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The df particle-in-cell algorithm has been a useful tool in studying the physics of plasmas,

particularly turbulent magnetized plasmas in the context of gyrokinetics. The reduction in noise

due to not having to resolve the full distribution function indicates an efficiency advantage over the

standard (“full-f”) particle-in-cell. Despite its successes, the algorithm behaves strangely in some

circumstances. In this work, we document a fully resolved numerical instability that occurs in the

simplest of multiple-species test cases: the electrostatic XH mode. There is also a poorly understood

numerical instability that occurs when one is under-resolved in particle number, which may require

a prohibitively large number of particles to stabilize. Both of these are independent of the time-

stepping scheme, and we conclude that they exist if the time advancement were exact. The exact

analytic form of the algorithm is presented, and several schemes for mitigating these instabilities

are also presented. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948493]

I. INTRODUCTION

Particle-in-cell (PIC) methods have been a widely used

tool in plasma physics for decades. In classic “full-f” Vlasov

PIC, charged particles are simulated and the fields are

approximated on a grid using an appropriate interpolant. All

particles of the same species are identical: the concentration

of simulation particles represents the value of the distribution

function at a particular location in phase space, just as it is

physically. The full distribution function is solved from the

Vlasov equation

@fs

@t
þ v � @fs

@r
þ Zse

ms
Eþ 1

c
v� B

� �
� @fs
@v
¼ 0; (1)

where the distribution function for species s is fs ¼ fsðr; v; tÞ,
with mass ms, and charge number Zs (�1 for electrons). The

electric and magnetic fields are E and B, respectively, and

are found by solving Maxwell’s equation, using moments of

fs to find the charge and the current density. The PIC method

is Lagrangian in the sense that a solution is obtained by the

method of characteristics. Full-f PIC is unweighted precisely

because the right hand side of Equation (1) is zero. This

method has been well-studied and applied; its limitations are

well-known because numerical dispersion relations are able

to be calculated.1–3

It is typical in plasma theory to expand the distribution

function into a relatively constant equilibrium distribution

F0s and a small perturbation dfs such that fs ¼ F0s þ df .

Aydemir4 took advantage of the properties of Monte Carlo

integration to present a solution method which solves only

for the perturbation. This method was later expanded by

Parker, Lee,5 Denton, and Kotschenreuther,6 and is now

known as the df-PIC method. It greatly reduces the impact of

statistical noise compared to resolving the full distribution

function f. This scheme is weighted in the sense that the right

hand side of the kinetic equation for df does not vanish, so

each marker caries a weight, which changes with time along

characteristics (see Section II).

Because much of the dynamics has been replaced by a

time-dependent weight in the df scheme, a numerical disper-

sion relation based solely on the marker trajectories does not

provide a complete pircture. In fact, for a linear problem, the

particle trajectories are entirely deterministic. Therefore, to

analyze the algorithm, the changing weights play the central

role; the particle trajectories only serve to complicate this

analysis. Recently, work has been done7 toward an analytic

dispersion relation of the Vlasov df-PIC algorithm by

approximating the distribution function as continuous rather

than a collection of discrete weighted markers. The present

article represents an effort toward a fully analytic treatment

of the gyrokinetic algorithm to seek an explanation for a nu-

merical instability that occurs in the simplest of cases, and is

converged on resolution.

For numerical simulations, a variation of the GSP code8

was used.

II. THE XH Mode

We shall concern ourselves with a simplified drift-

kinetic system: that of the XH mode.9 It is the simplest possi-

ble gyrokinetic system with multiple kinetic species, yet it

exhibits the converged numerical instability presented here.

In this regime, we make the following assumptions:

• Electrostatic perturbations (b! 0)
• Linear dynamics only (small perturbations)
• Uniform, triply periodic, shearless slab geometry

(rB ¼ 0)
• Uniform Maxwellian equilibrium (rF0 ¼ 0)
• Singly charged ions and kinetic electrons with Te¼Ti

• Long-wavelength approximation (k?qi � 1)a)Electronic mail: wilkie@chalmers.se
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Note that, as we shall discuss later, it is possible to stabi-

lize the numerical instability by relaxing the first (electro-

static) assumption. However, the instability is still observed

when any of the other listed assumptions are relaxed. These

assumptions are made in this article only to simplify the

analysis and to expose the basic elements of the instability

that exists in a wide range of more comprehensive cases.

It will be convenient to express the gyrokinetic equation

in terms of the gyroaverage of the perturbed distribution at

fixed guiding center R:

gs � hdfsiR; (2)

so that one avoids a numerical instability resulting from

multiple time derivatives.10,11 Since the v? coordinate only

enters the problem through the gyro-averages, and since we

are taking the drift-kinetic limit, we eliminate it from the

problem. Define the l-averaged distribution �gs as

~gs � 2p
ð1

0

h~gsirv?dv?; (3)

where hir is the gyroaverage at constant spatial position r. In

taking the long-wavelength limit, let J0 � 1; C0e � 1, and

C0i � 1� k2
?q

2
i =2.

In terms of gs, under the assumptions listed above, the

gyrokinetic equation12–14 and quasineutrality read

@�gs

@t
þ vk

@�gs

@z
¼ �Zse

T
vkF0sk

@/
@z

(4)

~/ ¼ 2T

niek2
?q

2
i

X
s

Zs

ð1
1

~gsdvk (5)

with F0sk � ðn0s=vts
ffiffiffi
p
p
Þe�v2

k=v
2
ts . The distance along the

straight magnetic field is z, with speed along the field line

given by vk. Note that Equations (4) and (5) are directly anal-

ogous to the Langmuir plasma wave in the limit k? � kk
and Tk � T?, with an effective Debye length of kD

¼ nie
2qi=Ti. Therefore, this instability should also be present

in the Vlasov df-PIC scheme in the appropriate limit. Note

that although the form of the equations is identical, the phys-

ical interpretation of Equation (5) is distinct from Poisson’s

equation: it is instead the leading-order finite Larmor radius

correction to the polarization density.15

We can find the corresponding dispersion relation by

Laplace-transforming Equation (4) and inserting into Equation

(5) to obtain

k2
?q

2
i ¼ Z0

x
kkvti

� �
þ Z0

x
kkvte

� �
: (6)

The XH mode is found by expanding the plasma dispersion

function ZðfÞ for large argument in the dispersion relation.

Including complex corrections, the frequency is approxi-

mated by

x ¼ x0 � i

ffiffiffiffiffiffiffiffi
pvti

2vte

r
x3

0

k2
kv

2
ti

e
�x2

0
=k2
kv

2
ti ; (7)

where

x0 �
kkvte

k?qi

: (8)

The wave is therefore Landau-damped. Due to its high fre-

quency, one requires very small time-steps to resolve it, so it

is easy to mistake this instability for a simple violation of the

CFL condition.16 However, the numerical instability under

consideration here is converged on time-step even if the XH

mode is resolved accordingly.

III. MATRIX FORM OF THE ALGORITHM AND
EXISTENCE OF CONVERGED NUMERICAL
INSTABILITY

Before choosing a time-advancement scheme, the dis-

crete equations that define the df-PIC algorithm for the XH

mode are given in Appendix A.

By combining Equations (A2), (A3), (A6), (A9), (A15),

and (A14), we find that the ODE for the marker weights is

coupled linearly to the weights of all other markers. That is,

_wa ¼
X

b

MabðtÞwb; (9)

where

Mab tð Þ ¼ �2ZaZbva

Np

X
k;i;j

S3 Ra� rið ÞS3 Rb � rjð Þeik� rj�rið Þ ikk

k2
?q

2
i

� �2ZaZbva

Np

X
k

jSkj2eik� Rb�Rað Þ ikk

k2
?q

2
i

: (10)

The last line is only an approximation because one cannot rig-

orously shift a discrete Fourier transform continuously. It is

our experience, however, that using this approximation makes

little qualitative difference to the behavior of the algorithm,

and this is the analytic form taken in Ref. 17. We will, how-

ever, be using the exact form unless stated otherwise. The

average number of particles of each species per grid cell is Nc

so that the total number of particles per species is Np ¼ NgNc.

The time-dependence of the matrix elements (10) comes

from that of the marker positions, through Equation (A3).

Therefore, the df-PIC algorithm is fundamentally a large

coupled system of first-order ODEs with variable coefficients.

One can solve Equation (9) semi-analytically only in the

case where there is a single-mode (with a given k? and kk)
present, and the approximation made in Equation (10) is

valid. In this case, the solution is

wðtÞ ¼ wðt ¼ 0Þ exp ½AðtÞ	; (11)

here exp is the matrix-exponential and the elements of A

are given by

AabðtÞ ¼
ðt

0

Mabðt0Þdt0 (12)

¼ Mab
�i

kk vkb � vkað Þ
eikk zb0�za0ð Þ

� eikkðvkb�vkaÞt � 1ð Þ: (13)
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When multiple Fourier-modes are allowed, this solution is

not valid because then the matrix M fails to commute at dif-

ferent times (i.e., Mðt1ÞMðt2Þ 6¼Mðt2ÞMðt1Þ).
In general, for multiple modes, Equation (9) offers no

immediate analytic solution. However, at any given moment

during a simulation, we can take the matrix to be approxi-

mately constant, and use that to calculate the instantaneous

eigenvalue spectrum. The time-evolution of the most unsta-

ble eigenvalue is given in Figure 1.

The linear system (9) can even be solved implicitly

wðtþ DtÞ ¼ ðMðtþ DtÞDt� IÞ�1
wðtÞ; (14)

where w is a column-vector of all the particle weights.

Figure 2 compares the relative difference in the d f-PIC solu-

tion, and solving the linear system (9) explicitly and implic-

itly. Note that the explicit matrix solution is identical to

within machine precision to the df-PIC algorithm. In fact, it

should be the algorithm, with no approximations made.

Another property of the matrix M is that it is poorly

conditioned (see the evolution of the condition number in

Figure 3). This implies that the dynamics are not reversible

without a roundoff-error catastrophe, but it is unclear if

this provides insight to the numerical instability discussed

below.

Note that solving this matrix system is extremely ineffi-

cient compared to the particle algorithm. In a df particle-

in-cell code, this matrix never needs to be stored, calculated,

or inverted in its entirety. Nevertheless, Equation (9) is the

exact analytic form of the linear algorithm. We find that the

numerical instability presented in Sec. IV is a property of

this matrix system itself, and would exist even if the time

advancement were exact.

IV. CHARACTERIZATION OF THE NUMERICAL
INSTABILITY

Here, we detail the properties of the discovered numerical

instability. In what follows, it will be useful to distinguish

between the two separate instabilities observed: a finite-particle

instability, which is difficult to characterize, and whose average

growth rate generally decreases with increasing particle num-

ber. Indeed, there is not a clean exponential behavior associated

with this numerical instability (see, e.g., Figure 5). As the num-

ber of particles increases, one ultimately finds a converged
numerical instability at some mode numbers, which does, in

contrast, exhibit clear exponential/oscillatory behavior. It is this

unconditional instability that we will chiefly concern ourselves

within this section.

The standard, minimally resolved case in which one can

observe the converged numerical instability is: Ly ¼ 20pqi;
Lz ¼ pa, Ny¼ 4, Nz¼ 4, mi=me ¼ 1849, Nc¼ 8000.

A. Convergence in time-step

As a basic check, we verify that we are not violating a

CFL condition. By decreasing the time step and changing

FIG. 1. Time-evolution of the largest real eigenvalues of matrix (10). The hor-

izontal dotted line marks the approximate average growth rate of the code

(c � 80:6 vti/a) for the parameters: Ny �Nz ¼ 4� 4; Lz ¼ 2pa; Ly ¼ 40pqi,

Np¼320.

FIG. 2. Comparing the df-PIC algorithm to a direct solve of the matrix sys-

tem (9). The sum of the squared particle weights is displayed in the upper

chart. The relative difference compared to the results of an actual df-PIC

code: j½
P

aw2
a	PIC � ½

P
aw2

a	matrixj=½
P

aw2
a	PIC is shown below. The explicit

matrix is accurate to machine precision, while the implicit scheme suffers

from a small amount of numerical dissipation due to the finite-time-step.

The explicit and implicit schemes used here are forward and backward

Euler, respectively, with dt ¼ 10�6a=vti. The resolution is Ny¼ 4, Nz¼ 4,

and 20 particles per species per grid cell. A low resolution is necessary due

to the need to invert a dense matrix of size Np � Np every time-step.

FIG. 3. Time-evolution of the condition number of matrix (10). Same case

as Figure 1.
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time-integration methods, we converge upon the same unsta-

ble solution. Therefore, we are confident that we are con-

verging upon the exact solution of the time-continuous

equations (see Figure 4).

B. Convergence in particle number

In Figure 5, we illustrate the convergence of the unphys-

ical growth rate on particle number. When initializing with

random noise, it is expected that the initial size of the pertur-

bation decreases with increasing particle number. However,

there is a fixed growth rate one reaches at which we consider

the solution converged.

Note also the non-exponential behavior when Nc is

below the threshold. This is the finite-particle instability,

which proves troublesome in some circumstances, requiring

a large number of particles per cell to stabilize. While it is

expected that under-resolving the number of particles would

cause a loss of accuracy, it is not clear why a numerical

instability would result. It is this instability that is observed

in Figure 5 and confirmed with the df-PIC matrix (10) to be a

fundamental feature of the algorithm. It is not clear if the

converged numerical instability is another aspect of this

finite-particle effect, or if they are in fact two separate insta-

bilities arising in independent circumstances.

C. Scaling with parallel wave number

When multiple modes are present (particularly a parallel

mode and its counter-propagating partner), there is a clear

direct linear relationship between the parallel wavenumber

and the growth rate: see Figure 6. This is not particularly sur-

prising: the arbitrary parallel length scale a only enters in

defining kk and the characteristic time a=vti.

D. Scaling with mass ratio

Two kinetic species are required to observe the numeri-

cal instability. Typically, these are taken to be light electrons

and heavy ions. In fact, this was used in the simplification

that C0e ¼ 1 and C0i ¼ 1� k2
?q

2
i =2. As the mass ratio is

adjusted using the same simplified field Equation (5), we

find that the growth rate scales linearly with vte=vti

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
(see Figure 7).

Note that a positive unphysical growth rate remains

even when the mass ratio is taken to be unity (as in a posi-

tronic plasma). In this limit, the approximation used in

Equation (5) breaks down and electron Larmor radius effects

play as much of a role as the “ions”. So while the instability

still exists with full Larmor radius effects, the important

point here is that the separation of scales between the charac-

teristic velocities of ions and electrons is not responsible for

the instability, although it does have a scaling effect on the

growth rate.

E. Scaling with perpendicular wave number

It is found that the numerical instability is only con-

verged for a range of wavenumbers k?. In Figure 8 is the

relationship of the growth rate with k?. A peak growth rate

is observed around k?qi � 0:08. The threshold for stability

does not change with kk, which is to be expected from the

FIG. 4. Demonstrating the convergence of instability growth rate on time-

step size and method. Second-order Runge-Kutta is the default, with a sim-

ple predictor-corrector scheme and fourth-order Runge-Kutta also shown

(the latter two have Dt ¼ 10�4). At high step-size, the simulation is wildly

unstable, which is to be expected from a violation of the CFL condition.

FIG. 6. Dependence of the unphysical growth rate on parallel wave number.

The actual power law fit is k0:9976
k .

FIG. 5. Demonstrating the convergence of instability growth rate on particle

number. Under-resolved cases (Nc < 8000) suffer from the poorly behaved

finite-particle instability.
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linear scaling. The finite-particle instability has an even

more complicated dependence on k?, which is not detailed

here.

V. MITIGATION SCHEMES

That such a catastrophic instability is fundamental to the

df-PIC algorithm is surprising since there are several exam-

ples of it reproducing good physics.18–20 To get good results,

other groups must have either avoided this particular range in

parameter space, or employed one of several mitigation meth-

ods that have been found to stabilize the resolved instability.

From most to least physically satisfying, this section presents

possible methods of mitigating the numerical instability.

A. Small, finite-b

The kinetic Alfv�en wave becomes the XH mode in the

limit b� me=mi. As long as one avoids this regime by run-

ning at a small, but finite b, the Alfv�en wave appears to be

stable in the df-PIC algorithm.19

In physics, one rarely encounters plasmas of interest

with b < me=mi, so this is a somewhat physically satisfying

solution. Some authors have discovered modifications to the

algorithm, such as a split-weight scheme10 or by using

canonical momentum coordinates,20 that may make the elec-

tromagnetic algorithm more efficient or accurate.

B. Piecewise-constant fields

Another way to stabilize the converged instability is to

alter the way the gradient of the potential is calculated at the

location of the particle. In (A6), we calculate the gradient on

the grid and then interpolate that to the particles. Instead,

one can use the local gradient at the particle location given /
on the nearby grid points. Then, all particles within a grid

cell would experience the same electric field. For example, if

instead of (A6), we have

@/
@za
¼ 1

Dz
/zi0þ1

� /zi0

� �
; (15)

i0 � mod floor
za

Dz

� �
;Nz

� �
; (16)

then the algorithm appears to be only unstable to the finite-

particle instability. The reason this occurs is unclear.

This method is not without its costs, however. Besides a

general loss of accuracy by taking the electric field as piece-

wise constant, one introduces a self-force from a particle

experiencing a field from its own charge. This occurs

because the interpolation from the particle to the grid is no

longer symmetric with the corresponding interpolation from

the grid to the particle.1 This can be seen by noting that the

elements Maa in (10) vanish. By altering the algorithm with

(15), this feature is lost. Though no detailed investigation on

the consequences of this scheme has been performed here,

this would surely introduce undesirable effects.

C. Collision operator/coarse-graining

Until now, we have considered only the collisionless

problem. Implementing a physically rigorous collision oper-

ator into df-PIC is a challenge, and one to which the commu-

nity has not yet reached consensus on an acceptable solution.

The implementation of collisions used in GSP is based on

the pitch-angle operator of Broemstrup,8 which itself is an

extension of the Chen-Parker coarse-graining method.21

Based on our simulations, an effective pitch-angle colli-

sion frequency of about � 
 30vti=a is required the stabilize

the instability. For this case, the growth rate is comparable,

so our interpretation here is that this strong of a collision fre-

quency simply introduces strong enough damping to counter-

act the instability.

D. Mode filtering

Perhaps the least satisfying way to stabilize the algo-

rithm is to simply ignore the modes that are unphysically

unstable. Doing so involves employing a mask in Fourier

space such that after /k is calculated, one negates a set of

modes that suffer from numerical instability. This works

because, as evident from Figure 8, only a range of k? are

unstable. Although it has not been analyzed here, it is possi-

ble that in toroidal geometry with magnetic shear, a smaller

FIG. 7. Dependence of the unphysical growth rate on electron-ion mass

ratio. Note the existence of instability at me¼mi. Actual power law fit is

ðmi=meÞ0:5131
.

FIG. 8. Illustrating the dependence of the unphysical growth rate on perpen-

dicular wave number at several values of kk.
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range of modes might be unstable and could make this tech-

nique more palpable. Furthermore, if there is a way to a pri-
ori predict when such modes will be unstable, filtering could

be a satisfying solution if it were a function of grid resolu-

tion, which we maintain may be a possibility.

VI. CONCLUSION

In this work, we presented the analytic form of the df-
PIC algorithm. In doing so, a fundamental numerical insta-

bility is exposed: one that is due to under-resolution in parti-

cle number. While having too few particles certainly leads to

inaccuracy,17 there is no clear reason why a strong numerical

instability should result. Furthermore, there is an even more

troubling instability that is converged on particle number.

There appears to be no way to use the algorithm to distin-

guish the instability as unphysical, and it presents itself

clearly in the simplest multi-species gyrokinetic situation:

the XH mode in a periodic slab.

Responsible computational physics requires a funda-

mental understanding of the discrete equations of a proposed

algorithm and a clear expression of its limitations. There is

much work to be done in this regard with the df-PIC algo-

rithm, and this work along with the approach of Ref. 7 is a

good start toward this goal. A statistical analysis of the set of

ODEs (9) is warranted, though it is not clear how such an

analysis would proceed. Once a fundamental cause for the

unphysical instability is found, work can proceed in mitigat-

ing the undesired behavior at a fundamental level.
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APPENDIX: ANALYTIC FORM OF THE dF-PIC
ALGORITHM

This appendix details the df-PIC method of solving

Equations (4) and (5), taking advantage of two powerful

multi-dimensional techniques: the method of characteristics

and Monte-Carlo integration.

With the method of characteristics, we can reduce an

n-dimensional partial differential equation to a set of ordi-

nary differential equations along characteristic curves that

define the proper time derivative. This will give us the solu-

tion along any appropriate characteristic curve, headed by a

marker (or “particle”), labelled in this article by Greek indi-

ces. The species index will be taken to be implicit in the

marker index, so where convenient we will write, for exam-

ple, Za instead of ZsðaÞ. Define a marker weight, which is just

the normalized solution of the gyrokinetic equation along its

characteristic trajectory

wa �
�gs að Þ Ra; vka

� �
F0s að Þ

¼ �ga

F0a
: (A1)

In terms of wa, Equation (4) becomes

dwa

dt
¼ �Zae

Ta
vk

@/
@z

� �
r¼Ra

; (A2)

which is the solution of the gyrokinetic equation along char-

acteristic curves defined by

dxa

dt
¼ 0;

dya

dt
¼ 0;

dza

dt
¼ vka: (A3)

The total time derivative along particle trajectories is repre-

sented by d=dt. A marker’s position at any time is

RaðtÞ ¼ ðxa0; ya0; za0 þ vkatÞ: (A4)

Some authors choose to normalize the weight by the full dis-

tribution f (such that w ¼ df=f ). This would introduce a fac-

tor of 1=ð1� waÞ to the right-hand side of (A2). Even so, the

numerical instability remains, and when linearized for small

perturbations, (A2) is recovered.

In order to solve Equation (A1), it remains to find

@/=@z at the marker location za. We will use a spatial grid

to aid in this, with a 3D interpolant function S3ðrÞ
¼ Sðx=DxÞSðy=DyÞSðz=DzÞ, where S can be one of many

possible shape functions (see Ref. 1), and Dx; Dy, and Dz are

the grid spacings in the x, y, and z directions, respectively.

Without a loss of generality, we will take S here to be the lin-

ear interpolant function

SðxÞ � 1� jxj; if jxj < 1

0; otherwise:

	
(A5)

Therefore, if we know @/=@z on grid points labelled by ri, we

can find the corresponding value at the location of marker a by

@/
@za
¼ @/

@z

� �
r¼Ra

¼
X

i

S3 Ra � rið Þ @/
@zi

: (A6)

Define the discrete Fourier transforms of an arbitrary

scalar QðrÞ

Qk ¼ FD½QðriÞ	 ¼
X

i

e�ik�ri QðriÞ; (A7)

Qi ¼ F�1
D Qk½ Þ	 ¼

1

Ng

X
k

eik�ri ~Q kð Þ; (A8)

where Ng ¼ NxNyNz is the total number of grid points and k

is discretely valued. Now, find @/=@z on the grid point ri in

terms of the Fourier modes of /

@/
@zi
¼ 1

Ng

X
k

eik�ri ikk/k: (A9)

To proceed, we need a way of estimating the integral in

Equation (5) on the grid. We do this by means of Monte-

Carlo integration,4 using the same interpolant as in Equation
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(A6) for the spatial dependence. Monte-Carlo is a method by

which one expresses an arbitrary integral (in this case, a

one-dimensional integral in vk) as an expectation value over

some probability distribution p and then estimates this

expectation value as a discretely sampled average. Formally,

ð1

�1

�gs vkð Þdvk ¼
ð1

�1

�gs vkð Þ
p vkð Þ

p vkð Þdvk ¼
g

p


 �
p

; (A10)

where hip is the expectation value over the probability distri-

bution p, which obeys the following properties:

p > 0 8vk (A11)

ð1

�1

pðvkÞdvk ¼ 1: (A12)

If we take p ¼ F0ks=n0s by distributing markers according to

a Maxwellian in vk, and have N discrete samples of �gs, then

we can write

g

p


 �
p

¼ n0s

N

XN

a¼1

wa þO
n0svar wð Þffiffiffiffi

N
p

� �
: (A13)

The extension to multiple dimensions can be found in Ref. 4.

To account for the spatial-dependence of Equation

(A13), we use the interpolant function S3 since the location at

which we want the integral (on a grid point ri) is in general

not the same as the marker positions Ra. This is perhaps the

only non-rigorous part of the algorithm and may be what is

responsible for unphysical behavior at large particle number.

Moving forward with this caveat in mind, we can esti-

mate the charge density at the spatial grid location rj

q rjð Þ �
X

s

Zse

ð1

�1

�g rj; vkð Þdvk

� 1

Nc
e
X

b

n0bZbS3 Rb � rjð Þwb: (A14)

Finally, we can calculate /k from the discrete Fourier trans-

form of this quantity using Equation (5)

/k ¼
2Ti

n0ie2k2
?q

2
i

X
j

e�ik�rj q rjð Þ: (A15)

Equations (A2), (A3), (A6), (A9), (A15), and (A14) fully

represent the df-PIC algorithm as implemented with no

approximation, and are combined to give Equation (9).
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