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Abstract 
Online analysis of data streams (with different degrees of parallelism) is becoming progressively more 

important as the amount of sensory data is growing. Aggregate functions represent one common 

example thereof. The current parallel approaches for online aggregation of data streams share one 

characteristic: one or several threads serve as central coordinators by distributing the work as well as 

the incoming data to other threads dedicated to its processing. If an approach uses centralized 

coordination units, its scalability is bounded to the throughput with which such coordination units can 

distribute work and data to processing threads. This thesis deals with the development of online 

analysis approaches for streaming aggregation without centralized coordination units. The 

coordination tasks as well as the remaining work are distributed among all participating threads. In 

this thesis we first introduce basics of online analysis and streaming aggregation, and then we provide 

several options for disjoint parallelizations of sliding-window based streaming aggregation. We study 

the developed approaches' runtime properties in order to maximize their throughput and minimize 

their latency. We also evaluate their throughput and latency in practice and discuss related work that 

could improve certain aspects of the approaches developed within this thesis. 
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1 Introduction 

1.1 Background 
Data streaming analysis is becoming more and more important as the amount of sensory data is 

growing. Depending on the context of an application, it is often not acceptable to wait until all data 

that shall be processed are available and completely saved in the memory of the processing system. In 

some cases, it might even be impossible to store all data, since the data streams are unbounded or 

have an unknown size, for example in traffic monitoring or financial market applications. While some 

algorithms need complete knowledge about a given problem (for example all edges of a graph to 

calculate the shortest path between two arbitrary nodes), streams of data are often only temporarily 

relevant for the result of the executed algorithm, so it is possible to continuously provide analysis 

output for a portion of the most recent data (rather than all the data). Thus the processing of 

operations on large amounts of incoming data in real time is becoming a more relevant alternative to 

the conventional approach with all necessary data stored in ordinary databases. 

The rate at which data from a data stream is reaching the system processing it is often unknown and 

may vary arbitrarily. If the receiving processing system is not able to handle all the incoming data at 

the current rate, the sender has to be informed to reduce the rate data is being sent or the processing 

system has to discard incoming data tuples.  

Therefore, parallelism in both variants – using multiple processing cores on one machine and using 

multiple machines at once – is very important to guarantee that the processing system is able to handle 

the amount of incoming data in time and hence to ensure that it will never have to store input data 

outside of the main memory for later processing. In the context of e.g. continuous monitoring “in time” 

means that the result at any point of time is incorporating all relevant input data. Thus the processing 

system should be able to compute incoming data at least as fast as they are arriving. 

General information about the basics of data stream processing, the requirements to use it efficiently 

and examples for environments which fit the requirements and others that do not, can be found in 

this article [1]. 

1.2 Overview of the thesis’ aims 
One type of analysis that can be processed on streams are aggregate operations (described in more 

detail in Section 2.4). Aggregate operations are performed on finite portions of data of data streams, 

hence on a subset of the stream’s input data. The current relevant subset for an aggregate operation 

is defined by a “sliding window”. As soon as tuples of the input stream leave the sliding window, they 

can be dropped and no longer influence the result.  

This master’s thesis will deal with sliding window-based aggregate operations – so for example the 

calculation of the median, mean value or sum of a limited amount of input tuples – and an efficient 

parallelization of them. 

So let us assume that we have an algorithm that executes aggregate operations on a data stream 

concurrently on several threads to be able to compute high rates of incoming tuples. We assume that 

it has a central coordinator, so one processing unit that is responsible for coordinating the work of all 

the other processing units. It passes tasks and forwards parts of the incoming data stream to the 

different processing units.  

A parallel program with such a central coordinator will have limited parallelization potential. As the 

rate of input data increases, as well as the number of processing units that are needed to meet the 



10 
 

ascending processing speed requirements, the work for the central coordinator will increase too. 

Beyond a certain limit, the coordinator will be too slow to handle all the coordination tasks in time and 

hence it will become the bottleneck of the system.  

So what we need to avoid this limitation – and this is the thesis’ goal – is a fully disjoint parallel 

algorithm, an approach working without a processing unit acting as central coordinator.  

It shall scale with an arbitrary number of participating processing units. 

1.3 Thesis organization 
We shortly want to want to present the different parts of this thesis. 

The thesis’ goals are defined in more detail in Chapter 3 after the preliminaries chapter (Chapter 2), 

which explains basic knowledge that is indispensable before explaining details. 

Chapter 4 shortly presents a parallel algorithm without a central coordinator which executes the join 

operator on data streams. Our first approach for streaming aggregation is based on this algorithm. 

Within the Chapters 5-9 we develop five different parallel approaches to process aggregate operations 

on data streams. 

Chapter 10 deals with the chosen platform and programming language for the implementations and 

implementation details such as classes, class interdependencies and chosen data structures. 

In Chapter 11 the speed and latency of the different implementations are benchmarked and the results 

are presented. 

Chapter 12 introduces related work; mainly articles and papers that deal with alternative approaches 

for streaming aggregation or data structures that could be combined with the approaches of this thesis 

to enhance certain aspects of it. 

Finally, in Chapter 13 a conclusion is drawn. Here, we present a summary of the results along with 

insights of this thesis. This is followed by a discussion regarding the extent to which the goals of the 

thesis were met.  
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2 Preliminaries 
This chapter explains basic terms and knowledge that are necessary to understand the thesis’ exact 

goals, which are presented in Chapter 3. 

2.1 Data streams 
A data stream is defined as an unbounded, continuous flow of data packets, called tuples (see Figure 

1). The tuples’ schema is given and identical for each tuple of one data stream.  

The data stream is received by a processing system that works the incoming data in some way. 

Once a tuple reaches the processing system, the processing system updates the state of the 

computation. The processing system does not batch tuples, so it does not wait for all tuples (or any 

greater amount of tuples) to arrive before starting to process them. 

The rate at which incoming tuples are reaching our processing system is often unknown; and may vary 

arbitrarily. Hence when working on data streams it is important to take care of possible congestions. 

If the receiving processing system is not able to handle all the incoming data at the current rate, the 

sender has to be informed to decrease the rate at which tuples are being sent or the processing system 

has to discard incoming tuples. 

2.2 Tuples 
A tuple is an object transporting 3 types of information: a timestamp, a key and a value (see Figure 1). 

 

Figure 1: An input data stream and its tuples 

Timestamp 

A timestamp is a number giving chronological information about a tuple, for instance 520ms, 1675ms, 

… in Figure 1. Tuples are delivered by a data stream with non-decreasing timestamps. So after the 

arrival of Tuple0, we know that the next arriving tuple will have a timestamp greater than or equal to 

520ms. 

This property might be violated in case so called out-of-order-tuples are possible. Error-prone 

communication systems might cause tuples to arrive in a different order at the processing system than 

their sending order. However, the focus within this thesis will be on data streams without the 

possibility of out of order tuples. 

Although it is possible that the timestamp of a tuple is dependent on the exact real point of time when 

this tuple has been created, this does not necessarily have to be the case. It gives information about 

the tuple order and is important to determine, how long this tuple will be relevant for the data stream 

operation. So Tuple1 does not have to arrive 1675𝑚𝑠 − 520𝑚𝑠 = 1155𝑚𝑠 after Tuple0. It can also 

arrive in the same millisecond or 10 years later. We can only be sure that it will not arrive before 

Tuple0. 
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The key (also referred to as group-by-value) can be used to group tuples before processing any 

operations on them. The grouping of tuples works like the well-known group-by clause, commonly 

used when working with databases. 

Finally, the value contains the tuple data itself on which we want to perform the aggregate operation. 

It may have an arbitrary structure. For example, it can consist only of a single integer or double, but it 

is also possible to store a set of complex objects within each tuple. 

Having a look on Input-Data-Stream0, we could interpret its tuples like that:  

520ms after starting our program the fridge sends information about its temperature, which is 7.13°C. 

1675ms after the start of our program the dishwasher sends information about its temperature, which 

is 13.42°C. 2320ms after the start of our program the dishwasher again sends information about its 

temperature, which decreased to 13.37°C and so on. 

2.3 Sliding windows 
This chapter explains what a window is, why we need windows and how they work. 

There are two types of windows commonly used when working with data streams, time-based and 

tuple-based ones. This thesis will mainly deal with time-based windows. If not explicitly specified 

differently, all further chapters deal with time-based windows and we will discuss them first. 

Time-based windows  

We want to do complex analyzes of the incoming data of a stream, in this thesis in the form of 

aggregations, but the data stream is unbounded. Since aggregation is not possible on unlimited sets of 

data, we have to limit the scope of it to a certain portion of the stream’s data.   

Such a portion is called window and contains all tuples within a certain timestamp range. In Figure 2 

Window0 contains all tuples with timestamps between 0ms and 1000ms. We call 0ms the time start 

and 1000ms the time limit of this window.  

In this thesis timestamp ranges are including the time start but excluding the time limit. So Window0 

contains all tuples with a timestamp of 0ms, 1ms, 2ms, … or 999ms. 

A window has two parameters (see Figure 2), size (also referred to as window size or WS) and advance 

(also referred to as window advance or WA).  

The window size defines the size of each window’s timestamp range.  

The window advance defines the distance of the timestamp range of one window to its neighbor 

window. 

In Figure 2 each window contains tuples within a range of 1000ms and each window’s timestamp range 

is shifted by 270ms to the right of its left neighbor.  

Since windows always have the same size and are sliding by the same amount of time units on each 

step, we also call them sliding windows. 

The timestamp ranges of two windows may overlap; i.e. one tuple can belong to several windows. In 

Figure 2, Window0’s timestamp range (0ms-1000ms) is overlapping with Window1’s timestamp range 

(270ms-1270ms). So Tuple0 of Figure 1 with timestamp 520ms would contribute (also referred to as 

belong) to both of them. 

As soon as a tuple with a timestamp greater than or equal to the time limit of a window w arrives, this 

window w expires. Since the timestamps of arriving tuples only increase or remain constant (but never 

decrease), we know that no further tuples belonging to window w will arrive. 
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Figure 2: Window size and window advance 

Let us assume that the tuples of Figure 1 are arriving at a computing system that wants to partition 

them into sliding windows according to Figure 2; i.e. the window size is 1000ms, the window advance 

is 270ms (see Figure 2) and the first incoming tuple has a timestamp of 520ms (see Figure 1).  

The first window, Window0, contains all tuples having a time stamp between 0ms and 1000ms, the 

second window, Window1, contains all tuples having a timestamp between 270ms and 1270ms, 

Window2 contains all tuples having a time stamp between 540ms and 1540ms and so on.  

So in Figure 2 Tuple0 belongs to Window0 and Window1, Tuple1 belongs to Window3, Window4 and 

Window5 (and also to the following Window6, which is not shown in this figure) and so on. 

Depending on the time interval between two consecutive tuples, some windows might be empty. In 

the sample execution shown in Figure 2, no tuple belongs to Window2; it is empty. 

The number of non-expired windows existing simultaneously is approximately 
𝑊𝑆

𝑊𝐴
. In the current 

example: 
𝑊𝑆

𝑊𝐴
=

1000𝑚𝑠

270𝑚𝑠
≈ 3.7. This means that the number of windows existing at any point of time 

will always be either 3 or 4 and that each tuple contributes to either 3 or 4 windows. 

Window time-slots  

If there is a window, to which no tuple contributes, we actually do not need this window, since it will 

not fulfil any function. In practice Window2 will never be created, since no tuple is contributing to it. 

To distinguish between windows that exist or will exist and windows that will not exist at any point of 

time, we introduce the term window time-slot. All possible window positions, no matter whether the 

corresponding window exists or not, are window time-slots. So each window is created within a 

window time-slot. But not each window time-slot has to contain a window.  

In our example the time interval between 0ms and 1000ms is a window time-slot, the time interval 

between 270ms and 1270ms is a window time-slot, the time interval between 540ms and 1540ms is a 

window time-slot and so on. The window time-slot between 0ms and 1000ms contains a window: 

Window0. The window time-slot between 270ms and 1270ms contains a window: Window1. The 

window time-slot between 540ms and 1540ms is empty. 

Tuple-based windows  

For tuple-based windows, timestamps are irrelevant.  
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A tuple-based window always contains WS number of tuples and every WA number of tuple arrivals a 

new window will be created.  

To determine which windows a tuple contributes to, each tuple gets its own unique index. The first 

arriving tuple gets index 0, the second tuple gets index 1 and so on. 

Both tuple-based and time-based windows exhibit similar properties under certain circumstances. Let 

us consider two settings: 

 Windows are time-based. WS=1000ms, WA=270ms. The timestamps of two consecutive tuples 

always have a difference of 1ms. 

 Windows are tuple-based. WS=1000 tuples, WA=270 tuples. 

In both situations, each window would contain 1000 tuples and after every 270 tuple arrivals one new 

window would be created. So applied to the same data stream each window of the time-based setting 

contains the same tuples as the respective windows of the tuple-based setting. 

With the following settings, we have a similar situation: 

 Windows are time-based. WS=1000ms, WA=270ms. The timestamps of two consecutive tuples 

always have a difference of 10ms. 

 Windows are tuple-based. WS=100 tuples, WA=27 tuples. 

In both settings, the time-based and the tuple-based one, each window contains the same 100 tuples 

as the respective counterpart in the other setting. 

In general, if a time-based setting fulfils three conditions, there is an equivalent tuple-based setting: 

(1) The timestamp difference, for short TD, between two consecutive tuples has to be constant. 

(2) It must be true that 𝑊𝑆%𝑇𝐷 = 0. 

(3) It must be true that 𝑊𝐴%𝑇𝐷 = 0. 

Otherwise windows with different amounts of tuples are possible, which is not allowed for a tuple-

based setting.  

For a time-based setting, which has a window size of WS, a window advance of WA, a constant tuple 

timestamp difference of TD and fulfils the three conditions, the equivalent tuple-based setting has a 

window size of 
𝑊𝑆

𝑇𝐷
 and a window advance of 

𝑊𝐴

𝑇𝐷
. 

2.4 Aggregate operations 
In general, an aggregate operation is an operation that groups a set of values together to form one 

single result value (see Figure 3). 

As can be seen in Figure 3, a few examples for aggregate operations are sum, average and count. 

In the context of streaming aggregation an aggregate operation is an operation that takes all values of 

all tuples belonging to one window to create a single output value. To compute an aggregate operation 

on tuples of a data stream, we need to define four things: the aggregate function we want to compute, 

the windows’ size and advance and if we want to group tuples by their keys. 
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Figure 3: 8 examples for aggregate functions aggregating Tuple0, Tuple1, ..., Tuple4 

Let us for example execute AggregateOperation0 of Figure 4 on the tuples of Input-Data-Stream0 of 

Figure 1. It processes the average aggregate function on windows of size 1000ms and advance 270ms 

(similar to the windows of Figure 2). The results are output into Output-Data-Stream0 (see Figure 5).

  

So what we are actually doing is: Every WA=270ms we determine the average temperature of all 

tuples’ values that arrived during the last WS=1000ms. That might not seem very meaningful yet, since 

we are calculating the average temperature of different machines’ tuples (the fridge and the 

dishwasher in our example), but first let us just take it as an example. 

 

Figure 4: An example aggregate operation storing information about the aggregate function to be executed, WS, WA and 
if tuples are to be grouped by their key 

So first, we calculate the average of all tuples’ values of Window0. Window0 contains only Tuple0. 

Tuple0 has the value 7.13°C. So the result for Window0 is 7.13°C.  

Window1 also contains Tuple0 only. Hence its result is 7.13°C.  

Window2 does not contain any tuple at all. So the average of all tuples belonging to it is 0.0°C or 

undefined depending on how we handle such special cases.  

Window3 and Window4 contain only Tuple1 with value 14.42°C. So the result for both is 14.42°C. 

Window5 contains Tuple1 and Tuple2. So its result is the average of their values:  
14.42°C+13.37°C

2
=

13.895°C. 
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Figure 5: An Output-Data-Stream with its result tuples (expired windows) produced by a computing system computing 
AggregateOperation0 on Input-Data-Stream0. 

Dynamic computation  

When executing the average aggregate operation, we can make another observation: Whenever we 

get to know that a tuple contributes to a window w, we can already calculate an intermediate sum of 

w; a sum of the values of all tuples that are contributing to w so far. So we do not necessarily have to 

wait and store all incoming tuples until w has expired before we start processing w’s aggregate 

operation. We can do that dynamically as the tuples are flying by. After we know that w has expired, 

we just divide the intermediate sum by the number of contributing tuples to get the average value.

  

This kind of dynamic calculation of intermediate results is possible for a lot of common aggregate 

operations, but not for all.  

More information about computing aggregations dynamically can be found in the appendix in Section 

17.1. 

Order-Sensitive vs. Order-Insensitive aggregations  

We need to define another property of aggregate operations that plays a role later on: the order-

sensitivity. Each aggregate operation is either order-sensitive or order-insensitive. 

 Order-insensitive aggregations can still dynamically compute intermediate results if the tuples 

are not arriving in timestamp order. All commutative operations are order-insensitive.  

For instance, when computing the sum aggregation, it does not matter in which order the 

tuples of a certain window are flying by. The intermediate sums might vary depending on the 

order of the incoming tuples; the final sum will be the same for each possible order. 

 Order-sensitive aggregations cannot dynamically compute intermediate results if the tuples 

are not arriving in timestamp order. All non-commutative operations are order-sensitive. 

For example, when computing a continued fraction, it does matter in which order the tuples 

of a certain window are flying by. The final quotient depends on the dividend. If the dividend 

is chosen wrongly, because the firstly arrived tuple is not the one with the lowest timestamp, 

the result will be wrong. 

As we see, if tuples can arrive in non-timestamp order, order-sensitive operations have to wait until a 

window has expired, before the aggregation can take place, while order-insensitive operations can 

always dynamically compute intermediate results. 

Grouping tuples  

As mentioned in Section 2.2, we can also group tuples by their keys before aggregating them. In our 

example grouping tuples by their keys means that we execute the aggregate operation separately for 

tuples of each machine (fridge, dishwasher and possible other ones).  

Now the output every 270ms would not describe the average temperature of all machines during the 
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last 1000ms. Instead for each machine that sent at least one tuple during the last 1000ms, the average 

temperature of all tuples sent by this machine will be output.  

So for each machine that sent a tuple during the last 1000ms, a window is being created within the 

same window time-slot. So Window5 with time start 1350 and time limit 2350 would not collect each 

tuple t having 1350 ≤ 𝑡. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 < 2350; instead each machine, the fridge and the dishwasher, 

would have its own window within the window time-slot between 1350ms and 2350ms. We can 

distinguish between these windows by their keys. Each window takes the respective machine’s key as 

its own key. 

2.5 Determinism of the Output Results 
A deterministic algorithm outputs for certain input data always the same output results. A PU (short 

for processing unit) executing it will enter the same sequence of states in the same order whenever 

we will run it.  

Working with multiple PUs can be a reason for nondeterministic behavior, e.g. if several PUs write to 

the same variable. Depending on the order of the writing processes, which might be depending on 

scheduling decisions of the operating system, the different access orders can influence the further 

ongoing of the calculations. 

However, also nondeterministic algorithms can produce deterministic results. If we for example split 

our work dynamically between different PUs depending on their workload, the processing might be 

nondeterministic, since every PUs deals with different pieces of the work within different executions 

– it does not always enter the same sequence of states in the same order. But as we know it is still 

possible to create parallel algorithms with deterministic outputs by synchronizing nondeterministic 

parts between the participating PUs. 

In our case – concurrent data stream applications working with sliding windows – there is another 

example of nondeterministic output behavior that can even be acceptable in certain cases: it could be 

possible that all the aggregation results of our windows are correctly output, but in the wrong order. 

For a lot of use cases it might be satisfactory to know the correct aggregation result of each window, 

even if their order is arbitrary to a certain extent, but for others it is not sufficient. 

 

Figure 6: Equal to Figure 5, but with a different output order. Each single result tuple is correct, the order among them is 
not. 

So for certain applications it might be viable to increase the performance at the cost of deterministic 

output behavior (by dropping output ordering tasks).  

However, during this thesis, we will only focus on creating deterministic results: Each execution of our 

program shall lead to exactly the same output results in the same order. 
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3 Problem description & Goals of this thesis 
The existing approaches for streaming aggregations are working with central coordinators, which 

manage the distribution of the incoming data and the merging of the results processed on the 

participating processing units. Central coordination of the tasks might cause bottlenecks once the 

managing costs exceed the coordinators computing capacity.  

Therefore, this master’s thesis will deal with sliding window-based aggregate operations and an 

efficient, fully disjoint parallelization of them. This thesis’ goal is the development of algorithms for 

parallelized streaming aggregation without centralized coordinators. 

Correctness and deterministic output behavior  

We want to have deterministic output results independently of the number of participating PUs, the 

data stream’s incoming data rate and fluctuations.  

To achieve a deterministic output behavior, the aggregation result of each window has to be correct 

and aggregation results of windows are to be sorted in their time limit order. Windows with higher 

time limits are output later. 

Speed and low latency  

We try to find solutions that reach as high tuple throughput and as low output latency as possible. 

Proceeding 

We start the researching process by taking a recent approach that shares our requirements (but for a 

different streaming operation) and inspired by that, we design an aggregation method that uses a 

similar principle. This approach is called handshake-join and will be introduced within the next chapter. 

In a similar way as the handshake-join algorithm we will only use neighbor to neighbor communication 

between participating PUs within our first approach. We will analyze the runtime characteristics of this 

first approach and think about improvements of its structure or communication pattern to develop 

advanced approaches featuring reduced computation and communication costs.  

Each suggested approach will be implemented and benchmarked to verify the assumptions of the 

theoretical structure analysis. 

Target platform  

We mainly focus on a shared-memory solution for a single machine but preferably it should be re-

usable for distributed setups as well.  

More detailed information about the target platform we want to address with our approaches and 

their implementations are given in Chapter 10. 
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4 The handshake-join algorithm 
In this chapter the handshake-join algorithm is presented [2]. Our first approach to deal with streaming 

aggregation is inspired by this algorithm. 

The handshake join algorithm is a parallel algorithm for executing the join operation (described further 

below in this chapter) between two data streams. It is introduced in this article [2]. It avoids any 

centralized coordination and scales very well as we increase the number of threads executing this 

algorithm. 

The common join database-operator takes all elements out of two groups and compares each element 

of the first group to each element of the second group. If any pair matches on the desired properties, 

it is a result of the join-operation and is to be output.  

The join-operation on data streams however, is not being executed on all elements of two streams but 

instead on elements of sliding windows over the streams. As we see in Figure 7, one data stream is 

entering the window from the left side and the other data stream from the right side. Tuples of each 

stream are “meeting” all of the other stream’s tuples they shall be joined with. During each of the 

sliding window’s steps, all tuples with timestamps between its current upper and lower time limit are 

stored in it and being joined.  

 

Figure 7: The join operation on data streams 

To parallelize the work the handshake join algorithm uses just neighbor-to-neighbor-communication 

between the threads executing it. We align the threads in a line and one data stream traverses the line 

from the left to the right, the second data stream from the right to the left. To distribute the work now, 

we just split the sliding window into smaller parts and each thread takes care of one part as can be 

seen in Figure 8. The tuples of both streams meet each other within the sliding windows and are then 

compared.  

However, in the parallelized version it is possible that two tuples do not meet each other, although 

they should: If for example one tuple of data stream A (whose tuples are traveling to the right) is 

located at PU 2 and one tuple of data stream B (whose tuples are traveling to the left) is located at PU 

3 and both tuples are sent to their next destination at the same time, they will not meet each other, 

so the join result might be incomplete. In order to avoid that any tuple of stream A misses any tuple of 

stream B, the handshake join algorithm creates temporary copies in one of the stream to ensure that 

each pair of tuples between both data streams within one sliding window is being joined.  

Additionally, creating a deterministic output in the parallelized version is not trivial. In contrast to the 

single-threaded version, we have several locations where tuples can meet each other and there is no 

deterministic order, in which the tuples will meet each other and get joined. The previously mentioned 
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paper does not handle this issue at all, so the output tuple’s order is nondeterministic.  

 

Figure 8: Parallelization pattern introduced by the handshake-join algorithm 

However, there is an improved version of this algorithm by the same authors [3], which guarantees a 

deterministic output order and a lower latency of the join results. 

In summary, this algorithm exhibits the following properties that we want to apply to our algorithm as 

well: 

 It does not need any centralized coordination. 

 It sticks to neighbor-to-neighbor communication, so only few connections are necessary. 

Additionally, if neighbor threads are located on neighbor processor cores, they might benefit 

from the cache hierarchy in modern computer systems because cores that are close to each 

other share faster caches. 

 The “tuples meet tuples” idea can be carried into the aggregation operator. We can think of 

two virtual streams: one containing the tuples, the other one containing the windows. This is 

explained in detail in the next chapter. 
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5 The Handshake approach for streaming aggregation 
In this chapter, we present an approach for a disjoint parallelization of sliding-window streaming 

aggregation. We call this algorithm the Handshake approach (for short HSA). 

First (Section 5.1), we discuss the structure of the Handshake approach. We present its pseudocode 

and explain why it exhibits deterministic output behavior. 

Next (Section 5.2), we analyze its runtime properties. Therefore, we first have to introduce definitions 

and denotations. We analyze the call frequency of the different parts of our algorithm as well as 

interdependencies between the executed aggregation and the call frequencies and costs of the 

algorithm’s parts. 

Then (Section 5.3) we discuss the determined runtime properties of the algorithm. 

Finally, (Section 5.4) we consider suggestions for improvements. 

5.1 Structure 
Like mentioned in Chapter 3, the first aim is to develop an approach without centralized coordination 

to calculate aggregate operations on a data stream. It is based on the ideas of the handshake-join 

algorithm [2], so all participating threads will be aligned in a row and only neighbor-to-neighbor 

communication will be possible (see Figure 9).  

Henceforward, the terms thread and PU (processing unit) mean the same thing – one system thread 

working together with the others on the algorithm concurrently – and as such are used 

interchangeably. 

However, there is a difference between these terms and a (processing) core. A processing core is a 

physical core of the processor, which can take care of an arbitrary number of threads. 

 

Figure 9: Communication pattern 

In our approach, we will use five different types of objects called tuple, window, result set, PU and 

aggregate operation.  

One input-stream will transport the data tuples to the leftmost PU of our processing system. One 

output-stream, created by the leftmost PU of our processing system, will output the results of the 

aggregate operation.  

Within this approach each tuple will visit each thread in the row. The PUs will forward them thread by 

thread until each reaches the rightmost PU. 

Within a single-threaded program every aggregate operation with each of its windows would be 

computed on the same thread. And this is the part of the calculation that we actually want to split. 

Each thread is only responsible for a subset of all the aggregate operations’ windows.  

Whenever a tuple reaches a PU p, p checks for all windows this tuple will contribute to, whether p is 

responsible for the calculation of this window; and this is decided by using a hash function. 
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The hash function that decides on which PU a certain window has to be computed, takes two 

parameters: the time limit of the window and, in case we want to group tuples and windows by their 

key, the key of the window.  

Hence each pair of windows that is different in at least one of both parameters will most likely have 

completely different hash values. The result of a window w’s hash value modulo the number of PUs 

determines the index of the PU on which w has to be located and processed. 

 

Figure 10: Algorithm logic and communication structure 

Since the rightmost thread is the one that receives every tuple last – after all other threads have 

received, processed and forwarded it – it can decide when any window is expiring. And whenever a 

window (no matter which thread is actually processing it) is expiring, the rightmost PU creates a so 

called result set, which is forwarded from thread to thread in the left direction and collects the results 

of all expired windows and orders them by the windows’ time limit.  

When a result set r reaches the leftmost PU, this PU outputs the results of the expired windows 

contained within r into the output data stream. 

Figure 10 roughly depicts the algorithm’s logic and communication structure. Tuples (blue quads) are 

forwarded PU by PU to the right. They contribute to windows (green quads) which are located on the 

different PUs. The rightmost PU sends result sets (yellow quads) to the left to collect expired windows. 

Green quads attached to yellow quads are expired windows collected by a result set.  

A detailed example execution of the Handshake approach can be found in the appendix in Section 17.2. 

5.1.1 Pseudocode 

The corresponding pseudocode representing this approach’s structure is shown in Pseudocode 1 

below. It is being executed by each PU.  

A PU p continuously (line 1) checks whether new tuples (line 2) or result sets (line 11) have arrived. 

If a new tuple t arrives, PU p takes it and forwards it to p’s right neighbor (line 3). Of course, if there is 

no right neighbor (that just happens if p is the rightmost PU), p does not forward anything. 

Next, PU p checks for each window w tuple t contributes to (line 4), whether this window is to be 

processed by p (line 5). This is being determined by calculating a hash function that takes window w as 

a parameter and returns on which PU w has to be processed.  
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So if p is responsible to process window w, p checks, whether it has already stored w and started 

processing it and if not p creates and stores w (line 6).  

Then PU p adds Tuple t to window w. In case w’s aggregate operation is dynamically computable 

(Section 2.4), p can execute the next step of the aggregate operation to create a new intermediate 

result (line 7).  

If p is the rightmost PU in the line (line 8), it has to check if a new result set has to be created. If so, p 

creates the new result set with t’s timestamp as time limit and inserts it to p’s incoming result set 

queue (line 9). 

If a new result set r (line 11) arrives, PU p adds all of its expired windows to r (line 12). Then it forwards 

r to its left neighbor (line 13). If there is no left neighbor (that just happens if p is the leftmost PU), it 

instead puts the results of the expired windows contained in r into the output stream. 

1. while (true)   
2.     if ((Tuple t = incTupleQueue.first) != null)   
3.         Get&ForwardTuple(t)   
4.         for (each window w to which tuple t contributes)   
5.             if (Prepare&ExecuteHashOperation(w) == me)   
6.                 FindOrCreateWindow(w)   
7.                 AggregateOperation(w,t)   
8.         if (myRank == PUCount - 1)   
9.             CreateNewResultSetIfNecesarry(t)   
10.    
11.     if ((ResultSet r = incResultSetQueue.first) != null)   
12.         AddMyExpiredWindowsToResultSet(r)   
13.         ForwardOrOutputResultSet(r)   

Pseudocode 1: Pseudocode of the Handshake approach. It is executed by each PU. 

5.1.2 Determinism of the output stream’s results 

The rightmost PU has yet another task as shown in Pseudocode 1 and mentioned in Section 5.1: It 

checks, whether any window on any PU has expired and if so, it creates a new result set that collects 

expired windows. 

To guarantee deterministic behavior when collecting expired windows using result sets, we need a 

mechanism basing upon the following observation:  

Whenever any PU p is forwarding a tuple (line 3), it immediately processes it afterwards (lines 4-9).  

So all PUs to the right of p can only process tuples that p has already processed (or that p is currently 

processing). 

Observation 1: If any PU finishes processing a tuple, it has already processed all the tuples that the 

rightmost PU has processed so far. 

Assuming that we have n PUs working on the problem, we assign indices from 0 to n-1 to the PUs (from 

the leftmost to the rightmost). After processing any tuple t, the rightmost PU pn-1 checks, whether t 

led to the expiration of any window – this check is only a simple modulo calculation involving window 

size and window advance of the aggregate operations. If any window has expired, pn-1 creates a result 

set r. Then it adds all of its expired windows to r, if there are any (line 12), and forwards r to its left 

neighbor pn-2 (line 13).  

According to Observation 1, all other PUs have already processed all tuples (including t) that pn-1 has 

processed and hence all windows with time limits smaller than or equal to t’s timestamp have already 

expired on each PU. So r does not have to wait for windows to expire when arriving at a PU; it can 
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immediately collect the expired windows, sort them by their time limits and continue its way to the 

leftmost PU. This leads us to the next observation: 

Observation 2: If a tuple t arrives at the rightmost PU and a result set r is created, all windows with 

time limits up to t’s timestamp on each PU have expired and thus will be collected by r. So windows 

cannot arrive belatedly (in later result sets that will be created after r). 

Let us assume pn-2 was much faster than pn-1 and has already processed a certain set of more recent 

tuples SOMRT, which led to the expiration of further windows on pn-2. Now r arrives at pn-2, which adds 

its expired windows to r. And at this point a problem arises: This set of tuples SOMRT that PU pn-2 has 

already processed but pn-1 has not yet, might lead to the expiration of windows on PU pn-1 too. But 

since r is already on its way to the left and has already left pn-1, pn-1’s windows that will expire by SOMRT 

will arrive in a later result set, not within r, although they might even have an earlier time limit than 

the windows expired by SOMRT on Pn-2. That means that the expired windows which are arriving at the 

leftmost PU (which sends their results into the output stream), might not be ordered by their expiration 

time. Hence the results in the output stream will indeed be correct, but not in a deterministic order. 

There is a simple solution to this problem: Each result set r will have a time limit on its own. PUs are 

only allowed to add expired windows to r, whose time limits are smaller than or equal to r’s time limit. 

So whenever the rightmost PU pn-1 creates a result set r, because it detects that a processed tuple t led 

to the expiration of any window in the processing system, p takes t’s timestamp as the time limit of r. 

This leads to a third observation: 

Observation 3: Since an expired window w cannot be added to a result set r with a time limit smaller 

than w’s time limit, expired windows cannot arrive at the leftmost PU (and hence in the output stream) 

prematurely. 

According to Observation 2 and Observation 3, expired windows can neither arrive too late nor 

prematurely. So finally we can say that each window w will arrive within the first result set, whose time 

limit is greater than or equal to w’s time limit. Now result sets just have to sort the windows they 

contain by their time limit and deterministic output behavior is guaranteed. 

5.2 Analysis of the algorithm’s runtime properties 
Now we want to analyze the runtime properties of the algorithm and its parts, which were introduced 

and shortly discussed in Section 5.1.1.  

Firstly, we want to determine, how often a PU p has to execute the different parts (mentioned in 5.2.2) 

of the algorithm.  

Secondly, we want to determine how expensive the execution of each part will be.  

Both a part’s call frequency and its execution costs are dependent on the aggregation’s parameters, 

so we want to carve out and depict the impact of the aggregation’s parameters on the runtime 

properties. 

5.2.1 Definitions and denotations 

Window size WS and window advance WA are well-known. 

Number of tuples  

Since in general the input stream is unbounded in its length, we only consider a prefix of T tuples. We 

name the T tuples by their indices: t0, t1, …, tT-1. 
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Average timestamp difference  

Two consecutive tuples have an average timestamp difference of ATD time units.   

So if we assume that t0 has a timestamp of 0, tT-1 has a timestamp of (𝑇 − 1) ∗ 𝐴𝑇𝐷.  

For the analysis, we assume that the tuples are distributed in some degree evenly between the first 

and the last tuple. That means that we expect each window to contain approximately 
𝑊𝐴

𝐴𝑇𝐷
 tuples. 

For example the analysis does not apply in a case in which the first T-1 tuples have the same timestamp 

followed by a huge timestamp interval of (𝑇 − 1) ∗ 𝐴𝑇𝐷 time units without tuples before the last tuple 

tT-1 appears. 

Windows per tuple  

The number of windows each tuple contributes to – WPT (windows per tuple) – is defined by 𝑊𝑃𝑇 =
𝑊𝑆

𝑊𝐴
. 

Number of windows without grouping  

As mentioned, the first tuple’s timestamp is (𝑇 − 1) ∗ 𝐴𝑇𝐷 time units away from the last tuple’s 

timestamp. Every WA time units a new window time-slot begins. So the overall number of windows W 

is approximately 𝑊 ≈
𝑇∗𝐴𝑇𝐷

𝑊𝐴
 if we do not group tuples by their keys.  

There is a lower and an upper limit for W: 

 If 0 ≤ 𝐴𝑇𝐷 <
𝑊𝐴

𝑇
:  

All tuples contribute to the same WPT windows. There cannot be less windows because as 

long as there is at least one tuple, it always contributes to WPT tuples by definition. Hence 

WPT is the minimum value for W. 

 If 𝐴𝑇𝐷 = 𝑊𝐴:  

The first and the last tuple are covering a 𝑇 ∗ 𝑊𝐴 time units lasting time span. So in case the 

tuples’ timestamps are evenly distributed, we can approximately have up to T windows 

because each tuple is opening a new one (while still contributing to the 𝑊𝑃𝑇 − 1 old ones of 

the previous tuple). 

 If 𝐴𝑇𝐷 = 𝑊𝑆:  

Each new tuple contributes to up to WPT new windows. If its timestamp distance to the 

previous tuple is equal to WS (or larger), it does not contribute to any of the previous tuple’s 

windows, but to WPT new windows. Hence if tuples’ timestamps are evenly distributed, we 

can have up to 𝑇 ∗ 𝑊𝑃𝑇 windows. 

 If 𝐴𝑇𝐷 > 𝑊𝑆:  

The situation does not change compared to the previous case. Each tuple still contributes to 

up to WPT new windows, so the value of W is still at most 𝑇 ∗ 𝑊𝑃𝑇. 

So without grouping the boundaries for the number of windows are 𝑊𝑃𝑇 ≤ 𝑊 ≤ 𝑇 ∗ 𝑊𝑃𝑇. 

Number of windows with grouping  

However, if we group tuples by their keys, the overall number of windows might be higher. Let us 

assume there are tuples with DK number of distinct keys within the whole data stream.  

Basically we have to do the analysis of the non-grouping case for each distinct key, since tuples with 

different keys do not affect each other at all and are aggregated completely independently.  

Or in other words, if we do not group tuples by their keys, each window time-slot contains up to one 

window that can contain tuples with any key. And if we group tuples by their keys each window time-
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slot contains up to DK windows and each of them can only contain tuples with their own key.  

Since the number of window time-slots remains unchanged, but only the number of windows per 

window time-slots can raise up to the DK-fold, there can be DK-fold as many windows if we decide to 

group tuples.  

That means the overall number of windows W we expect is up to approximately 
𝐷𝐾∗𝑇∗𝐴𝑇𝐷

𝑊𝐴
 compared 

to 
𝑇∗𝐴𝑇𝐷

𝑊𝐴
 in the non-grouping case.  

To determine accurately how many windows we may expect, for each distinct key we would have to 

know the timestamp distribution of all tuples with this key, which might be unrealistic in many practical 

situations. 

To avoid going beyond the scope of this section, we just note down that the boundaries for the number 

of windows with grouping are 𝐷𝐾 ∗ 𝑊𝑃𝑇 ≤ 𝑊 ≤ 𝑇 ∗ 𝑊𝑃𝑇. 

Realistic and reasonable number of windows  

Independently of the fact, whether we are grouping tuples or not, especially the upper limit, which is 

identical in both cases, is very unrealistic, because each tuple is just contributing to its “own” WPT 

windows, to which no other tuples contribute, and there is no meaning in executing aggregate 

operations, when there is actually nothing to aggregate.  

So we will define a more realistic upper limit for the amount of windows in common aggregations, 

where we are indeed aggregating something. Without this upper limit, meaningful analyzes of the 

Handshake approach and the following approaches is not possible. We define that the average 

timestamp distance is not allowed to be greater than the window advance: 𝐴𝑇𝐷 ≤ 𝑊𝐴.  

In other words: Given a data stream with an average timestamp difference of ATD, we are not allowed 

to execute an aggregate operator with its window advance being smaller than ATD. 

There are different effects depending on whether we are grouping tuples or not: 

(1) The non-grouping case:  

Impact of the definition (𝐴𝑇𝐷 ≤ 𝑊𝐴) on a concrete example:  

If we have one machine that sends information approximately once every second to our 

computing system, we are not allowed to compute an aggregation with a window advance 

smaller than one second. This is no limitation at all, since with a window advance of 500ms, 

half of all windows would return the same result as their respective predecessor, so we can 

forbid these redundant computations by introducing the presented limit.  

 

In general, from this definition it follows that on average each tuple will open up to one new 

window and lead to the expiration of up to one window (as mentioned in the practical 

example, if instead ATD were significantly larger than WA, a lot of windows would contain the 

same tuples as their respective neighbor windows; and if ATD were larger than WS, a lot of 

windows would not contain tuples at all).  

 

Since each tuple leads to the expiration of up to one window, there will be up to T result sets 

and each result set will contain one window. So there will be up to T windows.  

 

(2) The grouping case:  

Impact of the definition (𝐴𝑇𝐷 ≤ 𝑊𝐴) on a concrete example:  

If we have 1000 machines, each sending information approximately once every 1000 seconds, 
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the average timestamp distance is equal to 1s as in the prior example. As in the previous 

example we choose the lowest value for WA which is allowed according to our definition: 1s. 

We are not allowed to use a window advance smaller than 1s with the same reason as in the 

previous example: We would just perform redundant computations if we create windows 

faster than tuples arrive.  

So on average once every second a tuple t arrives and contributes to WPT windows with the 

same key. But even if we choose 1s as our window advance, 1000 aggregation results (one for 

each machine) will be output every second and on average only one of them will differ from 

the 1000 results that have been output one second ago (since only one tuple of one machine 

arrives per second). So we have the thousand-fold number of outputs although the rate of 

incoming tuples is unchanged.  

 

In general, from the definition it follows that each tuple will start up to one new window time-

slot and expire all windows of up to one window time-slot. Since each window time-slot 

contains up to DK number of windows (in our example one for each machine), each tuple can 

lead to the expiration of up to DK number of windows.  

As each of the T tuples can lead to the expiration of windows of one window time-slot, it leads 

to the creation of up to one result set. So there will be up to T result sets.  

Due to the fact that each window time-slot contains up to DK number of windows, each result 

set will contain up to DK number of windows. So there will be up to 𝑇 ∗ 𝐷𝐾 number of windows 

compared to T windows in the non-grouping case. 

Number of PUs  

Let P be the number of PUs (threads) concurrently executing the algorithm. 

5.2.2 Call frequency 

Now we analyze how often a PU p has to execute the different parts (mentioned in Pseudocode 1) of 

the algorithm. 

 Get & Forward Tuple: Since every tuple of the stream visits each PU, first the leftmost and 

lastly the rightmost, p needs to execute this part T times. 

 Hash Operation: As we know, each tuple contributes to WPT number of windows. So for each 

incoming tuple, PU p has to find out for which of these WPT windows p is responsible. So the 

Hash Operation part is to be executed WPT times for each of the T tuples, so 𝑊𝑃𝑇 ∗ 𝑇 times. 

 Find or Create Window: Like mentioned, each of the T tuples contributes to WPT windows, so 

all in all there are 𝑊𝑃𝑇 ∗ 𝑇 events where a tuple contributes to a window. However, the hash 

operation splits those operations among all of the P participating PUs. So if the hash function 

distributes the windows evenly among all P PUs, on average, p executes the Find or Create 

Window operation 
𝑊𝑃𝑇∗𝑇

𝑃
 times. 

 Aggregate Operation: Just as Find or Create Window, on average, p executes this part 
𝑊𝑃𝑇∗𝑇

𝑃
 

times. 

 Create New Result Set If Necessary: Whenever a tuple arrives, the last PU checks, whether any 

windows on any PU expired and if so it creates a new result set. So this part is called T times 

(by the last PU). 

 Add My Expired Windows to Result Set: This part is executed on p, whenever a result set 

reaches p. The number of result sets is depending on the number of window time-slots that 
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contain at least one window. As we elaborated in Section 5.2.1, the amount of windows can 

vary strongly. We assume that 𝑊 ≤ 𝑇 and hence that this part is not executed more often 

than T times. Like mentioned we cannot make any assurances, but in practical applications it 

might be very uncommon to have more than T windows. 

 Forward Result Set: Just like the Add My Expired Windows to Result Set part, we expect that 

each PU is executing the Forward Result Set part between 1 and T times. 

Program part Number of executions (average) per PU 

Get & Forward Tuple 𝑇 
Prepare & Execute Hash Operation 𝑇 ∗ 𝑊𝑃𝑇 

Find or Create Window 𝑇 ∗ 𝑊𝑃𝑇

𝑃
 

Aggregate Operation 𝑇 ∗ 𝑊𝑃𝑇

𝑃
 

Create New Result Set If Necessary 𝑇 (only rightmost PU) 

Add My Expired Windows to Result Set 𝑊 (𝑊 ≤ 𝑇) 

Forward Result Set 𝑊 (𝑊 ≤ 𝑇) 
Table 1: Call frequency table of the HSA's program parts 

According to Table 1, we create another table (Table 2) depicting the interdependencies between the 

aggregation parameters and the parts’ call frequencies. 

 
Get & Forward 

Tuple 

Prepare & 
Execute Hash 

Operation 

Find or Create 
Window 

Aggregate 
Operation 

Create New 
Result Set if 
Necessary 

Add My 
Expired 

Windows to 
Result Set 

Forward 
Result Set 

Increase of Thread 
Count 

       

Increase of Aggregate 
complexity 

       

Increase of Window 
Size 

       

Decrease of Window 
Advance 

       

Increase of Aggregate 
Operation Count 

       

Activation of 
Group by 

       

 

Colour explanation 
Change to part’s call 

frequency 

Locally more often 
globally more often 

Locally unchanged 
globally more often 

Locally unchanged 
globally unchanged 

Locally less often 
globally unchanged 

Table 2: Interdependencies between the aggregation parameters and the call frequency of the HSA's parts 

Increase of the thread count  

As we can see in Table 1, the Find Or Create Window part and the Aggregate Operation part are 

parallelizable (call frequency is divided by P), thus they are marked green. The Create New Result Set 

If Necessary part is only executed by a single PU and hence further PUs are completely unaffected by 

it. The remaining parts are not parallelizable at all; their call frequencies per PU are constant as the 

number of participating PUs grows. 

Increase of the Aggregate complexity  

There is no effect on the call frequency of the parts. 
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Increase of the window size  

Increasing the window size, ceteris paribus, increases WPT, which leads to a higher call frequency of 

the 3 parts Prepare & Execute Hash Operation, Find or Create Window and Aggregate Operation. 

Decrease of the window advance  

Decreasing the window advance, ceteris paribus, increases WPT with the same effects as the increase 

of the window size.  

Additionally, a lower window advance increases the amount of windows, which raises the call 

frequency of the 2 parts Add My Expired Windows to Result Set and Forward Result Set. 

Increase of the number of aggregate operations executed concurrently  

If x aggregate operations (instead of one) shall be executed simultaneously, the number of times we 

have to execute each program part is multiplied by x. The only exception is the Get & Forward Tuple 

part. So there still is a slight advantage of running the program once and executing x aggregate 

operations with it at once over executing the program x times with one aggregate operation at a time. 

5.2.3 Call costs 

Next, we create a table (Table 3) depicting the interdependencies between the aggregation parameters 

and the costs of a single call of each part. 

 
Get & Forward 

Tuple 

Prepare & 
Execute Hash 

Operation 

Find or Create 
Window 

Aggregate 
Operation 

Create New 
Result Set if 
Necessary 

Add My 
Expired 

Windows to 
Result Set 

Forward 
Result Set 

Increase of Thread 
Count 

       

Increase of Aggregate 
complexity 

       

Increase of Window 
Size 

       

Decrease of Window 
Advance 

      (1) 

Increase of Aggregate 
Operation Count 

       

Activation of 
Group by 

      (1) 

 

Color explanation 
Change to part’s costs 

Higher 
Unchanged 

(1): Red in case forwarded by value 
Lower 

Table 3: Interdependencies between the aggregation parameters and the costs of the HSA's parts 

Increase of the thread count  

The costs per execution of the Add My Expired Windows to Result Set part are decreasing as we 

increase the PU count because if we have more PUs working on an aggregation, each PU is responsible 

for fewer windows and hence has to locate and add fewer windows to incoming result sets.  

The Find or Create Window part benefits slightly from an increasing number of participating PUs. The 

more PUs we are using, the less windows each PU has to store and the faster we can find and access 

stored windows (we will use a data structure exhibiting an O(log(n)) runtime for all important 

operations (n is the number of elements in the data structure)). 

Increase of the aggregate complexity  

Using a more complex aggregate operation increases the cost of the Aggregate Operation part 

proportionally. 



30 
 

Increase of the window size  

Changes to the window size do not affect the costs of a single call of any part of the algorithm. 

Decrease of the window advance  

A lower window advance leads to an increasing number of windows, so the Find or Create Window 

operation will need slightly more time to find and access stored windows. Accordingly, on average the 

Create New Result Set if Necessary part is getting slightly more expensive as well, since it is necessary 

to create new result sets more frequently. 

Increase of the number of aggregate operations executed concurrently  

If we execute separate aggregations concurrently, we store a much greater number of windows on 

each PU and hence the Find or Create Window part gets slightly more expensive. 

Grouping of tuples by their keys  

Depending on DK (the amount of distinct keys), grouping tuples may increase the number of windows 

drastically, which may raise the costs of the Add My Expired Windows To Result Set part to a great 

extent and the costs of the Find or Create Window part slightly. It also marginally affects the Prepare 

& Execute Hash Operation part, since if we group tuples, the hash operations take into account the 

windows’ keys as well, making it slightly more expensive. 

Summary of the interdependencies  

Only the costs of two parts are significantly affected by the chosen aggregate parameters.  

The Aggregate Operation part’s costs are proportionally affected by the aggregation’s complexity. 

The Add My Expired Windows To Result Sets part is affected by the number of windows per window 

time-slot, so the thread count and DK (the number of distinct keys).  

All other parts exhibit more or less absolute independency of interdependencies between their costs 

and the aggregation’s parameters. 

Equal costs assumption  

Under three conditions, we can simplify the analysis of the performance by making the assumption 

that all algorithm parts are equally expensive, so that one call of one algorithm part is as expensive as 

any other single call of any other part: We only consider cheap aggregate functions, data streams with 

few DK (or none at all) and single shared-memory machines (listed in more detail in the next 

paragraph).  

Strictly speaking, this assumption is of course not true. But under those three circumstances, practical 

tests have shown that it is a sufficient approximation. 

Three conditions for the equal costs assumption 

 The computing system transports information (tuples, result sets, …) by reference, not by 

value. So this approximation does not apply for distributed systems. This condition is necessary 

to preclude that the communication network might bottleneck the processing system. 

 An inexpensive aggregation is used like sum, average or min. This condition ensures that the 

Aggregate Operation part’s costs remain comparable to the other parts’ costs. 

 Tuples are either not grouped by their key or if they are, DK has to be small (preferably single-

digit). This condition ensures that the Add My Expired Windows to Result Set part’s costs 

remain comparable to the other parts’ costs. 
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5.2.4 Memory space requirements 

Next, we analyze the expected memory space requirements. As we will see, they are depending on 

different parameters and properties of the aggregation, the data stream and the tuple structure. 

There are up to 𝑊𝑃𝑇 ∗ 𝐷𝐾 windows opened at the same time. These windows are distributed among 

all P participating PUs. So each PU has to store 
𝑊𝑃𝑇∗𝐷𝐾

𝑃
 windows.  

Each window contains information about its time limit, the aggregate operation it is executing and its 

key which may be null; and it has a size of MW (memory window) number of bytes. Hence we need 
𝑊𝑃𝑇∗𝐷𝐾∗𝑀𝑊

𝑃
 bytes of memory capacity.  

In addition, a window contains either an intermediate result or tuples contributing to it, but we 

consider these additional memory space requirements further below in this chapter. 

There is a certain amount of expired windows distributed among all P participating PUs. The number 

of expired windows existing at the same time depends on many different parameters: The length of 

the PU line P, WS, ATD (and the strength of temporary deviations from it), the size of the tuple queues, 

imbalances of the window responsibilities caused by the hash function and the key distribution of the 

incoming tuples. It is difficult to state an accurate formula for the number of expired windows existing 

simultaneously; practical tests have shown that in the vast majority the number of expired windows 

does not exceed the number of non-expired windows. Hence we expect the required memory capacity 

to be 
𝑊𝑃𝑇∗𝐷𝐾∗𝑀𝑊

𝑃
 bytes at most. 

Altogether, each tuple contributes to WPT windows.  

To estimate the memory requirements for storing references to tuples or copies of tuples within 

windows or intermediary results within windows, we need to distinguish two types of aggregate 

functions: 

1. Aggregate functions that do not need to save tuples contributing to a window  

Most aggregate functions that are computable dynamically (see Section 2.4) belong to this 

group, e.g. sum. After the arrival of a tuple t on a PU p, the intermediate sum of all windows t 

contributes to that located on p are updated and afterwards p can delete its local copy of t. So 

each window just stores one single intermediary result requiring MIR (memory intermediate 

result) bytes of space. 

2. Aggregate functions that need to save all tuples contributing to a window  

Aggregate functions that are not computable dynamically belong to this group, e.g. median. 

After the arrival of a tuple t on a PU p, p stores t (or only t’s value) in all windows t contributes 

to located on p, since for each window w the value of each tuple contributing to it is required 

to compute w’s median after w’s expiration. So each window stores all 
𝑊𝑆

𝐴𝑇𝐷
 number of tuples 

contributing to it, each requiring MT (memory tuple) bytes of space. 

Required space per window in the first case: 𝑀𝑊 + 𝑀𝐼𝑅 bytes.  

Required space per window in the latter case: 𝑀𝑊 +
𝑀𝑇∗𝑊𝑆

𝐴𝑇𝐷
 bytes. 

The space requirements of the tuples and result sets being forwarded in the PU chain depend on the 

size of the queues used by the participating PUs. One result set requires MRS bytes and one tuple 

requires MT bytes of disc space. If we consider queues containing up to QS (queue size) number of 
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tuples and result sets respectively (before forcing the sending PU to pause sending further objects), 

the required disc space is 𝑀𝑇 ∗ 𝑄𝑆 + 𝑀𝑅𝑆 ∗ 𝑄𝑆 per PU. 

So the maximum overall space requirements per PU that we expect excluding lower amounts of 

constant overhead costs are:  

In the first case: 
2∗(𝑀𝑊+𝑀𝐼𝑅)∗𝑊𝑃𝑇∗𝐷𝐾

𝑃
 +  𝑄𝑆 ∗ (𝑀𝑇 + 𝑀𝑅𝑆) bytes.  

In the latter case: 
(𝑀𝑊+

𝑀𝑇∗𝑊𝑆

𝐴𝑇𝐷
)∗𝑊𝑃𝑇∗𝐷𝐾

𝑃
+

(𝑀𝑊+𝑀𝐼𝑅)∗𝑊𝑃𝑇∗𝐷𝐾

𝑃
 +  𝑄𝑆 ∗ (𝑀𝑇 + 𝑀𝑅𝑆) bytes. 

It should be noted that in both cases expired windows only contain a final result, which requires as 

much memory capacity as an intermediate result. So expired windows do never store any tuples. 

5.2.5 Latency 

In this section, we shortly introduce the definition of latency and factors influencing it. 

Granted that there is one tuple t that leads to the expiration of a window w. Then the latency is defined 

as the real-time difference between the point of time when t entered the processing system (from the 

input data stream into the leftmost PU) and the point of time when w’s result leaves the processing 

system (from the leftmost PU into the output data stream).  

So during the latency time, t travels through the PU chain from the leftmost PU to the rightmost PU 

contributing to WPT number of windows on its way. On the rightmost PU t causes the creation of a 

new result set r, which moves through the PU chain from the rightmost PU to the leftmost PU collecting 

all expired windows having time limits up to r’s time limit (window w is among them) and outputs them 

into the output stream. 

Altogether, tuple t contributes to WPT number of windows by either updating intermediate results or 

being saved within them (see Chapter 5.2.4, the two different cases). So the higher WPT and the higher 

the complexity of update or contribution steps, the higher the latency.  

When t on its way to the rightmost PU - or r on its way to the leftmost PU - arrive at a PU p, p might 

already have tuples and result sets in its queues that will be treated before t. Hence the larger QS (the 

size of the queues) and the higher P (the number of participating PUs), the higher the latency can get. 

On distributed systems, the transfer of a tuple or result set to the next PU may cost a significant amount 

of time as well depending on latency and throughput of the communication network and the size of 

tuples (MT) and result sets (MRS); that increases the latency as well. 

In summary, changes to the following parameters affect the latency: WPT, the complexity of 

aggregation steps, QS, P, the latency of the communication network, the throughput of the 

communication network, MT, MRS. 

5.3 Discussion of the approach’s runtime properties 
Due to Table 1 and the equal costs assumption, the Prepare & Execute Hash Operation part is the 

bottleneck of the algorithm. The bigger WPT is, the more the Hash Operation part tends to be the 

limiting factor for the performance of the Handshake approach.  

We can reduce the computation time each thread has to invest into the Find or Create window part 

and the Aggregate Operation part just by increasing P (see Table 1).  

We cannot reduce the computation time needed for the other parts at all. 

All in all, the Handshake approach has 5 different parts that are not or not entirely parallelizable. 
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 Get & Forward Tuple, Hash Operation and Forward Result Set parts  

They are not parallelizable at all. 

 Create New Result Set If Necessary part  

This part is not parallelizable. It is executed by the rightmost PU; additional PUs working on 

the program are not influenced by it at all.  

It is very cheap (3 arithmetical operations and up to one constructor call) and called as often 

as the forwarding parts and the Add My Expired Windows to Result Set part, so the rightmost 

PU does not have a significant amount of extra work. As a thought experiment, we could 

consider this part as a subpart of the Get & Forward Tuple part which is called equally often 

but much more expensive. Then the rightmost PU just has a negligibly more expensive Get & 

Forward Tuple part than the other PUs. 

 Add My Expired Windows To Result Set part  

It is partially parallelizable. As we increase the number of PUs working on the program, each 

PU still has to execute this part with the same frequency, but since the average amount of 

expired windows each PU has to add to the result set decreases (because they are distributed 

among all PUs), the work each PU has to invest decreases. As there are some constant costs in 

this part, the local costs are not converging to 0, so we cannot call this part entirely 

parallelizable. 

Differences if not all three conditions are true  

We shortly discuss the differences in situations in which at least one of our conditions is not fulfilled. 

Comparable costs of the parts are not guaranteed in these situations. 

 Using distributed systems instead of single machines  

Depending on the speed of the communication system, the Get & Forward Tuple part or the 

Forward Result Set part might limit the performance. 

 Using an expensive aggregate function  

For an aggregate function requiring x times as much computation time as a cheap aggregation 

(sum, min, average, …), we could multiply the call frequency of the Aggregate Operation part 

by x to get a realistic value estimating the computation time requirements compared to the 

other parts. 

 Using a data stream sending tuples with a large number of distinct keys  

For data streams sending tuples with DK number of distinct keys, we could multiply the call 

frequency of the Add My Expired Windows To Result Set part by DK to get a realistic value 

estimating the computation time requirements compared to the other parts. 

In either case, the forwarding parts, the Aggregate Operation part or the Add My Expired Windows to 

Result Set part can become the most time consuming part as well. E.g. a very expensive aggregate 

function could hide the computation costs of the hash operations up to a certain number of 

participating PUs. 

5.4 Suggestions for improvement 
If we want to increase the scalability, we need to think about alternatives: 

 Can we accelerate the non-parallelizable parts? 

 Can we reduce the number of times we need to execute the non-parallelizable parts? 

 Can we completely avoid the non-parallelizable parts by structural changes? 
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Let us have a look at the 5 parts that are not or not entirely parallelizable: 

I. Get & Forward Tuple  

It is not possible to speed-up the process of getting and forwarding a tuple itself. We just get 

and forward a reference to a certain object, placed within the shared-memory. Also there is 

no way to inform n PUs with less effort than n sending steps, at least as long as we do not have 

a broadcast function at hand.  

However, we could reduce the number of times we need to forward a tuple if we use a window 

distribution pattern, in which not each PU needs to process each tuple. In our distribution 

pattern each PU needs to know each tuple because a hash function decides about the 

responsibilities of the PUs over the windows. But then we also need a different communication 

pattern. Sticking only to neighbor-to-neighbor-communication makes it necessary to send a 

tuple through all PUs if for example we want to reach the last PU in the line. 

One approach that is introduced later (the Round-Robin-Cyclic Pane-based approach), deals 

with this idea.  

 

II. Prepare & Execute Hash Operation  

According to our analysis, this is by far the most expensive part because as Table 1 depicts, in 

most settings it is being executed much more often than the other parts.  

Actually it might be possible to speed-up this part in all 3 ways mentioned:  

 

We could probably accelerate it by developing the fastest applicable hash function that still 

offers the necessary randomness to guarantee a random window distribution for arbitrary 

input data, instead of choosing a simple built in one of the chosen language’s standard library. 

 

We could also store information about the responsible PUs for each tuple’s windows within 

this tuple. Then we would only have to calculate the hash function once for all windows a tuple 

contributes to. That means, whenever a tuple arrives at a PU p, p only needs to look up in the 

tuple’s stored data, whether p is responsible for any windows this tuple contributes to and if 

so for which. But within the Handshake approach all tuples are entering the processing system 

on the same PU (the leftmost one), which would have to do all the computations to find out 

which PU is responsible for which windows of a tuple and store this information. So in order 

to avoid the leftmost PU to become the bottleneck of the system, it would be necessary to 

change the whole communication pattern of the algorithm to allow the input data stream to 

insert data tuples on each PU.  

And this is exactly what we are doing within a new approach explained later on (the Hash-Once 

approach). 

 

We could also completely drop the hashing part and think about other ways to distribute 

windows to PUs. For example we could assign windows in a round-robin fashion to the PUs. 

For instance, taking Figure 2 as an example and assuming 3 PUs are working on the program, 

we could say: Each PU pi, 𝑖 ∈ {0,1,2}, is responsible for all windows having an index of 3𝑗 +

𝑖, 𝑗 ∈ {0,1,2, … }. 

That means PU0 is responsible for Window0, Window3, Window6, Window9 and so on, PU1 

is responsible for Window1, Window 4, Window7, Window10 and so on and PU2 is responsible 

for Window2, Window5, Window8, Window11 and so on. So whenever a tuple visits a new 
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PU, with few calculations this PU could iterate through windows, for which it is responsible 

and to which this tuple contributes.  

This is what we are doing within a new approach explained later on (the Round-Robin approach 

and also the Round-Robin-Cyclic approach).  

 

III. Add My Expired Windows to Result Set, Forward Result Set and Create New Result Set If 

Necessary: 

As long as the windows are distributed randomly over the PUs, to ensure a deterministic 

output order of the windows, each result set has to visit each PU within the current approach 

(see Section 5.12). A change to the window distribution pattern combined with another 

communication pattern described in the previous parts might limit the number of PUs each 

result set has to visit. But then one PU would have to merge the expired windows of the 

different result sets by their timestamps; and this is what we want to avoid, and the reason 

behind the result sets, where the synchronization is managed by all PUs together.  

 

However, the Forward Result Set part is very cheap anyway, at least as long as we forward 

result sets just by reference and not by value. So for the Handshake approach there is no 

necessity to focus on accelerating this part.  

 

As discussed in the previous section, the Add My Expired Windows to Result Set part is partially 

parallelizable. For each result set, each PU has to call this part once, but the amount of work 

is reduced as the number of participating PUs increases because of the decreasing amount of 

expired windows each PU has to add to the result set.  

 

The Create New Result Set If Necessary part is responsible for creating the result sets. As long 

as we use a line as our network topology with the leftmost PU outputting all results and as 

long as each result set has to visit all PUs, there is no other way than having the rightmost PU 

to create result sets and send them into the left direction if we want to avoid additional 

network traffic.  

Even with different network topologies, the creation of result sets on different PUs would 

require additional synchronization effort to order the result sets after visiting all PUs; this 

synchronization has to be done by the outputting PU. That is necessary because as result sets 

are not taking the same routes to visit all PUs, we cannot know in which order they will arrive 

at the PU that is outputting their expired windows.  

However, the costs of the part are not high, since checking the necessity to create a new result 

set requires only two arithmetical operations; and also creating a new result set only requires 

one cheap call of the result set constructor. 
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6 The Round-Robin approach for streaming aggregation 
In this chapter, we present another approach for a disjoint parallelization of sliding-window streaming 

aggregation. We call this algorithm the Round-Robin approach (for short RRA). The Round-Robin 

approach is based on the Handshake approach but changes certain aspects of it to gain advantages 

under certain circumstances. 

First (Section 6.1), we discuss the structure of the Round-Robin approach. We present its pseudocode 

and explain why it exhibits deterministic output behavior. 

Next (Section 6.2), we analyze its runtime properties. We analyze the call frequency of the different 

parts of our algorithm as well as interdependencies between the executed aggregation and the call 

frequencies and costs of the algorithm’s parts. 

Then (Section 6.3) we discuss the determined runtime properties of the algorithm. We compare them 

with the HSA’s results. 

Finally, (Section 6.4) we consider suggestions for improvements. 

6.1 Structure 
The next approach will still stick to the handshake communication pattern and was mentioned in 

Section 5.4.  

While during the previous chapter a hash function decided, on which PU a window is to be processed, 

we will now completely drop the hash function. Instead we distribute the windows in a round-robin-

fashion to the PUs to exceedingly reduce the costs to compute the window responsibilities. Now 

consecutive PUs are responsible for windows of consecutive window time-slots.  

We pay for the saving of computation time with a disadvantageous work distribution in certain 

situations in which we group tuples by their keys. This is discussed in more detail in Section 6.3. 

 

Figure 11: The Round-robin window distribution among the participating PUs 

Let us assume we have n PUs working on the program.  

Each PU pi, 𝑖 ∈ {0,1, … , n − 1}, is responsible for all windows with the indices 𝑗 ∗ 𝑛 + 𝐼, 𝑗 ∈ {0,1,2, … }. 
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So taking AggregateOperation0 from Figure 4 as an example and using 3 PUs, we make the following 

observation (see Figure 11): 

 PU0 is responsible for Window0, Window3, Window6…  

So in Figure 2 PU0 is responsible for the window within the window time-slot from 0ms to 

1000ms, the one from 810ms to 1810ms, the one from 1620ms to 2620ms and so on. 

 PU1 is responsible for Window1, Window4, Window7…  

So in Figure 2 PU1 is responsible for the window within the window time-slot from 270ms to 

1270ms, the one from 1080ms to 2080ms, the one from 1890ms to 2890ms and so on. 

 PU2 is responsible for Window2, Window5, Window8…  

So in Figure 2 PU2 is responsible for the window within the window time-slot from 540ms to 

1540ms, the one from 1350ms to 2350ms, the one from 2160ms to 3160ms and so on. 

So whenever a tuple t visits a new PU, with few calculations this PU can iterate through windows, for 

which it is responsible and to which t contributes. 

To allow each PU to determine all windows it has to take care of, it just needs to know the window 

advance and window size of the aggregate operation, in our example 270ms and 1000ms, the number 

of PUs working on the program, we call it P and it is equal to 3 in our example, and its own rank, so 0, 

1 or 2.  

While each window has a time limit difference of 270ms to its two neighbors, on each single PU all 

pairs of neighbored windows have a distance of 𝑃 ∗ 𝑊𝐴, so in our example 3 ∗ 270𝑚𝑠 = 810𝑚𝑠. 

Window0, Window3, Window6… which are all computed by PU0 have a distance of 810ms to each 

other. The same applies to Window1, Window4, Window7… which are all computed by PU1 and 

Window2, Window5, Window8... which are all computed by PU2. We name this distance local window 

advance (or LWA for short). 

Concerning the communication structure, Figure 9 and Figure 10 of the Handshake approach are still 

correct and applicable for the Round-Robin approach, since the pattern has not changed. 

6.1.1 Pseudocode 

The overall structure of the program compared to the previous approach and its pseudocode - see 

Pseudocode 1- changes only in one detail: The Hash-Operation part is omitted. 

1. while (true)   
2.     if ((Tuple t = incTupleQueue.first) != null)   
3.         Get&ForwardTuple(t)   
4.         for (each window w to which tuple t contributes that I have to compute)   
5.             FindOrCreateWindow(w)    
6.             AggregateOperation(w,t)   
7.         if (myRank == PUCount - 1)   
8.             CreateNewResultSetIfNecesarry(t)   
9.    
10.     if ((ResultSet r = incResultSetQueue.first) != null)   
11.         AddMyExpiredWindowsToResultSet(r)   
12.         ForwardOrOutputResultSet(r)   

Pseudocode 2: Pseudocode of the Round-Robin approach. It is executed by each PU. 

Assumed a tuple named curTuple arrives at an arbitrary PU p. An appropriate piece of pseudocode 

used by p for determining all windows curTuple contributes to that p has to compute could look as 

depicted in Pseudocode 3. 
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1. long localWindowAdvance = windowAdvance * puCount   
2. long localWindowOffset = myRank * windowAdvance   
3. long tempLong = curTuple.time % localWindowAdvance   
4. long firstWindowTimeLimit = curTuple.time - tempLong + localWindowOffset   
5. if (firstWindowTimeLimit <= curTuple.time)   
6.     firstWindowTimeLimit += localWindowAdvance   
7. long lastWindowTimeLimit = curTuple.time + windowSize;   
8.    
9. for (long curWindowTimeLimit = firstWindowTimeLimit; curWindowTimeLimit <= lastWindo

wTimeLimit; curWindowTimeLimit += localWindowAdvance)   
10.     //proceed by processing the parts FindOrCreateWindow & AggregateOperation   

Pseudocode 3: Pseudocode of the window responsibility calculations 

PU p searches the first window curTuple contributes to that p has to process (firstWindowTimeLimit). 

After each for-loop iteration, p increases the current window’s time limit by LWA number of time units 

(see Pseudocode 3) to get the next window w of which p has to take care.  

As soon as w is out of range to curTuple, so as soon as w’s time limit is more than WS number of time 

units away, p has finished processing all windows it is responsible for. 

6.1.2 Determinism of the output stream’s results 

Nothing has changed to the communication pattern compared to the HSA in the previous chapter. The 

result sets being sent from the last PU in the line still collect expired windows up to a certain time limit 

and order them by their expiration time.  

So all information concerning the determinism of this approach can be found in Section 5.1.2. 

6.2 Analysis of the algorithm’s runtime properties 
Similar to Section 5.2, we want to analyze the runtime properties of the algorithm and its parts. 

6.2.1 Definitions and denotations 

The definitions and denotations of this approach are identical to the ones of the Handshake approach 

(Section 5.2.1). 

6.2.2 Call frequency 

The call frequencies are equal to the ones of the HSA with the exception that there is no Prepare & 

Execute Hash Operation part. So the call frequency table as well as the parameter interdependencies 

table look similar to the tables of the previous approach (see Table 1) and the justifications can be read 

in Section 5.2.2. 

Program part Number of executions (average) per PU 

Get & Forward Tuple 𝑇 
Find or Create Window 𝑇 ∗ 𝑊𝑃𝑇

𝑃
 

Aggregate Operation 𝑇 ∗ 𝑊𝑃𝑇

𝑃
 

Create New Result Set If Necessary 𝑇 (only rightmost PU) 

Add My Expired Windows to Result Set 𝑊 (𝑊 ≤ 𝑇) 

Forward Result Set 𝑊 (𝑊 ≤ 𝑇) 
Table 4: Call frequency table of the RRA's program parts 

The whole window responsibility calculations presented in Pseudocode 3 consist of 6-7 arithmetical 

operations per arriving tuple. Because of the negligible costs that are not influenced by any aggregation 

parameter but that are constantly very low, we did not create a new part for them. We could just add 
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them to the Get & Forward Tuple part. So whenever a PU gets and forwards a tuple, it additionally 

calculates the window responsibilities. 

 
Get & Forward 

Tuple 
Find or Create 

Window 
Aggregate 
Operation 

Create New 
Result Set if 
Necessary 

Add My Expired 
Windows to 
Result Set 

Forward Result 
Set 

Increase of Thread 
Count 

      

Increase of Aggregate 
complexity 

      

Increase of Window 
Size 

      

Decrease of Window 
Advance 

      

Increase of Aggregate 
Operation Count 

      

Activation of 
Group by 

      

 

Color explanation 
Change to part’s call 

frequency 

Locally more often 
globally more often 

Locally unchanged 
globally more often 

Locally unchanged 
globally unchanged 

Locally less often 
globally unchanged 

Table 5: Interdependencies between the aggregation parameters and the call frequency of the RRA's parts 

6.2.3 Call costs 

The call costs are equal to the HSA with the exception that there is no Prepare & Execute Hash 

Operation part. So the parameter interdependencies table looks similar to the one of the previous 

approach and the justifications can be read in Section 5.2.3. 

 
Get & Forward 

Tuple 
Find or Create 

Window 
Aggregate 
Operation 

Create New 
Result Set if 
Necessary 

Add My Expired 
Windows to 
Result Set 

Forward Result 
Set 

Increase of Thread 
Count 

      

Increase of Aggregate 
complexity 

      

Increase of Window 
Size 

      

Decrease of Window 
Advance 

     (1) 

Increase of Aggregate 
Operation Count 

      

Activation of 
Group by 

     (1) 

 

Color explanation 
Change to part’s costs 

Higher 
Unchanged 

(1): Red in case forwarded by value 
Lower 

Table 6: Interdependencies between the aggregation parameters and the costs of the RRA's parts 

6.2.4 Memory space requirements 

We expect memory requirements equivalent to the ones of the HSA (see Chapter 5.2.4) due to the 

identical structure. 

6.2.5 Latency 

We do not expect significant latency differences between both approaches, since their structures are 

similar (see Chapter 5.2.5). In many situations the latency can be slightly lower because of the faster 

tuple processing rate (no hash operations), especially if WPT is large. 
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6.3 Discussion of the approach’s runtime properties 
The Round-Robin approach still has 4 different parts that are not or not entirely parallelizable. The 

Prepare & Execute Hash Operation part that was the bottleneck of the Handshake approach has been 

omitted, the rest remains mainly unchanged. 

With the same definitions and prerequisites as stated in Section 5.2.1 and the assumption that one call 

of each part costs the same amount of computing time, we want to figure out the program parts that 

are limiting the execution speed and parallelization potential.  

In the Round-Robin-Handshake approach there are two possible situations with different parts being 

the bottleneck (see Table 4): 

 WPT>P: If one tuple contributes to more windows than there are PUs, than the most 

frequently called parts are the Find or Create Window part and the Aggregate Operation part. 

We could add more PUs to our processing system to reduce the number of executions of the 

Find or Create Window part and the Aggregate Operation part each PU has to do. 

 P≥WPT: Else, we cannot significantly accelerate the algorithm by adding more PUs, since the 4 

parts Get & Forward Tuple, Create New Result Set If Necessary, Add My Expired Windows to 

Result Set and Forward Result Set still have to be executed T times each by every PU, no matter 

how many PUs we are using. 

So the 4 latter parts hinder us from efficiently using more than WPT PUs for this approach. 

Comparison with the Handshake approach  

Let us compare the expected throughput of the Round-Robin approach with the Handshake approach. 

Since the most frequently called part of the algorithm is omitted and because there are only minor 

changes to the other parts, one could expect that the Round-Robin approach is always faster than the 

Handshake approach, which is not correct. There are some cases, when the Handshake approach is 

superior to the Round-Robin approach. 

Let us assume we want to execute a very expensive aggregation. So the assumption of equal costs of 

each part does no longer apply. We assume that one execution of the Aggregate Operation part is as 

costly as 1000 executions of the Prepare & Execute Hash Operation part (and 1000 times as expensive 

as the other parts as well). We use 10 PUs. The window size be 1000 and the window advance be 500, 

which means that without grouping 𝑊𝑃𝑇 =
𝑊𝑆

𝑊𝐴
= 2 non-expired windows are existing all the time. 

Looking into Table 4, we can see that the Prepare & Execute Hash Operation part is called 𝑇 ∗ 𝑊𝑃𝑇 

times on each PU, so in our case 2T times. The Aggregate Operation part is called 
𝑇∗𝑊𝑃𝑇

𝑃
 times, so 0,2T 

times. Since we are executing a very expensive aggregation, costing as much as 1000 Hash Operation 

executions, the execution time of the Aggregate Operation part is 
1000∗0,2𝑇

2𝑇
= 100 times higher than 

the execution time of the Hash Operation. So in this case the Hash Operation part is not the limiting 

factor and its costs are negligible.  

Now we use both approaches to execute the aggregate operator. We execute it two times. The first 

time we do not group tuples by their key, the second time we do. 

 Without grouping  

The Handshake approach assigns both windows via a hash function randomly to PUs (possibly 

both to the same, which would be bad), while the Round-Robin approach assigns both 
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consecutive windows to consecutive PUs.  

So no matter if we are using the Handshake approach or the Round-Robin approach, at each 

point of time 8 PUs will be almost completely unemployed because they have no window to 

take care about.  

As long as the Handshake approach does not assign both windows to the same PU, both 

approaches have a similar throughput. As mentioned, the additional Hash Operations of the 

Handshake approach carry no weight, since the aggregation we are executing is by far more 

expensive. 

 With grouping  

Let us assume a lot of tuples with 𝐷𝐾 = 200 different keys are arriving with timestamps 

between 500 and 1000. Without grouping we would have 𝑊𝑃𝑇 =
𝑊𝑆

𝑊𝐴
= 2 open windows now: 

One in the window time-slot from 0 to 1000, one in the window time-slot from 500 to 1500. 

With grouping, each window time-slot contains one window for each distinct key. Since there 

are 200 different keys, we have 𝑊𝑃𝑇 ∗ 𝐷𝐾 = 2 ∗ 200 = 400 open windows.  

The Round-Robin approach still assigns each of the 200 windows in the window time-slot from 

0 to 1000 to one PU and each of the 200 windows in the window time-slot from 500 to 1500 

to the following PU. Hence 2 PUs are processing 200 windows each, while 8 PUs are mostly 

unemployed. 

The Handshake approach assigns all 400 windows randomly to the 10 PUs. Thus on average all 

10 PUs are processing 40 windows each.  

Since the Hash Operations of the Handshake approach still carry no weight because of the 

expensive aggregation, the Handshake approach will be up to 5 times faster than the Round-

Robin approach. 

So only under three conditions that have to be true at the same time, the Handshake approach might 

be superior: As long as one of those conditions is not fulfilled, the Round-Robin approach is faster. 

 The Aggregate Operation part has to be significantly more expensive (approximately at least P 

times more expensive) than the Hash Operation part to make the Aggregate Operation part 

the limiting factor 

 The tuples must be grouped by their key and there have to be at least as many distinct keys 

that 𝑊𝑃𝑇 ∗ 𝐷𝐾 > 𝑃 holds 

 𝑊𝑃𝑇 =
𝑊𝑆

𝑊𝐴
< 𝑃 

The number of simultaneously existing (non-expired) consecutive windows must be smaller 

than the number of participating PUs (so that the Round-Robin approach does not distribute 

the work among all participating PUs). 

6.4 Suggestions for improvement 
Partially, the suggestions for the Handshake approach (Section 5.4) still apply for the Round-Robin 

approach. In the Round-Robin approach, the most frequently used operations (compare Table 1 and 

Table 4) are called T times instead of 𝑇 ∗ 𝑊𝑃𝑇 times on each PU, as long as at least WPT number of 

PUs are working concurrently. 

In order to avoid that each PU has to call the non-parallelizable part Get & Forward Tuple T times, so 

once for each arriving tuple, we have only one possible option: We need to change the structure of 

the algorithm and also the communication pattern in a way that not each tuple has to visit each PU. 



42 
 

Similarly, in order to avoid that each PU has to call the operations Add My Expired Windows to Result 

Set and Forward Result Set up to T times, so once for each arriving result set (and as mentioned in 

Section 5.2.1, we do not expect there to be more than T result sets and window time-slots), we need 

to change the structure of the algorithm and also the communication pattern in a way that not each 

result set has to visit each PU or we need to reduce the number of result sets which increases the 

latency and raises the memory requirements of the processing system because more expired windows 

need to be stored until a result set collects them. 

The approach introduced in Chapter 9 deals with both of these suggestions; neither of them will be 

part of the next approach.  
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7 The Hash-Once approach for streaming aggregation 
In this chapter, we present another approach for a disjoint parallelization of sliding-window streaming 

aggregation. We call this algorithm the Hash-Once approach (for short HOA). The Hash-Once approach 

is based on the Handshake approach but changes certain aspects of it to gain advantages under certain 

circumstances. 

First (Section 7.1), we discuss the structure of the Hash-Once approach. We present its pseudocode 

and explain why it exhibits deterministic output behavior. 

Next (Section 7.2), we analyze its runtime properties. We analyze the call frequency of the different 

parts of our algorithm as well as interdependencies between the executed aggregation and the call 

frequencies and costs of the algorithm’s parts. 

Then (Section 7.3) we discuss the determined runtime properties of the algorithm. We compare them 

with the results of the previous approaches (HSA and RRA). 

Finally, (Section 7.4) we consider suggestions for improvements. 

7.1 Structure 
The Hash-Once approach is based on an idea explained in Section 5.3.  

In short, it breaks partially with the principles of the previous approaches by allowing certain further 

communication links (not only neighbor-to-neighbor communication) and changing the structure of 

tuples by adding additional information to them. 

Within the Handshake approach each tuple causes WPT Hash-Operation executions on each PU, where 

WPT is the number of windows each tuple contributes to (Section 5.1). All of these WPT Hash 

Operation part executions among the PUs are identical.  

As the Round-Robin approach shows, we can completely avoid using hash functions, which accelerates 

the speed in many cases considerably. But in certain cases presented in Section 6.3.1 this approach 

cannot distribute the work evenly among the PUs. For those cases we try to improve the Handshake 

approach by reducing the number of Hash Operations the PUs have to execute to determine window 

responsibilities. 

To significantly decrease the amount of Hash Operations we need to execute, we could store 

information about the responsible PUs for each window to which a tuple t contributes within this tuple 

t. Then for each tuple t we would only have to calculate the hash function once for each window to 

which t contributes. That means, whenever a tuple arrives at a PU, this PU only needs to look up in t’s 

stored data, whether it is responsible for any windows this tuple contributes to and if so for which. 

Figure 12 depicts the first three tuples and the aggregation used in Chapter 2. Now, they additionally 

contain responsibility information.  

Each tuples carries P number of lists. In each list we store the window start time of all windows the 

respective PU is responsible for.  

Here we assume (it is an arbitrary definition) that the hash function is mapping Window0 (starting at 

time 0ms) to PU0, Window1 (starting at time 270ms) to PU1, Window2 to PU1, Window3 to PU2, 

Window4 to PU0 and Window5 to PU2. 
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Figure 12: Tuples and their responsibility information in the HOA 

However, if each PU reads the tuple’s data to determine, whether it is responsible for any window this 

tuple contributes to, one PU has to store this information first. And to make sure that the information 

is available on each PU, the PU on which the tuples enter the processing system, so the leftmost PU, 

has to execute the Hash Operations and write the results to the tuples. 

So within the Handshake approach the leftmost PU would have to do all the work to find out which PU 

is responsible for which windows of a given tuple and store this information.  

That means that the leftmost PU has to do a lot of extra work. Even if we lay down that PU0 drops all 

other tasks and is merely responsible for executing the Hash Operations, it will bottleneck the system 

once a certain rate of necessary Hash Operations per second is exceeded. The rate at which Hash 

Operations are to be computed is defined by the number of tuples per second multiplied with WPT, 

the amount of windows each tuple contributes to. 

So in order to avoid the leftmost PU to become the bottleneck of the system, we could distribute the 

necessary Hash Operation executions among all PUs. But then it would be necessary to change 

communication pattern of the algorithm to allow the input data stream to insert data tuples on each 

PU. And this is exactly what we are doing within this approach (see Figure 13). 

Assumed we have 4 PUs. Each of the 4 PUs receives about a quarter of the input stream’s tuples and 

is responsible to calculate the responsibilities of the windows they are contributing to using the Hash 

Operation. 

However, it is still necessary that each tuple visits each PU. That means that a PU in the middle of the 

PU line (PU1 or PU2 in our example) needs to send its tuples in both directions unless we change 

another property of our communication pattern: We connect the rightmost with the leftmost PU so 

we connect the PU line to a PU ring. Now the PUs can stick to sending tuples to their successor. Tuples 

will need another parameter informing about where this tuple entered the PU ring so that we get to 

know as soon as the tuple has visited all PUs; then we can delete it. 

Taking Figure 13 as an example, let us call the left upper PU PU0 (or first PU) and the other PUs in 

clockwise order PU1, PU2 and PU3.  

If the input data stream inserts a tuple t into PU1, we store in t the information that it entered the 

processing system on PU1. After that PU1 executes the Hash Operations for all windows t contributes 

to and stores the information about the responsible PUs within t. Now t is being forwarded and 

processed PU by PU in clockwise order. Each PU p checks for incoming tuples, whether p is the last PU 
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this tuple has to visit. In case of t, PU0 is the last PU, which t has to visit. So after processing t, PU0 

discards t instead of forwarding it. 

 

Figure 13: Structure of the Hash-Once approach with 4 PUs. 

The save-timestamp  

It is important for each PU to know the so called save-timestamp. A PU needs to know the timestamp 

up to which it has already processed all tuples, no matter on which PU they have been inserted. 

If, for example, the save-timestamp of a PU is equal to 1000, this PU knows that no further tuples with 

a timestamp lower than 1000 will arrive. If a result set arrives now with a time limit of 900, the PU 

knows that it definitely has already received and computed all tuples that might contribute to the 

windows the result set is collecting. 

Since the input data stream sends new tuples to each PU, tuples are not necessarily arriving in 

timestamp order at the PUs.  

Hence we need to deploy certain rules for forwarding tuples to use such a safe-timestamp which is 

necessary to ensure deterministic output behavior. 

First of all, each PU uses two different queues to receive tuples (see Figure 13):  

One queue accepts tuples coming from the input data stream. We call it data stream queue.  

Another queue accepts tuples arriving from the previous PU. We call it previous PU queue. 

The rules for each PU for forwarding tuples are as follows. 

1. If my data stream queue is empty and my previous PU queue is empty  

Then I wait for incoming tuples 
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2. If my data stream queue is empty and my previous PU queue is filled  

Then I wait for incoming tuples 

3. If my data stream queue is filled and my previous PU queue is empty  

Then I take the first tuple of the data stream queue, then I forward it to my successor and then 

I process it. 

4. If my data stream queue is filled and my previous PU queue is filled  

Then I compare the timestamp of the first tuples in both queues and take the tuple with the 

lower one.  

If I am not the last PU processing this tuple, then I forward it to my successor and then I process 

it. 

Using these rules, a PU can maintain a save-timestamp.  

Let us assume the input data stream sends a tuple t to PU0.  

All further tuples the input data stream sends to PU0 will have a higher timestamp.  

PU3 is the last PU tuple t will visit. When t visits PU3, it has already visited PU0 (where it entered the 

processing system), PU1 and PU2.  

All tuples that have entered the processing system on PU0 and that will arrive at PU3 after tuple t, 

have a higher timestamp because they were sent to PU0 by the input data stream after t was sent. 

To be forwarded by PU1, t needed to have a lower timestamp than the tuples entering the processing 

system on PU1 (rule 4). If there are currently no tuples in PU1’s data stream queue, we wait until there 

are some (rule 2) to ensure that t is only being forwarded by PU1 if we can be sure that all further 

tuples PU1 sends, have a higher timestamp.  

PU2 acts similarly.  

So when t enters PU3, we know that no further tuples with a lower timestamp than the timestamp of 

t will arrive, neither from PU0, nor from PU1 or PU2. So whenever a tuple that was inserted on PU0 

enters PU3, PU3 can take its timestamp to update its save-timestamp, since it knows that further 

arriving tuples will have higher timestamps.   

Similarly, whenever a tuple that was inserted on PU1 enters PU0 (the last PU it visits), PU0 takes its 

timestamp to update its save-timestamp. PU1 updates its save-timestamps whenever tuples arrive 

that were inserted at PU2 and PU2 updates its save-timestamp whenever tuples arrive that were 

inserted at PU 3.  

So now each PU has a save-timestamp and will add windows to an arriving result set not before its 

save-timestamp is greater than or equal to the result set’s time limit. 

Result sets  

The creation of result sets is still solely being handled by the last PU in the ring, in Figure 13 the left 

lower one, so in the same manner as in the Handshake approach. Result sets are being forwarded 

counterclockwise PU by PU. Before forwarding it, each PU waits until its save-timestamp is greater or 

equal than the result set’s time limit and then it adds its expired windows to the result set. 

The first PU in the ring, PU0, will produce output tuples whenever a result set arrives. 

Order-sensitive aggregations  

The communication pattern has changed compared to the approach introduced in the previous 

chapters. Tuples are entering the processing system on arbitrary PUs but still visit all PUs. They are, in 

contrast to the previous approaches, not necessarily arriving in timestamp order at PUs.  

When processing order-sensitive aggregate operations, we cannot dynamically compute them without 
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further effort if it is not guaranteed that tuples are arriving with non-decreasing timestamps (discussed 

in detail in Section 2.4). 

7.1.1 Pseudocode 

The corresponding pseudocode representing this approach’s structure is shown in Pseudocode 4. It is 

being executed by each PU. 

A PU p continuously (line 1) checks, whether there are tuples in one or both of the tuple queues (line 

2) or result sets (line 24). 

1. while (true)   
2.     if (datastreamQueue.isFilled() or prevPUQueue.isFilled())   
3.         Tuple tupleToProcess = null   
4.         if (datastreamQueue.isEmpty() and (Tuple t = prevPUQueue.first) != null)   
5.         else   
6.             if ((Tuple t = datastreamQueue.first) != null and prevPUQueue.isEmpty())

   
7.                 Prepare&ExecuteHashOperation&StoreResultsInTuple(t)   
8.                 tupleToProcess = t   
9.             else   
10.                 if ((Tuple t1 = datastreamQueue.first) != null and (Tuple t2 = prevP

UQueue.first) != null)   
11.                     if (t1.timestamp < t2.timestamp)   
12.                         Prepare&ExecuteHashOperation&StoreResultsInTuple(t1)   
13.                         tupleToProcess = t1   
14.                     else   
15.                         tupleToProcess = t2   
16.        
17.         if (tupleToProcess != null)   
18.             if (tupleToProcess.lastPUVisited != me)   
19.                 Get&ForwardTuple(tupleToProcess)   
20.             else   
21.                 mySafeTimestamp = tupleToProcess.timestamp   
22.             for (each Window w, Tuple tupleToProcess contributes to that I have to c

ompute)   
23.                 FindOrCreateWindow(w)   
24.                 AggregateOperation(w,tupleToProcess)   
25.             if (myRank == PUCount - 1)   
26.                 CreateNewResultSetIfNecesarry(tupleToProcess)   
27.       
28.     if ((ResultSet r = incomingResultSets.first) != null and mySafeTimestamp >= r.ti

meLimit)   
29.         AddMyExpiredWindowsToResultSet(r)   
30.         ForwardOrOutputResultSet(r)   

Pseudocode 4: Pseudocode of the Hash-Once approach. It is executed by each PU. 

If there are tuples in at least one of both incoming tuple queues (the data stream queue or the previous 

PU queue), p applies the 4 forwarding rules described in the previous section. If a tuple of the data 

stream queue is being chosen, p has to calculate the responsibilities and saves them within the tuple 

(lines 7 or 12).  

Now, if a tuple was chosen (line 17), p forwards it to the next PU (line 19) unless p is the last PU this 

tuple has to visit (line 18). Otherwise p can update its safe-timestamp (line 21).  

Next p processes the tuple. It determines all windows to which this tuple contributes that p has to 

compute just by looking up the responsibility information stored within this tuple (line 22).   

So if p is responsible to process a window w, it checks, whether it has already stored w and started 

processing it and if not it stores w. Then PU p adds tuple t to window w (line 23).  

In case w’s aggregate operation is dynamically computable (Section 2.4), we can execute the next step 
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of the aggregate operation to create a new intermediate result (line 24).  

Next, the last PU (line 25) has to check, whether any windows have expired and if so, it creates a new 

result set (line 26). 

If there arrived a new result set r and p’s safe-timestamp is greater than or equal to r’s time limit (line 

28), PU p adds all of its expired windows to r (line 29). Then it forwards r to its left neighbor (line 30). 

If p is the PU with index 0, it instead puts the results of the expired windows contained in r into the 

output stream. 

7.1.2 Determinism of the output stream’s results 

The save-timestamp explained in the previous section ensures that a window will never leave a PU 

until the PU knows that no further tuples contributing to that window will arrive. It forces incoming 

result sets to wait until all windows contributing to this result set have expired.  

So as in the previous approaches the result sets being sent from the last PU contain all expired windows 

up to a certain time limit ordered by their expiration time. Hence the output behavior is deterministic 

in this approach too. 

7.2 Analysis of the algorithm’s runtime properties 
Similar to Section 5.2, we want to analyze the runtime properties of the algorithm and its parts. 

7.2.1 Definitions and denotations 

The definitions and denotations of this approach are identical to the ones of the Handshake approach 

(Section 5.2.1). 

7.2.2 Call frequency 

The call frequencies are equal to the ones of the HSA with the exception that the Prepare & Execute 

Hash Operation & Store Results in Tuple part substitutes the Prepare & Execute Hash Operation part 

of the Handshake approach. This part is now also accountable for storing the determined window 

responsibilities within the respective tuple. By storing the responsibilities within the tuples, we reduce 

the amount of executions of the Hash Operation part by the factor P; we divide the remaining work 

(𝑇 ∗ 𝑊𝑃𝑇) evenly among all PUs, which leads to 
𝑇∗𝑊𝑃𝑇

𝑃
 calls per PU. 

Program part Number of executions (average) 
per PU 

Get & Forward Tuple 𝑇 

Prepare & Execute Hash Operation & Store Results In Tuple 𝑇 ∗ 𝑊𝑃𝑇

𝑃
 

Find or Create Window 𝑇 ∗ 𝑊𝑃𝑇

𝑃
 

Aggregate Operation 𝑇 ∗ 𝑊𝑃𝑇

𝑃
 

Create New Result Set If Necessary 𝑇 (only last PU in ring) 

Add My Expired Windows to Result Set 𝑊 (𝑊 ≤ 𝑇) 

Forward Result Set 𝑊 (𝑊 ≤ 𝑇) 
Table 7: Call frequency table of the HOA's program parts 

The call frequency table as well as the parameter interdependencies table look similar to the tables of 

the Handshake approach (see Table 1) and the justifications can be read in Section 5.2.2. 
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Get & Forward 

Tuple 

Prepare & 
Execute Hash 
Operation & 
Store Results 

in Tuple 

Find or Create 
Window 

Aggregate 
Operation 

Create New 
Result Set if 
Necessary 

Add My 
Expired 

Windows to 
Result Set 

Forward 
Result Set 

Increase of Thread 
Count 

       

Increase of Aggregate 
complexity 

       

Increase of Window 
Size 

       

Decrease of Window 
Advance 

       

Increase of Aggregate 
Operation Count 

       

Activation of 
Group by 

       

 

Color explanation 
Change to part’s call 

frequency 

Locally more often 
globally more often 

Locally unchanged 
globally more often 

Locally unchanged 
globally unchanged 

Locally less often 
globally unchanged 

Table 8: Interdependencies between the aggregation parameters and the call frequency of the HOA's parts 

7.2.3 Call costs 

The call costs are equal to the HSA with the exception that the communication costs increase, 

especially if we transport data by value, since all tuples carry additional information about the window 

responsibilities. That can increase the size of tuples by several magnitudes depending on WPT. The rest 

of the parameter interdependencies table looks similar to the one of the Handshake approach and the 

justifications can be read in Section 5.2.3. 

 
Get & Forward 

Tuple 

Prepare & 
Execute Hash 
Operation & 
Store Results 

in Tuple 

Find or Create 
Window 

Aggregate 
Operation 

Create New 
Result Set if 
Necessary 

Add My 
Expired 

Windows to 
Result Set 

Forward 
Result Set 

Increase of Thread 
Count 

       

Increase of Aggregate 
complexity 

       

Increase of Window 
Size 

(1)       

Decrease of Window 
Advance 

(1)      (1) 

Increase of Aggregate 
Operation Count 

(1)       

Activation of 
Group by 

      (1) 

 

Color explanation 
Change to part’s costs 

Higher 
Unchanged 

(1): Red in case forwarded by value 
Lower 

Table 9: Interdependencies between the aggregation parameters and the costs of the HOA's parts 

7.2.4 Memory space requirements 

We expect memory requirements similar to the ones of the HSA (see Section 5.2.4). They can be slightly 

higher due to the usage of two tuple queues instead of one and the higher latency (see the next 

section, Section 7.2.5), which can lead to larger numbers of expired windows that are simultaneously 

stored in the processing system waiting to be output. 
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7.2.5 Latency 

While we expect very few circumstances, under which the Handshake approach will be superior to the 

Hash-Once approach in terms of throughput (see Table 7), we expect the latency to be much lower in 

the Handshake approach.  

In the Handshake approach, the tuple that causes the creation of a new result set at the rightmost PU 

has already passed all PUs in the line, so the result set can quickly pass the PU line because all PUs have 

processed the necessary tuples already.  

In the Hash-Once approach, the tuple that causes the creation of a new result set will only update the 

safe-timestamp of one PU. The result set can only pass the whole PU ring, as soon as each PU has a 

safe-timestamp greater than or equal to the result set’s time limit.  

Depending on the input stream’s properties, this synchronizing behavior may introduce a huge delay. 

For example, if the input stream stops sending tuples for a certain amount of time, some PUs might 

still have a safe-timestamp that is not high enough to allow result sets to pass.  

Possible imbalances of the work distribution or other external influencing factors (e.g. scheduling 

decisions of the operating system) between the participating PUs may lead to PUs exhibiting incoming 

tuple queues that are filled with many elements; this can cause delayed updates of the safe-timestamp 

on those PUs and hence hinder result sets from quickly passing the PU ring to be output.  

However, it is difficult to quantify the latency.  

In an ideal case, if the input stream is sending tuples continuously at a constant rate and evenly 

distributed among the participating PUs and there are no imbalances between the participating PUs’ 

workloads, then we do not expect long latencies. If the number of participating PUs is single-digit or 

double-digit and the tuple processing speed is not exceptionally slow (e.g. because of very expensive 

aggregations or very large numbers for WPT), we expect latencies of up to one second. 

Since the Round-Robin approach has the same communication structure as the Handshake approach, 

the argumentation here is similar and we expect the Round-Robin approach’s latency to be much lower 

than the Hash-Once approach’s latency. 

7.3 Discussion of the approach’s runtime properties 
The Hash-Once approach still has 4 different parts that are not or not entirely parallelizable. The 

Prepare & Execute Hash Operation part that was the bottleneck of the Handshake approach has been 

substituted by a parallelizable part, the rest remains mainly unchanged. 

With the same definitions and prerequisites as stated in Section 5.2.1 and the assumption that one call 

of each part costs the same amount of computing time, we want to figure out the program parts that 

are limiting the execution speed and parallelization potential.  

In the Hash-Once approach there are two possible situations with different parts being the bottleneck 

(see Table 7): 

 WPT>P: If one tuple contributes to more windows than there are PUs, than the most 

frequently called operations are the Hash Operation, the Find or Create Window operation 

and the Aggregate Operation.  

We could add more PUs to our processing system to reduce the number of executions each 

PU has to perform. 

 P≥WPT: Else, we cannot significantly accelerate the algorithm by adding more PUs, since the 4 

parts Get & Forward Tuple, Create New Result Set If Necessary, Add My Expired Windows to 
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Result Set and Forward Result Set still have to be computed T times each by every PU, no 

matter how many PUs we are using. 

So the 4 latter parts hinder us from efficiently using more than WPT PUs for this approach. 

Comparison of the throughput with the Handshake approach and the Round-Robin approach  

Next we compare the performance of the Hash-Once approach with the previous approaches. 

Since the most frequently called part of the Handshake approach was substituted by a cheaper part, 

we expect the Hash-Once approach to be much faster than the Handshake approach. The Hash-Once 

approach also performs well under the 3 conditions that are unfavorable for the Round-Robin 

approach mentioned in Section 6.2.4. 

The Round-Robin approach, which completely dropped the Hash Operation part instead of just 

substituting it with a cheaper part, will in most settings perform better than the Hash-Once approach, 

but only slightly better, since the costs of the Hash-Once approach’s Hash Operation part are 

asymptotically equal to the Find or Create Window part and the Aggregate Operation part. If we 

choose a very expensive aggregation, the advantage of the Round-Robin approach might even become 

negligible.  

However, if the aggregation’s parameters are as stated in Section 6.2.4, the Hash-Once approach will 

be superior to the Round-Robin approach, just like the Handshake approach, because the Round-Robin 

approach is not able to distribute the work among all participating PUs 

Advantages of the structural changes  

There are two further advantages of the Hash-Once approach over the previous approaches resulting 

from the structural changes: 

 It gives us the opportunity to use multiple input streams at the same time; as for one input 

stream, each stream has to guarantee timestamp order of its own tuples, but timestamp order 

between the different streams is not necessary. Each input stream sends data to one of the 

participating PUs and by using the 4 synchronization rules explained in Section 7.1, all input 

streams get synchronized and a deterministic output is ensured. This way the 

synchronization’s costs are distributed evenly among all PUs.  

In the Handshake approach and the Round-Robin approach when operating with several input 

streams, it would be necessary to charge one extra thread with the task of merging all input 

streams before forwarding it to the first PU in the line. 

 The Hash-Once approach may in some situations be more resilient to short variations of the 

participating PUs’ speed. In the previous approaches each PU that works slightly slower for a 

short period of time – for example due to temporary imbalance of the work distribution – 

slows all the following PUs in the line because it forces them to wait for further tuples to be 

forwarded. In the Hash-Once approach, each tuple has its own input stream and as we know 

tuples from the own input stream can be processed and forwarded if the previous PU queue 

is empty, which means that no PU has to wait for the previous PUs, as long as there are tuples 

incoming from the input stream.  

Hence we expect a slightly higher processor utilization and accordingly a somewhat better 

performance.  
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Disadvantages of the structural changes  

There are four disadvantages of the Hash-Once approach resulting from the change of the 

communication structure: 

 If we want to apply this approach to a distributed system, tuples have to be transferred 

physically. It is not sufficient to transport references like in a shared-memory based version, 

since all participating PUs will possibly need access to all of the tuples data. Since the Hash-

Once approach stores information about the window responsibilities within the tuples, the 

size of tuples might increase dramatically, depending on the WPT parameter and the “default” 

size of a tuple. This can increase the network traffic by several magnitudes.  

In contrast, in the Handshake approach and the Round-Robin approach the tuples’ size always 

remains constant. 

 The connections are not limited to neighbor-to-neighbor communication. Hence in case we 

want to use this approach on distributed systems, we need to maintain twice as many 

connections: one from each PU to both of its neighbors and one from each PU to the input 

thread. 

 We already discussed that the latency will always be higher due to the necessity for result sets 

to wait until each PU on its way has a sufficiently high safe-timestamp.  

If the input streams do not send tuples for a longer period of time to one PU p (for example 

because there is a temporary congestion or problem with the connection), p’s neighbor in 

counterclockwise direction (the last PU p’s tuple are visiting on their way through the PU ring) 

will not be able to update its safe-timestamp during this time. P’s neighbor can neither process 

and forward tuples (see the forwarding rules in Section 7.1) nor result sets.  

So in order to work properly and with reasonable latency, each PU needs incoming tuples in 

short intervals. 

 As discussed in Section 7.1, without further effort it is not possible to dynamically compute 

order-sensitive aggregate operations, since in general tuples are not arriving in timestamp 

order at the different PUs. 

7.4 Suggestions for improvement 
In the Hash-Once approach, the most frequently used operations (compare Table 1, Table 4 and Table 

7) are also called T instead of 𝑇 ∗ 𝑊𝑃𝑇 times on each PU, as long as at least WPT number of PUs are 

working concurrently. So the suggestions for improvement for the Hash-Once approach are similar to 

the ones for the Round-Robin approach (Section 6.3). We need to change the structure of the 

algorithm and also the communication pattern in a way that not each tuple or each result set has to 

visit each PU. 
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8 The Round-Robin-Cyclic approach for streaming aggregation 
In this chapter, we present another approach for a disjoint parallelization of sliding-window streaming 

aggregation. We call this algorithm the Round-Robin-Cyclic approach (for short RRCA). The Round-

Robin-Cyclic approach is a combination of elements of the Round-Robin approach and the Hash-Once 

approach to exploit advantages of both. 

First (Section 8.1), we discuss the structure of the Round-Robin-Cyclic approach. We present its 

pseudocode and explain why it exhibits deterministic output behavior. 

Next (Section 8.2), we analyze its runtime properties. We analyze the call frequency of the different 

parts of our algorithm as well as interdependencies between the executed aggregation and the call 

frequencies and costs of the algorithm’s parts. 

Then (Section 8.3) we discuss the determined runtime properties of the algorithm. We compare them 

with the results of the previous approaches (HSA, RRA and HOA). 

Finally, (Section 8.4) we consider suggestions for improvements. 

8.1 Structure 
The Round-Robin-Cyclic approach is basically a combination of the Round-Robin approach and the 

Hash-Once approach. 

 

Figure 14: Structure of the Round-Robin-Cyclic approach with 4 PUs. 

It takes the window distribution pattern of the Round-Robin approach and the communication 

structure and synchronization rules of the Hash-Once approach.  

So as the Hash-Once approach, it breaks partially with the neighbor-to-neighbor-limited 
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communication structure by allowing certain further communication links. It uses the 4 presented 

tuple forwarding rules to synchronize the PUs’ input streams and guarantee deterministic output 

behavior. 

But unlike the Hash-Once approach, it does not add further window responsibility information to the 

tuple, since the responsibilities are still resulting from the Round-Robin schema. The only additional 

information a tuple needs is the knowledge about the PU on which it entered the processing system. 

The Round-Robin-Cyclic approach is meant to grant the Round-Robin approach the advantages that 

come along with the cyclic communication structure of the Hash-Once approach at the cost of some 

of the downsides of the Hash-Once approach. 

8.1.1 Pseudocode 

The corresponding pseudocode representing this approach’s structure is shown in Pseudocode 5. It is 

being executed by each PU. 

The pseudocode is very similar to the one of the Hash-Once approach but the Prepare & Execute Hash 

Operation & Store Results in Tuple part is dropped. Instead we identify the window for a given tuple 

by calculating the 6-7 arithmetic operations presented in Section 6.1.1 and Pseudocode 3. 

1. while (true)   
2.     if (datastreamQueue.isFilled() or prevPUQueue.isFilled())   
3.         Tuple tupleToProcess = null   
4.         if (datastreamQueue.isEmpty() and (Tuple t = prevPUQueue.first) != null)   
5.         else   
6.             if ((Tuple t = datastreamQueue.first) != null and prevPUQueue.isEmpty())

   
7.                 tupleToProcess = t   
8.             else   
9.                 if ((Tuple t1 = datastreamQueue.first) != null and (Tuple t2 = prevP

UQueue.first) != null)   
10.                     tupleToProcess = t1.timestamp < t2.timestamp ? t1 : t2   
11.        
12.         if (tupleToProcess != null)   
13.             if (tupleToProcess.lastPUVisited != me)   
14.                 Get&ForwardTuple(tupleToProcess)   
15.             else   
16.                 mySafeTimestamp = tupleToProcess.timestamp   
17.             for (each window w, tuple tupleToProcess contributes to that I have to c

ompute)   
18.                 FindOrCreateWindow(w)   
19.                 AggregateOperation(w,tupleToProcess)   
20.             if (myRank == PUCount - 1)   
21.                 CreateNewResultSetIfNecesarry(tupleToProcess)   
22.       
23.     if ((ResultSet r = incomingResultSets.first) != null and mySafeTimestamp >= r.ti

meLimit)   
24.         AddMyExpiredWindowsToResultSet(r)   
25.         ForwardOrOutputResultSet(r)   

Pseudocode 5: Pseudocode of the Round-Robin-Cyclic approach. It is executed by each PU. 

A PU p continuously (line 1) checks, whether there are tuples in one or both of the tuple queues (line 

2) or result sets (line 23). 

If there are tuples in at least one of both incoming tuple queues (the data stream queue or the previous 

PU queue), p applies the 4 forwarding rules as described in Section 7.1 of the Hash-Once approach.  

Now, if a tuple was chosen (line 12), p forwards it to the next PU (line 14) unless p is the last PU this 
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tuple has to visit (line 13). Otherwise p can update its safe-timestamp (line 16).  

Next p processes the tuple. It determines all windows to which this tuple contributes that p has to 

compute by calculating the arithmetic operations presented in Section 6.1 (line 17).   

So if p is responsible to process a window w, it checks, whether it has already stored w and started 

processing it and if not it stores w. Then PU p adds tuple t to window w (line 18).  

In case w’s aggregate operation is dynamically computable (Section 2.4), we can execute the next step 

of the aggregate operation to create a new intermediate result (line 19).  

Next, the last PU (line 20) has to check, whether any windows have expired and if so, it creates a new 

result set (line 21). 

If there arrived a new result set r and p’s safe-timestamp is greater than or equal to r’s time limit (line 

23), PU p adds all of its expired windows to r (line 24). Then it forwards r to its left neighbor (line 25). 

If p is the PU with index 0, it instead puts the results of the expired windows contained in r into the 

output stream. 

8.1.2 Determinism of the output stream’s results 

Nothing has changed to the communication pattern compared to the Hash-Once approach introduced 

in the previous chapter. The result sets being sent from the last PU in the line still collect expired 

windows up to a certain time limit and order them by their expiration time.  

The 4 forwarding rules that are granting us the safe-timestamp ensure that all windows w which will 

be added to a result set r are not added to r before all tuples that might contribute to these windows 

have arrived.  

So all information concerning the determinism of this approach can be found in Section 7.1.2. 

8.2 Analysis of the algorithm’s runtime properties 
Similar to Section 5.2, we want to analyze the runtime properties of the algorithm and its parts. 

8.2.1 Definitions and denotations 

The definitions and denotations of this approach are identical to the ones of the Handshake approach 

(Section 5.2.1). 

8.2.2 Call frequency 

The call frequencies are exactly the same as in the Round-Robin approach. The justifications can be 

read in Section 5.2.2 and 6.2.2. 

Program part Number of executions (average) per PU 

Get & Forward Tuple 𝑇 
Find or Create Window 𝑇 ∗ 𝑊𝑃𝑇

𝑃
 

Aggregate Operation 𝑇 ∗ 𝑊𝑃𝑇

𝑃
 

Create New Result Set If Necessary 𝑇 (only last PU in ring) 

Add My Expired Windows to Result Set 𝑊 (𝑊 ≤ 𝑇) 

Forward Result Set 𝑊 (𝑊 ≤ 𝑇) 
Table 10: Call frequency table of the RRCA's program parts 

The program parts that are limiting the execution speed and parallelization potential are equal to the 

ones in the Round-Robin approach. For more information and a short discussion, we refer to Section 

6.2.2. 
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Get & Forward 

Tuple 
Find or Create 

Window 
Aggregate 
Operation 

Create New 
Result Set if 
Necessary 

Add My Expired 
Windows to 
Result Set 

Forward Result 
Set 

Increase of Thread 
Count 

      

Increase of Aggregate 
complexity 

      

Increase of Window 
Size 

      

Decrease of Window 
Advance 

      

Increase of Aggregate 
Operation Count 

      

Activation of 
Group by 

      

 

Color explanation 
Change to part’s call 

frequency 

Locally more often 
globally more often 

Locally unchanged 
globally more often 

Locally unchanged 
globally unchanged 

Locally less often 
globally unchanged 

Table 11: Interdependencies between the aggregation parameters and the call frequency of the RRCA's parts 

8.2.3 Call costs 

The call costs are equal to the RRA. So the parameter interdependencies table looks similar to the one 

of the RRA and the justifications can be read in Section 5.2.3 and 6.2.3. 

 
Get & Forward 

Tuple 
Find or Create 

Window 
Aggregate 
Operation 

Create New 
Result Set if 
Necessary 

Add My Expired 
Windows to 
Result Set 

Forward Result 
Set 

Increase of Thread 
Count 

      

Increase of Aggregate 
complexity 

      

Increase of Window 
Size 

      

Decrease of Window 
Advance 

     (1) 

Increase of Aggregate 
Operation Count 

      

Activation of 
Group by 

     (1) 

 

Color explanation 
Change to part’s costs 

Higher 
Unchanged 

(1): Red in case forwarded by value 
Lower 

Table 12: Interdependencies between the aggregation parameters and the costs of the RRCA’s parts 

8.2.4 Memory space requirements 

As for the HOA (see Section 7.2.4), we expect memory requirements similar to the ones of the HSA 

(see Section 5.2.4). They can be slightly higher due to the usage of two tuple queues instead of one 

and the higher latency (see the next section, Section 7.2.5), which can lead to larger numbers of expired 

windows that are simultaneously stored in the processing system waiting to be output. 

8.2.5 Latency 

The latency behavior of the RRCA is akin to the one of the HOA (see Section 7.2.5). We expect the 

approaches with a cyclic communication structure (the HOA and the RRCA) to perform worse than the 

approaches with a PU line, since the four tuple forwarding rules and the maintenance of the safe-

timestamp delays the output of created result sets. 
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8.3 Discussion of the approach’s runtime properties 
The Round-Robin-Cyclic approach still has 4 different parts that are not or not entirely parallelizable.  

Comparison of the throughput with the previous approaches  

We compare the expected performance of the Round-Robin-Cyclic approach with the previous 

approaches. 

Because of the absence of hash functions to determine window responsibilities, both the Round-Robin 

approach and the Round-Robin-Cyclic approach have advantages over the hash-based approaches 

(HSA and HOA). As long as the 3 aggregation parameters mentioned in Section 6.2.4 do not apply, we 

expect the RRCA as well as the RRA to be significantly faster than the HSA and slightly faster than the 

HOA. 

Advantages of the structural changes  

As explained in the previous chapter, the cyclic communication structure grants us two advantages 

over the non-cyclic approaches (a more detailed discussion can be found in Section 7.2.4): 

 It gives us the opportunity to use multiple input streams at the same time. 

 The RRCA can be more resilient to short variations of the participating PUs’ speed, which may 

lead to a higher throughput rate compared to the RRA due to higher processor utilization. 

Disadvantages of the structural changes  

Of the four disadvantages introduced by the cyclic communication structure, one becomes obsolete: 

Since we do not store additional information within tuples, there is not more network traffic than in 

the Handshake and Round-Robin approach, when using the RRCA on distributed systems (see Section 

7.2.4). However, two possible disadvantages remain: 

 The connections are not limited to neighbor-to-neighbor communication. Hence in case we 

want to use this approach on distributed systems, we need to maintain twice as many 

connections. 

 If a PU does not receive incoming tuples for a longer period of time, its neighbor in 

counterclockwise direction cannot process and forward tuples and result sets and update its 

save-timestamp. 

 As discussed in Section 7.1, without further effort it is not possible to dynamically compute 

order-sensitive aggregate operations, since in general, tuples are not arriving in timestamp 

order. 

8.4 Suggestions for improvement 
The suggestions for improvement of this approach are identical to the ones for the Round-Robin 

approach and the Hash-Once approach (see Section 6.4 and Section 7.4). To accelerate the algorithm, 

we need to handle tuples and result sets in a way such that each tuple and each result set do not have 

to visit each PU. 
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9 The Round-Robin-Cyclic Pane-based approach for streaming 

aggregation 
In this chapter, we present another approach for a disjoint parallelization of sliding-window streaming 

aggregation. We call this algorithm the Round-Robin-Cyclic Pane-based approach (for short RRCPA). 

The Round-Robin-Cyclic Pane-based approach rests upon the Round-Robin-Cyclic approach but 

introduces a new object type – the pane – to improve its performance. 

First (Section 9.1), we discuss the structure of the Round-Robin-Cyclic Pane-based approach. We 

present its pseudocode and explain why it exhibits deterministic output behavior. 

Next (Section 9.2), we analyze its runtime properties. We analyze the call frequency of the different 

parts of our algorithm as well as interdependencies between the executed aggregation and the call 

frequencies and costs of the algorithm’s parts. 

Then (Section 9.3) we discuss the determined runtime properties of the algorithm. We compare them 

with the results of the previous approaches (HSA, RRA, HOA and RRCPA). 

Finally, (Section 9.4) we consider suggestions for improvements. 

9.1 Structure 
The Round-Robin-Cyclic Pane-based approach (also referred to as RRCPA or pane-based approach) 

rests upon an idea presented in this article [4]. It breaks with the last four approaches’ principle that 

each tuple has to visit each PU and is under certain circumstances able to outperform the previous 

approaches by several orders of magnitude. 

Redundant aggregations in the previous approaches  

Let us imagine the following scenario: We have one input stream and want to execute an aggregation 

on it, for example we want to calculate the sum. We let the window size be one hour and the window 

advance one minute and we do not group tuples by their key.  

All tuples with timestamps of the same minute, for example all tuples with timestamps between 70:00 

minutes and 70:59 minutes, contribute to the same 60 windows. In our example all those tuples 

contribute to the window from 11:00 minutes to 70:59 minutes, to the window from 12:00 minutes to 

71:59 minutes, to the window from 13:00 minutes to 72:59 minutes and so on. The last window to 

which those tuples contribute is the one from 70:00 minutes to 129:59 minutes.  

All those 60 windows sum up the values of the respective tuples they contain, which also means that 

the tuples with timestamps between 70:00 minutes and 70:59 minutes are summed up 60 times. 

Theoretically, it would be sufficient to sum up the values of the tuples with timestamps between 70:00 

minutes and 70:59 minutes once and reuse the sum whenever it is needed, so altogether 60 times. 

This would reduce the number of aggregation steps by the factor 60, so about 98,3%. And this is what 

the new approach is doing. 

Panes and their properties  

The new approach avoids the repeated calculations of the same operations.  

The sum of every single minute is calculated only once and on one single PU.  

We call one of those one-minute lasting windows pane.  

A pane is a usual window; the only difference to a regular window is that its time span PNS (pane size) 

is not WS number of time units (60 minutes), but WA time units (1 minute). Its advance PNA (pane 
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advance) is equal to WA as well. So one window consists of panes per window 𝑃𝑃𝑊 =
𝑊𝑆

𝑊𝐴
 number of 

panes. We assume that WS is divisible by WA without a remainder. Since PNS=WA, panes are always 

non-overlapping, so each tuple is just contributing to one single pane.  

So in our example, a window consists of 𝑃𝑃𝑊 =
𝑊𝑆

𝑊𝐴
=

60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

1 𝑚𝑖𝑛𝑢𝑡𝑒
= 60 panes.  

The number of windows to which one pane contributes (WPP, windows per pane) is always equal to 

PPW. 

Within our new approach the results for each 60 minutes lasting window are aggregated from the 

results of the respective 60 one-minute lasting panes. 

 

Figure 15: Panes and windows; WS=1000ms, WA=250ms 

In the appendix in Section 17.4 there is a figure depicting a concrete example for streaming aggregation 

explaining the differences between the non-pane-based approaches and the pane-based one. 

Pane responsibilities  

The responsibilities for the panes are distributed in Round-Robin-fashion among the participating PUs, 

as we can see in Figure 15. The aggregation for all tuples contributing to the first pane (tuples with 

timestamps between 0 and 250 time units) is computed by the first PU (PU0), the aggregation for all 

tuples contributing to the second pane (tuples with timestamps between 250 and 500) is handled by 

the second PU (PU1) and so on.  

Since the panes are non-overlapping and each tuple contributes to only one single pane, tuples do not 

need to visit all PUs. For each tuple it is sufficient to visit one single PU.  

Unfortunately, without further effort, the input stream does not know to which PU it has to send a 

given tuple t. To find out which PU is responsible for t, it needs to calculate  

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒𝑃𝑈 =
𝑡.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 % (𝑃∗𝑊𝐴)

𝑊𝐴
, so 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒𝑃𝑈 =

𝑡.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 % 750

250
 in the example in 

Figure 15.  

This means that in each 750 time units lasting interval, PU0 is responsible for all tuples with timestamps 

between 0 and 249, PU1 is responsible for all tuples with timestamps between 250 and 499 and PU2 

is responsible for all tuples with timestamps between 500 and 749.  

So in this approach, the input stream (or in other words the machine that is sending its tuples) has to 

execute additional computations to determine the responsible PU for a given tuple. Depending on the 

sending machine’s speed and the rate tuples shall be sent, the sending machine might bottleneck the 

system. The sending machine has quasi centralized coordination tasks here and in this point the RRCPA 
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infringes the aim of a fully disjoint parallelization. However, there are other articles that deal with the 

parallelization of input streams as well (see Chapter 12 – Related Work). 

Pane expiration  

Each pane expires under the same circumstances, like regular windows do. In Figure 15, Pane0 on PU0 

expires, as soon as PU0 receives a tuple with a higher timestamp than Pane0’s time limit. Since PU0 

does not receive any tuples for Pane1 or Pane2, the lowest possible timestamp of an incoming tuple 

that causes the expiration of Pane0 is 1000, which contributes to Pane3 on PU0.  

In general, when using n PUs to process our program, each PU pi is responsible for panei, panei+n, 

panei+2n, panei+3n and so on. So between two consecutive panes of one PU there are n-1 other panes. 

Thus the more PUs we are using, the more panes are between two consecutive panes of one PU and 

hence the longer it takes, until one PU receives the first tuple of its next pane that leads to the 

expiration of its current pane. So an increasing amount of PUs leads to an ascending latency that panes 

need to expire, independent of the rate tuples are incoming or the processor utilization.  

If for example we execute an aggregation with a window size of 60 minutes and a window advance of 

1 minute and use 20 PUs to work on the problem, we have a latency of 20 minutes until the first pane 

expires. 

It would be possible to send dummy tuples or messages to inform other PUs about arrived tuples in 

order to shorten the delay after which windows expire. But we have to bear in mind that in case 

WA≈ATD, the number of required dummy tuples is as high as the number of tuples itself, causing much 

additional work. So using additional messages is basically a trade-off between throughput and latency.  

Window responsibilities  

The responsibilities of windows are also distributed in round-robin fashion: PU0 is responsible for 

Window0, Window3, Window6, …, PU1 is responsible for Window1, Window4, Window7, …, and PU2 

is responsible for Window2, Window5, Window8, … (see Figure 15). 

Aggregating panes  

In the previous approaches, to calculate the final aggregation result of a window, we aggregated all 

the tuples contributing to the window.  

In the pane-based approach, to calculate the final result of a window, we aggregate the aggregation 

results of all panes of which this window consists. Taking Figure 15 as an example, to compute the 

aggregation result of Window0, we need to aggregate the aggregation results of Pane0, Pane1, Pane2 

and Pane3, to compute the aggregation result of Window1, we need to aggregate the aggregation 

results of Pane1, Pane2, Pane3 and Pane4 and so on.  

In general, a PU has not access to all panes that it needs to compute the aggregation result of a window. 

Taking Figure 15 as example, PU0 needs access to Pane0, Pane1, Pane2 and Pane3 to calculate the 

aggregation result of Window0. Since PU0 is only responsible for Pane0, Pane3, Pane6 and so on, it 

needs access to panes that have been computed on other PUs, in our example Pane1 and Pane2. 

Transferring expired panes  

So in the pane-based approach panes (and not tuples) are being forwarded PU by PU, until every PU 

that needs access to it has received and processed it.  

For the pane transport we have to distinguish two cases: 

 If 𝑃𝑃𝑊 ≥ 𝑃, so if one window consists of at least as many consecutive panes as there are PUs, 

each pane needs to visit each PU.  
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Taking Pane4 of Figure 15 as example, we see that Pane4 contributes to Window4, Window3, 

Window2 and Window1. As we know, consecutive windows are being handled by consecutive 

PUs, so if there are more windows to which each pane contributes (WPP=PPW=4 in our 

example) than PUs (P=3 in our example), a pane has to visit all PUs. 

 If 𝑃𝑃𝑊 < 𝑃, so if one window consists of fewer consecutive panes than there are PUs, each 

pane does not need to visit each PU.  

Let us assume, the example of Figure 15 is processed by 100 instead of 3 PUs. Taking Pane4 as 

example, we see that Pane4 contributes to Window4, Window3, Window2 and Window1. 

Window4 is being processed by PU4, Window3 is being processed by PU3, Window2 is being 

processed by PU2 and Window1 is being processed by PU1. So we forward Pane4 into 

counterclockwise direction to PU3, PU2 and PU1.  

There is no reason to forward Pane4 further into counterclockwise direction to PU0 (which is 

processing Window0, Window100, Window200, …), PU99 (which is processing Window99, 

Window 199, Window 299, …) because as mentioned Pane4 only contributes to Window4, 

Window3, Window2 and Window1. 

 

Figure 16: Structure of the Round-Robin-Cyclic Pane-based approach with 4 PUs 

Pane queues and forwarding rules  

Similar to the two different queues for tuples in the previous approaches, each PU p has two queues 

for panes: one for panes processed on p itself and one for panes received by the neighbor in clockwise 

direction. 

The rules for forwarding and processing panes in the queues are equal to the rules for forwarding and 

processing tuples of the non-pane-based approaches, just with the difference that the forwarding 

direction is counterclockwise, not clockwise. This way PUs can maintain a safe-timestamp like in the 

non-pane-based approaches, which is necessary to know, when all panes that might contribute to a 
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window have arrived.  

In the non-pane-based approaches PUs can update the safe-timestamp whenever a tuple from the 

right neighbor (neighbor in clockwise direction) arrives because those tuples went through the whole 

PU ring and ensure that no further tuples with lower timestamps will arrive. Afterwards the PU can 

delete this tuple.  

In our pane-based approach, there are two different cases: 

 If 𝑃𝑃𝑊 ≥ 𝑃, then each pane has to visit all PUs. Since the forward direction is 

counterclockwise, PUs may update their safe-timestamp, whenever a pane from the left 

neighbor (neighbor in counterclockwise direction) arrives. 

 If 𝑃𝑃𝑊 < 𝑃, then each pane has to visit PPW PUs only as explained earlier in this section. 

Hence each PU may update its safe-timestamp, whenever a pane from the PU PPW-1 steps in 

clockwise direction arrives. 

Result sets  

There is still only one PU that is outputting results into the output stream whenever a result set arrives. 

We call it PU p0. The indices of the other PUs are rising in clockwise order around the PU ring.  

Result sets are handled a bit differently to the non-pane-based approaches. The last PU pn-1 (in Figure 

16 the PU in the bottom left corner) creates a new result set, whenever a tuple arrives that updates its 

safe-timestamp and contributes to a new pane.  

Like in the previous approaches, all windows are added to a result set, whose time limit is smaller than 

or equal to the time limit of the result set. A window can only be added to a result set if it is already 

expired, so if the respective PU knows for sure that no more panes will arrive that contribute to it. 

Otherwise the PU has to wait for the windows to expire before forwarding the result set. 

9.1.1 Pseudocode 

The corresponding pseudocode representing this approach’s structure is shown in Pseudocode 6. It is 

being executed by each PU. 

The pseudocode has certain similarities to the cyclic approaches, hence the Hash-Once approach and 

the Round-Robin-Cyclic approach. The lines 6-24 in Pseudocode 6 are comparable to the lines 2-26 of 

Pseudocode 4 of the Hash-Once approach and the lines 2-21 of Pseudocode 5 of the Round-Robin-

Cyclic approach. Instead of forwarding, choosing and aggregating tuples, we execute these steps with 

incoming panes. 

A PU p continuously (line 1) checks, whether there are tuples incoming from the input stream (line 2), 

panes in one or both of the pane queues (line 6) or result sets (line 26). 

If there arrived a tuple t (line 2), we find the pane which t contributes to (line 3). If there is no such 

pane or the current pane has expired, we push the expired pane in the finishedOwnPanesQueue and 

create a new pane (still part of line 3). Then we process the next aggregation step of the current pane 

(line 4). 

If there are panes in at least one of both incoming pane queues, the finishedOwnPanesQueue or the 

panesOfPrevPUQueue (line 6), p applies the four forwarding rules, described in Section 7.1 of the Hash-

Once approach, to the incoming panes (lines 7-14).   

Now, if a pane was chosen (line 15), p forwards it to the next PU (line 17) unless p is the last PU this 

pane has to visit (line 16). Otherwise p can update its safe-timestamp (line 19).  
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Next, p processes the pane. It determines all windows to which this pane contributes that p has to 

compute (line 20). Determining those responsibilities is very cheap and consists of only few arithmetic 

operations similar to the ones used and present in Section 6.1 of the Round-Robin approach.  

So if p is responsible to process a window w, it checks, whether it has already stored w and started 

processing it and if not it stores w. Then PU p adds tuple t to window w (line 21).  

In case w’s aggregate operation is dynamically computable (Section 2.4), we can execute the next step 

of the aggregate operation to create a new intermediate result (line 22).  

Next, the last PU (line 23) has to check, whether its safe-timestamp was updated by the current pane 

and if so, it creates a new result set (line 24). 

1. while (true)   
2.     if ((Tuple t = incTupleQueue.first) != null)   
3.         Pane p = FindOrCreatePane&PushExpiredPanesIntoOwnQueue(t)   
4.         AggregateOperation(p,t)   
5.        
6.     if (finishedOwnPanesQueue.isFilled() or panesOfPrevPUQueue.isFilled())   
7.         Pane paneToProcess = null   
8.         if (finishedOwnPanesQueue.isEmpty() and (Pane p = panesOfPrevPUQueue.first) 

!= null)   
9.         else   
10.             if ((Pane p = finishedOwnPanesQueue.first) != null and panesOfPrevPUQueu

e.isEmpty())   
11.                 paneToProcess = p   
12.             else   
13.                 if ((Pane p1 = finishedOwnPanesQueue.first) != null and (Pane p2 = p

anesOfPrevPUQueue.first) != null)   
14.                     paneToProcess = p1.windowTimeLimit<p2.windowTimeLimit ? p1 : p2 

  
15.         if (paneToProcess != null)   
16.             if (paneToProcess.lastPUVisited != me)   
17.                 Get&ForwardPane(paneToProcess)   
18.             else   
19.                 mySafeTimestamp = paneToProcess.windowTimeLimit   
20.             for (each window w, pane paneToProcess contributes to that I have to com

pute)   
21.                 FindOrCreateWindow(w)   
22.                 AggregateOperation(w,paneToProcess)   
23.             if (myRank == PUCount - 1)   
24.                 CreateNewResultSetIfNecesarry(paneToProcess)   
25.    
26.     if ((ResultSet r = incResultSetQueue.first) != null and mySafeTimestamp >= r.tim

eLimit)   
27.         AddMyExpiredWindowsToResultSet(r)   
28.         ForwardOrOutputResultSet(r)   

Pseudocode 6: Pseudocode of the Round-Robin-Cyclic Pane-based approach. It is executed by each PU 

If there arrived a new result set r and p’s safe-timestamp is greater than or equal to r’s time limit (line 

26), PU p adds all of its expired windows to r (line 27). Then it forwards r to its left neighbor (line 28). 

If p is the PU with index 0, it instead puts the results of the expired windows contained in r into the 

output stream. 

9.1.2 Determinism of the output stream’s results 

The communication pattern has changed compared to the approaches introduced in the previous 

chapters. 

As discussed in Section 9.1, the difference of the RRCPA to the non-pane-based approaches is that the 

windows are computed differently: In the RRCPA, they are calculated by aggregating panes, which are 
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calculated by aggregating tuples. In the other approaches, they are calculated by aggregating tuples 

(without the intermediate step using panes). 

If we ignore tuples and panes for a moment and just look at windows and result sets, the RRCPA is 

completely similar to the RRCA. Consecutive windows are handled by consecutive PUs in a round-robin 

fashion. Result sets are being created by the last PU in the ring, forwarded PU by PU in 

counterclockwise direction, collecting all windows on their way with a time limit which is smaller than 

or equal to their own time limit (waiting for all unexpired windows among them to expire, with the aid 

of the safe-timestamp) until they reach the first PU in the ring, which outputs the results. Since the 

output behavior of the RRCA and the HOA (see sections 7.1.2 and 8.1.2) was deterministic, the RRCPA’s 

output behavior has to be deterministic too if we assume correct computations of the windows 

themselves. 

Observation 1: The result set management and thus the output behavior is still deterministic if the 

windows themselves are processed correctly. 

Each pane is either visiting each PU or WPP number of PUs (whichever is smaller, see Section 9.1), to 

contribute to all WPP number of windows the pane belongs to. Windows are not leaving PUs 

prematurely due to the safe-timestamp and our pane forwarding rules, so it is guaranteed that each 

pane will always contribute to all WPP number of windows. So windows are processed correctly as 

long as the panes they consist of are processed correctly. 

Observation 2: The window computations are correct if the panes themselves are processed correctly. 

Each pane p remains as long at a PU until an arriving tuple leads to p’s expiration.  

Thus if tuples are arriving at each PU in timestamp order, it is guaranteed that no more tuples will 

arrive to contribute to p after p’s expiration. 

Observation 3: The pane computations are correct if tuples are arriving in timestamp order at each 

PU. 

It is our basic assumption that tuples are arriving in timestamp order at each PU. It follows from this 

that panes are processed correctly (observation 3). Therefore, we can deduce that windows are 

processed correctly (observation 2). From this we infer that the result set management and thus the 

output behavior is deterministic (observation 1). 

9.2 Analysis of the algorithm’s runtime properties 
Similar to Section 5.2, we want to analyze the runtime properties of the algorithm and its parts. 

9.2.1 Definitions and denotations 

We are using the same definitions and denotations as the ones of the Handshake approach in Section 

5.2.1. The definitions and properties for T, ATD, WS, WA, WPT, W, DK, and P were given and discussed 

in this section. 

In addition, we need to introduce a few further definitions.  

In Section 9.1 we established two new definitions:   

PPW (panes per window): the amount of panes of which each window consists. Since each window 

has a size of WS and all panes have a size and advance of WA, 𝑃𝑃𝑊 =
𝑊𝑆

𝑊𝐴
.  

WPP (windows per pane): the amount of windows to which each pane contributes. Since each pane 
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has a size of WA and windows with a size of WS are sliding with intervals of the size WA, 𝑊𝑃𝑃 =
𝑊𝑆

𝑊𝐴
 

and hence PPW=WPP.  

Taking Figure 15 as an example, we can see that all panes that are not in the border areas of the stream 

contribute to 𝑊𝑃𝑃 =
𝑊𝑆

𝑊𝐴
= 4 panes. Furthermore, each window consists of 𝑃𝑃𝑊 =

𝑊𝑆

𝑊𝐴
= 4 panes. 

Assuming that 𝐴𝑇𝐷 ≤ 𝑊𝐴, the number of panes PN is approximately equal to the number of windows 

W because both panes and windows are sliding with an advance of WA. However, we have a few 

additional panes because the first window consists already of 𝑃𝑃𝑊 =
𝑊𝑆

𝑊𝐴
 number of panes. Hence 

𝑃𝑁 = 𝑊 + 𝑃𝑃𝑊 − 1. So as long as 𝑃𝑃𝑊 << 𝑊, which might be the case for most practical 

applications, 𝑃𝑁 ≈ 𝑊 is a good approximation. 

9.2.2 Call frequency 

Now we want to analyze how often a PU p has to execute the different parts (mentioned in Pseudocode 

6 and Section 9.1.1) of the algorithm. 

 Find or Create Pane & Push Expired Panes into Own Queue: This part is responsible to find or 

create the appropriate pane for incoming tuples. In case an incoming tuple leads to the 

expiration of p’s panes, it pushes them into the finished-own-panes-queue. Every tuple of the 

stream visits one PU to contribute to a pane. So in average we expect p to call this part 
𝑇

𝑃
 times. 

 Aggregate Operation (tuples to pane aggregation): After finding the appropriate pane for an 

incoming tuple, the tuple takes part in the pane’s aggregation. So this part is also called 
𝑇

𝑃
 times 

by p. 

 Get & Forward Pane: There are PN panes.  

In case 𝑃𝑃𝑊 ≥ 𝑃, each pane has to visit each PU, which means that this part is called PN times 

by p.  

In case 𝑃𝑃𝑊 < 𝑃, each pane visits PPW PUs, so p calls this part 𝑃𝑁 ∗
𝑃𝑃𝑊

𝑃
 times.  

Hence we can combine both terms in the following one: 𝑚𝑖𝑛 (𝑃𝑁, 𝑃𝑁 ∗
𝑃𝑃𝑊

𝑃
) 

 Find or Create Window: Each of the PN panes contributes to WPP windows, so all in all there 

are 𝑊𝑃𝑃 ∗ 𝑃𝑁 events where a tuple contributes to a window. However, the windows are 

distributed evenly among the P participating PUs in Round-Robin-fashion. So on average, p 

executes the Find or Create Window operation 
𝑊𝑃𝑃∗𝑃𝑁

𝑃
 times. 

 Aggregate Operation (panes to window aggregation): After finding the appropriate window 

for an incoming pane using the Find or Create Window part, the pane is aggregated with the 

window. So, just as the Find or Create Window part, p executes this part 
𝑊𝑃𝑃∗𝑃𝑁

𝑃
 times. 

 Create New Result Set If Necessary: Whenever the last PU p receives a pane that updates its 

safe-timestamp, p creates a new result set. According to the Get & Forward Pane part, 

𝑚𝑖𝑛 (𝑃𝑁,
𝑃𝑁∗𝑃𝑃𝑊

𝑃
) panes will arrive at each PU. However, since all panes are distributed 

evenly among the PUs, only every P-th of all PN panes will have the last PU as its final 

destination, which is necessary to update its safe-timestamp.  

So this part is called 
𝑃𝑁

𝑃
 times and only by the last PU. 
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 Add My Expired Windows to Result Set: This part is executed on p, whenever a result set 

reaches p. As presented in the Create New Result Set If Necessary part, we expect up to 
𝑃𝑁

𝑃
 

result sets to be created. Each of them has to visit each PU, so this part is called 
𝑃𝑁

𝑃
 times by p. 

 Forward Result Set: Just like the Add My Expired Windows to Result Set part, we expect that p 

is executing the Forward Result Set part 
𝑃𝑁

𝑃
 times. 

Program part Avg. number of executions per PU 

Find or Create Pane & Push Expired Panes into Own Queue 𝑇

𝑃
 

Aggregate Operation (tuples to pane aggregation) 𝑇

𝑃
 

Get & Forward Pane 
𝑚𝑖𝑛 (𝑃𝑁,

𝑃𝑁 ∗ 𝑃𝑃𝑊

𝑃
) 

Find or Create Window 𝑃𝑁 ∗ 𝑊𝑃𝑃

𝑃
 

Aggregate Operation (panes to window aggregation) 𝑃𝑁 ∗ 𝑊𝑃𝑃

𝑃
 

Create New Result Set If Necessary 𝑃𝑁

𝑃
 (only last PU in ring) 

Add My Expired Windows to Result Set 𝑃𝑁

𝑃
 

Forward Result Set 𝑃𝑁

𝑃
 

Table 13: Call frequency table of the RRCPA's program parts 

As we see, all program parts are parallelizable in the Round-Robin-Cyclic Pane-based approach. The 

call frequency of all parts is inversely proportional to the number of participating PUs. 

According to Table 13, we create another table (Table 14) depicting the interdependencies between 

the aggregation parameters and the parts’ call frequencies. 

 

Find or 
Create Pane 

& Push 
Expired 

Panes into 
Own Queue 

Aggregate 
Operation 
(tuples to 

pane) 

Get & 
Forward 

Pane 

Find or 
Create 

Window 

Aggregate 
Operation 
(panes to 
window) 

Create New 
Result Set if 
Necessary 

Add My 
Expired 

Windows to 
Result Set 

Forward 
Result Set 

Increase of Thread 
Count 

  (1)      

Increase of 
Aggregate 
complexity 

        

Increase of Window 
Size 

  (2)      

Decrease of 
Window Advance 

        

Activation of 
Group by 

        

 

Color explanation 
Change to part’s 

call frequency 

Locally more often 
globally more often 

(2): yellow in case P<PPW 

Locally unchanged 
globally more often 

(1): green in case P>WWP 

Locally unchanged 
globally unchanged 

Locally less often 
globally unchanged 

Table 14: Interdependencies between the aggregation parameters and the call frequency of the RRCPA's parts 

Increase of the thread count  

As mentioned in the previous section, all parts are either in general or at least under certain 

circumstances scaling with an increasing number of PUs. 
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If before and after an increase of the thread count PPW>P still holds, the local call frequency of the 

Get & Forward pane part remains constant and hence the global call frequency rises. This is because 

under this circumstance each pane has to visit each PU anyway and if there are more PUs, the Get & 

Forward Pane part has to be called more frequently globally. 

The amount of created result sets is depending on the amount of updates of the safe-timestamp on 

the last PU because the last PU creates a new result set, whenever its safe-timestamp is updated. An 

update can take place whenever a pane arrives, whose last destination is the last PU. An increase of 

the number of PUs decreases the fraction of panes whose final destination is the last PU. Hence the 

amount of created result sets decreases as the number of participating PUs rises.  

The output delay also increases as we increase the number of participating PUs because fewer result 

sets will be created, while the overall amount of windows remains constant. So each result set 

transports more windows of an increasing number of window time-slots. 

The decreasing number of result sets negates the effect of a globally increasing number of calls of the 

two parts Add My Expired Windows to Result Set and Forward Result Set per result set, caused by the 

increasing number of PUs each result set has to visit. Therefore, the global call frequency remains 

constant while the local call frequency decreases. 

Increase of the aggregation’s complexity  

There is no effect on the call frequency of the parts. 

Increase of the window size  

Increasing the window size also increases the number of panes per window as well as the number of 

windows per pane. As Table 13 depicts and Section 9.2.2 discusses, this increases the call frequency of 

the Find or Create Window part and the Aggregate Operation part. If PPW<P, the call frequency of the 

Get & Forward Pane part will also increase, since each pane has to visit an increasing amount of PUs. 

If PPW≥P, each pane visits each PU anyway, so there is no change to that part’s call frequency. 

Decrease of the window advance  

Decreasing the window advance does not only increase WPP and PPW as an increase of the window 

size; it also increases the number of panes. So basically the call frequency of all parts are affected by 

changes to the window advance. The parts Find or Create Window and Aggregate Operation – and 

under certain circumstances the Get & Forward Pane part as well – even exhibit a quadratic correlation, 

since they are affected linearly by two factors, PN and WPP (PN and PPW for the Get & Forward Pane 

part). For instance, a decrease of the window advance by 10 would increase the call frequency of these 

parts by 10²=100. 

Increase of the Aggregate Operation count  

In the four previous approaches, processing several aggregations on tuples of the same data stream 

separately has a disadvantage compared to processing them concurrently because in the latter case it 

is not necessary to send all tuples of the data stream once for each aggregation. Sending all tuples 

once was sufficient, since every tuple had to visit each PU anyway.  

In the pane-based approach each tuple visits only one PU because it contributes to exactly one pane; 

and the window advance parameter determines which pane that is and where it is located. If we 

compute several aggregations at once, depending on the aggregation’s window advance, in general 

the pane to which a tuple contributes is not located on the same PU, so the data stream would have 

to send the tuples for each aggregation again. Since there is no other advantage in computing several 
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aggregations within the same program instance, we can just run several instances of our whole 

algorithm independently at the same time. 

Group tuples by their key  

If we group tuples by their key, for each distinct key falling into one pane time-slot (the equivalent to 

a window time-slot), there will exist one pane collecting all tuples with this key. That increases the 

overall amount of panes and windows depending on the amount of distinct keys DK, which again 

increases the call frequency of the Get & Forward Pane part. 

9.2.3 Call costs 

Next, we create a table (Table 15) depicting the interdependencies between the aggregation 

parameters and the costs of a single call of each part. 
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Own Queue 

Aggregate 
Operation 
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pane) 
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       (1) 

 

Color explanation 
Change to part’s 

call frequency 
Higher 

Unchanged 
(1): red in case forwarded by value 

(not reference) 
Lower 

Table 15: Interdependencies between the aggregation parameters and the costs of the RRCPA's parts 

Increase of the thread count  

By increasing the number of threads the windows are distributed among more PUs. So each PU takes 

care of less windows which decreases the costs of the Find or Create Window part and the Add my 

Expired Windows to Result Set part. 

Increase of the aggregation’s complexity  

As discussed in the previous section, within the pane-based approach there are two different 

aggregation parts: One aggregates tuples to panes, the other one aggregates panes to windows. 

Actually they are not working completely identically. There is a detail about aggregate operations in 

general that was not important for the previous approaches, but is important for the pane-based 

approach and to determine the influence of an increase of the aggregation’s complexity, we need to 

take care of it. We have to distinguish between two different parts of an aggregation: the tuple pre-

processing and the aggregation itself. 

Let us assume that for each window we want to compute the sum of the squared values of its tuples. 

The previous approaches (HSA, HOA, RRA, RRCA) proceeded like this: When a tuple t is incoming on a 

PU p and p is responsible for a window w to which t contributes, then the Aggregate Operation part 

squares t’s value – which is the tuple pre-processing subpart – and adds the squared value to the 
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intermediate sum of w – which is the aggregation subpart. So each call of the Aggregate Operation 

part pre-processes tuple t (depending on the chosen aggregate operation, it is possible that the tuple 

pre-processing subpart is not doing anything at all) and aggregates it afterwards with window w. 

As presented in the tables 1, 4, 7 and 10, the previous approaches execute the Aggregate Operation 

part 
𝑇∗𝑊𝑃𝑇

𝑃
 times per PU, so 𝑇 ∗ 𝑊𝑃𝑇 times altogether. Since as mentioned each Aggregate Operation 

part consists of a tuple pre-processing subpart and an aggregation subpart, both of them are called 

𝑇 ∗ 𝑊𝑃𝑇 times altogether as well. 

The Tuples to Pane Aggregate Operation part of the pane-based approach works similarly. The value 

of each arriving tuple t is being squared (the tuple pre-processing subpart) and then added to the 

intermediate sum of the corresponding pane p (the aggregation subpart). As presented in Table 13, 

the pane-based approach executes the Tuples to Pane Aggregate Operation part 
𝑇

𝑃
 times per PU, so T 

times altogether. So the tuple pre-processing subpart and the aggregation subpart are called T times 

altogether as well. 

However, the Panes to Window Aggregate Operation part of the pane-based approach operates 

differently. It just aggregates the intermediate results of tuples to a window and hence does not 

contain the tuple pre-processing subpart. As presented in Table 13, the pane-based approach executes 

the Panes to Window Aggregate Operation part 
𝑃𝑁∗𝑊𝑃𝑃

𝑃
 times per PU, so 𝑃𝑁 ∗ 𝑊𝑃𝑃 times altogether. 

So this part calls the aggregation subpart 𝑃𝑁 ∗ 𝑊𝑃𝑃 times altogether. 

So overall the previous approaches call the tuple pre-processing subpart 𝑇 ∗ 𝑊𝑃𝑇 times and the 

aggregation subpart 𝑇 ∗ 𝑊𝑃𝑇 times.  

The pane-based approach calls the tuple pre-processing subpart T times and the aggregation subpart 

𝑇 + 𝑃𝑁 ∗ 𝑊𝑃𝑃 times. 

Thus in summary, to determine the influence on the algorithm’s runtime, we need to define what 

exactly is getting more expensive: the tuple pre-processing subpart or the aggregation subpart itself. 

While this question is less important for the previous approaches, since both subparts are called 

equally often, it matters for the pane-based approach.  

Using a more complex tuple pre-processing function affects only the costs of the Tuples to Pane 

Aggregate Operation part. Using a more complex aggregation subpart affects the costs of both the 

Tuples to Pane Aggregate Operation part and the Panes to Window Aggregate Operation part. 

Group tuples by their key  

The Find or Create Pane & Push Expired Panes into own Queue part will become more expensive, since 

working with one pane at each point of time is less costly than organizing the access, storage and 

expiration of many panes existing simultaneously. 

Similarly, the Find or Create Window part as well as the Add My Expired Windows to Result Set part 

are affected by the increasing amount of windows. Finding a window among an increasing amount of 

stored windows gets more expensive as well as adding a rising number of windows to each result set. 

9.2.4 Memory space requirements 

The memory space requirements differ from the demands of the previous approaches.  

As in the HSA, we have to distinguish between two types of aggregate functions: Functions belonging 

to the first type do not need to save copies or references of tuples within windows because the 
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creation of intermediate results supersedes the necessity to store tuples. Aggregate functions 

belonging to the latter type do need to save copies or references of tuples within windows (see Section 

5.2.4). The same applies to panes – which basically are sub-windows – as well. Hence for aggregate 

functions of the first type, panes have a constant size; it is independent of the number of tuples they 

contain and thus it is equal to the size of windows. When computing aggregate functions of the second 

type, panes have a size depending on the number of tuples they contain.  

According to Section 9.1, we expect that there are approximately as many panes as there are windows 

(there are always at least 𝑃𝑃𝑊 − 1 less windows than panes but on the long run this difference 

becomes insignificant). 

First, we contemplate aggregate functions of the first type: Panes and windows have the same 

constant size. Since there are approximately as many panes as windows, the space needed by panes is 

approximately equal to the space needed by windows.  

Next, we consider aggregate functions of the second type: Since panes are in most cases smaller than 

windows – or equal if WS=WA – they will demand less or the same amount of memory space as 

windows. To be accurate, we expect windows to consume 𝑊𝑆/𝑊𝐴 times the memory space of panes. 

Due to the possibly extremely high latency (see the next section, Section 9.2.5), the number of expired 

windows can be much higher than in the previous approaches. Since the latency depends on many 

different factors, it is difficult to specify the exact number of expired windows. According to 

observations of Section 9.2.5, the number of expired windows can be three times higher than the 

number of active windows. We use this ratio as an approximation.  

As in the HSA, there is one tuple queue, one queue for result sets and two queues for panes on each 

PU. 

As in Section 5.2.4, we define that a tuple needs MT bytes of memory capacity, a result set needs MRS 

bytes, a window’s intermediate result needs MIR bytes, a window or a pane (excluding intermediate 

results or stored tuples) needs MW bytes. Queues contain QS number of elements at the most. 

So the maximum overall space requirements per PU that we expect excluding lower amounts of 

constant overhead costs are:  

For aggregate functions of the first type: 
5∗(𝑀𝑊+𝑀𝐼𝑅)∗𝑊𝑃𝑇∗𝐷𝐾

𝑃
 +  𝑄𝑆 ∗ (𝑀𝑇 + 𝑀𝑅𝑆 + 2 ∗ (𝑀𝑊 +

𝑀𝐼𝑅)) bytes.  

For aggregate functions of the latter case: 
(𝑀𝑊+

𝑀𝑇∗𝑊𝑆

𝐴𝑇𝐷
)∗𝑊𝑃𝑇∗𝐷𝐾

𝑃
+

3∗(𝑀𝑊+𝑀𝐼𝑅)∗𝑊𝑃𝑇∗𝐷𝐾

𝑃
+

(𝑀𝑊+
𝑀𝑇∗𝑊𝐴

𝐴𝑇𝐷
)∗𝑊𝑃𝑇∗𝐷𝐾

𝑃
 +  𝑄𝑆 ∗ (𝑀𝑇 + 𝑀𝑅𝑆 + 2 ∗ (𝑀𝑊 + 𝑀𝐼𝑅)) bytes. 

Interdependencies between queue size and scalability  

In certain cases, there is an additional factor concerning the size of the main memory that affects the 

scalability potential of the RRCPA. It is of importance in cases in which 𝐴𝑇𝐷 << 𝑊𝐴, so if a larger 

number of tuples contributes to each pane.  

In these cases when using the pane-based approach, the input thread will send a large number of 

tuples to one pane on a PU pi, then after WA time units a large number of tuples to the next pane on 

p(i+1)%P (the neighbor PU in clockwise direction) and so on. Having a look at Table 13 (due to our 

assumption it holds that 𝑃𝑁 << 𝑇), the PU that currently receives tuples will have significantly more 

work than all other PUs because it additionally has to process many calls of the Tuples to Pane 
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Aggregate Operation part.  

According to our definition of streaming aggregation, we want to avoid storing incoming data but 

process them while flying by instead. In our case using the RRCPA this can unfortunately lead at each 

point of time to up to one saturated PU and P-1 PUs that exhibit a low utilization. So by using the pane-

based approach, compared to the non-pane-based approaches, the overall amount of work may be 

reduced, but due to the low processor utilization, the eventual performance can still be worse in 

certain cases. 

If the amount of tuples per pane is nearly or entirely constant among all panes and if we can afford 

storing larger amounts of tuples, we could alternatively proceed as follows:  

Instead of sending only at a rate of r tuples per second that the receiving PU can manage without 

storing a lot of data, we allow the data stream to send tuples at a higher rate of up to 𝑟 ∗ 𝑃 tuples per 

second. So the input stream sends tuples up to P times faster than a receiving PU could process them, 

but since each PU receives tuples only during 
1

𝑃
 of the time, we expect a receiving PU p to need exactly 

as much time to compute all received data until the input thread will send tuples to p again. Hence the 

latency introduced at this point will be up to 𝑊𝐴 ∗ 𝑃 time units (if the tuple sending rate is equal to 

𝑟 ∗ 𝑃) because this is the amount of time a PU needs to process all received tuples for one pane. 

The crucial point here is that in order to send tuples faster than PUs can process them, we need enough 

main memory storage. More precisely, if we allow the PUs’ incoming tuple queues to store at least 
𝑊𝐴

𝐴𝑇𝐷
 

number of tuples, which is the number of tuples that contribute to each pane, the input stream can 

send all tuples that contribute to a pane to the responsible PU and then the stream can immediately 

continue sending tuples to the next pane on the consequent PU. If the PUs’ tuple queues would be 

smaller, the input stream would repeatedly have to wait on PUs which may prevent an efficient 

parallelization of the tuple aggregation part.  

If we assume no fluctuations of the ATD, each PU needs enough space to store at least 
𝑊𝐴

𝐴𝑇𝐷
 tuples in 

its tuple queue. Hence when using P number of PUs, the machine needs to have enough space to store 
𝑃∗𝑊𝐴

𝐴𝑇𝐷
 number of tuples. In cases in which we expect larger fluctuations of the tuples’ timestamp 

distance around the ATD, we should consider to increase the size of the tuple queues even more. 

In our evaluations later on, we will consider both cases: in the one there is enough memory to store 

all tuples contributing to one pane, in the other there is not. If we do not have sufficient memory the 

Tuples to Pane Aggregate Operation part will be computed serially and not in a parallelized manner. 

9.2.5 Latency 

After a PU p received the last tuple for a pane m, it takes at least 𝑊𝐴 ∗ (𝑃 − 1) time units, until PU p 

will receive another tuple that leads to the expiration of m. Afterwards m will be forwarded to up to 

P-1 number of further PUs. According to the four forwarding rules, m can only be forwarded by a PU if 

this PU has an expired pane in its own-pane-queue, whose timestamp is higher than m’s timestamp. 

Since the pane time-slot is shifted by WA time units per PU, it will take another 𝑊𝐴 ∗ (𝑃 − 1) time 

units until m reaches its final destination, where it updates the destination PU’s safe-timestamp. 

Afterwards we still need to wait for the last PU to create a result set and for all PUs to have a safe-

timestamp greater than or equal to the PU which is m’s final destination.  

If m’s final destination is the last PU in the ring, pn-1, then a result set will immediately be created that 

collects windows to which m contributed.  

Else, if m’s final destination is x PUs left of pn-1, we need to wait another 𝑥 ∗ 𝑊𝐴 time units (1 ≤ 𝑥 ≤
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𝑛 − 1), until the safe time stamp of pn-1 will be updated as well, which leads to the creation of a result 

set that collects windows to which m contributed.  

So the overall latency (in time units) is at least: 2 ∗ 𝑊𝐴 ∗ (𝑃 − 1) ≤ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ≤ 3 ∗ 𝑊𝐴 ∗ (𝑃 − 1). It 

may be even higher, depending on the time needed to merge panes to windows or possible imbalances 

between the PUs that lead to pane queues filled with a lot of elements causing additional delay. 

As a demonstration we inspect the following example: We compute an arbitrary cheap aggregation 

(for example the sum) with an arbitrary window size, a window advance of 1 minute and use 24 PUs 

participating in the execution. Then the latency between a tuple leading to the expiration of a pane m 

and the first windows that contains m being output is at least 46-69 minutes, depending on the index 

of the destination PU of m. 

Compared to the descriptions of the previous approaches’ analysis sections, this is an extreme increase 

of the latency. Instead of a few milliseconds or in the worst case seconds, the latency of the pane-

based approach bases almost entirely on the window advance and the number of participating PUs. 

9.3 Discussion of the approach’s runtime properties 
To simplify the comparison of the approaches’ performance, we again make a simplistic assumption: 

All algorithm parts of all approaches are equally expensive. So one call of one algorithm part (no matter 

of which approach) is as expensive as any other single call of any other part of any approach. Strictly 

speaking, this is still not true, but under certain circumstances, practical tests have shown that this 

assumption is a sufficient approximation (also see Chapter 5.3): 

 The computing system transports tuples, panes and windows by reference, not by value; so 

this approximation does not apply for distributed systems. 

 A “cheap” aggregation is used like the sum, the average or the minimum aggregation. 

 Tuples are either not grouped by their key or if they are, the number of distinct keys DK has to 

be small (preferably single-digit, since according to the Group tuples by their key paragraph of 

Section 9.2.3 many distinct keys increase some parts’ costs heavily). 

Definitions 

To classify the numbers of the call frequency table (Table 13) better, let us recall some definitions: 

 𝑃𝑃𝑊 = 𝑊𝑃𝑃 =
𝑊𝑆

𝑊𝐴
 

For explanations of the constants panes per window and windows per pane see Section 9.1 

and Section 9.2.1. 

 𝑊𝑃𝑇 =
𝑊𝑆

𝑊𝐴
 

In the call frequency tables of the previous approaches, we use the constant windows per 

tuple, which is defined by the number of windows to which each tuples contributes. 

 𝑊 ≤ 𝑇 

Another assumption we made and discussed in detail in Section 5.2.1 was that there are always 

at least as many tuples as windows. Since W≈PN (see Section 9.1), we also assume PN≤T. 

Call frequency comparison – pane-based vs. non-pane-based  

Next, we compare the expected performance of the Round-Robin-Cyclic Pane-based approach with 

the previous approaches by comparing the call frequencies of the most frequently called parts and 

assuming equivalent costs for each part.  
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In three of the four previous approaches (RRA, RRCA, HOA), the most frequently called parts were 

called 𝒎𝒂𝒙 (𝑻,
𝑻∗𝑾𝑷𝑻

𝑷
) times (see Tables 4, 7 and 10).  

We compare this call frequency to our new approach (see Table 13, as mentioned, it holds that 

PPW=WPP=WPT) and consider two cases: 

 In case of 𝑇 ≈ 𝑊 ≈ 𝑃𝑁:  

By substituting PN for T and PPW and WPP for WPT, we can see that the most frequently called 

parts of the RRCPA are called 𝑚𝑎𝑥(
𝑇

𝑃
, 𝑚𝑖𝑛(𝑇,

𝑇∗𝑊𝑃𝑇

𝑃
),

𝑇∗𝑊𝑃𝑇

𝑃
) =

𝑻∗𝑾𝑷𝑻

𝑷
 times.  

Compared to the previous approaches (as mentioned with a call frequency of 𝑚𝑎𝑥(𝑇,
𝑇∗𝑊𝑃𝑇

𝑃
)), 

this is better in some situations. We can reduce the call frequency below T by increasing the 

number of PUs working on the program, but as long as WPT>P, we do not have an advantage. 

So the RRCPA is faster by a factor of 𝒎𝒂𝒙(𝟏, (
𝑷

𝑾𝑷𝑻
)). 

 In case of 𝑇 > 𝑃𝑁 ≈ 𝑊 (which is true if 𝑊𝐴 > 𝐴𝑇𝐷):  

We can only substitute PPW and WPP for WPT. The most frequently called parts of the RRCPA 

are called 𝑚𝑎𝑥(
𝑇

𝑃
, 𝑚𝑖𝑛(𝑃𝑁,

𝑃𝑁∗𝑊𝑃𝑇

𝑃
),

𝑃𝑁∗𝑊𝑃𝑇

𝑃
)  =  𝒎𝒂𝒙(

𝑻

𝑷
,

𝑷𝑵∗𝑾𝑷𝑻

𝑷
) times.  

We differentiate between two subcases:  

In case 𝑇 ≥ 𝑃𝑁 ∗ 𝑊𝑃𝑇, the most frequently called parts are called 
𝑇

𝑃
 times, which is by a factor 

of 𝒎𝒂𝒙(𝑾𝑷𝑻, 𝑷) better than the 𝑚𝑎𝑥(𝑇,
𝑇∗𝑊𝑃𝑇

𝑃
)) calls of our previous approaches.  

In case 𝑇 < 𝑃𝑁 ∗ 𝑊𝑃𝑇, the most frequently called parts are called 
𝑃𝑁∗𝑊𝑃𝑇

𝑃
 times, which is by 

a factor of 𝒎𝒂𝒙(
𝑻

𝑷𝑵
,

𝑻
𝑷𝑵∗𝑾𝑷𝑻

𝑷

) better than the 𝑚𝑎𝑥(𝑇,
𝑇∗𝑊𝑃𝑇

𝑃
)) calls of our previous approaches. 

So for this approach the amount of panes (or windows, since W≈PN) compared to the number of tuples 

is very important for the eventual performance. The call frequencies of six of the eight parts of the 

algorithm are depending on the amount of panes. 

Two concrete examples  

In a lot of practical cases, the number of tuples is not equal to the number of panes, but significantly 

larger. Let us have a short look on two examples, one with T=PN and one with T>>PN, and analyze the 

assumed speedup of the pane-based approach compared to the previous approaches. 

 There is one machine. It sends one tuple per second (ATD=1s (average timestamp distance, 

see Section 5.2.1)) about its temperature into an input data stream. Every one second (WA=1s) 

we want to know the machine’s average temperature during the last minute (𝑊𝑆 = 60𝑠, 

𝑊𝑃𝑇 =
𝑊𝑆

𝑊𝐴
= 60). 

As presented in Section 5.2.1, 𝑊 ≈
𝑇∗𝐴𝑇𝐷

𝑊𝐴
, so in our example 𝑊 ≈

𝑇∗1𝑠

1𝑠
, so 𝑊 ≈ 𝑇 and since 

𝑊 ≈ 𝑃𝑁, it holds that 𝑇 ≈ 𝑊 ≈ 𝑃𝑁.  

So our pane-based approach which calls its most frequently processed parts 
𝑇∗𝑊𝑃𝑇

𝑃
=

60𝑇

𝑃
 

times has by a factor of 𝑚𝑎𝑥(1,
𝑃

𝑊𝑃𝑇
) = 𝑚𝑎𝑥(1,

𝑃

60
) fewer calls. Hence if we are using 60 or 

fewer PUs, the number of program part calls per PU does not change, but if we are using more 

than 60 PUs the pane-based approach exhibits by a factor of 
𝑃

60
 fewer calls. Thus we would for 

example need 120 PUs to halve the call frequency of the most commonly called part, which is 

not very promising at all. 
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 There is one machine. It sends 1000 tuples per second (𝐴𝑇𝐷 = 1𝑚𝑠) about its temperature 

into an input data stream. Every one second (𝑊𝐴 = 1𝑠) we want to know the machine’s 

average temperature during the last minute (𝑊𝑆 = 60𝑠, 𝑊𝑃𝑇 =
𝑊𝑆

𝑊𝐴
= 60).  

So in our example 𝑊 ≈
𝑇∗1𝑚𝑠

1𝑠
, so 𝑊 ≈ 0,001𝑇 and since 𝑊 ≈ 𝑃𝑁, it holds that 𝑇 ≈

0,001𝑊 ≈ 0,001𝑃𝑁. 

Hence our pane-based approach calls its most frequently processed parts 𝑚𝑎𝑥(
𝑇

𝑃
,

𝑃𝑁∗𝑊𝑃𝑇

𝑃
) =

𝑚𝑎𝑥(
𝑇

𝑃
,

0.001𝑇∗60

𝑃
) =

𝑇

𝑃
 times has by a factor of max(WPT, P)=max(60, P) fewer calls. So if we 

are using 60 PUs or fewer, we have 60 times fewer function calls and if we are using more than 

60 PUs, we have P times fewer function calls. In either case that is a huge decrease to the 

number of function calls and thus the pane-based approach might accelerate the whole 

algorithm enormously. 

Hence which part eventually bottlenecks the algorithm’s performance is highly depending on the 

number of panes compared to the number of tuples in the data stream and the WPP parameter. 

Disadvantageous settings  

There are a few cases that are unfavorable for the pane-based approach compared to the previous 

approaches. 

 If 𝑻 ≈ 𝑾 ≈ 𝑷𝑵 and 𝑾𝑷𝑷 ≥ 𝑷:  

In case 𝑇 ≈ 𝑊 ≈ 𝑃𝑁 (which is true if 𝑊𝐴 ≈ 𝐴𝑇𝐷), so if there are as many panes as tuples, 

one pane contains one tuple and one tuple contributes to one pane. So instead of aggregating 

tuples to a window, we aggregate the same number of panes to a window, which is equally 

fast. Table 13 confirms that: The most frequently called parts are globally processed as often 

as in the previous approaches (with the exception of the Handshake approach), so the pane-

based approach does not grant any advantages in the form of work reduction here. The overall 

costs might be even higher because of the detour through panes. 

 If both holds, 𝑷𝑷𝑾 =
𝑾𝑺

𝑾𝑨
= 𝟏 and the Aggregate Operation part (no matter if its tuple pre-

processing subpart or the aggregation subpart) is so expensive that it becomes the limiting 

factor - according to the call frequency tables (Tables 1, 4, 7, 10 and 13) this holds for all 

approaches except the HSA, as long as the costs for one call of the Aggregate Operation part 

are by a factor 𝒇 ≥ 𝑷 higher than the costs for one call of any other part:  

Since 𝑃𝑃𝑊 =
𝑊𝑆

𝑊𝐴
= 1, one pane is basically equal to one window because each window 

consists of one pane and each pane contributes to one window (𝑃𝑃𝑊 = 𝑊𝑃𝑃). So concerning 

the number of aggregate operations and both of its subparts (the tuple pre-processing and the 

aggregation subpart) that we have to process, there is no advantage in using panes at all 

because the purpose of panes was to calculate them once and reuse them several times to 

avoid redundant calculations.   

Under our assumptions, according to the call frequency tables, the previous approaches’ 

costliest part is the Aggregate Operation part with costs of 
𝑓∗𝑇∗𝑃𝑃𝑊

𝑃
=

𝑓∗𝑇∗1

𝑃
≥ 𝑇.  

The pane-based approach’s costliest part is the Aggregate Operation part with costs of 
𝒇∗𝑻

𝑷
≥

𝑻 as well.  

So the pane-based approach does not grant any advantages in the form of work reduction 

here. The overall costs might be even higher because of the detour through panes.  
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However, the pane-based approach still has the advantage that the communication costs are 

much lower because each tuple visits only one PU instead of all PUs. So when working with 

distributed systems, the pane-based approach might still be superior if the communication 

network is sufficiently slow. 

Throughput 

As discussed in this section, the speed of the pane-based approach is highly depending on the 

aggregation’s parameters as well as the properties of the data stream.  

Compared with the previous approaches, we can observe: While there are some situations in which 

the overall amount of work remains approximately constant or is even worse due to the detour of 

tuples contributing to panes which contribute to windows instead of the direct way of tuples 

contributing to windows, in many situations the pane-based approach is significantly faster. 

As a rule of thumb, we can summarize: 

 The bigger the number of tuples per pane (
𝑊𝐴

𝐴𝑇𝐷
) (or with other words, the smaller the number 

of panes compared to the number of tuples), the higher the advantage over the non-pane-

based approaches. 

 The bigger the number of panes per window 𝑃𝑃𝑊 =
𝑊𝑆

𝑊𝐴
, the higher the advantage over the 

non-pane-based approach. 

 The more storage we have, the more tuples per pane each PU can store. The more tuples per 

pane each PU can store, the longer it can compute aggregations using its full computation 

capacity without receiving further tuples. The longer each PU computes using its full 

computation capacity, the more PUs we can effectively use (see Section 9.2.4 for a detailed 

discussion). 

Communication traffic  

The communication traffic caused by the result sets that are transported from the last PU in the ring 

to the first one is equal to the result set traffic of the previous approaches. The overall amount of 

windows that are output remains constant. The expired windows are just distributed among fewer 

result sets as the number of participating PUs increases (see the discussion in Section 9.1). 

The communication traffic caused by tuples is reduced by a factor of P, since each tuple visits one PU 

instead of P number of PUs. 

There is additional traffic caused by panes, as each pane is being forwarded to 𝑚𝑖𝑛(𝑃, 𝑊𝑃𝑃) number 

of PUs. The memory size of panes depends on the executed aggregation (see also Section 5.2.4 and 

9.2.4). 

 There are aggregations, in which panes exhibit a constant size.  

For instance, when computing the sum aggregation, each pane contains one intermediate 

sum. So depending on the type of the variable storing the sum (integer, long, float, double, …), 

the pane’s size is a few bytes large. 

 And there are aggregate operations, in which panes exhibit a size that is depending on the 

amount of tuples contributing to them.  

For example, when computing the median aggregation, each pane contains all tuples in sorted 

order. In this case, since each tuple contributes to exactly one pane, the sum of the memory 
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size of all panes is approximately equivalent to the sum of the memory size of all tuples. While 

in the non-pane-based approaches each tuple has to visit each PU, in the pane-based approach 

each pane visits 𝑚𝑖𝑛(𝑃, 𝑊𝑃𝑃) number of PUs. So depending on the WPP parameter, the 

communication costs can be as high as in the non-pane-based approaches. 

In summary we can say that – compared to the non-pane-base approaches – aggregations using panes 

with a constant size exhibit much lower communication costs, while aggregations using panes with a 

size equivalent to the sum of the sizes of all contributing tuples exhibit similar communication costs. 

Advantages of the structural changes  

Although exhibiting a cyclic communication structure as well, the two advantages of the HOA and the 

RRCA (mentioned in the sections 7.2.4 and 8.2.4) do not apply to the pane-based approach. 

 In many cases, the overall amount of work can be reduced drastically. 

 All parts of the algorithm can scale with arbitrary numbers of participating PUs. 

 Tuples are not forwarded at all. This might decrease the utilization of the communication 

system greatly. Only if the size of each pane is not constant, but equivalent to the size of all 

tuples contributing to it, there is no advantage concerning the communication costs. 

Disadvantages of the structural changes 

 The connections are not limited to neighbor-to-neighbor communication, since each PU has a 

connection to the input stream. Hence in case we want to use this approach on distributed 

systems, we need to maintain twice as many connections. 

 Imbalances of the input data stream’s tuple rate or the incoming tuples’ ATD can prevent PUs 

from updating their safe-timestamp for longer periods of time, which can delay the output of 

results. 

 Similar to the discussion in Section 7.1, without further effort it is not possible to dynamically 

compute order-sensitive aggregate operations, since in general panes are not arriving in 

timestamp order. 

 We do not have the opportunity to use multiple input streams at the same time without 

merging them to order their tuples by their timestamps. 

 The input data stream has to expend additional effort to determine the responsible pane for 

each tuple and on which PU this pane is located. So the input data stream has to maintain 

central coordination tasks. 

In contrast to the previous approaches, the pane-based approach is basically indefinitely scalable. 

In many practical cases it additionally offers an enormous reduction of the computation and 

communication costs compared to all previous approaches. Its advantages concerning the throughput, 

the work distribution and the overall amount of work are highly dependent on the data stream’s 

properties and the executed aggregation. 

9.4 Suggestions for improvement 
Parallelization of the input stream’s coordination tasks  

One weak point of the RRCPA is the input thread which has to manage the tuple distribution and may 

bottleneck the whole algorithm. The distribution tasks are not parallelizable within this approach yet, 

but an efficient parallelization of the distribution of the incoming tuples might be a good starting point 

for future work. 
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Divide panes into sub-panes  

There is also another suggestion for improvement addressing two further disadvantages of the RRCPA, 

the high latency and – depending on the parameters – the possibly high memory consumption. We 

could divide panes into sub-panes to reduce the number of tuples per pane in order to distribute work 

more evenly and faster among the participating PUs especially in situations where the main memory 

is not sufficiently large. Since the time interval between a pane on a specific PU and the next pane that 

will be located on the same PU as well decreases as we split panes into sub-panes, the latency can be 

reduced with the aid of sub-panes as well. We pay for these two advantages with a higher number of 

pane merging steps per window, so with higher computation costs.  

As a rule of thumb we can say that splitting each pane into two sub-panes approximately halves the 

output latency and the main memory requirements while doubling the call frequency of the Panes to 

Window Aggregate Operation. That means that the fraction of this part’s calls among all parts’ calls 

increases. The impact of this increase depends on the WPT and ATP parameters (see Table 13). 

Depending on these parameters the deceleration of the tuple processing rate can be between 0% and 

50%. 

Usage of hash functions to split tuples with different keys  

As we know, the pane-based approach’s input stream is supposed to send approximately 
𝑊𝐴

𝐴𝑇𝐷
 

consecutive tuples to one PU.  

In cases in which there are tuples with many different keys, the machine or thread sending tuples could 

use a hash function to compute an offset x, 0≤x≤P-1 for each key. Now we still use the formula 

explained in Section 9.1 to assign tuples to panes and PUs, but each tuple t is inserted on the PU with 

an additional offset of x, depending on t’s key. As the previous suggestion of splitting panes into sub-

panes, this could help to distribute the work more evenly among the participating PUs.  

A disadvantage of this suggestion is the difficulty to maintain safe-timestamps. Depending on the key 

distribution of the arriving tuples, long send pauses to certain PUs are possible.  

Another disadvantage of this suggestion is the even higher amount of coordination work the sending 

machine has to maintain continuously. However, if the sending thread is not the limiting factor or if 

we have an efficient parallelization for the input tasks, using hash functions could be an eligible 

alternative. 

Usage of dummy tuples to reduce the latency  

As mentioned in Section 9.1 (paragraph Pane expiration), PUs could send additional information 

messages or the input stream could send additional dummy tuples to inform PUs about arriving tuples 

possibly leading to the expiration of panes or windows. By doing so, we could decrease the output 

latency at the cost of additional computation and communication costs.  

We did not use dummy tuples or additional information messages in the pane-based approach because 

they are only promising under certain circumstances. Especially if the ATD is not much smaller than 

WA, the latency benefits would be small and the additional computation and communication costs 

would be large. However, in other cases the usage of dummy tuples seems very reasonable if a low 

output latency is required. 

Alternative structure  

There is a conceivable alternative for the structure of the RRCPA which might be an improvement in 

certain cases:  

In the current version (see Figure 16), we send panes along the PU ring; they meet windows to 
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contribute to them. We also send result sets along the PU ring from the last PU pn-1 to the first PU p0 

to collect windows.  

Instead of panes meeting windows, we could also send windows from PU pn-1 to PU p0 to meet panes 

(see Figure 17 below). 

 

Figure 17: Alternative structure for the Round-Robin-Cyclic Pane-based approach 

The most obvious advantage of this structure is that we do not need a ring topology but only a line. 

But there are more possible advantages that we just list up without going more into detail: The 

forwarding rules for panes become dispensable because panes stay at the same PU during their whole 

existence. Synchronization using the safe-timestamp is no longer necessary. The latency is reduced 

significantly compared to the current structure of the RRCPA.  

An execution of order-sensitive aggregations is still not possible with the alternative structure. 

The idea to this alternative version of the RRCPA came up shortly before finalizing the written report, 

hence it is neither analyzed in detail nor implemented and all the evaluation tests in Chapter 11 work 

with the original structure of the RRCPA (see Figure 16). 
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10 Implementation 
In this chapter, we will discuss implementation related issues as the target processing system, the 

chosen programming language and environment, and the choice of different data structures that we 

use for certain parts of the algorithm. 

10.1 Selection of the processing system for the implementation 
One of the first questions arising when planning a new parallel algorithm refers to the system on which 

we want to execute it because this can be of prime importance for structural decisions.  

In Chapter 3 (about the goals of this thesis), we mentioned that we want to focus on a shared-memory 

algorithm executed on a single machine.  

We shortly want to consider possible hardware setups and their suitability for our algorithm in order 

to explain, why we decided to focus on multicore processors. 

 implementation for one multicore computer - shared-memory version 

 implementation for several computers communicating via LAN, InfiniBand or another network 

system - distributed-memory version 

 implementation for massively data parallel graphics processing units (GPUs) - GPGPU version 

There is a paper “Evaluation of streaming aggregation on parallel hardware architectures” [5], which 

is dealing with the suitability of different architectures for streaming aggregation problems. This paper 

compares three versions: One with a system using an Intel Core 2 Quad, one using an NVIDIA GeForce 

GTX 285 GPU and one using a Cell Broadband Engine. The first one belongs to the first mentioned 

group, the second one to the third group and the third one essentially to the first group as well. 

The results showed that GPGPUs are not suited for this sort of problem mainly due to data transfer 

issues between the GPU’s memory and the computer’s RAM. Even though the raw calculation speed 

of the GPU is 10 times higher than the Cell Broadband Engine’s and 25 times higher than the Intel Core 

2 Quad’s one, the performance of the GPU is by far the slowest of the three tested systems.  

The Cell Broadband Engine wins the comparison and outperforms the Intel Core 2 Quad; it possesses 

twice the performance. It offers efficient access to the main memory, is more data parallel and has a 

higher peak performance (about 100 GFLOPS instead of 40 GFLOPS).  

Unfortunately, this paper does not make any statement concerning distributed memory systems and 

their suitability for our problem.  

However, due to the poor performance of the GPU implementation and because it is more reasonable 

to exploit a CPU’s inherent parallelization potential (almost each modern CPU is able to execute 

multiple threads concurrently) before expanding an algorithm to execute it on multiple computers, we 

decided to focus on a shared-memory version. Whenever we see important differences when running 

our version on a distributed memory system, we mention that in our explanations. 

We are using an Intel Xeon E5-2695 v3 (Haswell) processor with 14 cores and Hyper-Threading (up to 

28 threads running concurrently). 

10.2 Selection of the programming language for the implementation 
There are several well-known and common programming languages that are feasible for developing 

multi-threaded applications; e.g. C/C++, Java and C#.  

Due to the platform independency, the large amount of built-in concurrent data structures and the 

availability of powerful development environments (e.g. Eclipse) with useful debug tools for single-

threaded as well as for multi-threaded applications, we will use Java as the first implementation’s 
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programming language.  

C# offers similar amounts of concurrent data structures and a very advanced programming 

environment in the form of Visual Studio. It is also possible to execute C# programs on Linux, Windows 

and Mac systems. In opposition to Java, C# as well as C and C++ provide us the option to assign threads 

to specific cores. This feature could be used to assign neighbor PUs to neighbor cores in order to 

increase the communication speed between the different threads. Since the communication only takes 

place between neighbor PUs, a large portion of the communication will take place using fast caches 

(e.g. L1 cache and L2 cache). In Java, the virtual machine decides which thread (PU) is executed by 

which processor core. If the Java Virtual Machine would assign PUs arbitrarily among the processor 

cores, most likely a larger portion of the communication will be performed using slower parts of the 

memory hierarchy (e.g. L3 cache or main memory).  

So after all, C# would be another appropriate choice.  

However, due to the higher popularity and spread of Java especially on less common platforms we 

preferred it to C#. In addition, the creation of a C#-version on the basis of the Java one is a fast and 

straightforward issue because of the similarity to Java. 

10.3 Classes, their interdependencies and data structures for the non-pane-

based approaches 
This section explains implementation details of the non-pane-based approaches, so the Handshake 

approach, the Round-Robin approach, the Hash-Once approach and the Round-Robin-Cyclic approach. 

The whole section is based upon information presented in the previous chapters, especially Chapter 2. 

Figure 18 gives a rough overview over the implementation in the form of a class diagram of the 

different types of objects, their attributes and their relationships. We will discuss the depicted objects, 

attributes and interdependencies.  

This figure and the discussion apply to the Handshake approach, the Round-Robin approach and with 

few differences also to the Hash-Once approach and the Round-Robin-Cyclic approach. These 

differences only concern latency measurements and the way the program terminates after the arrival 

of the last tuple to guarantee deterministic output behavior. Since these discrepancies are not very 

important for the understanding of the approaches, we will not discuss them within the scope of this 

thesis. 

10.3.1 Tuple 

General properties of tuples were already described in Section 2.2.  

In the HSA and the RRA, in addition to the mentioned attributes in Section 2.2, each Tuple object always 

has the attributes realtimeTimestamp and finalTuple.  

To measure the latency of the processing system we need the realtimeTimestamp. It has no influence 

on the processing of the tuple at all, is just being used for benchmark purposes. It carries accurate 

information about the tuple’s creation time. We use the built-in Java function 

System.currentTimeMillis() whenever a tuple is created to set its realtimeTimestamp.  

The attribute finalTuple is necessary to terminate the program either because the user or programmer 

wants to terminate the program execution or because the data stream ends. Since each window can 

only expire if we know that no further tuples that contribute to it will arrive, we need to flag the last 

tuple to guarantee the expiration of all remaining windows and hence the completeness of the results. 
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10.3.2 Aggregate Operation 

This section is about the implementation details of the AggregateOperation class. General information 

about aggregate operations can be found in Section 2.4 and Section 17.1.  

An AggregateOperation object defines all properties of a single aggregate operation that shall 

continuously and periodically be processed on the data stream.  

Each aggregate operation has four different attributes: operationId, windowSize, windowAdvance and 

groupByKeys. 

The operationId determines which aggregate operation is to be computed. Each aggregate operation 

(sum, average, count, …) has an own unique ID.  

The windowSize and windowAdvance attributes store the timestamp range of each window and the 

time interval between two consecutive windows.  

The groupByKeys attribute stores the information whether results shall be grouped together on the 

basis of the tuples’ optional key.  

For each aggregate operation that we want to execute simultaneously on the same data stream, we 

create one instance of the AggregateOperation class and hand each PU a reference to it, so that every 

PU is permanently informed about all operations currently being executed. 

 

Figure 18: Class diagram of the HSA and the RRA 

10.3.3 Window 

To describe all properties of a Window object, we need 3 different attributes: timeLimit, operation and 

key. 

The timeLimit attribute saves the information when the window will expire. Having a look on Figure 2, 

the window objects in this example would have the timeLimit values 1000, 1270, 1540…  

The operation attribute stores a reference to the aggregate operation which the window computes on 

its tuples. In Figure 2 all windows would point to the same aggregate operation instance, and this 

instance saves the information about window advance and window size as well as the aggregate 

function being executed on tuples of each window. So it is not necessary to save the same redundant 

information in each Window object.  

Lastly the key is optional. It is only used if the referenced aggregate operation’s groupByKeys attribute 
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is true. If groupByKeys is true, there is not only one window for each window time-slot (like in Figure 

2). Instead, for every different key of each tuple falling in this window time-slot, there exists a 

corresponding window with the respective key. 

10.3.4 ResultSet 

As presented in Chapter 5, a result set – starting its way on the rightmost PU and stepping leftwards 

until it reaches the leftmost PU – collects expired windows up to the result set’s timeLimit on its way. 

We need the expired windows to be ordered by their timeLimits because we want to accomplish a 

deterministic output behavior: We always output windows with earlier (lower) timeLimits before 

windows with later (higher) timeLimits. 

In order to do so, PUs store the expired windows within a TreeMap called windowMap which 

automatically sorts all elements (expired windows) by their key (the time limit). Since it is possible that 

there exist multiple windows with the same time limit but different keys (or windows from different 

aggregate operations that we execute concurrently on the same data stream), the windows are not 

stored directly within the windowMap but within LinkedLists in the windowMap. All windows in a single 

LinkedList have the same time limit, and the windowMap sorts the LinkedLists by the time limit of their 

windows. 

 

Figure 19: Example of a ResultSet’s structure 

Figure 19 depicts an example of an ResultSet object:  

There are different persons who receive letters. Every WA=100 hours we want to know how many 

letters each person received during the last WS=400 hours.  

In most cases each ResultSet only contains windows with the same time limit, since ResultSets are 

created as soon as a tuple arrives that causes a window to expire. But if there is a long send pause of 
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the input stream (in the example there are no tuples with timestamps between 700h and 1233h) the 

next tuple (in the example one with timestamp 1234h) causes several windows to expire at once. 

We choose the TreeMap as data structure because it is efficient in sorting a possibly growing list of 

elements (in this case lists of windows) by their keys (the windows’ time limits) and iterate through the 

sorted list afterwards. A TreeMap is sorted at each point of time, so whenever a new window is being 

added to the TreeMap, the TreeMap inserts it at the correct place to preserve the sorted order. 

Inserting a new element, searching or removing a specific element by its key and searching or removing 

the element with the smallest key are O(log(n)) operations, whereat n is the number of elements in 

the TreeMap.  

The attribute realtimeTimestampTriggeringTuple just exists for measuring the output latency and for 

benchmark purposes. When a ResultSet r is created, r sets its realtimeTimestampTriggeringTuple 

attribute to the realtimeTimestamp of the tuple t that caused r’s creation (by leading to the expiration 

of one or more windows). When r is output, we compute System.currentTimeMillis()-

realtimeTimestampTriggeringTuple to measure the elapsed time between the point of time when t 

entered the processing system and the output of r’s windows. So in other words, this is the elapsed 

real time that t needed to travel from the leftmost PU to the rightmost PU plus the real time that r 

needed to travel back from the rightmost PU to the leftmost PU and put its windows into the output 

stream. This is what we call the system’s latency. 

The attribute finalResultSet informs the threads whether the current ResultSet is the last one. When 

the final tuple (mentioned in Section 11.2.1) arrives at the last PU, a ResultSet is created and marked 

as finalResultSet. This ResultSet will not have a time limit so that it will collect all remaining windows 

on all PUs, and all of them will already be expired because the final tuple led to their expiration (we 

choose the largest value representable by long variables as time limit in order to collect all remaining 

windows). 

Then – after processing and forwarding the ResultSet – the threads know that they shall terminate. 

10.3.5 PU 

The structure of the Handshake approach and the tasks each thread has to perform were already 

explained in Section 5.1 and its respective figures.  

This section only handles implementation decisions like the data structures used to achieve the best 

speed and latency results possible. 

A PU object (see Figure 18) represents an own processing thread operating on the data stream. As such 

this class derives from the Java class Thread, and each thread executing the program has its own 

instance of the PU class.  

The PU class is so to speak the base object, containing the majority of the program’s logic and 

references to all the other types of objects. 

Each PU has knowledge about the number of threads concurrently working on the program called 

threadCount and an own ID between 0 and threadCount-1 named myThreadId.  

Since we align the threads in a line, using only neighbor to neighbor communication, each PU has 

knowledge of its up to two neighbors, called leftNeighbor and rightNeighbor. 

To store all windows that are currently being processed by a PU, we use a TreeMap called windowMap 

that works similar to the windowMap used for ResultSets (see Section 11.2.4). But instead of 
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LinkedLists, HashMaps store the windows within the windowMap: 

TreeMap<Long,HashMap<String,Window>> windowMap (see Figure 20). Since the Find or Create 

Window part of all approaches continuously needs to find stored windows whenever tuples (or panes 

respectively) arrive, we need a HashMap to guarantee fast access to the windows (the lookup in 

HashMaps is performed in O(1) time).  

The reason why we do not only use a HashMap but also a TreeMap as window storage is that a 

TreeMap offers us a cheap possibility to search and remove all expired windows whenever a ResultSet 

r arrives: 

(1) We read the HashMap h containing the oldest windows of the windowMap. 

(2) Is the time limit of h’s windows smaller than or equal to r’s time limit? 

(3) If that is the case, we remove h with all its windows from the windowMap and add them to r. 

Then we go back to step (1) and repeat the process. 

Searching and removing the HashMap with the oldest windows of windowMap is performed in 

O(log(n)) time. 

 

Figure 20: A windowMap storing all windows located on a PU before they are collected by the ResultSet displayed in 
Figure 19 
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Figure 20 depicts the situation of Figure 19 before the ResultSet was created. To simplify Figure 20, we 

assume that all the windows are located in the windowMap of one PU. As we know, they are usually 

distributed over the windowMaps of several PUs because for each window a hash function decides 

where it is computed. 

Within an ArrayList called operationList, each PU stores all aggregate operations that shall be executed. 

ConcurrentLinkedQueues are being used to store incoming tuples and incoming ResultSets. Queues 

ensure that the tuple’s input order remains unchanged and Java’s ConcurrentLinkedQueue is a non-

blocking data structure on which several threads (in our case two, one sender, one receiver) can work 

concurrently. 

To prevent steadily increasing latency and memory utilization caused by growing queues in case of a 

suboptimal work distribution among the PUs, we define a maximum size for the incTuples queues. If 

the number of tuples in one PU p’s incTuples queue exceeds this limit, p forces the sender (that is the 

left or counterclockwise PU depending on the approach) to stop sending further tuples. In case the 

sender is the input stream, p forces the input stream to stop sending further tuples as long as p’s queue 

is full.  

The selection of the maximum size for queues is a trade-off between throughput and latency.  

If we accept very large queues, it happens less often that PUs need to stop sending tuples. Then only 

long-term discrepancies in the work distribution lead to full queues and hence idle PUs. We pay for 

this advantage of higher PU utilization and accordingly higher throughput with an increased latency 

and higher memory requirements.  

Very small queues lead to very low latencies, since incoming tuples will be handled very quickly by the 

receiving PU, but already short-term discrepancies in the work distribution lead to full queues and 

correspondingly idle PUs.  

The queues in the implementation have a customizable maximum size. The default size (if not changed 

by the user) is 1024. In many cases this seemed to be a good compromise between throughput and 

latency. However, also maximum sizes of 10 or 100000 can be justified if there are exceptionally high 

latency requirements or very loose ones.  

Another possible approach to attain a very low latency is to reduce the rate tuples are being sent by 

the input stream; e.g. to 90% of the maximum rate the processing system can handle. This eventually 

leads to very few or no elements at all in the PUs’ queues and consequently is a second way of gaining 

low latency by slightly reducing the throughput. 

Lastly, the results have to be outputted by the leftmost PU. For test purposes, we use a PrintWriter to 

output the results into a file. 

10.4 The pane-based approach 
There are not many noteworthy implementation details compared to the other approaches. 

Like for the other cyclic approaches, most of the differences evolve from the different ways to measure 

the system’s latency and from the way of handling the final ResultSet and final tuple. 

We shortly want to discuss the way PUs store panes. 

10.4.1 Panes 

At each point of time, if we do not group tuples by their key, there is only one active pane in the whole 

processing system, so a PU does not need an advanced data structure at all to store the single pane. 

Else, if we group tuples, there exists one active pane for each distinct key of tuples having a timestamp 
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in the current pane time-slot. All non-expired existing panes are located on the same PU and in order 

to store panes – which is necessary whenever a tuple with a new distinct key arrives – and find panes 

– which is necessary whenever a tuples arrives that contributes to an already stored pane – in O(1) 

time, we use a HashMap. Each element of the HashMap uses a pane’s key as key and the pane itself 

as value. 
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11 Experimental Evaluation 
In this chapter, we investigate the different approaches’ performance in terms of throughput and 

latency. 

In the corresponding sections of the different approaches, we already discussed the circumstances 

under which we expect the respective approach to perform well or bad and compared it to the 

previous approaches. Now we will determine the suitability of the different approaches for different 

settings in practice. 

11.1 Structure of the performance tests 
As examples we will construct and analyze three different settings. Each setting will exhibit specific 

values of the aggregation’s parameters that we expect to be advantageous for one group of our 

approaches: The hash-based approaches (HSA and HOA), the round-robin-based approaches (RRA, 

RRCA) or the Pane-based approach (RRCPA).  

So we expect the hash-based approaches – the Handshake approach and the Hash-Once approach – 

to be superior on the Hash-Advantage settings. We expect the round-robin-based approaches – the 

Round-Robin approach and the Round-Robin-Cyclic approach – to be superior on the RR-Advantage 

settings. And we expect the Round-Robin-Cyclic-Paned-Based approach to be superior on the RRCP-

Advantage settings.  

We will discuss why we chose the given settings and which performance we expect from the 

approaches in the respective sections of Section 11.3. We will compare the evaluation’s results with 

the predictions and analyze whether they match. 

The input data stream  

Our input data stream sending the input tuples is being simulated by an extra thread.  

The ATD of the tuples is equal to one. So it holds that ti.timestamp = ti-1.timestamp+1 (each tuple has 

the timestamp of its predecessor tuple increased by one).  

It sends tuples as fast as possible as long as the receiving PU’s incoming tuple queue does not exceed 

a certain number of elements (1024 in our tests, see Section 10.3 for more information).  

It is important to know that in this test the tuples’ timestamps have nothing to do with the real point 

of their creation time. We could imagine the situation as follows: There is a machine that produces 

information about its temperature every millisecond. It started one year ago and saved all measured 

temperature values since the beginning. We want to aggregate all of the stored data and continue 

aggregating the machine’s data in real time afterwards. So we begin with the already stored data and 

process it as fast as we can to catch up on the computations of all the stored data in order to continue 

monitoring it with the current data in real time. 

If we group tuples by their keys (whenever K is greater than 1), each tuple gets a random key∈{0,1,…,K-

1}. 

In Section 11.3, we explain for each of the different settings where this input data stream could occur 

in practice (so which real-world environment would produce a similar data stream). 

At this point it should be mentioned again that windows are both time-based and tuple-based as long 

as the TD between consecutive tuples is constant (see Section 2.3 for more information). If we group 

tuples by their keys, this statement is only true if each key’s tuples have a constant TD among 

themselves. Since in this evaluation each tuple’s key is chosen randomly among a certain set of possible 

keys, all settings in which we group tuples by their keys are only time-based and not tuple-based. 
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11.2 Evaluation Setup 
The processing system used for the evaluation works with a 14-core Intel Xeon E5-2695 v3 (Haswell) 

processor. Since it features Hyper-Threading, we have access to 28 logical cores altogether. The 

system’s main memory has a size of 64GB (DDR3 memory). As mentioned, all the approaches have 

been written in Java. 

11.3 The Evaluation’s parameters 
Table 16 shows the aggregations’ parameters of the different settings: name N, window size WS, 

window advance WA, amount of distinct keys DK and aggregate operation(s) O. 

N WS WA DK O 

Hash-Advantage 10000 10000 1000 4 ∗ 1𝑘 Arithmetic Ops 

RRCP-Advantage 10000 100 10 4 ∗ 1𝑘 Arithmetic Ops 

RR-Advantage 1000 1 1 Count (1 Arithmetic Op) 
Table 16: Settings for the different benchmarks 

The three base cases  

First, we shortly want to discuss why we chose the three base cases, so why we expect the chosen 

settings to be advantageous for the respective approaches.  

Thereafter, we imagine a practical use case where those settings would be used.  

Next, we examine the plot and discuss if it matches our expectations. 

Notes regarding the following plots  

The x-axes of our plots always depict the number of threads working simultaneously on the problem, 

while the y-axes show the throughput in 
𝑡

𝑠
 (tuples per second) or latency in ms (milliseconds) when the 

respective amount of PUs are participating. 

As discussed in Section 5.2.5, the (output) latency of a window w is defined as the real-time difference 

between the point of time when a window w left the processing system to be put into the output 

streaming and the point of time when the tuple t that led to the expiration of w entered the processing 

system. 

We average the evaluation’s results over two runs to reduce random fluctuations. 

11.3.1.1 The Hash-Advantage setting 

The analysis of the HSA’s and HOA’s runtime properties and a discussion about their advantages and 

disadvantages can be found in the sections 5.2, 5.3, 7.2 and 7.3.  

The Hash-Advantage settings exhibits the smallest possible ratio of WS to WA. Each tuple is just 

contributing to one single window (WPT=1). There are many distinct keys that we want to group. The 

hash-based approaches, HSA and HOA, still distribute the windows evenly among the participating 

PUs, while the Round-Robin approach, the Round-Robin-Cyclic approach and the Round-Robin-Cyclic-

Pane-based approach do not (see sections 6.3, 8.3 and 9.3). The costs of the aggregate operation are 

high due to the expensive tuple pre-processing, and the effort the hash-based approaches have to 

invest in evaluating the hash functions is very low, since WPT=1 (see sections 5.4 and 7.4), so RRA, 

RRCA and RRCPA are not able to compensate their very bad window distribution behavior.  

So we expect the HSA and the HOA to be up to P-times faster because they distribute the work among 

P PUs while the others do not. 
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Expectations 

We expect an exception for the RRCPA if we allow the PUs’ incoming tuple queues to store at least 
𝑊𝐴

𝐴𝑇𝐷
 

number of tuples (see Section 9.3); this is the amount of tuples that contribute to each pane. Under 

this circumstance, the input stream can send all tuples that contribute to a pane to the responsible PU, 

and then the stream can immediately continue sending tuples to the next pane on the consequent PU. 

If the PUs’ tuple queues would be smaller, the input stream would repeatedly have to wait for PUs. 

Whether a PU can store all tuples contributing to one pane or not is a question of the main memory 

size. In our evaluation, we will consider both cases: In one case there is enough memory to store all 

tuples contributing to one pane, in the other case we limit the tuple queues’ size to 1024 (as in all other 

approaches). 

Concerning the latency, we expect advantages for the line-based approaches (HSA and RRA) compared 

to the cycle-based approaches (HOA, RRCA, RRCPA) because of the communication structure and 

advantages for the hash-based approaches (HSA and HOA) compared to the round-robin-based 

approaches (RRA, RRCA, RRCPA) due to the unfavorable throughput expectations of the latter ones. 

It shall be noted that the latency for the pane-based approach mainly depends on WA and P (see 

Section 9.2.5). Since the tuples’ timestamps are not linked to the real time in this evaluation (see 

Section 11.1, paragraph The input data stream), the time indicated by the timestamps passes more 

quickly as an approach works faster. Since we expect the RRCPA to scale well if it has sufficient main 

memory, there should be two opposing trends when we increase P: The higher number of PUs 

increases the latency, but the faster throughput decreases the amount of real time that is necessary 

to compute tuples and windows and thus – expressed in real-time units – WA shrinks. 

Possible use case of this setting in practice  

We have 1000 sensors. Once every ms, one arbitrary sensor among them sends a tuple. We use a very 

expensive aggregate function. Every ten seconds for each sensor, we want to get the average value of 

all tuples sent by this sensor during the last ten seconds. 
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Figure 21: Processing speed in tuples per second depending on the number of participating threads. 
Hash-Advantage setting: WS=10k, WA=10k, DK=1k, aggregate operation: sum (Pre-process tuple part: 1k additions, 1k 
multiplications, 1k subtractions, 1k divisions) 

 

Figure 22: Hash-Advantage setting: Latency in ms depending on the number of participating threads. 

Assessment of the evaluation results  

As expected, the hash-based approaches are superior to the other approaches, since they can 

distribute the work among all PUs. Until up to 7 PUs, they scale almost linearly, while the other 

approaches do not scale at all. If we assume sufficient main memory space (see Section 9.3), the RRCPA 

outperforms all other approaches and scales linearly.  

The poor scaling behavior of the hash-based approaches for higher numbers of threads is caused by 

the different non-scaling parts (4 for the HOA, 5 for the HSA).  
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The latency behaves as expected as well. A line-based structure is superior to a cycle-based one and a 

hash-based window distribution is superior to a round-robin-based one. In case of sufficiently large 

queues to store at least 
𝑊𝐴

𝐴𝑇𝐷
 elements, due to the linear increase of the RRCPA’s throughput when 

increasing the number of participating threads, WA – expressed in real-time units – shrinks inversely 

proportional to P and hence the product of both remains constant. In case the queues are too small, 

the throughput remains constant and hence the latency increases as we raise P. 

11.3.1.2 The Round-Robin-Pane-Based-Advantage setting 

The RRCPA is basically in all situations superior to the RRA and the RRCA, where 𝑊𝐴 > 1 and 𝑊𝑆 >

𝑊𝐴 (see sections 9.3, 6.3 and 8.3). Its maximum speed-up compared to the RRA and the RRCA for a 

certain WA is reached as long as 𝑊𝑆 ≥ 𝑊𝐴². So the RRCP-Advantage settings exhibit a big WA and a 

𝑊𝑆 = 𝑊𝐴². We expect neither the number of distinct keys nor the aggregation’s costs to have a 

significant influence on the superiority over the RRA and the RRCA, so we can choose arbitrary values 

for them. 

Expectations 

We expect the RRCPA to be up to 
𝑊𝑆

𝑊𝐴
-times faster than the other non-pane-based approaches because 

it has to invest 
𝑊𝑆

𝑊𝐴
-times less work into the aggregation operations. The other approaches should scale 

as well but on a much lower level. The round-robin-based approaches should be superior to the hash-

based approaches due to the additional work the latter ones have to invest. 

Concerning the latency, we expect the RRCPA to exhibit a very low one compared to the others due to 

the very high throughput expectations and accordingly the short time the processing of 3 ∗ 𝑊𝐴 tuples 

consumes, which is decisive for the latency (see Section 9.2.5 and Section 11.3.1.1). Since we expect 

the round-robin-based approaches to be faster than the hash-based, they might get advantages at this 

point due to the shorter computation time per tuple and PU. As usual, the line-based approaches 

should exhibit lower latencies than the cycle-based ones. 

Possible use case of this setting in practice  

We have ten sensors. Once every ms, one arbitrary sensor among them sends a tuple. We use a very 

expensive aggregate function. Every 0.1 seconds for each sensor we want to get the average value of 

all tuples sent by this sensor during the last ten seconds. 
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Figure 23: Processing speed in tuples per second depending on the number of participating threads. 
RRCP-Advantage setting: WS=10k, WA=100, DK=10, aggregate operation: sum (Pre-process tuple part: 1k additions, 1k 
multiplications, 1k subtractions, 1k divisions) 

 

Figure 24: RRCP-Advantage setting: Latency in ms depending on the number of participating threads. 

Assessment of the evaluation results  

As anticipated, the pane-based approach is 70-120 times faster than the other approaches (a zoomed 

version of this plot can be found in the appendix in Section 17.3). It scales linearly up to 28 threads. 

The other approaches scale linearly as well but on a much lower level, since the non-pane-based 

approaches have to do significantly more work in settings like this one. 
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The latency behaves as expected. The line-based approaches are superior to the cycle-based ones, and 

the round-robin-based approaches have advantages over the hash-based ones. The RRCPA exhibits the 

lowest latency due to its extremely rapid throughput rate and accordingly the faster elapsing of the up 

to 3 ∗ 𝑊𝐴 ∗ (𝑃 − 1) time units (see Section 9.2.5). 

11.3.1.3 The Round-Robin-Advantage setting 

The RRA and RRCA are in most cases significantly faster than the HSA and also slightly faster than the 

HOA. However, in theory they are only approximately as fast as the RRCPA approach if either (case 1) 

𝑊𝐴 ≈ 𝐴𝑇𝐷 or (case two) 
𝑊𝑆

𝑊𝐴
= 1 and might in practice even be slightly superior due to the calculation 

and communication costs of the RRCPA’s pane management (see sections 6.3, 8.3 and 9.3). 

There is a downside in the latter case (2): None of the approaches are able to distribute the work at all 

(except the hash-based approaches if 𝐷𝐾 >> 𝑃) and hence there is no potential for parallelization. So 

the RRA and the RRCA might be slightly faster for this setting, but they as well as the other approaches 

are not scaling with more than one PU at all.  

So we consider the other case (1) and choose a setting in which 𝑊𝐴 = 𝐴𝑇𝐷 = 1𝑚𝑠. Now, in the pane-

based approach, all panes will contain only one tuple, so there is no advantage in using panes at all 

(see Sections 9.3). Additionally, we choose a large value for WS to get a big WPT parameter which is 

very disadvantageous for the hash-based approaches (see sections 5.3 and 7.3). 

Expectations 

We expect the pane-based approach to scale with increasing numbers of threads but on a lower level 

than the other round-robin-based approaches, since the pane management consumes more 

computing time. We expect the hash-based approaches to suffer from the very high WPT parameter. 

The Prepare & Execute Hash Operation part of the HSA will entirely bottleneck its performance while 

the HOA will store huge amounts of responsibility information within each tuple, slowing down the 

communication between the processing cores (even if we transport data via reference within shared-

memory machines, the data is still transferred between the main memory and different cache levels, 

which takes some time). 

Concerning the latency, we expect similar proportions between the non-pane-based approaches as in 

the last setting. The assumed speed advantage of the RRA’s and RRCA’s throughput should lead to 

lower latencies compared to the hash-based approaches. As usual, the line-based approaches should 

exhibit lower latencies as the cycle-based ones. The RRCPA’s latency should be much higher in this 

setting compared to the previous one, since we expect its throughput to be significantly lower which 

decelerates the speed at which the latency time (up to 3 ∗ 𝑊𝐴 ∗ (𝑃 − 1) time units, see Section 9.2.5) 

elapses. 

Possible use case of this setting in practice  

We have one sensor. Once every ms, it sends a tuple. We use a cheap aggregate function (count). Every 

1 ms we want to get the average value of all tuples sent by the sensor during the last second. 
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Figure 25: Processing speed in tuples per second depending on the number of participating threads. 
RR-Advantage setting: WS=1k, WA=1, DK=1, aggregate operation: count (No pre-process tuple part) 

 

Figure 26: RR-Advantage setting: Latency in ms depending on the number of participating threads. 

Assessment of the evaluation results  

The results are close to the expectations. The Round-Robin and Round-Robin-Cyclic approaches scale 

linearly up to 28 threads (after 14 cores with a lower gradient, probably because the used processor 

has 14 cores with Hyper-Threading). Exactly as expected, the pane-based approach scales linearly as 

well but with a lower gradient as the other round-robin-based approaches. As predicted, the hash-

based approaches scale poorly. The HSA almost does not scale at all. The HOA scales more or less 
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linearly up to 14 cores and deteriorates afterwards. So it seems that the Hyper-Threading cannot 

compensate for the increasing amount of communication traffic arising due to the large tuple size in 

the HOA. 

Concerning the latency, we can observe the already familiar pattern: The line-based approaches are 

better than the respective cycle-based approaches.  

The round-robin-based approaches have advantages over the hash-based approaches.  

As predicted, the latency of the RRCPA is much higher than the latency of the other approaches. 

Although the measurements are averaged results of several benchmarks, the RRCPA’s latency 

consistently decreases to a great extent when using more than 28 threads without a significant impact 

on the throughput. We do not have an explanation for this particular behavior yet.  
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12 Related Work 
There are many papers introducing techniques or data structures that focus on improving specific 

aspects of streaming aggregation problems; among them several could be combined with the 

approaches presented in this thesis to enhance certain components of it. 

Mouratidis et al. [6] introduce two algorithms that monitor top-k queries over sliding windows. Using 

a new data structure – the skyband – they avoid re-computing all top-k results from scratch for each 

of the sliding windows. In case we want to compute top-k results on a data stream as well, this data 

structure could be used to avoid constantly executing redundant computations, while keeping the 

advantages of disjoint parallelizations. 

Balkesen et al. [4] present two techniques for partitioning windows and tuples to reduce the 

communication transfer between the participating threads and to decrease the amount of redundant 

calculations. 

One technique is the basis of the pane-based approach presented in Chapter 9.  

In contrast to the presented approach: 

 Our approach does not need a central processing unit that merges results. 

 Our approach does not only run on a ring topology, where each PU is connected to one input 

thread, but also on a line topology with each PU having a connection to one input thread. 

 We analyze the approach and its advantages and disadvantages more in detail. 

The second introduced technique based on batching windows has advantages and disadvantages 

compared to the pane-based technique, depending on the aggregation settings. It could also be 

combined with our way of gathering expired windows to avoid a central coordinator that needs to 

merge the results in chronological order. 

Depending on the aggregation’s settings, especially in large distributed systems it could be a 

reasonable option to make use of advanced data structures, network topologies or novel techniques. 

Skip graphs [7] or Chord [8] could be used to locate tuples, windows or panes, reduce the network 

traffic and increase the communication speed, especially if we are using distributed systems utilizing a 

large number of machines.  

ScaleGate objects, introduced and used in the articles [9] and [10], could help to distribute data stream 

merging tasks among all participating processing units.  

The article [11] also deals with data structures for multiple input streams that could be of use in the 

cycle-based approaches (HOA, RRA, RRCPA) which can receive and process data from up to P 

independent data streams.  

Also the splitting of queries into subqueries [12] that are being executed in a parallel and distributed 

fashion might be an option to distribute the work more evenly among a large number of participating 

processing units as it allows a more fine-grained parallelization. 
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13 Conclusions 
Referring to Chapter 3, the existing approaches for sliding-window streaming aggregations are working 

with central coordinators that manage the distribution of the incoming data and the merging of the 

results processed on the participating processing units. Central coordination of the tasks might cause 

bottlenecks once the managing costs exceed the coordinator’s computing capacity, which is the reason 

why this thesis dealt with the development of disjoint parallelizations of sliding-window streaming 

aggregation, hence parallelizations without centralized coordination.  

Desired properties of these parallelizations include the correctness of the aggregation results as well 

as a deterministic output behavior, high tuple processing rates and low latencies.  

We decided to focus on shared-memory systems, but preferably the parallelizations should be re-

usable for distributed setups as well. 

We successfully developed five different approaches for the disjoint parallelization of sliding-window 

streaming aggregation: The Handshake approach presented in Chapter 5, the Round-Robin approach 

presented in Chapter 6, the Hash-Once approach presented in Chapter 7, the Round-Robin-Cyclic 

approach presented in Chapter 8 and the Round-Robin-Cyclic Pane-based approach presented in 

Chapter 9. 

The first two, the Handshake approach and the Round-Robin approach, stick to all three original 

principles adopted by the Handshake join algorithm presented in Chapter 4.  

The Hash-Once approach and the Round-Robin-Cyclic approach break with one principle by using a 

more complex communication structure in order to gain advantages over the previous approaches 

under certain circumstances.  

The Round-Robin-Cyclic Pane-based approach even partially breaks with the principle of avoiding 

central coordination by committing tuple distribution tasks to the input stream. So as long as this 

approach does not additionally feature a disjoint parallelization of the tuple distribution tasks, we 

cannot construe it as a disjoint parallelization of sliding window streaming aggregation. 

The most suitable among our five approaches for a given problem depends on different parameters as 

discussed in the analysis and discussion sections of the approaches (Sections 2 and 3 in the Chapters 

5-9). 

It depends on the properties of the input stream. Do we have constant or fluctuating timestamp 

differences of consecutive tuples? Do we have zero, few or many distinct keys? Are the distinct keys 

distributed evenly or arbitrarily among the data stream’s tuples?  

It depends on the aggregation parameters. What is the window size and the window advance? Which 

aggregate function do we want to compute? Do we group tuples by their keys?  

It depends on the main memory size. Do we have sufficient main memory for the RRCPA to scale in 

unfavorable cases?  

It depends on the latency demands. Is a very low latency necessary?  

It depends on the processing system. Do we use a single machine with multiple cores or a distributed 

system, a cluster of machines?  

Depending on the given circumstances, we have to choose the best approach individually. 

There still remain many options to improve the approaches as discussed in the fourth section of the 

approaches’ respective chapters.  

In the cyclic approaches (Hash-Once approach, Round-Robin-Cyclic approach and Round-Robin-Cyclic 

Pane-based approach) dummy tuples could be used to decrease the approaches’ latency under certain 
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conditions (see Section 9.1 and Section 9.4).  

For the pane-based approach we considered an alternative structure, which we expect to be superior 

to the current structure of the RRCPA in most aspects. Additionally, we suggested to split panes into 

several sub-panes in order to improve the work distribution among the participating PUs. We also 

proposed to combine the round-robin window distribution with hash functions to enhance the work 

distribution in cases in which the incoming tuples have many different keys (see Section 9.4). In order 

to offer a disjoint parallelization for all parts of the pane-based approach, the most promising 

improvement would be a parallelization of the input stream’s tuple distribution tasks (see Section 9.4 

and Chapter 12).  

As discussed in the Related Work chapter, there are also other options to improve certain aspects of 

our approaches. For example, ScaleGate objects could help to distribute data stream merging tasks 

among all participating processing units. Parallel data structures as Skip graphs or Chord could be used 

to locate objects when working with distributed systems containing large numbers of machines. 

Certain aggregate operations or other stream operations could be accelerated by using specific data 

structures as the skyband. Different suggestions are presented in Chapter 12.  

Since most of the proposed suggestions in the Related Work chapter as well as in the Suggestions for 

improvement sections only aim to improve specific aspects of an approach, it always depends on the 

particular case, whether those suggestions are eventually promising and worthwhile. 
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17 Appendix 

17.1 Computing aggregate operations dynamically 
This section is based on the short introduction about aggregate operations given in Section 2.4 and the 

figures of Chapter 2, but gives more detailed information. Since it is not necessary to understand the 

thesis’ content, but offers useful further information that might be of importance under certain 

circumstances, we decided to put this section into the thesis’ appendix. 

17.1.1 Out-of-order tuples and order-sensitive aggregate functions 

For some order-sensitive aggregate functions, it is only possible to start processing a window w before 

its expiration if out-of-order tuples are not possible.  

One example for such an order-sensitive aggregate operation is a continued fraction. If one window 

contains tuples (in correct order) with the values 1, 2 and 3, the result of a continued fraction over 

these values would be 
1

2

3
=

1

6
. If the tuples with their values are arriving in a different order, let us say 

2, 1 and 3, then the continued fraction’s result would be 
2

1

3
=

2

3
. There might still be cases, were we can 

start the calculation of the aggregate operation before all tuples have arrived, but only as soon as the 

communication system guarantees us that the order of the tuples we want to use in our calculation is 

final and possible further incoming extremely belated out-of-order tuples will not be taken into 

account. 

Since the HOA, the RRCA and the RRCPA do not guarantee non-decreasing timestamps for arriving 

tuples at all PUs, only the HSA and the RRA can be used to compute these aggregate functions 

dynamically. 

In case of certain other aggregate operations, we have to wait and store the tuples until all tuples have 

arrived, no matter if out-of-order tuples can occur or not.  

If we for example calculate the sum of the first, the last and the middle tuple of each window, we do 

not know which tuple will be the last and the middle one finally.  

However, we could already remove some tuples from the window that will definitely not have an 

influence on the result: If we have already received ten tuples and know that no out-of-order tuple 

with a timestamp in between the first ten will arrive, we know for sure that none of the second, third 

and fourth tuple will be the middle or the final tuple. 

17.1.2 Trade-offs between throughput and latency 

For some aggregate operations there are two different viable approaches for the implementation: One 

focuses on continuously creating intermediate results as new tuples arrive within the corresponding 

window. Another one just stores all tuples contributing to a window within it and starts calculating the 

aggregate operation after all tuples have arrived.  

Both approaches may have certain advantages and disadvantages. 

As an example we take the median aggregate operation. By applying this operation, we want to get 

the value, which is separating the higher half of all tuple’s values from the lower half.  

Basically there are two different approaches: 

 We can store all incoming tuples of a window within a list (or a similar data structure) and after 

the expiration of the window we sort the tuples’ values and take the one in the middle of the 

list. 
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 We can continuously add incoming tuples into a TreeMap – a data structure, which 

automatically sorts all contained tuples by their values – and in the end we just have to retrieve 

the value of the tuple in the middle of the TreeMap. 

Both approaches’ runtime is in 𝑂(𝑛 ∗ 𝑙𝑜𝑔(𝑛)) – where n is the number of tuples.  

The first approach has the disadvantage that it has to do almost all the work in the end after the 

window’s expiration, which may increase the latency after which we finally have the result.  

The second approach has the disadvantage that, although the asymptotic runtime is the same, there 

is more overall work, since the continuous updating process of the TreeMap costs more time (higher 

constants of the asymptotically equally expensive operations) than the one sorting phase of the list. A 

few tests showed that approximately three times as much computation time is needed. 

17.2 Example figure for the Handshake approach 
Further below, there is an example execution of the Handshake approach. Three PUs are participating 

and the hash function used to determine the window responsibilities is:  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒𝑃𝑈(𝑤𝑖𝑛𝑑𝑜𝑤 𝑤) = 𝑤. 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡%𝑃. 

So the responsible PU for the window with time limit 5 is 5%3 = 𝑃𝑈2, the PU responsible for the 

window with time limit 10 is 10%3 = 𝑃𝑈1 and so on. 

 

Figure 27: Example execution of the HSA, part 1. Aggregate function: Sum; WS: 10ms; WA: 5ms; group by keys: false. 
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Figure 28: Example execution of the HSA, part 2. 

 

Figure 29: Example execution of the HSA, part 3. 

17.3 Zoomed plot of the RRCPA-Advantage setting 
The next figure is equivalent to the plot depicting the RRCPA-Advantage setting in the evaluation 

chapter, but it is vertically zoomed to make the 4 non-pane-based approaches more readable. 
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Figure 30: Processing speed of the RRCP-Advantage setting as in Figure 23 (zoomed) 
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17.4 Example execution – non-pane-based vs. pane-based 
The next figure depicts the differences between a pane-based and a non-pane-based streaming 

aggregation. Tuples are colored blue, windows are colored green and panes are colored red. It 

demonstrates that in the pane-based approach, redundant computations are avoided. 

 

Figure 31: Example execution: non-pane-based vs. pane-based; aggregate function: Sum, WA=4, WS=16, DK=1 


