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Co-expressed genes often share similar functions, and gene co-expression networks

have been widely used in studying the functionality of gene modules. Previous

analysis indicated that genes are more likely to be co-expressed if they are either

regulated by the same transcription factors, forming protein complexes or sharing similar

topological properties in protein-protein interaction networks. Here, we reconstructed

transcriptional regulatory and protein-protein networks for Saccharomyces cerevisiae

using well-established databases, and we evaluated their co-expression activities using

publically available gene expression data. Based on our network-dependent analysis,

we found that genes that were co-regulated in the transcription regulatory networks

and shared similar neighbors in the protein-protein networks were more likely to be

co-expressed. Moreover, their biological functions were closely related.

Keywords: Saccharomyces cerevisiae, co-expression, co-regulation, transcriptional regulatory network, protein-

protein interaction network

INTRODUCTION

Recent advances involving high-throughput measurements have facilitated the accumulation of
extensive gene expression profile sets, and the gene expression patterns evident across multiple
conditions have allowed a systems-level understanding of biology. Specifically, gene co-expression
has been proposed as a useful methodology for uncovering gene functions (Stuart et al., 2003), and
this approach prevails in many areas of systems biology (Carter et al., 2004; Aoki et al., 2007; Miller
et al., 2008, 2010; Presson et al., 2008; Xulvi-Brunet and Li, 2010; Liao et al., 2011; MacDonald et al.,
2015; Peake et al., 2015).

If the mRNA expression levels of two genes follow a similar pattern through multiple gene
expression measurements, they are treated as co-expressed genes. Gene co-expression indicates
that the transcription rates of these genes are modulated by similar molecules, and this underlying
modularity has allowed us to uncover the functions of co-expressed genes. Transcription factors
(TFs) bind to the promoters of target genes and this kind of binding modulates their expression
at the mRNA level. Under different physiological conditions, two or more TFs can bind to the
same target gene (Balaji et al., 2006), and this phenomenon is known as combinatorial regulation.
Through combinatorial binding, a small set of TFs can dynamically modulate gene expression in
response to diverse physiological conditions.

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://dx.doi.org/10.3389/fphys.2016.00160
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2016.00160&domain=pdf&date_stamp=2016-05-02
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:adilm@scilifelab.se
mailto:qhua@ecust.edu.cn
http://dx.doi.org/10.3389/fphys.2016.00160
http://journal.frontiersin.org/article/10.3389/fphys.2016.00160/abstract
http://loop.frontiersin.org/people/226810/overview
http://loop.frontiersin.org/people/319683/overview
http://loop.frontiersin.org/people/204932/overview
http://loop.frontiersin.org/people/262995/overview


Zhang et al. Combinatory Effects of Biological Networks

In the past decade, a large amount of high-throughput
gene expression data has been made publically available, and
this information has facilitated the development of global
co-expression analyses. Consequently, various methods and
algorithms have been developed for generating gene co-
expression networks (Bar-Joseph et al., 2003; Tong et al., 2004;
Zhang and Horvath, 2005; Luo et al., 2007; Langfelder and
Horvath, 2008; Ruan et al., 2010; Savage et al., 2010; Roy et al.,
2014).

Although co-expression analysis had been widely
used, knowledge of the biological factors and topological
characteristics that contribute to high gene co-expression
remains limited. Currently, the knowledge of regulatory
networks is increasing (Teixeira et al., 2006, 2014; Monteiro
et al., 2008; Abdulrehman et al., 2011; Hughes and de Boer,
2013), but the combinatorial regulation by TFs makes it difficult
to understand the contributing factors in co-expression. Through
hundreds of expression measurements, a genome-scale study
demonstrated that genes bound by similar TFs are highly
co-expressed (Allocco et al., 2004). In addition, the expression
profiles of genes coding for interacting protein pairs are more
highly correlated than random pairs (Ge et al., 2001), but
later genome-scale studies indicated that this correlation was
significantly reduced and suggested that only those ones forming
the same protein complex seem to be co-expressed (Bhardwaj
and Lu, 2005; Xulvi-Brunet and Li, 2010). Furthermore, the
topological properties of the protein coding genes in protein-
protein interaction (PPI) networks may also contribute to the
co-expression of genes (Han et al., 2004).

Although efforts have been made to explore the relationship
between co-expression and biological networks, to the best of our
knowledge, no study had exclusively analyzed the joint effects
of different biological networks [e.g., transcriptional regulatory
(TR) and protein–protein interactions (PPI) networks] on gene
co-expression. In this study, we reconstructed TR and PPI
networks based on well-established databases for biological
interactions in Saccharomyces cerevisiae. We investigated the
relationships between gene co-expression in each network as well
as in multiple biological networks. Moreover, we constructed co-
regulated biological networks and comprehensively studied their
effects on gene co-expression.

MATERIALS AND METHODS

Microarray Data
Gene expression data for S. cerevisiae were retrieved from the
Gene Expression Omnibus (GEO) database. All microarray data
for S. cerevisiae using GPL2529 as platform and published before
January 22th, 2014 in GEO database were selected. And to
eliminate replicate size-based biases, only one replicate (replicate
1) were included in the analysis when multiple replicates are
available. As a result, 1057 microarray datasets were selected.
Themicroarray data were normalized with the RobustMultiarray
Average (RMA; Bolstad et al., 2003; Irizarry et al., 2003a,b) and
treated with the affy R package (Gautier et al., 2004). Open
reading frame (ORF) ids were converted to gene ids. If a gene
wasmapped withmore than oneORF, themean value was used in

our analysis. Consequently, expression profiles for 5657 genes in
1057 different experimental conditions were obtained (Table S1).
Finally, the pair-wise gene co-expression data were obtained for
5657 genes by calculating the Pearson correlation coefficients
using MATLAB R2015a.

Reconstruction of Regulatory Networks
TR interactions for S. cerevisiae were retrieved from the
YEASTRACT database (Teixeira et al., 2006, 2014; Monteiro
et al., 2008; Abdulrehman et al., 2011). Two evidence types were
presented in YEASTRACT: regulation with DNA binding
evidence and regulation with expression evidence (i.e.,
expression evidence from TF knock-out or over-expression
experiments). In this study, we treated these two regulation types
independently. Consequently, we reconstructed two networks:
a regulatory network with only the DNA binding evidence
(regardless of the expression evidence), hereafter referred to as
Bnet, and a regulatory network with only expression evidence
(regardless of the binding evidence), hereafter referred to as
Enet (Figure S1). Regulation data pertaining to genes that are
not included in the microarray data were eliminated from the
reconstructed networks in this study.

Reconstruction of a Protein-Protein
Interaction Network
BioGRID is a database that includes comprehensive information
about PPIs from diverse organisms (Stark et al., 2006; Chatr-
aryamontri et al., 2013, 2015). All available PPI information for
S. cerevisiae was retrieved from BioGRID, and a PPI network
was reconstructed, hereafter referred to as Pnet. Similarly,
interactions with genes that are not included in the microarray
data were eliminated from the reconstructed Pnet.

Construction of “Co-Regulated” Networks
In this study, our use of the term “co-regulation” was based on
the “regulator” similarities of gene pairs in biological networks.
Since there’s no conventional definition for “regulators” in PPI
network, we defined them as the first upstream neighbor proteins
that were directly connected by PPIs as starting node of each
interactions so they are comparable with regulators in TR
networks. Here, “co-regulation” was quantified by calculating the
similarity of the “regulators” in each network. We constructed
a binary association matrix (i.e., adjacency matrix) for Bnet,
Enet and Pnet, and quantified their gene-gene co-regulation
similarities by calculating their Pearson correlation coefficients
(r) [Spearman correlation was also tested and the results were
almost identical (Figure S4)]. r values were calculated for each
target gene pair based on their TF similarities in Bnet and Enet.
In Pnet, the first upstream neighbors were used to examine
similarities instead of TFs. The top 1 to 5h of co-regulated
target-target interactions for each network were selected in
Bnet, Enet and Pnet, and they were defined as co-regulation
networks, namely BCRnet, ECRnet, and PCRnet, respectively.
Self-interactions were excluded from the analysis during the co-
regulated gene pair selection since their correlation should be one
invariantly. The process of constructing co-regulation networks
was exhibited for a toy network case in Figure 1.
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FIGURE 1 | Toy network case showing how co-regulated networks could be constructed based on TR and PPI networks. In “binary TF to target matrix,”

the ijth element is 1 if the ith TF is regulating the jth target gene. In “adjacency matrixs,” the value of ijth element represents the value of Pearson (or Spearman)

correlation between the ith and jth column vectors in the corresponding “binary TF to target matrixs.” The green cells in the “adjacency matrixs” represent the

candidate values for the selection of last step, and the diagonal cells are excluded since they are always one. Note that the correlation between two genes is

undirected, only half of the remaining “adjacency matrixs” were selected as candidates. “Top 1” in the last step stands for the cutoff and means that only top

correlated co-regulated gene pairs were selected in the final co-regulated network.

Calculation of Average Co-Expression r

and Sensitivity Analysis
Throughout this study, average co-expression r (ACEr) was
used to quantify the network co-expression. For the calculation
of ACEr, all self-interactions were excluded to eliminate bias
because co-expression and co-regulation measurements from
self-interactions were invariably scored as one (or 100%). All
ACEr values presented in this study were calculated based on
the data from all 1057 microarrays. For sensitivity analysis, the
ACEr values were reevaluated by calculating the them for 100
randomly selected conditions from the 1057 microarray data
1000 times.

RESULTS

Reconstruction of Biological Networks and
Their Co-Expression
Experiments examining the physical binding properties of
TFs and those conducting TF-perturbed expression profiling
have different characteristics, and combining those experiments
together to infer regulatory interactions has been proposed (Blais
and Dynlacht, 2005; Yang et al., 2010). Notably, “expression
evidence” in the YEASTRACT database was collected from
experiments where the TF was perturbed (e.g., knocked out)
after which its targets were identified by scanning genes
with significantly changed expression properties. Thus, we
favored treating the regulatory interaction information from
YEASTRACT separately.

We reconstructed three biological association networks with
different biological backgrounds, namely Bnet, Enet, and Pnet,
for S. cerevisiae based on the YEASTRACT and BioGRID
databases (Table S2). Bnet was established from TF-binding
experiments, such as chromatin immunoprecipitation (ChIP)-
chip, whereas Enet was established using expression evidence.
Pnet was formulated from PPIs. There were 5345, 5492, and 5392
genes in Bnet, Enet, and Pnet, respectively, and the number of
interactions involved in Bnet, Enet, and Pnet were 35399, 144466,
and 245078, respectively. The number of TFs in Bnet and Enet
are 169 and 292, respectively. All three networks encompassed
the majority of the genes (∼95%) included in the microarray
data, and their average connectivities were of the samemagnitude
(a∼7-fold difference between Bnet and Pnet), indicating that the
network sizes were comparable to each other.

We evaluated the overlaps between the interactions within
these three networks and found that the intersections between
these three networks were relatively few (Figure 2A). This result
suggested that these three networks with different biological
backgrounds have their own characteristics. Interestingly, the
overlap between Bnet and Enet was relatively small (21.5%
for Bnet and 5.3% for Enet) despite the fact that they were
both annotated as TR networks and had both originated from
the same database. Even if the overlapped TFs and targets
were considered, the overlap between them would remain small
(Figure S2). This finding implied that the physical binding of
TFs to target genes (Bnet) and the summarized effects of specific
TF perturbation to expression changes of target genes (Enet)
implicated different regulatory events as we proposed. Based on
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FIGURE 2 | Overlapped numbers of interactions between networks. (A) Association networks and (B) co-regulated networks.

the different biological backgrounds of Bnet/Enet and Pnet and
their small overlaps (less than 2%), we assumed that the three
networks were different from each other and embedded with
different biological information throughout this study.

To investigate whether the gene pairs involved in the various
biological interactions (regulatory interaction or PPI) were more
likely to be co-expressed, we calculated the ACEr values of all
gene pairs for the three reconstructed networks separately and
compared them to the reference ACEr (Figure 3). The ACEr
values for Bnet, Enet, and Pnet were calculated as 0.0841, 0.0568,
and 0.1392, respectively. Compared to the reference ACEr, which
was 0.0450, the ACEr increases were statistically significant (P
< 0.001), but their increases were small. The ACEr was higher
for Pnet compared with the other two networks, consistent with
previous results demonstrating that genes encoding proteins
with certain PPI types were more likely to be co-expressed
(Jansen et al., 2002).Moreover, whenwe evaluated the overlapped
associations, the ACEr values were further increased compared
with the associations from separated networks (except for the
intersection between Enet and Pnet whose ACEr values were
slightly decreased compared to Pnet). However, these increased
ACEr values were also statistically significant (P< 0.001) but only
slightly increased. These results suggested that although relevant,
the gene involvement in both the TR and PPI networks did not
necessarily contribute to high co-expression.

Construction of Co-Regulated Networks
and Their Co-Expression
Because the involvement of various biological interactions did
not contribute to high gene co-expression, we hypothesized that
high co-expression may result from the topological similarities
of genes in biological networks. We assumed that if two
genes shared similar “regulators” (both in the TR and PPI
networks), they tended to be highly co-expressed. To test our
premise, we constructed three co-regulated networks (CRnets),
including BCRnet, ECRnet, and PCRnet, by selecting the top
5h of co-regulated gene pairs from Bnet, Enet, and Pnet,
respectively (Table S3). The resulting BCRnet, ECRnet, and

PCRnet contained 4520, 4673, and 4541 genes and included
71355, 75388, and 72502 gene-gene interactions, respectively.
The overview of the intersections among BCRnet, ECRnet, and
PCRnet is presented in Figure 2B. Notably, we generated three
CRnets using identical cutoffs, and the resulting CRnets had
similar network sizes and connectivities. Despite the similar sizes,
the overlaps between the CRnets were small, indicating that the
co-regulation networks from Bnet, Enet, and Pnet were different
and independent from each other.

Next, we calculated the ACEr for each CRnet and evaluated
the ACEr of the overlapped interactions among the three
networks (Figure 4). Interestingly, we found that the CRnets
were generally more likely to be co-expressed compared with
their original networks (except for BCRnet, which was slightly
less co-expressed). Additionally, significant ACEr increases
were noted when the overlapped gene pairs were examined.
Intriguingly, when the intersection of all three CRnets was
selected, the gene pair ACEr increased to 0.7012, which strongly
supported our hypothesis. Furthermore, by changing the cutoffs
for CRnet generation, we found that as the cutoff became
stricter, the ACEr value increased accordingly. And when the
strictest cutoff was selected, the r values of the only two gene
pairs screened were 0.9012 and 0.8967 (Figure 5). To test
the robustness of the positive association between these high
correlations and topological similarities, we also performed a
sensitivity analysis (see Methods section) for the highly co-
expressed gene pairs observed at the intersection of all three
CRnets. The results indicated that the calculated ACErs for the
overlapped gene pairs of all three CRnets were highly conserved
(Figures S3, S4). These results highlighted the consistency of
the observed high correlation between co-expression and co-
regulation patterns and demonstrated the collaborative outcomes
among these biological networks in terms of similarity.

Gene Ontology (GO) Term Enrichment
Analysis for the Co-Regulated Gene Pairs
To elucidate the underlying biological impact of these co-
regulated gene pairs with high similarities, we checked the
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FIGURE 3 | Boxplot for Pearson correlations of co-expression for all gene pairs involved in reference and association networks. B&Enet, B&Pnet, and

E&Pnet represent the overlaps between Bnet and Enet, Bnet and Pnet, and Enet and Pnet, respectively. B&E&Pnet represents the overlap among Bnet, Enet, and

Pnet.

41 gene pairs shared in all three CRnets (top 5h Table S4).
We first examined whether these 41 gene pairs were involved
in known biological interactions from Bnet, Enet, and Pnet.
Consequently, only 9 of the 41 gene pairs were presented
in the interactions of Pnet and none were involved in
biological interactions from Bnet or Enet. This finding indicated
that we identified 32 genetic associations that were highly
co-expressed without previous knowledge of their biological
interactions.

Next, we performed a GO enrichment analysis (P < 0.01)
using the Saccharomyces genome database (Cherry et al., 2012)
to identify biological processes that were related to co-regulated
gene pairs. We found that most gene pairs were either involved
in the same process, sharing the same function, or localized
to the same cellular component (Table S5). Additionally, these
identified co-regulated gene pairs were highly enrichedwithin the
GO terms (Figure 6). Interestingly, many of the enriched terms,
such as the structural constituents of ribosome-, methionine-
adenosyltransferase- and nucleic acid-binding, were related to
the regulation of transcription and translation. This finding
indicated that the transcriptional and translational processes
in yeast were strongly and comprehensively co-regulated.
Recent studies have reported that the translational process
is crucial to cell physiology, and the ribosome quantity is
a key factor that affects proteome allocation (Basan et al.,
2015; Hui et al., 2015). Thus, our result is consistent with
these studies because it is axiomatic that vital biological

processes are highly co-regulated and co-expressed in the
evolutionary context. In conclusion, we demonstrated that the
highly co-regulated gene pairs identified here are consistently
co-expressed, and they share important biologically significant
functions.

DISCUSSION

In this study, we systematically evaluated the individual
and combinatory effects of different biological networks
on gene co-expression. A comprehensive and unbiased
analysis was conducted based on the TR and PPI networks
reconstructed here. We demonstrated that co-regulation in
biological networks is more relevant to gene co-expression
than biological associations. Additionally, we proposed a
new method to evaluate the combinatory effects of different
co-regulation networks on gene co-expression and found
that two genes are highly co-expressed when they are co-
regulated in both the TR and PPI networks. Moreover, these
co-regulated genes were functionally relevant and involved in
vital biological processes. Small-scale studies have demonstrated
that co-regulation of gene pairs in the TR network is a key
factor contributing to high gene co-expression (Allocco
et al., 2004), but a large-scale investigation of co-regulation
effects based on topologies provided by regulatory and PPI
networks was still lacking. Therefore, our study is an important
starting point to study the PPI effect on co-expression and
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FIGURE 4 | Boxplot for Pearson correlations of co-expression for all gene pairs involved in reference and co-regulated networks. B&ECRnet,

B&PCRnet, and E&PCRnet represent the overlaps between BCRnet and ECRnet, BCRnet and PCRnet, and ECRnet and PCRnet, respectively. B&E&PCRnet

represents the overlap among BCRnet, ECRnet and PCRnet.

to explore collaborative events between the TR and PPI
networks.

It’s worth mentioning that the previous study reported a great
correlation among genes co-regulated in TR networks (greater
than 0.84 when they share more than 50% of their regulators)
which is much higher than in our study. However, in our analysis,
we also found the co-regulation in TR network is relevant to co-
expression (significant but not dramatic), which is actually agreed
with the main conclusion of the previous study. And we noted
that the previous study only evaluated the co-regulation effect of
2284 genes which are around 40% of our gene set. In addition,
they used an outdated version of the TR network, indicating
smaller and biased datasets. These would together lead to a much
higher correlation probably because of bias. Therefore, our study
appeared to be more systematic and robust compared to the
previous study.

Our analysis strongly suggests that combinatory effects do
exist among biological networks with respect to co-expression,
and the genes that are simultaneously co-regulated among
the biological networks play important roles in regulating the
mRNA expression levels of genes. Interestingly, we found that
topological similarities in the PPI network, rather than the
interactions themselves, played important roles in modulating
gene expression levels. One plausible explanation may be that
proteins interacting with the same proteins are functionally
related and share similar signaling pathways. Previous genetic

epistatic studies have revealed that dysregulated expressions of
interacting protein pairs of protein complexes and pathways
showed detrimental effects to cell survivals and thus their coding
genes might be more likely co-expressed for better genetic
fitness (Kelley and Ideker, 2005; Collins et al., 2007). Another
possible explanation is that similar PPI interactions of genes may
result in similar folding process and/or other post-transcriptional
modification of the protein coding genes. And these modification
processes may modulate the level of signaling molecules that
would normally influence gene regulation.

In our study, we distinguished the regulatory networks of
different biological backgrounds separately because we assumed
that regulatory interactions inferred from physical binding (i.e.,
regulations with binding evidence) and genetic perturbation
experiments (i.e., regulations with expression evidence) revealed
different regulatory events. This assumption is supported by a
recent review which discussed that the transcription of genes
depends on the combinatory effect of all its binding TFs, and
many of them have only a minor effect. While expression
evidence is more likely to be the major factor that regulating
transcription of genes (Spivakov, 2014). Thus, separating these
different networks would help us to make the embedded
regulatory messages more apparent. Additionally, when we
used merged regulatory networks and tested the shared gene
pairs between the co-regulated network of the merged one and
the PCRnet, we found that the shared gene pair correlations
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FIGURE 5 | Boxplot for Pearson correlations of co-expression for all gene pairs involved in reference and shared gene pairs among all three CRnets

with different cutoffs. B&E&PCRnet represent the overlapped gene pairs among BCRnet, ECRnet, and PCRnet.

FIGURE 6 | Functional GO terms enriched among the top correlated gene pairs. 30 of 41 gene pairs that were enriched in the indicated functional GO terms

are displayed. Genes are presented as nodes, and the co-regulated relationships are presented as edges.
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were substantially decreased (∼0.6 when the top 1h was
selected).

Although these results are informative, several drawbacks to
this study should be noted. First, binary networks were used,
where the strength of the interactions, albeit important, was
not considered. Additionally, there was no negative data for
interactions (gene pairs with evidence of no interaction with
each other) in publically available databases, impeding a more
robust evaluation of co-regulation effects. Therefore, a systematic
integration of this information in future studies would improve
the correlation between co-expression and co-regulation and
would facilitate the interpretation of mechanistic models of gene
co-expression.
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