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Abstract— We show how the combination of a single band
global navigation satellite systems (GNSS) receiver, standard
automotive level inertial measurement unit (IMU), and wheel
speed sensors, can be used for relative positioning with accuracy
on a decimeter scale. It is realized without the need for expen-
sive dual band receivers, base stations or long initialization
times. This is implemented and evaluated in a natural driving
environment against a reference systems and against two simple
base line systems; one using only IMU and wheel speed sensors,
the other also adding basic GNSS. The proposed solution
provides substantially slower error growth than either of the
two base line systems.

I. INTRODUCTION

For autonomous vehicles, self-localization is one of the
fundamental problems that needs to be solved. That is,
knowledge of where the vehicle is located relative to the
road is crucial for the vehicle to drive autonomously. For
safety reasons, the solution needs to be accurate and fault
tolerant, and in order to reach the market it must also be
cost efficient.

A common approach to the self-localization problem is
to equip the vehicle with external viewing sensors, such as
cameras, lidars and radars, and a detailed map including
landmarks that are visible with these sensors, e.g., lane
markings, traffic signs, general image corner descriptors, or
simply a rasterized image of the reflectivity of the road [1],
[2], [3]. To locate oneself in the detailed map, the current
observations from the onboard sensors are matched with the
position of the landmarks stored in the map.

To be robust against electrical sensor failures, adverse
weather, or blockage, the landmark based localization is
combined with other means of localization. This is especially
important in situations where there are few landmarks, or
when the environment is different from what is stored in the
map. Two candidates that are available at low marginal cost
are the Global Navigation Satellite System (GNSS) receiver,
and odometry from vehicle internal sensors such as inertial
measurement units (IMU) and wheel speed sensors (WSS).
In these cases, the GNSS receiver provides independent
measurements of the global position to bound the error.
The odometry sensors deliver frequent information about
the movement of the vehicle from which one can perform
dead reckoning. This helps to simplify the landmark based
localization and to handle extensive failures for a limited
time (enough time to make a safe stop).
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These sensors also have their weaknesses and anoma-
lies which, if not handled properly, would degrade the
positioning performance. For example, GNSS receivers are
highly susceptible to bad reception conditions, for instance
in tunnels, next to large buildings, or because of atmospheric
effects. Furthermore, survey grade GNSS receivers are still
expensive, in part due to higher manufacturing cost and low
volumes, but licensing fees for patents related to the L2
band may also contribute. The odometry sensors, on the
other hand, only provide relative positioning information,
and noise and biases in the sensors limit the ability to dead
reckon for extended periods of time.

In this paper we investigate how to cost efficiently use a
GNSS receiver, IMU and WSS to increase the accuracy and
robustness of the self-localization during periods of external
sensor failures or limited availability of landmarks. In the
literature there are several ways to combine GNSS with IMU
and wheels speed sensors. The level of integration, ranges
from loosly coupled, to tightly coupled, to ultra-tightly or
deeply coupled. Generally, a tighter coupling gives better
performance, but adds complexity to the solution. Also the
GNSS receiver architecture and algorithms greatly influence
the positioning accuracy as well as the cost. There is a
range from simple single band receivers which only use the
Coarse/Acquisition code to dual band receivers also able to
track the carrier phases. The more advanced systems that
use the phase measurement of the carrier wave normally
require solving the integer ambiguity problem [4]. Two
popular techniques that solve this ambiguity are ”real-time
kinematics” (RTK), which uses relative positioning to a base
station, and precise point positioning (PPP) which does not
rely on having nearby base stations, but on the other hand
needs a long convergence time [5]. Both the dependence
on nearby base stations and long convergence time can be
problematic in an automotive setting.

There are examples of how to use the more accurate
but ambiguous carrier phase measurements in cheaper one
channel receivers to improve the results without the use of
base stations or long convergence times. One early such
example would be carrier phase smoothing [6]. Slightly more
recent examples include [7], [8], [9]. These works focus on
the GNSS part, and do not investigate how a fused approach
performs.

We propose a solution using the carrier phase measure-
ment from a single band receiver tightly integrated with
a standard grade IMU and WSS. To achieve the required
accuracy we use occasional landmark observation to estimate



System LM WSS IMU GNSS code GNSS phase
”NoGNSS” X X X

”Code” X X X X
”Phase” X X X X X

TABLE I
INFORMATION USAGE FOR THE THREE MODELS

the error states in both the GNSS and the odometry sen-
sors. Additionally, instead of trying to estimate the absolute
position of the vehicle, we focus on accurately estimating
the odometry. As we are only concerned with the relative
movement of the vehicle, we can use the more accurate phase
measurement in a way that the integer ambiguity is no longer
a problem. We evaluate the relative positioning performance
of the proposed system against a reference system, and then
compare it to two base line systems which only make use
of basic GNSS signals (C/A code) or no GNSS signals. We
make this comparison for a range of different dead reckoning
times.

II. PROBLEM FORMULATION

The aim of this paper is to analyze how much better a
system that uses carrier phase observations from a single
band GNSS receiver is for autonomous vehicle localization,
when compared to systems not using it. We name the three
systems that we compare according to their usage of GNSS
measurements, see Table I, for easier reference in later
sections.

We are interested in the relative positioning performance,
so for each of these three systems, we estimate the vehicle
pose and speed at times between the observation of land-
marks, using the available data. During normal operations
the time between landmark observations is short, but during,
e.g., sensor failures, it can be much longer.

Let us introduce the discrete time index k corresponding
to the time tk that the k:th measurement from any of the
sensors was made. The parameters of interest are collected
in the state vector

x̃k = [pTk , θθθ
T
k , vk, θ̇̇θ̇θ

T
k ]T . (1)

The sub-states, pk = [ek, nk, uk]T , θk = [hk, pk]T , vk, and
θ̇k = [ḣk, ṗk]T , represent position, orientation, speed, and
turn rates, respectively, of the middle of the rear axle of the
host vehicle. Although the pose of a rigid body is described
by 3 coordinates for the position and 3 for the angles, we
choose a more restricted model using only two angles, one
for the heading and one for the pitch of the car. This is
enough if we assume that the rear wheels of the car have no
sideways motion, and thus the motion is independent of the
roll angle.

The position is described using east, ek, north, nk, and
up, uk, coordinates in a Cartesian frame aligned with the
curved system of longitudes and latitudes at some chosen
linearization point, see Fig. 1. The orientation of the vehicle
is expressed using the heading angle, hk, with respect to the
east-axis and the pitch angle, pk, with respect to the tangent
plane, see Fig 2.

Fig. 1. The distance to the linearization point, plin, affects how well the
north–, east–, and up–directions of the tangent plane, Πtan, align with the
real directions on the Earth. If the height element in the state is 0, that
position will be on Πtan, but the height over the Earth ellipsoid as reported
by, e.g., a GNSS receiver will be greater than 0 everywhere but in plin. We
use an arbitrary but static point in Göteborg city center for linearization.

Now, let us denote the set of all measurements received
from all sensors up to and including time instance k as y1:k.
The aim is then to recursively calculate the posterior density
p(x̃k|y1:k) of the state x̃k as defined in Eq. (1). From the
posterior we can then calculate estimates of the pose of the
host vehicle as well as relevant uncertainty measures.

A. Information sources

Each information source is presented in detail below
starting with the GNSS receiver.

1) GNSS receiver: Every second the GNSS receiver out-
puts two signals for each visible satellite, s. We have the
pseudo range measurement ψsk (based on the C/A code) and
the carrier phase measurement φsk.

The pseudo range measurement is a coarse measurement
of the Euclidean distance in meters between the receiver
antenna and the satellite. A major source of uncertainties for
this signal is the receiver time, which one usually treats as an
unknown, and solve for together with x-, y-, z-position. Other
errors affecting the accuracy of this measurement include,
e.g., interference in the atmosphere and errors in the satellite
clocks and orbits.

The carrier phase measurement, in contrast to its name,
is a measure of the change in distance between the host
and a satellite since the satellite was first observed. This is
typically a more precise measurement than the pseudo range
but in order to get an estimate of the actual range, one needs
to find the initial range. This range is related to the unknown
integer number of whole wavelengths of the carrier signal,
between satellite and receiver at the first observation. The
carrier phase measurement is affected by the same sources
of error as the pseudo range measurements.

In addition to measuring pseudo range and carrier phase,
the receiver also receives a navigation message that contains
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Fig. 2. The angles for describing the orientation of the car. The order of
rotation is important, and is here chosen as first heading (h), then pitch (p)
and last roll (r). Heading is defined as counter-clockwise rotation from the
east direction. Pitch is the rotation from the horizontal plane.

information about the system as a whole. Two important
parts of this message that we depend on are the parameters
describing the orbits of all satellites, and the parameters used
to model some atmospheric delays.

2) Inertial measurement unit: The IMU contains a 3-
axis gyroscope measuring the angular velocities pitch rate,
heading rate, and roll rate every 20 ms. We denote these
signals by ωp

k, ωh
k and ωr

k for respective dimension, see Fig.
2.

3) Wheel speed sensors: The vehicle is equipped with
four wheel encoders, one in each wheel, measuring how
many discrete fractions of a whole turn each wheel turns
every 20 ms. The corresponding angular velocity is scaled
with a nominal wheel radius to approximate the speed of
the wheel hub over ground. We denote the corresponding
discrete time signals as vfl

k, vfr
k , vrl

k , vrr
k for front left and right

and rear left and right, respectively.
4) Landmark localization: In this paper, we use a syn-

thetic position sensor that directly measures the position of
the host vehicle. These simulated measurements are gener-
ated using a reference positioning system mounted on the
host vehicle. That is, assuming that the reference positioning
system gives us the position of the host vehicle at time k,
the synthetic position measurement plmk is generated as,

plm
k = pk + rlm

k (2)

where rlm
k ∼ N (0; I3×3Rlm) is simulated measurement

noise.

III. MODELS

In this section we describe the measurement models
needed in the three systems as well as the process model
for the state vector x̃k. In order to accurately describe the
measurement models we need to add unknown and time
varying parameters. These parameters are collected in a
auxiliary state vector bk and estimated jointly with x̃k.

A. Measurement models
1) Landmark localization: We assume that we have per-

fect knowledge regarding the positioning sensor, so we
simply use the model that generated the observations (2) to
also describe the measurements in our filter.

2) Wheel speed sensors: Because of the nominal radius
assumed for the wheel speeds, the measured speeds must be
multiplied by an unknown correction factor for each wheel,
rrr, rrl, rfr, and rfl. However, as we know that the same type
of tire is mounted on all four wheels, and we assume that
the tread wear and air pressure is similar for all four wheels
we approximate these four parameters with a very slowly
varying correction factor bws

k . We append this factor bws
k to

the state vector and estimate it in the filter.
Further, the four wheel speeds, vfl

k, vfr
k , vrl

k , vrr
k , do not only

give information about the speed of the car. They also give
information about the heading rate of the vehicle. Introducing
the lateral distance from the center of the car to the wheels,
lw, and the wheel base, ll, the four individual wheel speeds
are modeled as

vfl
k =bws

k

√
(vk − ḣklw)2 + (ḣkll)2 + rfl

k (3)

vfr
k =bws

k

√
(vk + ḣklw)2 + (ḣkll)2 + rfr

k (4)

vrl
k =bws

k (vk − ḣklw) + rrl
k (5)

vrr
k =bws

k (vk + ḣklw) + rrr
k , (6)

where

[rfl
k, r

fr
k , r

rl
k, r

rr
k ]T ∼N (0; I4×4Rv). (7)

is quantization noise from the wheel encoders.
3) Inertial measurement unit: We assume that the mea-

surements from the IMU are corrupted by an additive, and
slowly varying bias for each dimension, denoted bθhk and bθpk ,
respectively. We further assume that pitch and roll angles are
small, which gives us the following measurement equation

ωh
k = ḣk + bh

k + rh
k (8)

ωp
k = ṗk + bp

k + rp
k (9)

where [rh
k, r

p
k]T ∼ N (0; I2×2Rθ) models measurement

noise. The bias parameters, bh
k and bp

k, are appended to the
state vector.

4) GNSS receiver: For satellite s, the GNSS receiver
produces two independent measurements of the Euclidean
distance, ρsk, between the receiver and the satellite, code-
based pseudo range ψsk (used in the ”Code” system) and
carrier phase φsk (used in the ”Phase” system). In this section
we present models for both of these and further explain how
the carrier phase is used in the ”Phase” system.

First let’s define the distance ρsk, which relates the satellite
position, xsk, y

s
k, and zsk known from the navigation message,

to the receiver position, xrk, y
r
k, and zrk as

ρsk =
√

(xsk − xrk)2 + (ysk − yrk)2 + (zsk − zrk)2. (10)

These x−, y−, and z−coordinates are in an Earth centered
and Earth fixed frame. The host position, ek, nk, and uk
from (1) is aligned with the tangent plane in Fig. 1, which
is related to the Earth centered frame through a linear
transformation. The transform from the position as defined in
the state vector to the GNSS receiver antenna position, also
includes addition of the vector from the mid point between



the wheels to the position of the GNSS antenna in the vehicle
coordinate frame.

Using (10), the pseudo range measurements, ψsk used in
the ”Code” system, can be modeled as

ψsk = ρsk + Isk + T sk + ∆tsk + ∆trk + rψ,sk , (11)

where Isk and T sk are signal delays caused by the ionosphere
and troposphere, respectively, ∆trk is the receiver clock bias
and ∆tsk represents satellite specific errors, such as satellite
clock bias and orbit error. Note that, for convenience, all
time delays and clock biases are implicitly multiplied by the
speed of light in vacuum so that they are expressed in meters
instead of seconds. The noise processes rψ,sk ∼ N (0;Rψ)
models measurement noise in the receiver.

The ionospheric delay, Isk , in (11) can be roughly calcu-
lated using Klobuchar’s model [10] and parameters received
in the navigation message. The remaining error is ignored,
and contribute to an error in the calculated position. The
tropospheric delay to each satellite, T sk , can be modeled as

T sk = m(Esk)T z
k (12)

where T zk is the zenith tropospheric delay, Esk is the elevation
angle of a certain satellite, and m(·) is a mapping function,

m(E) =
1.001√

0.002001 + sin2(E)
, (13)

accounting for the longer path through the troposphere when
a satellite is not in zenith [11]. This leaves the following
unknown parameters in (11) to be estimated by the filter,
T zk , for the tropospheric delay, the satellite specific errors
∆tsk and the receiver clock drift ∆trk.

The ”Phase” system uses the more accurate but ambiguous
carrier phase measurements, φsk, to estimate x̃k. In order
to express things in length units, we model the product
of carrier phase measurements, φsk, and the nominal carrier
wave length in vacuum, λ, as

λφsk = ρsk − Isk + T sk + ρs0 + ∆tsk + ∆trk + rφ,sk , (14)

where ρs0 is the unknown constant or phase ambiguity term
expressed in length units, and rφ,sk is a noise term.

As we are mainly interested in odometry, it is enough
to measure the distance that the host vehicle has traveled
between two consecutive satellite observations, and by doing
so, not having to handle the unknown phase ambiguity. So,
we instead consider the difference between two consecutive
phase measurements

λ∆φsk =λ(φsk − φsk−1) (15)
=(ρsk − ρsk−1)− (Isk − Isk−1) + (T sk − T sk−1)+

(∆tsk −∆tsk−1) + (∆trk −∆trk−1) + (rφ
s

k − r
φs

k−1)

≈(ρsk − ρsk−1)−∆Isk + ∆T sk + ∆∇trk +
√

2r∆φs

k .

Here we make the approximation that the satellite specific
errors change slowly on the time scale we are interested in.
The ρ0 term disappears before the approximation, since it’s
the same irrespective of k by definition. The ∆Ik and ∆Tk

that we keep, are small and could be ignored, but since we
have approximations that are easy to compute, and they have
been shown to improve results in a time differenced solution
[9], we keep them. In this way we trade some precision
and having to remember ρk and ∆trk over time, for a much
smaller number of parameters in the state.

We augment the state with ∆p and ∆θ, which describe the
position and orientation change since the last GNSS update.
Then it is possible to calculate all ρsk−1 using (10) at the next
GNSS measurement. The motion model for ∆p is identical
to the one for p, with the only exception that it is reset to 0
every time a GNSS measurement is made.

B. Augmented state vector and process model

In addition to x̃k as defined in (1), we append the auxiliary
states, bk, used to describe the measurements models, to for
the augmented state vectors,

xk = [x̃Tk ,b
T
k ]T . (16)

As the auxiliary state vector depend on the observations that
the system makes use of, we in fact get three different xk
depending on which bk we use. We define these system
dependent vectors,

bNoGnss
k = [bws

k , b
h
k, b

p
k]T (17)

bCode
k = [bNoGnss

k ,∆trk,∆
2trk,∆

3trk, T
z
k,∆t

1
k, ...,∆t

S
k ]T

(18)

bPhase
k = [bNoGnss

k ,∆trk,∆
2trk,∆

3trk,∆pTk ,∆θTk ]T . (19)

where ∆2tr and ∆3tr are the first and second order time
derivative of ∆tr.

1) Vehicle process model: If we make an assumption of
no significant body side slip, we can define a motion model
which integrates the angle rates, θ̇, and forward speed, v,
over some time to predict a new pose. We use a constant
velocity and turn rate model for the vehicle motion. The
continuous time derivative of the state

˙̃x =f̃(x̃) + q̃ (20)

f̃(x) =[v cosh cos p, v sinh cos p, v sin p, ḣ, ṗp,01×3]T

defines the vehicle motion model in continuous time. The
process noise vector, q̃, is approximated as Gaussian, and is
only non-zero for elements corresponding to zero elements
in f̃(x). The remaining elements in q̃ are zero.

We use the Euler approximation to find the the discrete
time motion model

xk+1 = xk + T f̃(xk) + qk. (21)

where T is the sampling time and qk is the discretized noise
term.

2) Auxiliary state process model: The three parameters
∆trk,∆

2trk, and ∆3trk from the bk vectors, describe the
receiver time delay as a constant acceleration model. All
other elements in the auxiliary state vectors are modeled as
independent random walks with Gaussian noise.



IV. IMPLEMENTATION AND EVALUATION

Due to nonlinearities, both in the measurement model and
in the process model, there is no closed-form solution to
the posterior density. However, as the prediction times are
short and the measurement noise relatively small, Gaussian
approximations of the posteriors yield sufficient accuracy.
Consequently, we have chosen to use a cubature Kalman
filter [12] to calculate the first two moments of the posterior
density.

Further, to handle occasional cycle slips in the phase
measurements from the GNSS receiver we discard highly un-
likely measurements from satellites. Carrier phase measure-
ments that are more than 3σ from the predicted measurement
of the filter are simply not considered, with the measurements
that are smaller being assumed to have a Gaussian noise
distribution.

After implementing our proposed method ”Phase”, and the
two base line methods ”Code” and ”NoGNSS”, we evaluate
the three methods on a data set. The evaluation is done by
calculating the error to a highly accurate reference system
for each method, and then comparing this error between the
three methods.

A. Scenario

An inertial navigation system comprising an RTK GNSS
receiver (Trimble BD982) tightly coupled to a high end
IMU in a product branded as Applanix LV 220, serves as
the reference. The reference system uses post processing
to produce a smoothed solution of pose and velocity. It
does so using the measurements from the whole data set
and nearby reference stations from the SWEPOS network
in a batch smoother. The resulting position estimate has
an estimated standard deviation below 5 cm, except when
driving in a longer tunnel, and can serve as ground truth in
this comparison.

The GNSS measurements used in the positioning filter
are taken from the same reference receiver, but only raw
measurements from L1 band are used. This provides data
similar to what a simple one channel receiver would produce.
However, the antenna that was coupled to the reference
system is most likely more sensitive and also more resistant
to multi path errors as compared to what a simpler antenna
would be.

For the evaluation, landmarks are not measured using real
sensors, but instead simulated using the ground truth data.
The simulated landmarks give rise to measurements of the
position of the car at even intervals.

The driven route, see Fig. 3, consists mainly of arterial
roads with two lanes in each direction. It has one longer
tunnel and a number of overpasses, but no urban areas with
tall buildings around. The reason for this choice is that it
represents the type of environment where first autonomous
vehicles are expected to operate. We remove the data from
the tunnel and a few longer parts where the car was totally
stationary from the comparison, because they corrupt the
comparison. In the tunnel the three methods are known to be

identical and the large error there would drown the remaining
part. The stationary parts are not representative of normal
usage and may lead to overly optimistic results, if included.

Fig. 3. Orthographic photo with the driven route overlaid. The white part
of the route is from open sky conditions, with the exception of a number of
overpasses, and the yellow part is inside a tunnel. The linearization point
is marked with a pin.

B. Results
Since we have a good reference of the true position, we

compare the three models we have implemented, ”NoGNSS”,
”Code”, and ”Phase”, to the ground truth. The output from
our implementations is a sequence of estimates of the mean
and covariance of the state vector.

The error in lateral position is one of the most important
measures to get correct estimates for. If this error grows
larger than a couple of decimeters, the result could be that
the car crosses into an adjacent lane. For the plots we
present here, we have projected the estimation error to this
lateral position dimension, and are thus mainly comparing
this measure and its variance between implementations and
for various landmark frequency.

As we can see in Fig. 4, the error for the ”NoGNSS”
solution grows without bounds and quicker than linearly with
the temporal length of the dead reckoning. As expected for
the ”Code” method, we get similar performance for short
times, but the error is bounded by the precision of the
GNSS measurements regardless of how long interval we have
between the landmarks. This bound, however useful it is for
normal navigation, is too large for autonomous driving. The
”Phase” method on the other hand has error growth that is
slow enough to be useful for the intended purpose up to
about 10 s interval.

The RMSE is a rather crude performance measure, since
we require a very low number of extreme errors for safety
reasons. Although we haven’t performed enough tests to get
a reliable error distribution, we can get an indication by
looking at the error histogram of the data we have, as in
Fig. 5.

To judge the quality of the variance estimate, we tally the
number of samples where the error is larger than a σ-level
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Fig. 4. Lateral root mean square error for three methods using different
sets of measurement when compared to the RTK reference.
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Fig. 5. Histogram of lateral error using logarithmic y-axis. Perfect landmark
measurements every 20:th second. The outermost bars corresponds to all
errors larger than 4m.

as estimated by the filter. Fig. 6 shows an example where
the error exceeds the 3-σ level for a number of samples.
The amount of samples where error is large in this sense, is
shown as a percentage of the total number of samples in the
middle column in Table II.

n amount large error normal dist (for ref.)
1 12.73% 31.73%
2 2.37% 4.55%
3 0.55% 0.27%
4 0.07% 0.01%
5 0.00% 0.00%

TABLE II
AMOUNT OF DATA OUTSIDE THE ESTIMATED N-σ LEVEL. THE NOMINAL

VALUES FOR A NORMAL DISTRIBUTION ALSO INCLUDED FOR

REFERENCE IN THE RIGHT COLUMN.

V. CONCLUSIONS

In terms of autonomous driving, we already knew that
regular GNSS receivers are not of much use besides pro-
viding a rough initialization for other localization methods.
More tests with more production like hardware, and in more

Fig. 6. Time plot of error, sigma level and region where error is larger
than the sigma level.

environments are needed, but now we have an indication
that by instead using a receiver capable of outputting carrier
phase measurements, it is possible to make much better
use of the GNSS receiver for relative positioning. The error
growth is low enough for it to be useful on the time scales
of 5-15 seconds that are needed to perform emergency stops.
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