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Abstract— This paper investigates the maximum coding rate
over a K-user discrete memoryless broadcast channel for the sce-
nario where a common message is transmitted using variable-
length stop-feedback codes. Specifically, upon decoding the com-
mon message, each decoder sends a stop signal to the encoder,
which transmits continuously until it receives all K stop signals.
We present nonasymptotic achievability and converse bounds for
the maximum coding rate, which strengthen and generalize the
bounds previously reported in Trillingsgaard et al. (2015) for
the two-user case. An asymptotic analysis of these bounds reveal
that—contrary to the point-to-point case—the second-order term
in the asymptotic expansion of the maximum coding rate decays
inversely proportional to the square root of the average block-
length. This holds for certain nontrivial common-message broad-
cast channels, such as the binary symmetric broadcast channel.
Furthermore, we identify conditions under which our converse
and achievability bounds are tight up to the second order. Through
numerical evaluations, we illustrate that our second-order asymp-
totic expansion approximates accurately the maximum coding rate
and that the speed of convergence to capacity is indeed slower than
for the point-to-point case.

I. INTRODUCTION

We are concerned with the setup in which an encoder wishes
to convey a common message over a discrete memoryless
broadcast channel with feedback to K decoders. Similarly to
the single-decoder case, full feedback combined with fixed-
blocklength codes does not improve capacity, which is given by
[1, p. 126]

C = sup
P

min
k∈{1,··· ,K}

I(P,Wk). (1)

Here, W1, · · · ,Wk denote the channels to the decoders
1, · · · ,K, respectively, and the supremum is over all input dis-
tributions P . If no feedback is available, the speed at whichC is
approached as the blocklength n increases is of the order 1/

√
n

(see [2]), which is the same as in the single-decoder (point-to-
point) case [3].

For point-to-point channels, although full feedback does not
increase capacity, it improves dramatically the error exponent,
provided that variable-length codes are used. This was demon-
strated by Burnashev who found that the error exponent for the
full-feedback case is given by [4]

E(R) = C̃1(C̃ −R)/C̃ (2)

The work of K. F. Trillingsgaard and P. Popovski was supported in part by the
European Research Council (ERC Consolidator Grant Nr. 648382 WILLOW)
within the Horizon 2020 Program. The work of G. Durisi was supported in part
by the Swedish Research Council under the grant 2012-4571.

for all rates 0 < R < C̃. Here, C̃ denotes the channel capacity
for the point-to-point case and C̃1 denotes the maximum relative
entropy between conditional output distributions. Yamamoto
and Itoh [5] proposed a two-phase scheme that attains the error
exponent in (2) and [6] provides an alternative and simpler
converse proof to (2), which parallels the two-phase scheme
proposed in [5].

In this paper, we shall be concerned with the scenario in
which the feedback channel is used only to stop transmis-
sions (stop/decision feedback). Following [2], we shall refer
to variable-length coding schemes relying on stop feedback as
variable-length stop-feedback (VLSF) codes. It was shown in
[2], [7] that, using only VLSF codes, one can achieve an error
exponent E(R) = C̃ −R. No converse result is available.

In the fixed-error regime, Polyanskiy et al. [2] found that the
speed at which the maximum coding rate convergences to ca-
pacity is significantly improved in the presence of full feedback
and variable-length codes. Specifically, they showed that

1

`
log M̃∗f (`, ε) =

C̃

1− ε −O
(

log `

`

)
(3)

where ` stands for the average blocklength (average transmis-
sion time) and M̃∗f (`, ε) is the maximum number of codewords
in the point-to-point case. One sees from (3) that no square-
root penalty occurs (zero dispersion), which implies a fast con-
vergence to the asymptotic limit. It turns out that (3) can be
achieved using VLSF codes. In other words, stop feedback is
enough to obtain zero dispersion.

This result, however, does not extend to the common-message
discrete memoryless broadcast channel (CM-DMBC). Specifi-
cally, it was shown in [8] that the dispersion of such channel,
computed for the case of VLSF codes (i.e., stop feedback), may
be positive. More precisely, the second term in the asymptotic
expansion of the maximum coding rate is of order 1/

√
` in some

cases (cf., (3)). The analysis in [8] is limited to the two-user case,
and relies on the restrictive assumption that there exists a unique
input distribution P ∗ that simultaneously maximizes I(P,W1)
and I(P,W2). Furthermore, the upper and lower bounds on the
maximum coding rate provided in [8] do not match up to second
order. The purpose of this paper is to refine the results obtained
in [8] and to extend them to a broader class of CM-DMBCs.

Contribution: Focusing on VLSF codes, we obtain
nonasymptotic achievability and converse bounds on the
maximum number of codewords M∗sf(`, ε) with average



blocklength ` that can be transmitted on a CM-DMBC with
reliability 1 − ε. Here, the subscript “sf” stands for stop
feedback. By analyzing these bounds in the large-` regime, we
prove that when the K subchannels are independent (in the
sense made precise in (4)) and when the mutual information
evaluated at the capacity-achieving input distribution equals C
for two or more subchannels, then the asymptotic expansion of
logM∗sf(`, ε) contains a square-root penalty provided that some
mild technical conditions are satisfied. Thus, we cannot expect
the same fast convergence as in the single-decoder case. We
also obtain upper and lower bounds on the second-order term
in the asymptotic expansion of logM∗sf(`, ε), which generalize
and tighten the ones reported in [8]. The bounds turn out to
match for certain special cases, including the case when the
capacity-achieving distribution P ∗ simultaneously maximizes
I(P,W1) and I(P,W2) treated in [8]. All proofs are omitted
for space constraint; we refer the interested reader to [9].

Notation: We denote the n-dimensional all-zero vector by
0n. Vectors are denoted by boldface letters while their entries
are denoted by roman letters. The length of a vector is denoted
by len(·). For a differentiable function f(·), we let f ′(·) denote
its derivative. Upper case, lower case, and calligraphic letters
indicate random variables (RV), deterministic quantities, and
sets, respectively. The cardinality of a set is denoted by |·|.
We let xnm denote the tuple (xm, · · · , xn). When m = 1, the
subscript is sometimes omitted. We denote the set of probability
distributions onA byP(A). For a random variableX with prob-
ability distribution P , we let Pn denote the the joint probability
distribution of the vector [X1, · · · , Xn], whereXi

i.i.d.∼ P . We let
Φ(x) be the cumulative distribution function for the Gaussian
distribution. Throughout the paper, the index k belongs always
to the set K , {1, · · · ,K}, although this is sometimes not
explicitly mentioned. Finally, N denotes the set of positive in-
tegers, Z+ , N ∪ {0}, the symbol R indicates the set of real
numbers, and Rn0 denotes the set

{
x ∈ Rn :

∑n
i=1 xi = 0

}
.

II. SYSTEM MODEL

A CM-DMBC with K decoders consists of a finite-
cardinality input alphabet X , and output alphabets {Yk}, along
withK stochastic matrices {Wk}, whereWk(yk|x) denotes the
probability that yk ∈ Yk is observed at decoder k given the
channel input x ∈ X . We assume without loss of generality that
X = {1, · · · , |X |}. The outputs at time t are assumed to be
conditionally independent given the input, i.e.,

PY1,t,··· ,YK,t|Xt
(y1,t, · · · , yK,t|xt) ,

∏
k

Wk(yk,t|xt). (4)

The assumption (4) comes without loss of generality if one
is interested in infinite-blocklength analysis with vanishing er-
ror probability. However, this ceases to be true in the fixed-
error-probability setup considered in the present paper. Let
P(X ) be the set of all probability distributions on X . Let also
P ×Wk : (x, yk) 7→ P (x)Wk(yk|x) denote the joint distribu-
tion of input and output at decoder k. Finally, let PWk : yk 7→∑
x∈X P (x)Wk(yk|x) denote the induced marginal distribution

onYk. For every P ∈ P(X ) and n ∈ N, the information density
is defined as

iP,Wk
(xn; ynk ) ,

n∑
i=1

log
Wk(yk,i|xi)
PWk(yk,i)

. (5)

We let Ik(P ) , EP×Wk
[iP,Wk

(X;Yk)] be the mutual informa-
tion and Vk(P ) , VarP×Wk

[iP,Wk
(X;Yk)|X] be the condi-

tional information variance.
The capacity of the CM-DMBC is given by (1), where the

supremum is over all probability distributions P ∈ P(X ).
We restrict ourselves to the case where the supremum in (1)
is achieved by a unique probability distribution P ∗. The cor-
responding (unique) capacity-achieving output distributions are
denoted by P ∗Yk

. Furthermore, the individual capacities of each
of the discrete memoryless subchannels {Wk} are denoted by
Ck , supP∈P(X ) Ik(P ). Finally, we let Vk , Vk(P ∗) and let
∇Ik(v) denote the directional derivative of the mutual informa-
tions Ik(P ) along the direction v ∈ R|X |0 at the point P ∗

∇Ik(v) ,
∑
x∈X

vxD(Wk(·|x)||P ∗Yk
) (6)

where D(·||·) denotes the Kullback-Liebler divergence.
In addition to (4) and to the uniqueness of P ∗, we shall

assume that the channel laws {Wk} satisfy the following con-
ditions:

1) Ik(P ∗) = C for every k ∈ K.
2) Vk(P ∗) > 0.
3) P ∗(x) > 0 for all x ∈ X .

The first condition is not critical (see [9]), and it is added only
to simplify the statement of our results.

We are now ready to formally define a VLSF code for a CM-
DMBC.

Definition 1: An (`,M, ε)-VLSF code for the CM-DMBC
consists of:
1) A RV U ∈ U , with |U| ≤ K + 1, which is known at both

the encoder and the decoders.
2) A sequence of encoders fn : U ×M → X , each one map-

ping the message J , drawn uniformly at random from the set
M , {1, . . . ,M}, to the channel input Xn = fn(U, J).

3) Nonnegative integer-valued RVs τ1, · · · , τK that are stop-
ping times with respect to the filtrations Fk,n = σ{U, Y nk }
and satisfy E

[
maxk τk

]
≤ `.

4) A sequence of decoders gk,n : U × Ynk →M satisfying

P
[
J 6= gk,τk(U, Y τkk )

]
≤ ε, k ∈ K. (7)

Remark 1: VLSF codes require a feedback link from each
decoder to the encoder. This feedback consists of a 1-bit “stop
signal” per decoder, which is sent by decoder k at time τk. The
encoder continuously transmits until all decoders have fed back
a stop signal. Hence, the blocklength is maxk τk. Note also that,
differently from the full-feedback case, the encoder output at
time n depends on the message and on the common randomness
U , but does not depend on the past output signals {Y n−1

k }.
Remark 2: The RV U serves as common randomness be-

tween the transmitter and all receivers, and enables the use of



randomized codes [10]. To establish the bound on the cardinality
of U provided in Definition 1, one can proceed as in [2, Th. 19]
and use Caratheodory theorem to show that |U| ≤ K + 2. This
bound can be further improved to |U| ≤ K + 1 by using the
Fenchel-Eggleston theorem [11, p. 35] in place of Caratheodory
theorem.

The maximum number of codewords with average length `
and error probability not exceeding ε is denoted by

M∗sf(`, ε) = max{M : ∃(`,M, ε)-VLSF code} . (8)

III. MAIN RESULTS

A. Nonasymptotic Achievability Bound
We provide below a K-user generalization of the nonasymp-

totic achievability bound reported in [8, Th. 1].1

Theorem 1: Fix a probability distribution PX∞ on X∞. Let
γ ≥ 0 and 0 ≤ q ≤ 1 be arbitrary scalars. Let the stopping
times τk and τ̄k, k ∈ K, be defined as follows:

τk , inf
{
n ≥ 0 : iPXn ,Wn

k
(Xn;Y nk ) ≥ γ

}
(9)

τ̄k , inf
{
n ≥ 0 : iPXn ,Wn

k
(X̄n;Y nk ) ≥ γ

}
. (10)

Here, the joint probability distribution of
(Xn, X̄n, Y n1 , · · · , Y nK) is

PXn,X̄n,Y n
1 ,··· ,Y n

K
(xn, x̄n, yn1 , · · · , ynK)

= PY n
1 ,··· ,Y n

K |Xn(yn1 , · · · , ynK |xn)PXn(xn)PXn(x̄n). (11)

For every M , there exists an (`,M, ε)-VLSF code such that

` ≤ (1− q)E
[

max
k

τk

]
(12)

ε ≤ max
k

{
q + (1− q)(M − 1)P[τk ≥ τ̄k]

}
. (13)

Remark 3: The constant q in Theorem 1 is used to enable
time-sharing. With probability q, the decoders simultaneously
send stop signals to the encoder at time 0. The common ran-
domness U can be used to enable this weak form of cooperation
among the decoders.

Remark 4: Following the same steps as in [2, Eqs. (111)–
(118)], we can further upper-bound ε in (13) as follows:

ε ≤ q + (1− q)(M − 1) exp {−γ} . (14)

This bound is easier to evaluate numerically and to analyze
asymptotically.

B. Nonasymptotic Converse Bound
Let Yk denote all possible sequences (of arbitrary length) of

symbols from Yk, i.e., Yk , {[]} ∪⋃∞n=1 Ynk , where [] stands
for the vector of length 0. A subset Ȳk of Yk is called complete
prefix-free 2 if and only if, for every y ∈ Y∞k , there exists a
unique ȳ ∈ Ȳk such that ȳ is a prefix to y. Let Q(∞)

k be an
arbitrary probability measure on Y∞k and define the mapping
Qk : Yk 7→ [0, 1] as follows:

Qk(ȳ) ,
∑

y∈Y∞k :
ȳ=[y1,··· ,ylen(ȳ)]

Q
(∞)
k (y), ȳ ∈ Yk. (15)

1Note that there is a typo in [8, Eq. (12)]: a maximization over k is missing.
2FiXme Note: Remember to find reference for this

We shall use the convention that [y1, · · · , ylen(ȳ)] = [] when
len(ȳ) = 0. For every complete prefix-free subset Ȳk ⊂ Yk,
we observe that Qk(·) defines a probability measure on Ȳk.
Indeed,

1 =
∑

ȳ∈Ȳk

∑
y∈Y∞k :

ȳ=[y1,··· ,ylen(ȳ)]

Q
(∞)
k (y) =

∑
ȳ∈Ȳk

Qk(ȳ). (16)

Based on Qk(·), we define the “mismatched” information den-
sity

ik(xn; ynk ) , log
PY n

k |Xn(ynk |xn)

Qk(ynk )
(17)

for xn ∈ Xn, ynk ∈ Yn, and n ∈ N (with the convention that
ik([]; []) = 0).

We are now ready to state our converse bound.
Theorem 2: For arbitrary probability measure Q(∞)

k on Y∞k ,
and arbitrary M ∈ N, t ∈ Z+, η > 0, and εk ∈ (0, 1), k ∈ K,
define the following function:

Lt(ε1, · · · , εK) , max
xt∈X t

∏
k

min
{

1,

P
[

max
0≤n≤t

ik(xn;Y nk ) ≥ logM + log η
]

+ εk

}
. (18)

Here, the vector xn contains the first n entries of xt, and Y nk ∼
PY n

k |Xn=xn . Then, every (`,M, ε)-VLSF code must satisfy

` ≥ min
PU∈P(U),ε

(u)
k ∈[0,1]:

EU

[
ε
(U)
k

]
≤ε+η

EU

[ ∞∑
t=0

(
1− Lt(ε(U)

1 , · · · , ε(U)
K )

)]
.

(19)

For the case when {Wk} are identical and symmetric,3 we
have the following particularization of Theorem 2.

Corollary 3: For arbitrary M ∈ N, t ∈ Z+, η > 0, and an
arbitrary sequence x ∈ X∞, let

L̄t = P
[

max
0≤n≤t

iP∗,W1
(xn;Y n1 ) ≥ logM + log η

]
(20)

where Y nk ∼ PY n
k |Xn=xn . When W1 = · · · = WK and W1 is

symmetric, every (`,M, ε)-VLSF code must satisfy

` ≥ min
P (u),ε(u)∈[0,1]:

EU [ε(U)]≤ε+η

EU

[ ∞∑
t=0

(
1−min

{
1, L̄t + ε(U)

}K)]
.

(21)

C. Asymptotic Expansion

Analyzing (14) and (19) in the limit ` → ∞, we obtain the
following asymptotic characterization of M∗sf(`, ε).

Theorem 4: Let V , (
∏
k Vk)1/K and %k ,

√
Vk/V and

assume, without loss of generality, that C1 ≥ · · · ≥ CK . For
every CM-DMBC satisfying

1/Ci + i/CK > i/C (22)

3A channel is symmetric if the rows and columns of the stochastic channel
matrix are permutations of each other [12, p. 189].



for i ∈ {1, · · · ,K − 1}, and for every ε ∈ (0, 1), we have4

C`

1− ε −
√

V `

1− εΞa + o(
√
`) ≤ logM∗sf(`, ε)

≤ C`

1− ε −
√

V `

1− εΞc + o(
√
`). (23)

Here,

Ξa , min
v∈R|X|0

E
[

max
k
∇Ik(v) + %kZk

]
(24)

with Zk
i.i.d.∼ N (0, 1) and

Ξc , E
[

max
k

Hk

]
(25)

with the RVs {Hk} being independent and with cumulative
distribution functions

FHk
(w) , Φ

(
w +∇Ik(v̂(w))

%k

)
. (26)

The function v̂(·) is defined as follows:5

v̂(w) , arg max
v∈R|X|0

∏
k

Φ

(
w +∇Ik(v)

%k

)
. (27)

Remark 5: The condition (22) is needed only for the converse
bound in (23).

Remark 6: When K = 2, the condition (22) reduces to
1/C1 + 1/C2 > 1/C. Note that for all CM-DMBC, we have
1/C1 + 1/C2 ≥ 1/C. Indeed, suppose that 1/C1 + 1/C2 <
1/C. Then one can achieve a rate larger than C:

max
α∈[0,1]

min{αC1, (1− α)C2} = 1/(1/C1 + 1/C2) > C. (28)

Theorem 4 does not hold for the special case 1/C1 + 1/C2 =
1/C. In this case, since time-sharing is capacity achieving, one
can sequentially transmit to the two users and achieve zero
dispersion.

Remark 7: One can verify that Ξa ≥ Ξc > 0. See [9] for
details.

There are cases where Ξa = Ξc, and hence (23) provides
a complete second-order characterization of logM∗sf(`, ε). This
happens when 0|X | maximizes (27). This occurs for example
when P ∗ simultanously maximizes Ik(P ) for all k ∈ K. In
the following corollary, we provide necessary and sufficient
conditions for Theorem 4 to yield an asymptotic expansion that
is tight up to the second order.

Corollary 5: We have that Ξa = Ξc and, hence,

logM∗sf(`, ε) =
C`

1− ε −
√

V `

1− εE
[

max
k

Zk

]
− o(
√
`) (29)

if and only if the following holds
1) The capacity-achieving input distribution P ∗ simul-

tanously maximizes Ik(P ) for all k ∈ K, or

4The subscripts “a” and “c” in Ξa and Ξc stand for achievability and converse,
respectively.

5If the maximizer in (27) is not unique, v̂(w) is chosen arbitrarily from the
set of maximizers.

2) V1 = · · · = VK and
∑
k∇Ik(e|X |(i)) = 0 for

i ∈ {1, · · · , |X |}, Here, e|X |(i) stands for the |X |-
dimensional vector whose ith entry is equal to one and the
remaining entries are equal to zero.

For broadcast channels that do not satisfy the conditions of
Corollary 5, we can tighten the left-hand side of (23) by using
an input distribution that is not stationary memoryless.

Theorem 6: Let V , (
∏
k Vk)1/K and %k ,

√
Vk/V . Fix a

differentiable function v̄ : R 7→ R|X |0 such that P ∗+Cv̄′(w) ∈
P(X ) for all w ∈ R. Additionally, define

Ek(s) , C − Ik(P ∗ + Cv̄′(s)) +∇Ik(Cv̄′(s)) (30)

and assume that
∫∞
−∞Ek(s)ds < ∞ and that |E′k(s)| < ∞.

Then, for every CM-DMBC, we have

logM∗sf(`, ε) ≥
C`

1− ε −
√

V `

1− ε Ξ̄a − o(
√
`). (31)

Here, Ξ̄a , E
[
maxk H̄k

]
, where the independent RVs {H̄k}

are defined by the cumulative distribution functions

FH̄k
(w) , Φ

(
1

%k

(
w +∇Ik(v̄(w))−

∫ w

−∞

Ek(s)

C2
ds

))
. (32)

If one sets v̄(·) in Theorem 6 equal to (27), the gap between
Ξc and Ξ̄a is only due to the “error” term Ek(s). Interestingly,
there are channels for which Ek(s) = 0 and, hence, a complete
second-order characterization of logM∗sf(`, ε) is available. The
next corollary describes a class of channels for which this is the
case.

Corollary 7: Let X1, · · · ,XL be disjoint sets and let X =
∪Ll=1Xl. Moreover, for k ∈ K and l ∈ {1, · · · , L}, let Wk,l

be a channel from Xl to Yk with capacity-achieving input dis-
tribution P ∗l (independent of k), capacity-achieving output dis-
tribution P ∗Yk

(independent of l), and capacity Ck,l. Define for
all x ∈ X and y ∈ Yk the channel Wk(y|x) = Wk,l(x)(y|x),
where the function l : X 7→ {1, · · · , L} is such that x ∈ Xl(x).
Assume that C1 ≥ · · · ≥ CK and that (22) is satisfied. Define

β(w) , arg max
β∈RL

0

∏
k

Φ

(
1

%k

(
w +

L∑
l=1

βlCk,l

))
(33)

and assume that P ∗(x) + CP ∗l(x)(x)β′l(x)(w) ∈ [0, 1] for every
w ∈ R. Then, for every ε ∈ (0, 1),

logM∗sf(`, ε) =
C`

1− ε −
√

V `

1− εΞc + o(
√
`). (34)

The following lemma shows that there exist nontrivial channels
that satisfy the conditions of Corollary 7.

Lemma 8: Let L = 2, K = 2, and ∆1 , C11 − C12 > 0 >
C21 − C22 , ∆2. Let also

D , −∆1%
2
2 + ∆2%

2
1

∆2
1%

2
2 + ∆2

2%
2
1

. (35)

Then the condition P ∗(x) + CP ∗l(x)(x)β′l(x)(w) ∈ [0, 1] holds
for all x ∈ X and w ∈ R provided that

P ∗(x) + (−1)l(x)+1CP ∗l(x)(x)D ∈ [0, 1] (36)

for all x ∈ X and (∆1/%1 + ∆2/%2)(%2 − %1) ≥ 0.
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0.11. The normal approximation corresponds to the asymptotic expansion in
(29) with the o(·) term neglected. The blue curve labeled “achievability (single)”
corresponds to the single-user achievability bound in [2, Th. 3] evaluated for a
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Fig. 2. Asymmetric channels {Wk} that obey the conditions in Corollary 7 for
the channel parameters q11 = 0.01, q12 = 0.40, q21 = 0.15, and q22 = 0.10.
The channels consist of two BSCs with common outputs.

IV. NUMERICAL EXAMPLES

A. Binary Symmetric Channels

LetW1 andW2 be two BSCs, each with crossover probability.
Note that W1 and W2 are symmetric [12, p. 185] and have the
same capacity-achieving input distribution. In this section, we
evaluate the bounds presented in Theorem 1, Corollary 3, and
Corollary 5. The bounds are depicted in Fig. 1 for the case
q = 0.11 and ε = 10−3. The capacity-achieving input distri-
bution P ∗ of the individual BSCs is Bern(1/2), their capacity
is given by 1 − hb(q), where hb(·) denotes the binary entropy
function, and the directional derivatives ∇Ik(·) of the mutual
information atP ∗ are zero. Furthermore, forY nk ∼ PY n

k |Xn=xn ,
the information densities iP∗,Wk

(xn;Y nk ) satisfy

iP∗,Wk
(xn;Y nk ) ∼ n log(2− 2q) + log

q

1− q
n∑
j=1

Zk,j (37)

where Zk,j
i.i.d.∼ Bern(q). We observe that the distribution of

the information density in (37) is independent of xn. For the
converse bound in Corollary 3, the value of η > 0 is cho-
sen by numerical optimization. For the achievability bound in
Theorem 1, we fix PX∞ = (P ∗)∞ and note that τ1, · · · , τK
are independent RVs. This allows us to compute E[maxk τk]
directly from the cumulative distribution function Fτk(·) of τk.
To compute the upper bound (13), we use the change of measure
technique in [2, p. 4911].

We observe that, in the two-user case, the speed of con-
vergence to the asymptotic limit is indeed slower than for the
single-user case (the curve marked “achievability (single)” in
Fig. 1, which is the point-to-point achievability bound reported
in [2, Th. 3]). In particular, for ` ≥ 1000 and K = 2, our
converse bound is strictly below the single-user achievability
bound.

B. Asymmetric Channels

Next, we illustrate through an example that Theorem 6 in-
deed improves over Theorem 4. We consider W1 and W2 with
q11 = 0.01, q12 = 0.40, q21 = 0.15, and q22 = 0.10 depicted
in Fig. 2. Both consist of two BSCs with common outputs. If
we let X1 = {1, 2}, X2 = {3, 4}, and Wkl be BSCs with
crossover probability qkl for k ∈ {1, 2} and l ∈ {1, 2}, then
we can invoke Corollary 7. One can verify that the condition
P ∗(x) + CP ∗l(x)(x)β′l(x)(w) ∈ [0, 1] for x ∈ X and w ∈ R in
Corollary 7 is satisfied using Lemma 8. Therefore, the asymp-
totic expansion in (34) holds, i.e., the converse bound in Theo-
rem 4 is tight up to second order. The same is not true for (19).
Indeed, by computing (24) and (25), we find that Ξc = 0.2630
and Ξa = 0.3175.
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