirates of the
21st century from using the technology to identify potential victims? And what
about the sailors? It is not fair if they have to give up their privacy if a system
meant to be used for collision avoidance is instead used for surveillance purposes.
Additionally, since the technique is used by companies to track global commodity

flows, one can question how appropriate it is to use a technique initially constructed
for collision avoidance for such different purposes? What if a company produces a
forecast based on commodity flows using AIS data, stating that an increase in the
oil price will result in lower sales figures? This may motivate the layoffs of a certain
number of employees, while at the same time being based on AIS data, which has
no mechanism for validity or security. Consequently, the decision may be based
on fake information and it would be unfortunate if the employees would have to
pay that price. And should someone carry the burden of ensuring the validity of
the data? Should it perhaps be the data analyst who uses the data for support
in decision-making or should it be the developers of systems designed for using

44

4. Results and discussion

AIS data for analytical purposes? These questions may sound far fetched, but in
the world of AIS data, described in [1] as “one of the last Wild West frontiers”,
questions like these cannot be completely ruled out.

45

4. Results and discussion

46

5
Conclusions

The aim of this thesis has been to develop a system for handling and analyzing
large sets of marine traffic data, including investigating potential solutions for
mitigating the issue of unreliable data. This chapter concludes the outcome of the
work carried out in this thesis.

5.1 Development of a large scale data analysis
system

Through the study of state of the art Big data techniques and the development
of a proof of concept-application, the work during this thesis has shown that it
was possible to implement key features from the MTA3 software into the MTA3
Parallel system, with the benefit of increased performance and an accessible user
interface. Using the Apache Spark framework and a distributed file system pro-
vides the benefit of performance, but also fault tolerance, both against failing
computations and data corruption. With regards to the performance, by using
spatiotemporal hashing techniques, the optimized version of the initial implemen-
tation has shown significant speedups compared to the old MTA3 system, without
any kind of sampling. If sampling is used, the performance increase is higher but
then the risk of missing interesting situations arises. In terms of the user interface,
it provides the ability to anyone with a web browser within the same network
to access the underlying computing system, as well as the benefit of hassle-free
upgrades.

5.2 AIS message validation
The results from the work concerning AIS validation show some merits when using
the developed algorithm for detecting identity fraud situations. The GDBSCAN
algorithm for clustering provides an intuitive way to capture movement patterns
of vessels in a way that is easily implemented and adapted since it allows for

47

5. Conclusions

a predicate using both spatial and nonspatial attributes. In addition, due to
the possibility of improving the neighborhood query of the algorithm using ap-
propriate spatial indexing, GDBSCAN should be capable of handling large data
sets. However, since movement patterns of vessels vary significantly, constructing
a predicate which works well on all types of vessels is challenging. Thus, achieving
good performance requires fine tuning of parameters, which may be prohibitively
time consuming. Using a post processing algorithm for recognizing identity frauds
within the clusters works well on experimental data, but may entail significant
complexity when working with real data sets with data from varying areas and
when handling false positives.

48

6
Future work

During this thesis, many interesting possibilities for future improvement of the
system have emerged. This chapter describes things that can be improved in the
MTA3 Parallel system as well as new areas which may be worthwhile to explore.

6.1 MTA3 Parallel

First, since the focus has been on exploring the potential of using Big data frame-
works for AIS analytics, all of the features of the previous MTA3 software have
not been implemented. Thus, to complete the transition and completely replace
the MTA3 software, it would be a good idea to port the remaining features.
Second, a change which would further strengthen the system would be to move

from the basic file based approach where the user uploads a file and then uses that
file for analysis, to a system which continuously fetches and dumps AIS data in a
data store, allowing for refined querying and increased performance.
Third, another feature would be to expand the system with the possibility of

using live data. Apache Spark has a library called Spark Streaming which could
make that possible. By using live data the system could directly sieve out invalid
data, and perhaps even perform analytics on the fly to increase the performance
of future computations.
Fourth, an area which may have a positive impact on performance and usability

would be to investigate other scheduling algorithms. As of now, the system uses
a basic FIFO queue, which means that running jobs occupy all computational
resources of the system. If the number of users of the system increases, it may be
worthwhile to look into the more sophisticated scheduling algorithms available in
the Apache Spark framework in order to have more fine-grained control.
Finally, with regards to the implementation details of the algorithms, there are

a number of areas where improvements can be made. First, since the algorithm
for calculating risk of collision uses hashing techniques where the time complexity
is dependent on the size of the largest bucket, this in essence means that if all
messages are from the same spatiotemporal space, the performance will suffer.

49

6. Future work

This could be mitigated through the usage of more advanced spatial indexing
structures which could balance the input data.

6.2 AIS message validation
A clear drawback of the implementation of the GDBSCAN algorithm for validating
AIS messages is its performance. Since the neighborhood has to be calculated for
each point, the resulting time complexity is quadratic. By using e.g. spatial
indexing structures, the performance of the neighborhood computation could be
improved, resulting in a time complexity of O(N log(N)). In practice, such a
solution would make it possible to run the algorithm on larger data sets and make
it possible to validate the data before doing further analysis. Furthermore, since
the implementation of GDBSCAN is of experimental nature, it has not yet been
parallelized. If one would address the drawbacks and conclude that it is worth using
for further analysis, it may be beneficial to explore the possibility of parallelizing.

50

References

[1] Windward, AIS Data on the High Seas : An Analysis of the Magnitude and
Implications of Growing Data Manipulation at Sea, http://www.windward.
eu / wp - content / uploads / 2015 / 02 / AIS - Data - on - the - High - Seas -
Executive-Summary-Windward-October-20-2014.pdf, [Online; accessed
21-December-2015], 2014.

[2] A. Harati-Mokhtari, A. Wall, P. Brooks, and J. Wang, “Automatic Iden-
tification System (AIS): Data Reliability and Human Error Implications”,
Journal of Navigation, vol. 60, no. 03, pp. 373–389, 2007.

[3] D. Winkler, Enhancing the Reliability of AIS through Vessel Identity Veri-
fication, https://www.fhwa.dot.gov/2015datapalooza/presentations/
Safety.4_Winkler.pdf, [Online; accessed 22-December-2015], 2015.

[4] S. Kazemi, S. Abghari, N. Lavesson, H. Johnson, and P. Ryman, “Open
Data for Anomaly Detection in Maritime Surveillance”, Expert Systems with
Applications, vol. 40, no. 14, pp. 5719–5729, 2013.

[5] Danish Maritime Safety Administration, AIS information quality report of
static AIS messages: “AIS Information Quality Report” Region : HELCOM,
http://efficiensea.org/files/mainoutputs/wp4/efficiensea_wp4_
13.pdf, [Online; accessed 22-December-2015], 2011.

[6] F. Olindersson, “Development of a software to identify and analyse marine
traffic situations”, in International Conference on Ship Manoeuvrability and
Maritime Simulation, 2015.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters”, Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Computing”, in Proceedings of
the 9th USENIX conference on Networked Systems Design and Implementa-
tion, USENIX Association, 2012, pp. 2–2.

[9] A. Gionis, P. Indyk, R. Motwani, et al., “Similarity Search in High Dimen-
sions via Hashing”, in VLDB, vol. 99, 1999, pp. 518–529.

51

http://www.windward.eu/wp-content/uploads/2015/02/AIS-Data-on-the-High-Seas-Executive-Summary-Windward-October-20-2014.pdf
http://www.windward.eu/wp-content/uploads/2015/02/AIS-Data-on-the-High-Seas-Executive-Summary-Windward-October-20-2014.pdf
http://www.windward.eu/wp-content/uploads/2015/02/AIS-Data-on-the-High-Seas-Executive-Summary-Windward-October-20-2014.pdf
https://www.fhwa.dot.gov/2015datapalooza/presentations/Safety.4_Winkler.pdf
https://www.fhwa.dot.gov/2015datapalooza/presentations/Safety.4_Winkler.pdf
http://efficiensea.org/files/mainoutputs/wp4/efficiensea_wp4_13.pdf
http://efficiensea.org/files/mainoutputs/wp4/efficiensea_wp4_13.pdf

References

[10] G. M. Morton, A COMPUTER ORIENTED GEODETIC DATA BASE
AND A NEW TECHNIQUE IN FILE SEQUENCING. International Busi-
ness Machines Company New York, 1966.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise”, in KDD,
vol. 96, 1996, pp. 226–231.

[12] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-Based Clustering in
Spatial Databases: The Algorithm GDBSCAN and Its Applications”, Data
Mining and Knowledge Discovery, vol. 2, no. 2, pp. 169–194, 1998.

[13] A. S. Szalay and J. A. Blakeley, The Fourth Paradigm: Data-Intensive Sci-
entific Discovery, 2nd ed., T. Hey, S. Tansley, and K. Tolle, Eds. Redmond,
Washington: Microsoft Research, Oct. 2009, pp. 5–11, isbn: 978-0-9825442-
0-4.

[14] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities”, in Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, ACM, 1967, pp. 483–485.

[15] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Dis-
tributed File System”, in Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on, IEEE, 2010, pp. 1–10.

[16] Apache Software Foundation, Apache Spark, http://spark.apache.org/,
[Online; accessed 13-May-2016], 2014.

[17] Apache Software Foundation, Apache Storm, http://storm.apache.org/,
[Online; accessed 13-May-2016], 2014.

[18] Apache Software Foundation, Apache Flink, https://flink.apache.org/,
[Online; accessed 13-May-2016], 2014.

[19] Apache Software Foundation, Apache Hadoop, https://hadoop.apache.
org/, [Online; accessed 13-May-2016], 2011.

[20] Google, Apache Cloud Dataflow, https://cloud.google.com/dataflow/,
[Online; accessed 13-May-2016], 2015.

[21] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle, “The
Dataflow Model: A Practical Approach to Balancing Correctness, Latency,
and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing”, Pro-
ceedings of the VLDB Endowment, vol. 8, pp. 1792–1803, 2015.

[22] Ask Solem, Celery, http://www.celeryproject.org/, [Online; accessed
1-April-2016], 2007.

[23] A. Fox, C. Eichelberger, J. Hughes, and S. Lyon, “Spatio-temporal Indexing
in Non-relational Distributed Databases”, in Big Data, 2013 IEEE Interna-
tional Conference on Big Data, IEEE, 2013, pp. 291–299.

52

http://spark.apache.org/
http://storm.apache.org/
https://flink.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://cloud.google.com/dataflow/
http://www.celeryproject.org/

References

[24] Gustavo Niemeyer, geohash, http : / / geohash . org, [Online; accessed 1-
April-2016], 2008.

[25] Leonard Norrgard, python-geohash, https://github.com/vinsci/geohash/,
[Online; accessed 31-March-2016], 2015.

[26] Abe Usher, timehash, https://github.com/abeusher/timehash, [Online;
accessed 31-March-2016], 2014.

[27] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Cluster-
ing Algorithm”, Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[28] B. J. Frey and D. Dueck, “Clustering by Passing Messages Between Data
Points”, Science, vol. 315, no. 5814, pp. 972–976, 2007.

[29] U. Von Luxburg, “A tutorial on spectral clustering”, Statistics and comput-
ing, vol. 17, no. 4, pp. 395–416, 2007.

[30] D. Birant and A. Kut, “ST-DBSCAN: An algorithm for clustering spatial–
temporal data”, Data & Knowledge Engineering, vol. 60, no. 1, pp. 208–221,
2007.

[31] Zahid, Maximum number of overlapping intervals, http://www.zrzahid.
com / maximum - number - of - overlapping - intervals/, [Online; accessed
10-May-2016], 2015.

53

http://geohash.org
https://github.com/vinsci/geohash/
https://github.com/abeusher/timehash
http://www.zrzahid.com/maximum-number-of-overlapping-intervals/
http://www.zrzahid.com/maximum-number-of-overlapping-intervals/

References

54

A
Implementation of algorithms

This appendix includes Python implementations of the algorithms used in this
thesis.

A.1 Ship handling algorithms

A.1.1 Risk of collision
def risk_of_collision(cpa_and_tcpa, cpa_limit, tcpa_limit):

date1 = cpa_and_tcpa[0].date
date2 = cpa_and_tcpa[1].date

if date1 >= date2:
in_risk = (date1 - date2) <= timedelta(minutes=2)

else:
in_risk = (date2 - date1) <= timedelta(minutes=2)

if cpa_and_tcpa[2]:
cpa = cpa_and_tcpa[2][0]
tcpa = cpa_and_tcpa[2][1]
return all([in_risk,

0 <= cpa <= cpa_limit,
0 <= tcpa <= tcpa_limit])

A.1.2 Closest point of approach and time to closest point
of approach

def cpa_and_tcpa(m1, m2):
rel_velocity = np.subtract(velocity(m2),

velocity(m1))

I

A. Implementation of algorithms

x = rel_velocity[0]
y = rel_velocity[1]

if x != 0 or y != 0:
(heading, speed) = course_speed_from_vector(rel_velocity)
bearing = calc_bearing(m1, m2)
if bearing is not None:

rel_bearing = calc_rel_bearing(bearing + 180,
heading)

dist = distance(m1, m2)
return (dist * math.sin(abs(rel_bearing) * TO_RAD),

dist * math.cos(abs(rel_bearing) * TO_RAD) / speed)
else:

return None

A.1.3 Risk of collision (parallelized)

def calc_risk_of_collision(vessels):
cpa_and_tcpa = vessels.cartesian(vessels)

.filter(lambda vs: vs[0].mmsi != vs[1].mmsi)

.map(lambda vs: (vs[0], vs[1],
cpa_and_tcpa(vs[0], vs[1])))

return cpa_and_tcpa.filter(lambda x: risk_of_collision(x))

A.1.4 Risk of collision (parallelized and optimized)

def calc_risk_of_collision(vessels, cpa_limit, tcpa_limit):
hashed = vessels.flatMap(lambda x: buckets(x))
grouped = hashed.reduceByKey(lambda x, y: x + y)
cartesian = grouped.flatMapValues(lambda x: itertools.product(x, x))
vs = cartesian.filter(lambda vs: vs[1][0].mmsi != vs[1][1].mmsi)
cpa_tcpa = vs.map(lambda x: (x[1][0],

x[1][1],
cpa_and_tcpa(x[1][0], x[1][1])))

rocs = cpa_tcpa.filter(lambda x: risk_of_collision(x,
cpa_limit,
tcpa_limit))

return rocs

II

A. Implementation of algorithms

A.2 Temporal hashing

A.2.1 Contributions to the timehash [26] package
def after(hashcode):

i = 1
for c in reversed(hashcode):

padding = (i - 1) * ’0’
pos = len(hashcode) - i
if c != ’f’:

ret = hashcode[:pos] + __neighbormap[c][1] + padding
return ret

else:
i += 1

def before(hashcode):
i = 1
for c in reversed(hashcode):

padding = (i - 1) * ’f’
pos = len(hashcode) - i
if c != ’0’:

ret = hashcode[:pos] + __neighbormap[c][0] + padding
return ret

else:
i += 1

def neighbors(hashcode):
return [before(hashcode), after(hashcode)]

def expand(hashcode):
return [before(hashcode), hashcode, after(hashcode)]

III

A. Implementation of algorithms

A.3 Clustering

A.3.1 GDBSCAN

UNCLASSIFIED = -2
NOISE = -1

def GDBSCAN(points, n_pred, min_card, w_card):
cluster_id = 0
for point in points:

if point.cluster_id == UNCLASSIFIED:
if _expand_cluster(points, point, cluster_id, n_pred, min_card,

w_card):
cluster_id = cluster_id + 1

clusters = {}
for point in points:

key = point.cluster_id
if key in clusters:

clusters[key].append(point)
else:

clusters[key] = [point]
return list(clusters.itervalues())

def _expand_cluster(points, point, cluster_id, n_pred, min_card, w_card):
if not _in_selection(w_card, point):

points.change_cluster_id(point, UNCLASSIFIED)
return False

seeds = points.neighborhood(point, n_pred)
if not _core_point(w_card, min_card, seeds):

points.change_cluster_id(point, NOISE)
return False

points.change_cluster_ids(seeds, cluster_id)
seeds.remove(point)

while len(seeds) > 0:
current_point = seeds[0]
result = points.neighborhood(current_point, n_pred)

IV

A. Implementation of algorithms

if w_card(result) >= min_card:
for p in result:

if w_card([p]) > 0 and p.cluster_id in [UNCLASSIFIED, NOISE]:
if p.cluster_id == UNCLASSIFIED:

seeds.append(p)
points.change_cluster_id(p, cluster_id)

seeds.remove(current_point)
return True

def _in_selection(w_card, point):
return w_card([point]) > 0

def _core_point(w_card, min_card, points):
return w_card(points) >= min_card

class Points:
def __init__(self, points):

self.points = points

def __iter__(self):
for point in self.points:

yield point

def __repr__(self):
return str(self.points)

def get(self, index):
return self.points[index]

def neighborhood(self, point, n_pred):
return filter(lambda x: n_pred(point, x), self.points)

def change_cluster_ids(self, points, value):
for point in points:

self.change_cluster_id(point, value)

def change_cluster_id(self, point, value):
index = (self.points).index(point)

V

A. Implementation of algorithms

self.points[index].cluster_id = value

def labels(self):
return set(map(lambda x: x.cluster_id, self.points))

class Point:
def __init__(self, x, y, mmsi, date, cog):

self.x = x
self.y = y
self.mmsi = mmsi
self.date = date
self.cog = cog
self.cluster_id = UNCLASSIFIED

def __repr__(self):
return ’(%s, %s, %s, %s, %s, %s)’ % (self.x, self.y, self.date,

self.mmsi, self.cog,
self.cluster_id)

def n_pred(p1, p2):
return all([within_distance(p1, p2, 1),

abs(p1.date - p2.date) <= timedelta(minutes=20)])

VI

A. Implementation of algorithms

A.3.2 Post processing algorithm for validating a cluster
def validate(list_of_clusters):

return [c for c in list_of_clusters if valid_cluster(c) is False]

def valid_cluster(cluster):
mmsis = set([p.mmsi for p in cluster])
nr_of_vessels = len(mmsis)
start_times = []
end_times = []
for mmsi in mmsis:

vs = [x for x in cluster if x.mmsi == mmsi]
start_times.append(min([x.date for x in vs]))
end_times.append(max([x.date for x in vs]))

return nr_of_vessels == max_overlap(start_times, end_times)

def max_overlap(start, end):
overlaps = 0
current_overlap = 0
sorted_start = sorted(start)
sorted_end = sorted(end)
i = 0
j = 0
m = len(sorted_start)
n = len(sorted_end)
while(i < m and j < n):

if sorted_start[i] < sorted_end[j]:
current_overlap += 1
overlaps = max(overlaps, current_overlap)
i += 1

else:
current_overlap -= 1
j += 1

return overlaps

VII

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	Related work
	Aim
	Limitations

	Theoretical background
	State of the art for Big data: processing and storage
	Computing abstractions
	Locality-sensitive hashing
	Z-order curve
	Distributed file system

	Cluster analysis
	Generalized Density Based Spatial Clustering of Applications with Noise

	AIS data description
	Ship handling terms

	Method
	Handling: Development of a large scale data analysis system
	Requirements and admissible solutions
	Technique survey
	Integration
	Evaluation

	Analysing: Development of initial applications for the system
	MTA3 Parallel
	AIS message validation

	Results and discussion
	Handling: Development of a large scale data analysis system
	Requirements
	Technique survey
	Integration

	Analysing: Development of initial applications for the system
	MTA3 Parallel
	AIS message validation

	Ethical considerations

	Conclusions
	Development of a large scale data analysis system
	AIS message validation

	Future work
	MTA3 Parallel
	AIS message validation

	References
	Implementation of algorithms
	Ship handling algorithms
	Risk of collision
	Closest point of approach and time to closest point of approach
	Risk of collision (parallelized)
	Risk of collision (parallelized and optimized)

	Temporal hashing
	Contributions to the timehash timehash package

	Clustering
	GDBSCAN
	Post processing algorithm for validating a cluster

