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ABSTRACT  

Groundwater drawdown induced ground subsidence is a severe problem in many 

regions around the world. Leakage of groundwater into a sub-surface construction, 

resulting in drawdown and subsequent subsidence, can lead to immense damage 

costs on buildings and installations in urban areas. To reduce the risk for damages 

safety measures can be implemented. Safety measures include design change of the 

construction, sealing of fractures in bedrock and permeable formations in soil, and 

infiltration of water to maintain stable groundwater heads. However, such measures 

can be very expensive and extensive investigation programs are therefore commonly 

realized as a basis for decision support on the need for safety measures. Since the 

sub-surface consists of heterogeneous and anisotropic materials which cannot be 

investigated in its entirety, decisions on safety measures have to be taken under 

uncertainty. In this thesis, a generic framework is presented on how to assess the 

risk for groundwater drawdown induced subsidence (Paper I). As specific tools for 

modelling uncertainties in the groundwater drawdown – subsidence – damage chain, 

a method for probabilistic modelling of bedrock levels and soil stratification (Paper 

II) and a method for probabilistic modelling of ground subsidence at the city scale 

(Paper III) are presented. 

 

 

Keywords: groundwater leakage, groundwater drawdown, urban hydrogeology, 
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1 INTRODUCTION 

This chapter gives a background to the work with examples on infrastructure projects 

with subsidence damages worldwide and in Sweden. A framework for risk assessment 

and management is suggested and the concept of two major project risks related to 

taking or not taking action is introduced. 

1.1 Background 
With increasing global urbanization follows a demand for improved infrastructure 

services such as roads, railroads, sewage and electric power. This creates land-use 

conflicts when space for infrastructure has to compete with space for buildings and 

recreation. Therefore, infrastructure services are increasingly located beneath the 

land surface, see e.g. Huggenberger and Epting (2011). 

Complexity and uncertainties in sub-surface projects can be substantially higher 

compared to constructions on the ground surface. When constructing a house or a 

bridge on the surface, it is possible to build with routine designs based on properly 

tested materials with known properties (Rempling et al., 2015). Sub-surface projects 

are on the other hand constructed in poorly known materials formed and impacted 

by complex geological and anthropogenic processes (Lundman, 2011).  

Uncertain and variable ground conditions in sub-surface construction result in a 

wide range of risks. These include failure of the construction with potential 

consequences such as loss of life and personal injury; economic damages and loss of 

credibility for those involved; risk of not meeting standards for functional design, 

operational ability and quality standards; risk of significant delay; and risk of 

significant increase in costs (Reilly & Brown, 2004). In addition to these risks, sub-

surface construction can affect its surrounding environment. This includes 

advantageous aspects such as conservation of natural and urban landscape and 

possible reduction of noise and pollution (Rönkä et al., 1998). Sub-surface 

constructions can also cause negative effects on the environment due to leakage of 

groundwater into constructions with subsequent groundwater drawdown. Negative 

effects include dewatering of wells, springs and streams (Attanayake & Waterman, 

2006), contamination propagation (Hernández-espriú et al., 2014) and 

biodegradation of wood foundation (Vatovec, 2007). Groundwater drawdown is a 

severe issue in areas with compressible materials and buildings sensitive for 

subsidence. Since a groundwater drawdown from a sub-surface construction can 

affect very large areas (square kilometers), see e.g. Burbey (2002), Huang et al. 

(2012), the damage cost in a city with many buildings and installations can be 

immense (Persson, 2007).  
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Groundwater drawdown induced subsidence is a severe problem in many regions 

around the world. In Shanghai, China, the whole city is affected, with subsidence 

magnitudes of up to two meters (Xue et al., 2005). In Mexico City, extraction of 

groundwater has caused more than 9 meters subsidence with severe consequences 

on building foundations, sewer drainage and transport systems (Ortega-Guerrero et 

al., 1999). In Bangkok, the whole metropolitan area is affected by subsidence mainly 

caused by groundwater extraction with damages on buildings and tunnels (Phien-

wej et al., 2006). Groundwater drawdown induced subsidence is also an issue in 

Scandinavia with observed damages in Stockholm, Gothenburg and Oslo, see 

Karlsrud (1999) and Olofsson (1994).  

In Sweden, there are several planned and ongoing infrastructure projects in urban 

areas such as; the railway tunnel Stockholm City Lane, the utility tunnel City Link 

for high voltage cables, the Stockholm Bypass of European highway E4, and the 

West Link, a railway tunnel under central Göteborg. The risk for subsidence 

damage in these projects is managed by implementing extensive investigation, 

modelling and communication programs.  

To reduce the risk for damages, actions can be taken to implement further 

investigations to reduce uncertainties or safety measures to increase redundancy in 

the system. This includes additional geotechnical and hydrogeological investigations 

for more precise predictions, sealing and grouting of tunnels, inspection, 

stabilization of buildings and their foundations, and infiltration of water to maintain 

groundwater heads. As already mentioned, decisions on these actions need to be 

taken under uncertainty. Implementation on these actions is associated with two 

major project risks:  

1. The risk of not taking action when there is a risk of harmful groundwater 

drawdown and subsidence. If the drawdown causes damages, the contractor 

is, by Swedish law (Swedish Environmental Code 1998:808 chp. 16), 

responsible for the costs and consequences of these damages. Except for 

direct costs for the contractor, indirect negative consequences for victims and 

for society as a whole can occur.  

2. The risk of taking action when there is no risk of harmful groundwater 

drawdown and subsidence. This is risk is associated with unnecessary costs 

for measures not needed. 

These two project risks create a need for efficient decision support regarding 

necessary safety measures. Such decision support needs to deal with the different 

sources of uncertainty in the system. Uncertainty can be defined as any deviation 
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from the unachievable ideal of complete deterministic knowledge (Walker et al., 

2003). There are different sources of uncertainties including: (1) context and 

framing of the boundaries of the system to be modeled, (2) input data and external 

forces that drive the model, (3) structural uncertainty due to incomplete 

understanding and simplified descriptions of modeled processes, (4) parameter 

uncertainty  as well as (5) model uncertainty (Refsgaard et al., 2007). The nature of 

uncertainty is commonly categorized into aleatory (due to inherent variability) and 

epistemic (due to imperfect knowledge) uncertainty. Epistemic uncertainty can be 

reduced by improved knowledge whereas aleatory uncertainty cannot be reduced. 

There are different strategies to deal with the uncertainties, such as: ignoring, 

choosing conservative scenarios, using the observational method or by quantifying 

uncertainties (Christian, 2004). For complex systems, it can be difficult to use the 

same strategy for all sources of uncertainty.  

For a complete risk assessment and understanding, the whole cause-effect chain of 

groundwater drawdown induced subsidence needs to be understood, see Figure 1 

and Figure 2. This chain is initiated with leakage of groundwater into a sub-surface 

construction in bedrock (1a) or soil (1b). It continues with reduction of groundwater 

piezometric heads due to the leakage (2). The drawdown reduces pore pressure in 

compressible deposits (3) and causes subsidence (4). The extent of the subsidence 

damages (5) depends on the sensitivity of the constructions founded on the 

compressible deposits. The consequences depend on (among other things) the cost 

(6) associated with the damage. In this process, the consequences are determined by 

the interaction between geotechnical and hydrogeological conditions and the 

sensitivity of the constructions at risk. To cause damage, several conditions need to 

be fulfilled jointly: groundwater drawdown affecting pore-pressure in compressible 

soils below constructions sensitive to subsidence. Thus, the cause and effect chain 

implies that several processes in the system need to fail in order to cause system 

failure. 
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Figure 1 The different processes in the chain for groundwater drawdown induced 

subsidence damages. The pink area illustrates bedrock, green: coarse grained 
material, yellow: soft clay and grey coarse grained filling material. The hatched 
line at 1a illustrates a fracture zone in the bedrock.  

Much research at Chalmers has been directed at the different parts of the cause-

effect chain, with special emphasis on improved understanding of processes, 

reduction of uncertainties and suggestion and design of safety measures. This 

includes e.g. a method for describing the lithology of bedrock using probabilistic 

approaches (Rosenbaum et al., 1997), which can be used for groundwater modelling. 

Thörn and Fransson (2015) present a new methodology for hydromechanical testing 

of rock fractures. This method can reduce uncertainties of hydraulic properties in 

rock. Butrón et al. (2010) introduce a new concept for design and evaluation of 

grouting which can reduce the risk for leakage into a tunnel.  

To understand the propagation of leakage and reduction of piezometric head in 

bedrock to aquifers in soil, hydrogeological models can be a useful tool. On this 

issue, LeGrand and Rosén (2002) argue that money can be saved by better use of 

existing hydrogeological knowledge. Svensson (1984) suggest a method for fitting 

probability density functions (pdf) to groundwater head observation time series for 

prediction of extreme values. Persson (2009) continues this research track by also 

including methods for estimating pore pressure. This is an essential part of the 

cause-effect chain since a reduction of pore pressure drives the subsidence. Persson 
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(2007) connect hydrogeological methods to geotechnical engineering, which is 

necessary for describing groundwater drawdown induced subsidence. Mossmark 

(2014) describes how hydrochemical processes are affected by leakage of 

groundwater into tunnels. Gustafson (2012) provides a review of the knowledge 

base on hydrogeology in crystalline bedrock with explanations on practical methods 

for site investigations, layout and design and operation of tunnels and underground 

facilities. 

Research in geotechnical engineering and subsidence in soft soil has a long tradition 

at Chalmers. Sällfors (1975) presents methods for evaluation of the stress-strain 

curve. These methods are today the basis for industry standards in Sweden. Alén 

(1998) suggests probabilistic calculation methods of geotechnical problems and 

subsidence in particular. Novel investigation methods for behavior of creep in clay 

are presented in Olsson (2013). Going from investigation methods to calculation 

methods of creep, Sivasithamparam et al. (2015) suggests a method for modelling in 

anisotropic soft soils.  

Except for methods aimed for a better understanding of various soil processes, 

research is also focused on methods for risk assessment, see e.g. Göransson et al. 

(2014), Brinkhoff et al. (2015) and Lindhe et al. (2009). Furthermore methods for 

cost benefit analysis (CBA) of safety measures, see e.g. Söderqvist et al. (2015), 

Malm et al. (2015) and Lindhe et al. (2011). Zetterlund (2014) advanced the concept 

of CBA and suggest a method based on Value of Information Analysis (VOIA), for 

prioritization of investigations in rock engineering investigations.  

All these studies can be useful for a risk assessment of the subsidence damage chain. 

Nevertheless, none of these take account of the whole cause – effect chain. Persson 

(2007) does this to a certain extent with analytical methods, Heterogeneous soil 

conditions and damage costs are however not assessed.  

Also in research outside of Chalmers, there is a gap in taking account of the entire 

cause-effect chain. There are, of course, many studies that are useful for the 

understanding of individual aspects, see Section 2. There are also studies that cover 

the relationship between groundwater drawdown and ground subsidence on a city-

scale, see e.g. Galloway and Burbey (2011), Hung et al. (2012), Modoni et al. (2013) 

and Shen et al. (2013). These studies however, focus on the evaluation of historical 

observations of groundwater drawdown and subsidence and not on predictions of 

future events.  
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In the research project presented in this thesis, the purpose is to embrace the whole 

cause – effect chain in method development on useful tools for decision support. 

Although the individual publications only cover some aspects, they originate from a 

need for improved risk assessment of the entire system. This reasoning is different 

from studying individual aspects and then assessing how they can be useful for the 

whole system of groundwater drawdown induced subsidence. In addition, the chain 

has to be evaluated with interdisciplinary approaches that combine the fields of 

hydrogeology in bedrock and soil, geotechnical engineering and risk assessment.  

1.2 Risk assessment 
Risk is often defined as a combination of probability and consequence of a 

hazardous event, see e.g. Kaplan (1991). As mentioned in Section 1.1, the cause-

effect chain for groundwater drawdown induced subsidence is characterized by 

different sources of uncertainties. Examples of uncertainties include 

hydrogeological and geomechanical properties, conceptualization and model 

representation. These uncertainties need to be carefully addressed when assessing 

the risk for groundwater drawdown and subsidence damages.  

In risk assessment in practice, uncertainties can rarely be quantified based on 

existing data only, and therefore need to be addressed to a larger or smaller degree 

by expert opinions and judgements. Figure 2 illustrates a framework (presented in 

Publication I) for risk assessment and management, developed in accordance with 

the ISO standard on risk management (ISO, 2009) and the work by Aven (2012) 

and Lindhe (2010). In this figure, risk estimation is a part of the initial risk analysis 

step. The risk analysis also includes the scope definition and identification of 

hazardous events. In analogy with e.g. a fault tree model, which is a common risk 

method for structuring a causal risk analysis, see e.g. Lindhe et al. (2009), the cause-

effect chain includes several hazardous events. These events need to occur jointly to 

cause damage on buildings and installations (top event).  

Risk analysis with probabilistic methods may, for example, conclude that a 

permanent leakage into a tunnel (hazard) can cause damage costs valued at 2 

MSEK (consequence) with a probability of 0.05. Although this conclusion gives an 

overview of the general risk for subsidence damage, the decision support on what 

safety measures to prioritize is very limited. Evaluation of alternatives to reduce the 

risk are done in the risk evaluation step of the risk assessment, see Figure 2. Risk 

evaluation can be performed in several ways. One approach is to define tolerability 

criteria, reflecting acceptance levels of affected stakeholders and regulations from 

authorities. An example of a tolerability criterion is that a certain level of 
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subsidence (for example 2 cm) is accepted to occur at a certain level of probability 

(for example maximum five percent), see Publication III. Tolerability criteria can 

also be defined on other levels in the chain, for example by assigning acceptable 

damage cost to the buildings. Quantitative tolerability criteria of damage costs have 

not been applied on Swedish infrastructure projects as far as the author knows. 

Instead, tolerability criteria on leakage and groundwater drawdown for 

infrastructure projects are typically defined. Although tolerability criteria are 

defined for other levels in the cause-effect chain than the last, they have to be based 

on an estimation of the actual consequence. This means that tolerability criteria are 

based on the risk (costs for subsidence damages) but defined for intermediate 

parameters of the risk (leakage, groundwater drawdown or subsidence magnitude). 

When a acceptance tolerability criterion is used, the safety measure that best 

(considering e.g. cost and/or reliability) meet the criterion should be chosen. Safety 

measures can e.g. be analysed with cost-effectiveness analysis where the safety 

measure that can meet the acceptance criterion to the lowest cost should be 

recommended (economic analysis of alternatives in Figure 2).   

Another approach to risk evaluation is cost benefit analysis (CBA), see Publication 

I. In a CBA, the expected risk reduction (reduced costs for damages), i.e. the 

benefit, of a safety measure is compared with the cost for implementing the 

measure. The criteria for CBA is maximum net benefit, which can result in a 

recommendation to accept extensive damages if this turns out to be the most 

profitable alternative.  

In practice, successful risk evaluation has to comply with norms and regulations in 

society, making a combined, third, approach possible, and in many cases realistic. 

An example of this approach can be to define criteria tolerability criterion, as in the 

first method. Among the alternatives that can meet this criterion, the one with 

highest profitability according to a CBA is recommended. The difference form the 

first method (using cost-effectiveness analysis) is that also the benefit of the risk 

reduction (and not only that the risk should be reduced to a certain level) is 

included, which means that a more expensive alternative can be recommended if 

motivated by its benefits.  

A risk assessment of the cause-effect chain for groundwater drawdown induced 

subsidence needs to address issues in both space and time. A tunnel can be very 

long and geological conditions, sensitivity of constructions and associated damage 

costs, as well as stakeholder preferences, can vary along the length of the tunnel. 

Examples on how spatial conditions can be addressed in the initial parts of the 
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cause-effect chain are described in Publication II and III. Time needs to be 

addressed since leakage rates can vary during the construction and operation phase. 

Both drawdown and subsidence are transient processes which create time for 

implementation of safety measures. This is further discussed in Section 5.   

Although the result of a risk assessment may conclude that the expected net value 

(see Publication I) of a certain safety measure is 0.5 MSEK if it is implemented at a 

certain location and time, the risk assessment serves as decision support. The actual 

decision on risk reduction on risk control is taken after managerial review and 

judgements by considering both stakeholder values and the result of the risk 

assessment.  

 

Figure 2 Framework for risk management modified after Publication I.  

 

1.3 Aim and specific objectives 
The overall aim of this thesis is to 

Develop methods for estimating risks of groundwater drawdown induced 

subsidence in infrastructure projects, taking into account the entire chain of 

events from groundwater drawdown to land subsidence. These methodologies 
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should serve as a clear and cost-effective decision support for implementation 

of safety measures.  

To fulfill the overall aim, there are three specific objectives: 

Develop a framework for risk assessment of groundwater drawdown induced 

subsidence 

Develop a method for probabilistic modelling of bedrock levels and soil 

stratification 

Develop a method for probabilistic modelling of groundwater drawdown 

induced subsidence on a city-scale that utilizes the bedrock and soil 

stratification model 

In a later stage of this research project, the mentioned methods will be combined 

with VOIA, see e.g. Zetterlund et al. (2011), for economic valuation of subsidence 

consequences and safety measures. VOIA is a cost-benefit analysis that provides a 

comparison of the benefits of increased knowledge and safety measures to reduce 

risks of inappropriate decisions against the costs for new information and measures.  

This project provides novel research to better predict the risk of harmful subsidence 

caused by groundwater drainage. More accurate risk predictions will make decision 

making more efficient, reduce costs of subsidence problems, and improve 

communication of the risks to stakeholders, authorities and contractors.  

1.4 Scope of work 
The overall aim of this thesis is achieved through theoretical studies and method 

development with continuous application in case studies. The methods for 

probabilistic modelling of bedrock levels and soil stratification and subsidence are 

applied on a case-study in Stockholm; City-Link tunnel, which is a planned utility 

tunnel in bedrock for power-lines. The work is presented in Publication, I, II and 

III.  

Figure 3 illustrates how the three publications relate to each other. Publication I 

provides a framework for risk assessment of the cause-effect chain for groundwater 

drawdown induced subsidence. This publication relates to the first specific objective. 

Publication II and III are necessary components for estimating risks in the cause-

effect chain. Risk estimation is an essential component of the risk analysis 

compartment included in the presented framework in Publication I.  
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Publication II provides a basic geometric structure of bedrock and soil layers for 

analyzing risks in the cause-effect chain. This is necessary for adding additional 

groundwater and subsidence modules when estimating risks in the chain. The City 

Link Tunnel case study has provided data to the model. Publication II relates to the 

second specific objective.  

In Publication III, subsidence magnitudes due to certain groundwater drawdown 

magnitudes are analyzed probabilistically. The method estimates risks in the second 

(pore pressure) and the third (subsidence) part of the chain. The model in 

Publication II provides soil and bedrock geometry for the simulations of subsidence. 

The City Link case study provided data. Publication III relates to the third specific 

objective.  

This thesis includes a theoretical background of the cause-effect chain for 

groundwater drawdown induced land subsidence in Section 2. In Section 3, a 

theoretical background to on Kriging and probabilistic groundwater modelling is 

given. An overview of the publications and the main findings is presented in Section 

4. Section 5 comprises a discussion of the result and how the research is planned to 

continue in further studies. 

 

Figure 3 An illustration on how the three publications relate to each other and the case 
study. 
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2 THEORETICAL BACKGROUND OF THE CAUSE-EFFECT CHAIN 

The whole cause-effect chain for groundwater drawdown induced subsidence 

damages needs to be understood for a relevant risk estimation of the same. This 

chapter describes the different parts of this chain starting with groundwater leakage 

into the construction, resulting in groundwater drawdown, subsidence and, in the end, 

damages on constructions.  

As described in the introduction, the magnitude of the consequences is determined 

by the interaction between hydrogeological conditions in soil and bedrock, 

geotechnical conditions in the soft soil and the sensitivity for subsidence of the 

constructions at risk. In this cause-effect chain, see Figure 1 and Figure 4, several 

conditions need to occur jointly to cause damage. There has to be a groundwater 

leakage into the construction to cause a groundwater drawdown. Depending on the 

magnitude of the leakage, hydrogeological conditions in soil can compensate so that 

the extent and magnitude of the groundwater drawdown and reduction of pore 

pressure are limited. For a case with extensive groundwater drawdown, the geo-

mechanical properties in the soil materials can compensate, preventing substantial 

subsidence. Finally, the extent of the damages, and thereby the damage costs, 

determine the vulnerability of the constructions for subsidence. Consequently, the 

cause and effect chain implies that several processes in the system need to fail in 

order to cause system failure. 

 
Figure 4 The cause-effect chain for groundwater drawdown induced subsidence 

damages. 

How critical these processes are, can vary between projects and sites. This implies 

that the full range of different aspects of the cause-effect chain need to be properly 

understood for each individual sub-surface project. Since preconditions in geology 

and built environment vary between projects, it is important to understand these for 

planning of safety measures. In this chapter, a theoretical background to the 

different processes in the chain is given. 

2.1 Geometry of bedrock and soil 
A sound understanding of the geometry of bedrock and soil is essential for all parts 

in the cause-effect chain. This understanding needs to be based on the geological 
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and anthropogenic processes on the bedrock and soil within the modeled area. 

Knowledge of this history can help or focus ideas on characteristics of the 

hydrogeological and geomechanical system. In Paper II, a method for probabilistic 

modelling of bedrock- and soil-layer levels is suggested. A geological model gives 

information on continuity of stratigraphy between boreholes and helps to 

understand spatial variation, see Figure 5. If the geological model is parametrized, it 

can be combined with a hydrogeological and/or geomechanical model for spatial 

modelling of groundwater flow and subsidence respectively.  

For major infrastructure projects it is common that the sub-soil is evaluated based 

on an extensive investigation program. In addition, there typically exist a large 

amounts of historical observations from previous projects in urban areas. Although 

large amounts of investigations are available, only a very small fraction of the soil 

volume that will be constructed or affected by the construction can be observed. 

Broms (1980) suggests that 1 in 1,000,000 by volume can be investigated. With 

geophysical investigation methods it is however possible to cover larger areas but 

the ambiguities and uncertainties can be immense (Kearey et al., 2013). Since the 

investigations are characterized by uncertainties, there is a need for estimations of 

the representativeness of the samples regarding the volume of the construction. 

Such estimations can be based on a combination of knowledge of local geological 

conditions, previous experiences and statistics. Because of this need, the problem 

changes in character, from mechanical linking of borehole information to a 

transdisciplinary problem that includes uncertainty estimation.  

Several structured interpolation procedures for building geological models, e.g. Asa 

et al. (2012), Bourgine et al. (2006) or Chung and Rogers (2012), are based on the 

geostatistical method Kriging (Matheron, 1963), see Section 3.1. The basis of 

Kriging is the variogram, which describes the relationship between distance and 

variability of a variable in space. Kriging provides a probabilistic approach by which 

a weighted average and an uncertainty estimation are calculated at each 

interpolation point. There are many methods based on Kriging with different 

approaches on how the input data are managed, how different data types are 

managed, and how dependencies between different geological layers are considered.  

A common method for estimating the probability of the presence of a soil type in a 

grid cell is indicator Kriging, see e.g. Sidorova and Krasilnikov (2008) and Deutsch 

and Journel (1997), using indicators to represent material categories. Other 

approaches, based on Markov chain analysis, have been used for modelling of 

categorical data in geology, see e.g. Rosen and Gustafson (1996), Rosenbaum et al. 
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(1997), Norberg et al. (2002) and Carle and Fogg (1997). Spatial simulation of 

material categories in comparison to an approach with continuous layers can be 

beneficial in very heterogeneous environments with complex layering. The method 

presented in Paper II is based on an assumption of continuous layers. As mentioned 

in the paper, this assumption is suitable for the geological setting in the case-study in 

Stockholm and similar settings and on the regional scale studied here. In addition, 

the assumption of continuous layers simplifies modelling in terms of transformation 

of data between different software, since only a few two dimensional matrices needs 

to be transferred instead of multiple three dimensional matrices in high resolution.  

For the hydrogeological system, it is also necessary to model structures in bedrock - 

since dominant fractures can transport more water. To model fracture planes in 

bedrock geometry another approach than presented in Paper II is needed. 

Zetterlund et al. (2011) describes how the probabilistic method T-PROGS (Carle, 

1999) can be used for modelling of different structures in rock mass. This method is 

based on Markov chain analysis for estimation transition probabilities from one 

material to another and indicator kriging for performing the spatial estimation of 

material distributions across the modelled volume. The locations of major fracture 

zones are crucial for the flow of groundwater in bedrock. Since fracture locations 

can be simulated, this approach could be appealing for further studies of the 

hydrogeological part of the system. An example of one realization with T-PROGS 

for a 2 meter deep soil layer is presented in Figure 5a. Other methods for simulation 

of fracture network include e.g. FracMan (Dershowitz, 1992) and 3DEC (Itasca 

Consulting Group, 2012). 

 
Figure 5 Two different approaches for soil stratification modelling. The left image (a) 

shows on one realization with T-PROGS resulting in discontinuous layering, 
green: coarse grained material, yellow: clay, orange: silt, blue: glacial till, and, 
brown: peat. The right image (b) is based on the modelling approach presented 
in Publication II with continuous layering, black: coarse grained filling material, 
yellow: clay, green: coarse grained material, and, red: bedrock. Note that the 
two models are based on different data and that the scales are different for the 
two images.  
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2.2 Leakage into a sub-surface construction 
The cause-effect chain starts with a disturbance of the present state hydrogeological 

conditions when constructing below the groundwater table. Constructions in soil as 

well as in bedrock can cause leakage of groundwater that propagates in the cause-

effect chain. In addition to reducing possible negative impact on the surrounding 

environment, it is also of interest to reduce inflow for ensuring the function of the 

construction. How the leakage propagates to drawdown of groundwater piezometric 

heads is described in Section 2.3. In this section, the leakage conditions in bedrock, 

see Figure 6, is described together with strategies for investigation, analysis and 

reduction of the leakage.  

Sweden is dominated by crystalline bedrock. In this material, groundwater flows in 

secondary porosity fractures formed through repeated periods of tectonic activity. 

Primary porosity is negligible from a practical point of view. The hydraulic 

conductivity of crystalline bedrock depends on its fracturing and weathering, see e.g. 

Lachassagne (2008). Fracture conditions are dependent on tectonic history whereas 

weathering is dependent on the bedrock's mineralogy and history of chemical, 

physical and biological processes, see e.g. Pidwirny (2012). Weathering effects 

decrease with increased distance from land surface major fractures and fracture 

zones, which leads to a reduced permeability. This trend of reduced permeability 

with greater depth from land surface is also a result of reduced fracture apertures 

since rock stress increases at greater depths (Gustafson, 2012).  

Although some estimations can be made on the hydraulic conductivity of the 

bedrock depending on depth below surface and the location of fracture zones, the 

hydraulic conductivity can vary several orders of magnitude. From a model-based 

view, the hydraulic conductivity depends on the scale of the problem that is 

analyzed. Gustafson (2012) divides the scale into three different levels: The small 

scale with analysis of point inflow from individual fractures (1), the medium scale 

where blocks between 3-30 meters can be assumed as a stochastic continuum (2), 

and the large scale where the rock is assumed as a homogeneously porous medium.  

Starting with the small scale, Thörn (2015) describes the impact of fracture 

geometry on the inflow. Zetterlund et al. (2011) present a method for stochastic 

simulations of rock mass characteristics for grouting purposes along tunnel sections 

on the medium scale. The observation method (Peck, 1969), where grouting is 

designed preliminary in a design phase and additional measures are decided based 

on observations in the construction phase, see e.g. Spross and Larsson (2014), is also 

performed on the medium scale. For the large scale, Wladis and Gustafson (1999) 



2. Theoretical background of the cause-effect chain 

15 

studied how the hydraulic conductivity varies based on data from the well archive 

provided by the Swedish Geological Survey (SGU).  

Consideration of scales is of course of relevance when estimating the inflow. 

However, depending on what phase the project is in and the consequence of the 

leakage, different scales are of relevance. An early stage risk assessment for 

groundwater drawdown induced subsidence on the city-scale would start with the 

large scale and continue the analysis on the medium scale when more information 

becomes available. The small scale is of interest when the tunnel inflow of individual 

fractures can be significant and critical.  

The most common technique to reduce the inflow into a bedrock construction is to 

seal the water-bearing fractures by grouting. In this process, boreholes are first 

drilled into the rock mass, then grout is injected under pressure to fill the fractures 

(Stille, 2015). Depending on the impact on the construction and the surrounding 

environment, the acceptable leakage ratio varies between projects but also along 

different parts of a tunnel construction.  

 

Figure 6 Frozen leakage water from fractures in bedrock in a tunnel under construction. 
The photo is taken close to the tunnel entrance. Photo: COWI AB. 

In Sweden, the tradition has been to control environmental impact of groundwater 

drawdown by regulation of inflow. Inflow is typically regulated in a permit for water 

extraction decided by a (Land and Environmental) court. This means that the 
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possible environmental impact has to be propagated down to an acceptable leakage. 

Since leakage is the first part of an often complex cause-effect chain, this is of course 

difficult and characterized by uncertainties. There is, however, a possibility that this 

trend is about to change. In the recent case for Bypass Stockholm, the Land and 

Environmental Court at Nacka Tingsrätt, case M 3346-11, regulates acceptable 

changes in groundwater heads rather than leakage.  

2.3 Groundwater drawdown 
This section gives an introduction to groundwater flow, water balance and 

conceptualization methods of groundwater systems in cities. Later, Section 3.2 gives 

an introduction to probabilistic groundwater models. In this thesis, the term 

"aquifer" is defined as a groundwater bearing unit in soil or bedrock with greater 

permeability than clay deposits, regardless of its practical potential for utilizing or 

storing groundwater. Clay deposits are considered aquitards. 

When evaluating the possible extent and magnitude of groundwater drawdown it is 

important to analyse the water balance between infiltration, storage and runoff. A 

leakage into a construction causes a discharge and reduces the storage in affected 

aquifers. This leads to a reduction of groundwater piezometric heads which also can 

reduce pore pressure in soft soils and cause consolidation settlements, see Section 

2.4 and 2.5 respectively. As mentioned in the introduction, the reduction of heads 

can cover large areas at great distances from the construction.. For the case studies 

in Paper II and III, the possible extent of groundwater drawdown for the planned 

tunnel is up to 1 km. For long tunnels, this large area creates challenges both for a 

hydrogeological investigation but also for the other parts of the cause-effect chain. 

A discussion of scale issues in the cause-effect chain follows in Section 5. 

A hydrogeological investigation on a large, city scale includes several challenges. 

The hydrogeological system in a city is often very heterogeneous due to variation of 

anthropogenic disturbance of the water balance. These disturbances include 

covering of soils leading to increased surface runoff and reduced infiltration, 

groundwater flow barriers due to constructions, leakage into constructions, leakage 

from water distribution and sewage systems, and infiltration of water compensating 

for leakage into constructions. An understanding of the hydrogeological system in a 

city can be obtained by studies of groundwater observation time series, 

measurements of leakage in tunnels and pipes and, comprehensive modelling 

approaches that include groundwater, surface water and the hydraulic effects of 

constructions.  
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For a sound understanding of an urban hydrogeological system, traditional field 

tests are also needed. For any hydrogeological field test, such as pumping test and 

slug-test, it is important to connect the test environment and other sources of 

information when evaluating parameters and representativity of the test. This is 

even more important in cities due to the mentioned large scale and the 

heterogeneous environment. For planning and evaluation of field tests, the soil-

stratification model presented in Paper II has been of great benefit for the 

hydrogeological investigations of the City-Link tunnel in Stockholm, see Sundkvist 

(2015). In the planning phase, the model was used for finding representative 

locations for investigation wells. When evaluating the field tests, the soil 

stratification model was used for conceptualizing the hydrogeological system and 

connect the test results with individual aquifers. After the conceptualization, a 

numerical groundwater model based on the soil stratification model and the field 

investigation was realized (Wladis & Borgström, 2015). In the case-study, the 

potential area for groundwater drawdown due to the planned tunnel was decided, 

based on a conservative reasoning with the test-results, models, experiences from 

previous projects and potential damage. Further ideas on how to improve 

groundwater modelling with probabilistic models is presented in Section 3.2. 

 

Figure 7 Infiltration utility under construction in central Stockholm. Three infiltration 
wells (foreground) and cabinet for regulation of infiltration flow. Photo: COWI 
AB. 
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A common strategy to compensate for leakage and insufficient grouting for 

maintaining of groundwater levels is infiltration of water into the aquifers, see 

Figure 7. In Sweden, infiltration of water as a safety measure in infrastructure 

projects is regulated in rulings in legal court in conjunction with permits for 

drainage. Although infiltration is a safety measure, construction and operation of 

infiltration wells can be expensive, complicated and cause damages itself. Likewise, 

determining the extent of drawdown from a construction, detailed information on 

the functioning of an infiltration well can first be given in its operation phase. 

Infiltration wells can be an expensive safety measure. If they are installed as a safety 

measure but it is later found that they are not needed, their installation costs bring 

economic loss to the project. If the need for infiltration is first observed during the 

construction phase, there is a critical time period to design and put functioning 

infiltration wells into operation before the drawdown causes damages. Infiltration of 

water can also cause too high groundwater levels, which can lead to e.g. flooding of 

basements. It is also discussed whether infiltration of water can increase the content 

of oxygen and cause decomposition in buildings' wood foundation (Björdal, 2016).  

2.4 Reduction of pore pressure in soft soils 
The reduction of groundwater piezometric heads in soil layers also gives reduced 

pore pressure (Δu). Reduction of pore pressure in soft soils is essential in the cause-

effect chain since this leads to consolidation settlements, see Section 2.5. Similar to 

the groundwater drawdown process, the reduction of pore pressure is a transient 

procedure. Pore pressure variation in a clay profile depends on the hydraulic 

conductivity of the clay layer itself and materials in adjacent layers, drainage 

conditions and water balance between infiltration and drainage. 

In the case-study in Paper III, steady-state conditions and groundwater drawdown 

in confined groundwater aquifers below clay layers only is assumed. Groundwater in 

open groundwater aquifers above the clay layer are not likely to be drained due to 

the low hydraulic conductivity in the clay and high infiltration. With these 

assumptions, the pore pressure is assumed to vary with a straight line between the 

pressure at the bottom and the top of the clay layer. This means that no reduction of 

pore pressure occurs in the topmost part of the clay layer. This also means that the 

reduction of pore pressure in the bottommost part of the clay layer corresponds to 

the same pressure reduction as the reduction of groundwater head in the confined 

groundwater aquifer (see Paper III for details). Similar assumptions are made in e.g. 

Persson (2007).  
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Other assumptions such as hydrostatic conditions between open and confined 

groundwater aquifers could be reasonable if drainage paths in the clay layer are 

assumed to be created by penetrating constructions and previous investigation 

drillings. In accordance with this assumption, artesian pressure conditions are 

however not possible. Since artesian pressure has been observed in some of the 

case-study areas this assumption is not valid for these areas.  

For heterogeneous soil and drainage conditions, the pore pressure profile in the clay 

volume can vary significantly, see e.g Berntson (1983). Precise information of pore 

pressure conditions can however be difficult to estimate for the whole clay volume if 

a large area is covered. For the case-studies in Paper II and III, only a few 

estimations of pore pressure with CPT (cone penetration tests) and spare 

measurements of piezometers in the clay volume are available. Therefore, it is 

necessary to estimate the pore pressure based on information from groundwater 

observation wells. 

As mentioned previously, the reduction of pore pressure in the clay due to a 

groundwater drawdown is a transient process. Even if a groundwater drawdown in a 

coarse-grained confined aquifer unit reaches steady-state conditions relatively fast, 

it can take much longer until steady-state conditions are reached in the clay volume. 

The transient process is commonly calculated with Darcy's law, see e.g. Muir Wood 

(2004). Estimating the transient reduction of pore pressure is necessary to analyse 

the consolidation process properly, see Section 2.5.  

2.5 Subsidence in soft soil 
Consolidation settlement in soft soils occur as a result of dissipation of pore 

pressure. In Paper III, a method for probabilistic calculations of groundwater 

drawdown induced subsidence on a city scale is introduced. This section gives a 

theoretical background to the subsidence process. In addition, in Paper III 

uncertainties in soil property estimates are quantified and represented by 

probability density functions. This chapter gives further details on uncertainties in 

property estimates and subsidence modelling in soft soils. 

The theory of deformation of porous medium soils containing water within its voids 

is based on the principle of effective stress (σ'), introduced by Terzaghi (1923). This 

principle states that the total stress, (σ), consist of the sum of the effective stress 

(inter-granual stress carried by the soil skeleton) and the pore pressure (u). To a 

certain extent, the deformation process in clay can be compared with other 

materials such as steel or concrete. With a reduction of pore pressure in clay, the 

stress increases in vertical direction (+σv). This causes an axial compression (-εv) but 
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also a (small) lateral change (Δεh). A similar process occurs for a metal cylinder. 

When a vertical force pushes the cylinder, the stress increases in the same direction 

as the force, resulting in a vertical compression but also a horizontal expansion. The 

relationship between axial compression and lateral expansion gives the Poisson's 

ratio, � =	− ���
�� . 

Since materials expand and compress in different directions depending on the 

direction of the force, the stress-strain relationship is three-dimensional. Often, 

stress-strain is simplified to a one-dimensional relationship with the same direction 

as the force. The initial condition in this relationship is linear elastic. In this 

condition, the strain (ε) is proportional to the stress (σ) and Hook's law, 	 = −
 ∗ �, 

holds (where E is Young's modulus defined as the ratio of the stress along an axis to 

the strain). An essential feature of the elastic phase is that the material is left in its 

original condition when it is loaded and unloaded. In addition, there is a one-to-one 

relationship between stresses and strain in the elastic phase.  

Since the reduction of pore pressure is a transient process, consolidation of soft soil 

is also a time dependent procedure. This time dependency together with the 

mentioned principles for the elastic phase, forms the basis for Terzaghi's equation of 

one-dimensional consolidation under constant total stress (Terzaghi, 1943): 
�
� =
�� �
��
��� , where z is depth and �� is the coefficient of consolidation. The coefficient 

of consolidation can be expressed as: �� = 	�∗�
�� , where M is the modulus and �� is 

the unit weight of water. 

When transferring the elastic phase of soft soils according to Swedish practice, 

Young's modulus can be compared with the primary compression modulus, M0, see 

Larsson and Sällfors (1986). As discussed in Olsson (2010), the methods for 

estimating this parameter give results with significant uncertainties. In Paper III an 

empirical assumption for estimation of M0, is used, see Larsson et al. (1997). Since 

the compression is very small and reversible in the elastic phase, the estimation of 

M0, is however less critical in comparison to estimation of parameters in the 

subsequent plastic phase.  

When a material yields, it goes from elastic to plastic conditions. If only one 

dimensional condition is considered, the transition phase from elastic to yielding is 

often simplified to a point. For soft soils, this point corresponds to the 

preconsolidation pressure (σ'v). In Sweden, the industry standard for estimating the 

preconsolidation pressure follows a graphical method introduced by Sällfors (1975). 
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In this method, piston samples of clay are evaluated with constant rate of strain 

(CRS) rate of 0.7 %/hr. This method is also used in Paper III. Other methods for 

estimating the preconsolidation pressure in one-dimension are described in e.g. 

Casagrande (1936) or Burmister (1952).  

As mentioned in Paper III, one of the main uncertainties in estimation of soil 

properties is model uncertaintity when laboratory measurements are transformed 

into design properties (Kok-Kwang & Kulhawy, 1999). Since different possible 

methods are possible when the phase from elastic to plastic conditions is 

transformed to the single point of preconsolidation pressure, the estimation includes 

this model uncertainty. The evaluation is also dependent on temperature and strain 

rate, see e.g. Sällfors and Tidfors (1989) and Claesson (2003). This dependency is 

related to the uncertainty of measurement errors caused by equipment, procedural-

operator and random testing effects. Plastic deformations are irreversible, greater 

than the elastic phase and brings the material into new conditions. Due to this, the 

modelling of the transformation phase is crucial when calculating subsidence. 

When plastic conditions are reached after the yield point, the strain increases and 

plastic hardening occurs until a new yield condition is created, see e.g. Olsson 

(2010). Due to this hardening, the transition phase between elastic and plastic 

conditions is moved along the direction of the applied stress (for one-dimensional 

problems). Except for irreversible deformations, this process increases the 

preconsolidation pressure. This means that if the soil is reloaded and loaded again 

with a stress between the old and the new, increased, preconsolidation pressure, the 

deformation will be in the elastic phase. 

As with the elastic part, plastic deformation is a time dependent procedure when 

pore pressure is reduced. In Paper III, a simplified one-dimensional method that 

calculates subsidence after infinite time has been used, see Larsson and Sällfors 

(1986). This method is simplified in many different ways, since it is one-dimensional 

and ignores time dependencies and creep processes. Yet, the purpose of Paper III is 

not to suggest a method for precise calculation of subsidence but a useful tool for 

risk estimation of groundwater drawdown induced subsidence on the regional scale. 

It is possible that a refined calculation method would reduce uncertainties in the 

result, but to benefit from a precise model robust soil estimates are also needed. In 

Paper III, the samples in the case study show great variation in the soil property 

estimates. Due to this large variability, it is however not likely that refined 

calculation methods would change the identified risk areas significantly.  
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In addition, it is likely that probabilistic calculations of subsidence with refined 

models would be computationally demanding. The model in its present state for the 

case-study in Paper III already takes a few days to compute. Nevertheless, 

calculation methods that consider time dependencies would be useful from a risk 

estimation perspective since this would make it possible to plan for safety measures 

before harmful subsidence occurs.   

2.6 Damages on constructions 
The extent of subsidence damages depend on its magnitude but also on the 

sensitivity of the constructions. Buildings built by brick are in general more sensitive 

than armed structures in concrete and long buildings are more likely to be damaged 

than shorter (Karlsrud, 2015). Most damage on buildings involves cracks (Korff, 

2009). Bonshor and Bonshor (1996) identify three crack types due to different 

deformation modes; sagging, hogging and local, see Figure 8. In sagging, there are 

greater deformations at the center of a building than on the sides. This causes wide 

cracks at the bottom and narrow cracks at the top of a building. Hogging causes 

large deformations on the sides and small at the center of a building, which leads to 

wide cracks at the top and narrow cracks at the bottom of a building. Local 

deformations are typically caused by close-by subsurface construction work. 

 

Figure 8 Deformation modes: sagging, hogging and local (Bonshor & Bonshor, 1996). 

The severity of a damage depends on its effect on the function and appearance of a 

building and on the associated repair procedure and cost. Korff (2009) and Cooper 

(2008) have compiled literature reviews of classification systems for deformation 

damages on buildings. These include both qualitative and quantitative descriptions. 

Qualitative aspects relate to aesthetics, serviceability and stability damages with risk 

for collapse, see e.g. Driscoll (1995). Quantitative descriptions are based on 

settlement quantities (downward displacement), differential settlements (difference 

in settlements between two points on a building), deflection ratio (quotient between 

relative deflection and distance between two reference points) or angular distortion 

(measure of shearing distortion of a structure) (Boscardin & Cording, 1989).  
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In Paper III it is assumed that subsidence quantities below two centimetres are not 

likely to cause damages. For an unlikely worst-case scenario, the differential 

settlements are also two centimetres. A reasonable assumption of the minimum 

width for a building in Stockholm, the site for the case study, is 10 meters. This 

results in a maximum relative deflection of 1/500. If it is further assumed that the 

building is not tilting, the angular distortion also corresponds to 1/500. Son and 

Cording (2005) have compiled qualitative estimations of damage levels with angular 

distortion and lateral strain (quotient of horizontal displacement and length 

between two reference points). The span for where slight damages are observed is 

set to angular distortions between 1/700 and 1/300. The worst-case situation for 

angular distortion is within this limit. Since most buildings are wider than 10 meters, 

differential settlements are likely to be lower than the maximal settlement and since 

lateral strain can occur, the two centimetre limit is a reasonable limit for damage. 

As mentioned in the beginning of this section, the sensitivity of different buildings 

varies. Tisell (2015) classified the sensitivity of individual buildings in Stockholm 

depending on their foundation. Buildings classified as sensitive are founded directly 

on soft soil or have wood foundations. Buildings founded on coarse grained 

materials, friction piles or with reinforced foundation are classified as non-sensitive. 

In addition, buildings with a basement floor founded directly on soil are also classed. 

The presented risk maps in Publication II and III are combined with this 

information in Sundell and Rosén (2016), see Figure 9. Here, the 95th percentile for 

where the groundwater pressure level of the confined aquifer saturates at least 1 m 

of the clay thickness (Publication II) corresponds to area D. Area A, B and C 

corresponds to risk areas for 0.5, 1 and 2 m groundwater drawdown respectively 

(Publication III). By combining these sources, monitoring, safety measures and 

further investigations can be prioritized to locations where there is a risk for both 

groundwater drawdown induced subsidence and sensitive buildings.   
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Figure 9 Risk areas for subsidence (A-D) together with a classification of sensitivity for 
different foundation types. 

In Publication I, the economic consequences of subsidence damages are valued as 

restoration costs due to damages. This valuation can be based on historical records 

of damage costs. Since the valuation is based on historical records, damages and 

expected benefits of safety measures are valued ex-post. An ex-post valuation refers 

to known quantities as as if the specific effect of interest (such as damage due to 

subsidence) has already occurred. Other, indirect, costs can also be associated with 

subsidence, e.g.  project delays and inconvenience for dwellers. Such indirect costs, 

by which peoples preferences on risk reduction can be reflected, are more difficult 
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to quantify. Peoples preferences has to be valued ex ante,   using e.g. studies of 

willingness to pay to avoid disturbances associated with subsidence damages. For 

further details on different valuation approaches, see e.g. Boardman et al. (2011).  

Safety measures to prevent damages are also possible in this part of the cause-effect 

chain. Such measures can include fortifying of foundations. This measure is however 

likely to be very expensive and is feasible for individual buildings with a high risk for 

damages only.  
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3 METHODS 

This chapter gives details on methods used in this thesis. 

3.1 Kriging and variogram 
Since kriging is an essential component of Paper II, the theoretical framework of 

kriging is introduced here. The primary advantage of Kriging is its ability to 

interpolate values from known data points and provide estimates of the uncertainty 

at all locations of the model domain. Kriging is commonly used to obtain an 

estimate with minimum error variance. When modelling with Kriging, a variogram is 

used to estimate the spatial correlation structure between the data. The variogram is 

also used in an interpolation process when values at unsampled sites are estimated 

by weighting the values of neighbouring data points. Moreover, a variogram can 

reveal the possible existence of anisotropy in different directions of a variable over 

the model field. From the known data points, an experimental variogram is 

calculated using Eq. (1): 

��ℎ� = �
 !�"�∑ �$% − $&�²�%,&�)"*+," , (1) 

where N(h) denotes the number of pairs of points separated by a lag distance h. For 

each pair (i and j) with approximate distance h, the quadratic sum of the difference 

between the data values of these are calculated ∑(vi-vj)². The experimental 

variogram can then be described as the mean of the variance between the paired 

data values. 

To facilitate interpolation, parameters of theoretical variogram models must be 

fitted to the experimental variogram. For the dataset in this study, four different 

variogram models were used: (1) Nugget effect, (2) Exponential, (3) Gaussian, and 

(4) Spherical.  

A nugget effect describes a completely random variability within the shortest 

sampling intervals that neither depends on coordinates nor on the lag distance 

(Webster, 2008). Measurement and interpretation errors contribute to this variance. 

If the nugget effect is to be relevant, it has to be combined with other models. The 

nugget effect is defined by Eq. (2): 

��ℎ� = -,  (2) 

for h>0. The exponential variogram is defined by Eq. (3): 

��ℎ� = -.1 − 012"/45. (3) 
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The Gaussian variogram is defined by Eq. (4): 

��ℎ� = -.1 − 012"�/4�5. (4) 

The spherical variogram is defined by Eq. (5): 

��ℎ� = 7- �2" 4 − "8
 48�	-

"9�":�. (5). 

For the case where ℎ = 0, ��ℎ� also equals 0. In equations 2-5, s and r denotes the 

sill (limit of the variogram value when h tends to infinity) and range (the distance 

when the difference between the variogram value and the sill is negligible) 

respectively, see Figure 10. 

 

Figure 10 Variogram with, range, sill nugget and lag distance. Publication II gives 
illustrations on how the experimental variogram can fit to a theoretical 
variogram. 
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To fit a theoretical variogram model to the experimental variogram, the least-square 

(LS) method is used in Paper II. With this method, a formula for the modelled 

variogram is chosen so it minimizes the quadratic sum of the difference between the 

theoretical and experimental variogram. Examples on how modelled variograms can 

be fitted to experimental variograms can be seen in Publication II. 

In Paper II, ordinary kriging is used with the modeled variogram to estimate values 

at unsampled locations. Ordinary Kriging estimates values at every point to be 

interpolated by Eq. (6): 

$<= = ∑ >% ∗ $%% , (6) 

where:  

vi is the sampled value, 

wi is a weight factor calculated by means of the modelled variogram and the distance 

between vi and v0.  

3.2 Groundwater modelling 
Although no groundwater model is presented in this thesis, this section gives a 

suggestion on how groundwater modelling can be a useful tool for estimating the 

possible extent of groundwater drawdown for a planned sub-surface construction. 

This is planned for a future study in this research project. 

The groundwater flow pattern depends on drainage and infiltration conditions, 

layering of porous and semi-permeable soil layers and fracture structures in 

bedrock. Groundwater flow in porous and fractured media can normally be 

assumed to be laminar, see e.g. Gustafson (2012). With this assumption, Darcy's 

law, ? = @ ∆"
∆B , is valid. Darcy's law describes the proportional relationship between 

discharge rate (q) through a porous medium, its hydraulic conductivity (K) and the 

groundwater pressure gradient (Δh/Δl). Darcy's law also forms the basis for the 

diffusion equation for transient flow, which finite difference groundwater model 

codes such as the commonly used MODFLOW (Harbaugh, 2005) is based upon. For 

three dimensions, this equation can be written as: 

C
CD E@FF
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where Kxx, Kyy and Kzz, are values of the hydraulic conductivity along the x, y and z 

coordinate axes, h is the piezometric head, W is the volumetric flux per unit volume 

representing sources and/or sinks of water, Ss is the specific storage of the porous 

material; and t is time.  
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Although it is possible to solve the diffusion equation in a groundwater model, it can 

be difficult to obtain reliable results. This is difficult since the groundwater flow 

system, particularly in a city, can be very complex and uncertain. Pieziometric heads 

are commonly obtained from groundwater observation wells. These are often 

measured during limited times in different projects without overall coordination. 

Hence, it can be difficult to find representative levels for the whole study area. 

Individual observations can also be affected by very local drainage conditions that is 

not of interest for the larger scale of the model. Estimation of hydraulic conductivity 

and specific storage can be even more difficult. Although there is a large variety of 

different investigation methods for these hydrogeological properties such as slug-

tests, pumping tests or screening curves of soil fractions, these tests can be expensive 

and time consuming (especially pumping tests) or only representative for very small 

volumes (slug-test and screening curve). This means that a judgment on the 

representativeness of these properties is needed for estimating often heterogeneous 

soil- and bedrock conditions. In addition, estimations are needed for the 

conceptualization of the flow system in the limits of the model and on sources and 

sinks representing both known sources with uncertain conditions (e.g. road tunnels 

and rivers) and unknown sources (e.g. secret facilities, and leaking water 

distribution and sewage pipes), see Werner et al. (2012).  

Different assumptions and conceptualizations of the system can be equally 

reasonable but give substantially different results when applied in a model. An 

example from a case study in Copenhagen showed that five different consultants 

reached substantially different conclusions on the vulnerability of a water supply, 

although all were given the same information (Refsgaard et al., 2005). A 

groundwater model can never give an exact prediction of what will happen in the 

future. Nevertheless, since scenarios can be invalidated, it can answer what will not 

happen in the future (Bredehoeft & Konikow, 2012). Information on where 

groundwater drawdown is not expected is also useful to prioritize monitoring and 

safety measures. 

Groundwater modelling is a mixture of expert knowledge of the hydrogeological 

system and history matching of available observations. When applying groundwater 

models in cities, it is common with large amounts of information that can give 

characteristics on the hydrogeological system. Such information includes 

observations from geotechnical drillings, wells in soil and bedrock, and existing sub-

surface constructions. Even though much information exist, all this is obviously only 

historical data.  
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The lack of full access in time and space of the phenomena of interest creates a need 

for a model (Oreskes et al., 1994). One way to address uncertainties in prediction of 

groundwater drawdown is by probabilistic groundwater modelling, see e.g. Freeze et 

al. (1990). Such approaches are however criticized for only taking account for some 

uncertainties since the probability density functions (pdf) can be incorrect and other 

conceptual and numerical models than the one used are not included (Konikow & 

Ewing, 1999). One method for probabilistic modelling of highly parameterized 

models that cannot be estimated uniquely on the basis of a given calibration dataset 

(ill posed problems) is to combine MODFLOW with PEST (Doherty et al., 2010). 

PEST, Parameter ESTimation code, is a software package for parameter estimation 

and uncertainty analysis. The basic principle of PEST is to estimate properties (e.g. 

hydraulic conductivity and recharge) with regularized inversion where a best fit is 

defined by principles of least-squares minimization. To stabilize the numerical 

solution, two mathematical regularization techniques is be used in PEST: Tikhonov 

regularization and subspace regularization. In the first, "soft" information on 

acceptable deviation from what is geologically reasonable is combined with a 

measurement objective function, see Doherty (2003). For subspace regularization 

numerical stability is achieved through subtracting parameters or parameter 

combinations instead of adding information to the calibration process. The 

parameters or combinations to be subtracted are determined through singular value 

decomposition (SVD), see e.g. Moore and Doherty (2005). In this process, SVD first 

identifies where the most variation is and then defines the best approximation of the 

original data points using a reduced set of parameter combinations (Baker, 2005).  

In a future study, it is planned to combine a probabilistic groundwater model with 

the methods for soil and bedrock stratification presented in Paper II and the 

subsidence model in Paper III. An initial step for this three-dimensional 

groundwater model is to distinguish different material types. This can include a 

separation of coarse-grained material from fine grained and fractured bedrock from 

non-fractured. After this, properties such as hydraulic conductivity and infiltration 

capacity can be assigned to the different materials. Different materials however, 

often exhibit significant heterogeneity and anisotropy. One method for addressing 

this issue is by modelling hydraulic conductivity fields. These are modelled by 

assigning pilot points of hydraulic property values to the different materials. Pilot 

points is a 2D scatter point set representing different locations within a material. 

Hydraulic conductivity values are then assigned to the points by minimizing the 

difference between model output and field measurements. Property values of 

continuous fields are then interpolated from the points (Doherty, 2003). A 
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preliminary study of this approach for Göteborg has shown its feasibility although 

the error between the observed and calculated heads is relatively large (up to about 

8 meters). Strategies to improve the model include: a finer grid resolution (from the 

present 50x50 meters) in areas with high gradients, shorter distance between the 

pilot-points and including more information on present drainage and infiltration 

conditions. 

The probabilistic approach with PEST does not assess the problem with different 

possible conceptualizations of the system. This issue is currently studied in a master 

thesis project. The study is based on a case study for an esker used as groundwater 

supply for a small municipality. Available information for the study area includes 

data on ground-water level time series, hydrogeological properties and boreholes 

with information on soil stratification. From this data, different professional 

hydrogeologists will independently from each other set up assumptions for a 

groundwater model. The master student will then do the modelling. The modelling 

process and its outcomes will be self-reviewed by the experts according to NUSAP 

(Van der Sluijs et al., 2005) or a similar method where both quantitative and 

qualitative uncertainties are addressed.  
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4 THE PUBLICATIONS 

This chapter summarizes the main findings in the three publications appended to this 

thesis. The importance of each publication in the cause-effect chain is motivated. In 

addition, it is described how the three publications are connected. 

4.1 Paper I - Framework for risk management 
The first paper (Sundell et al., 2015b) presents a structured framework for risk 

assessment and management based on the current ISO-standard (ISO, 2009) and 

the works by Aven (2012) and Lindhe (2010). Many of the suggested procedures in 

the framework are commonly investigated in planned Swedish infrastructure 

projects. Nevertheless, there is no framework that describes how the different 

investigations in the cause-effect chain can be linked together in a risk assessment. 

This paper aims to fill this gap for a structured approach in risk assessment. 

Five different modules necessary for the risk assessment are introduced in this 

paper. The first three modules are connected to the cause-effect chain for 

groundwater drawdown induced subsidence and the processes introduced in Section 

2. Module 1 emphasizes the need for a probabilistic soil stratigraphy model for 

estimation of the likelihood of compressible sediments at locations with 

constructions sensitive for subsidence. This model is further developed in Paper II. 

In module 2, suggestions for probabilistic groundwater modelling are introduced. It 

is also explained how module 1 can be used as part of groundwater modelling. In 

module 3, probabilistic subsidence modelling based on module 1 and probability 

density functions (pdf:s) from constant rate of strain (CRS) evaluated piston 

samples is introduced. This modelling is further developed in Paper III.  

The first three modules can be included in a risk analysis where the probability of 

subsidence of a certain magnitude is estimated. In module 4, risk estimation, the 

calculated pdf for subsidence, fs, is combined with a cost function representing the 

economic consequences of a subsidence, Cs. From these, the economic risk, i.e. the 

expected consequence cost, for subsidence can be calculated:  

∫= dsfCR sss
 

In the fifth module, risk evaluation, i.e. whether or not a measure is cost efficient, is 

evaluated with VOIA, see e.g. Back (2006) and Zetterlund et al. (2011). VOIA is a 

form of cost-benefit analysis (CBA). The basic idea of VOIA is to value additional 

information as the change in expected total cost (or benefit) of the project due to 

new information. In the first stage of a VOIA, costs and benefits of the present stage 



J. Sundell 

34 

of knowledge is evaluated in a prior analysis. In the second stage, a preposterior 

analysis is performed, based on the information that is expected from the data 

collection program. The preposterior analysis is performed after (‘posterior’) the 

data collection program has been defined, but before (‘pre’) the data collection has 

taken place. The Expected Value of Information (EVI) can then be calculated as 

the difference between the values of the preposterior and prior analysis. Note that 

EVI is always non-negative and bounded by the Expected Value of Perfect 

Information (EVPI). Note also that EVI equals zero if the data has no potential to 

reduce the total project cost.   

The suggested framework in this paper aims at providing for more comprehensive 

evaluations of the economic value of safety measures. At the time of writing the 

paper, there was still a lot of work left for linking the different modules together. 

This is still the case but the interaction between the modules has been further 

addressed in Paper II and Paper III. 

4.2 Paper II – Probabilistic simulation of bedrock levels and soil stratigraphy 
As mentioned in Section 2.1, one essential part in describing the groundwater 

drawdown – subsidence - damage chain is a good understanding of the soil 

stratigraphy. This is essential since groundwater flow conditions are partly governed 

by geological materials and subsidence depends on the compressibility of materials. 

In this section a novel method for probabilistic modelling of soil stratigraphy and 

bedrock level is presented. In Paper II (Sundell et al., 2015a) a complete description 

of the method is presented.  

The probabilistic soil stratigraphy method uses borehole logs with different types of 

information to build a model for bedrock levels and soil stratigraphy. Some 

boreholes reach the bedrock whereas others do not. Similarly, some boreholes 

contain information of the whole soil stratigraphy whereas others do not. The 

overall idea of the presented method is to utilize all available data that contains 

useful information of soil and bedrock stratigraphy in a probabilistic model. This 

was done by a combination of a stepwise kriging (see Section 3.1) procedure and 

statistical simulations in the R software environment (R Development Core Team, 

2010). The modelling process is stepwise since this procedure takes account of 

different types of information and the dependencies between the different layers. If 

the layers would have been simulated independently from each other, it is likely that 

an unrealistic layering would have been the result.  

Building a geologic soil stratification model in a city with thousands of boreholes 

can take a very long time, depending on the method chosen. Some methods are 
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based on linking boreholes together, see e.g. Peterson et al. (2014), which could be 

necessary if a detailed model in a heterogeneous environment is needed. If fewer 

details are acceptable, e.g. ignoring information on embedded layers, the method 

presented in Paper II is an efficient approach. It is also common that models have to 

be updated continuously when new information is available, which gives additional 

reasons for an automated approach. The method in Paper II has proven to provide 

geologically reasonable results in real world applications. It has been applied on the 

city scale to case studies in both Stockholm (Sundell, 2015) and Gothenburg, 

Sweden (Sundell et al., 2016b). The method is useful and efficient in areas with 

relatively large amounts of available data and when the stratigraphy can be 

simplified to continuous layers. If this is not the case, other approaches, such as the 

ones presented in Section 2.1, could be considered. 

4.3 Paper III – Probabilistic subsidence model on a city-scale 
The third paper (Sundell et al., 2016a) continues from the work presented in Paper 

II by adding on a probabilistic subsidence module. First, a method for upscaling and 

quantifying variability in parameter values from soil samples to the scale of a 

hydrogeological model is presented. Second, a probabilistic method for calculating 

subsidence on a city-scale is introduced. Finally, a risk map describing areas where a 

groundwater drawdown with a certain magnitude can cause subsidence is presented. 

In Paper III (Sundell et al., 2016a) a complete description of the method is 

presented. The author would like to acknowledge Ramm and Collinder (2014) for 

their statistical study of clay parameters. 

As stated earlier, if the whole cause-effect chain for groundwater drawdown 

induced subsidence is to be evaluated, different fields of study needs to be 

combined. One of these fields is geotechnical engineering. Geotechnical problems 

are often evaluated on the construction-site scale. This means that sampling and 

calculation methods are also developed for this scale. The risk for subsidence needs 

to be evaluated on the scale for a potential future groundwater drawdown. Since a 

drawdown from a tunnel can be extensive and cover a large area in a city, the term 

"city-scale" is used in the paper. On this scale, it is very expensive to sample with 

the same frequency as when dimensioning in construction projects. This creates a 

need for a method capable of calculating subsidence on a city-scale and probabilistic 

representation of uncertainties. 

In this paper a novel method for probabilistic calculations of subsidence on the city-

scale is introduced. The method is applied to a case study in Stockholm, Sweden 

with 79 evaluated constant rate of strain piston samples. In a first stage, compression 
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parameters are transformed to normality and detrended against depth. 

Dependencies between the parameters are considered by finding the pdf of the 

quotient between the dependent and the studied parameter. Since the samples are 

spatially scarce, it is necessary to investigate if the parameters are dependent on a 

controlling factor that can be used for dividing the large area into smaller sub-areas. 

In this paper, it is investigated if the samples are dependent on the degree of 

urbanization (DU) for the sampling location. This dependency between the 

transformed parameters and DU is evaluated with ANOVA, see e.g. Marx and 

Larsen (2006). For the parameters with significant differences unique pdf:s for the 

different DU areas are used in the simulations of subsidence.  

From the pdf:s of the parameters, DU areas and the probabilistic soil stratigraphy 

model presented in Paper II, subsidence is simulated with a simple but common 

Swedish method (Larsson & Sällfors, 1986). The result of the subsidence simulation 

is used to draw a risk map where areas with a low probability for subsidence are 

separated from areas where subsidence can occur with a higher probability. The risk 

area is defined as grid points where the 95th percentile of the simulations shows a 

land subsidence exceeding two centimetres. The two centimetre limit has been 

chosen as a conservative lower-level as when subsidence can damage a construction, 

see Section 2.6. This means that the risk in the maps is expressed at a constant level 

of both consequence (2 cm subsidence) and probability (95th percentile). The risk 

maps show locations where a risk (according to the simulations) for subsidence 

greater than 2 centimetres has a probability larger than five percent.  

The significance of individual parameters to the calculated subsidence is evaluated 

with the Spearman rank correlation coefficient, see e.g. Bedford and Cooke (2001). 

Mapping the result of this sensitivity analysis, the parameters that are most 

significant for the simulated subsidence at a certain location can be seen.  

The risk areas and the result of the sensitivity analysis can, together with 

information on sensitive constructions, be used for assisting decision-making 

regarding prioritization of risk reducing measures, monitoring and further 

investigations.  
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5 DISCUSSION AND FURTHER INVESTIGATIONS 

In this thesis, three novel methodologies for risk assessment, soil stratification 

modelling and subsidence modelling on the city-scale are presented in Paper I, II 

and III, respectively. The three papers focus on different phases in the cause-effect 

chain for groundwater drawdown induced subsidence. Nevertheless, all methods are 

connected to the overall aim of developing methodologies for reaching a 

transparent and cost-effective decision basis for estimating subsidence risks due to 

groundwater drawdowns in infrastructure projects.  

As discussed in Section 2, different scales can be used when evaluating the links in 

the cause-effect chain. The scale of the problem is important to consider since 

different methods are appropriate for studies and evaluations on different scales. In 

Figure 11, a suggested division of scale for the different parts of the cause-effect 

chain is suggested.  

As mentioned previously, Gustafson (2012) divides hydrogeological characteristics 

of the bedrock into three different scales: (1) a small scale where individual 

fractures are evaluated, (2) a medium scale with blocks between 3-30 meters, and, 

(3) a large scale where the rock is assumed as a homogeneously porous medium.  

Blöschl and Sivapalan (1995) suggest a four level scale division of catchment 

hydrology, according to which the groundwater drawdown part of the cause-effect 

chain, can be grouped. This scale division starts with the small local scale with flow 

in macropores. It continues with hillslopes where the preferential flow occurs 

through high conductivity layers. The second largest scale is divided into catchments 

with different soil types and properties. Finally, the regional scale with large scale 

geological formations is considered. Pore pressure variability in clay deposits is also 

reasonable to group in a similar system. Mourgues et al. (2011) show how both 

large, basin scale and local scale phenomena affect a pore pressure profile. Instead 

of naming the second largest scale "catchment", it is more reasonable here to 

change the name to "deposit". This is because pore pressure is considered for the 

clay deposit which normally is on a smaller scale than a whole catchment area.  

In geotechnical engineering, scales are commonly distinguished between micro-, 

meso-, and macroscale, see e.g. Guo and Zhao (2016). On the smallest microscale, 

the particles of the material are studied. The mesoscale describes samples of 

representative volume elements (RVE) that describe properties of a material. On 

the larger macroscale, boundary value problems (BVPs) are evaluated when 

engineering designs for constructions and adjacent buildings. When the scale is 
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increased to a regional scale, the problem moves from being a geotechnical issue to 

a geological assessment of soil deposits. 

For damages on constructions, it is more appropriate to change scale from length 

and area to severity. As described in Section 2.6, the severity of damages on 

constructions can be scaled into aesthetics, serviceability and collapse. Damage costs 

can be scaled into direct and indirect costs. Direct costs include e.g. reparation of 

damages meanwhile indirect costs include e.g. changes in market value of the 

buildings and the preferences of utilizers to avoid damages due to subsidence. When 

discussing indirect costs it is of course important to also consider positive aspects 

(benefits) of improved infrastructure services such as higher market value of 

buildings due to improved communication. The difference between the direct and 

indirect costs is assumed to vary between projects. Due to this assumption, they are 

placed parallel in Figure 11.  

How the three publications are related to the parts and scales on the cause-effect 

chain is also illustrated in Figure 11. Publication I embraces the whole chain without 

going into details on scales. Publication II is relevant for the first four parts of the 

chain. The presented methodology is exemplified with a bedrock level and soil 

stratification model on a city-scale. With additional information on the 

characteristics of the bedrock and soil, the model can also be used for intermediate 

sized issues. Publication III relates to larger scaled subsidence problems. The 

applied methodology relating to assignment of probability density functions to 

geotechnical properties can however be applied to intermediate sized problems with 

significant heterogeneity.  
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Figure 11 The cause-effect chain with a division of scales for each part. How publications 

I, II and III are related to this division is presented in the figure. The numbered 
scale axis is only relevant for the first four parts of the chain.  

In addition to a division of the cause-effect chain into scales, time is also an 

important aspect. The processes in the cause-effect chain are transient with a 

sequential increase of groundwater drawdown and subsidence magnitude. As 

mentioned in Section 2.5, the subsidence process can also be divided into a 

reversible elastic phase with small subsidence magnitudes and an irreversible plastic 

phase with larger magnitudes. The process before the tipping phase from elastic to 

plastic is reached, is also time-dependent since the increased stress that drives this 

process is a result of the gradual increase of pore pressure over time. The need for 

safety measures is also time dependent since the subsidence process and hence the 

extent of damages increases over time. This time dependent process creates a time 

space for implementation of costly safety measures to be implemented before 

critical levels in the cause-effect chain is reached as suggested by the observational 

method. The methods presented in Paper II and III where risk areas for subsidence 

for certain groundwater drawdown magnitudes are useful tools in this procedure 

since safety measures can be implemented before critical groundwater levels are 

reached.  

Decision support on the available time for implementation of safety measures would 

be significant improved if time-dependencies are included in the subsidence 

simulations in Paper III. Information of the time until critical subsidence levels are 
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reached would give more precise information on the length of the acting space.  This 

function is planned to be incorporated into the model.  

From the positions of Publication I, II and III in Figure 11, it is clear that future 

focus in the research project now needs to be directed to the initial (leakage to 

groundwater drawdown) and last (damages and costs) phases of the chain. As 

mentioned in Section 3.2, it is planned to connect the methods in Paper II and III 

with a probabilistic groundwater model for evaluation of possible drawdown 

scenarios for a planned construction. This would improve the identification of the 

risk areas to give decision support on implementation of safety measures in areas 

with risk for both groundwater drawdown and subsidence. For the last phase, the 

presented and planned methods will be connected with estimations on potential 

damage and costs for buildings within the risk areas in a VOIA. Economic valuation 

would further improve decision support since the cost for additional information 

and safety measures should be valued against the benefit of reducing expected 

damage costs, i.e. the risk  (due to better decisions and relevant risk reduction 

measures) as suggested in Paper I.  

Although quantitative probabilistic methods (such as the ones presented in 

Publication I, II and III and planned for in further research) are used in risk analysis 

of groundwater drawdown induced subsidence, bias in sampling and lab-evaluation, 

different model conceptualizations or alternative numerical models are not taken 

into account. Since the reason for a model is a lack of full access to the phenomena 

of interest, it is the responsibility of the modeler to demonstrate the degree of 

correspondence to the real system and to delineate the limits of that correspondence 

(Oreskes et al., 1994). This is fulfilled in Publication II by comparing the modeled 

result with a reference dataset. In Publication III a future scenario is modeled. Since 

the future cannot be validated until it occurs, a discussion on the model's reliability 

and usefulness for decision support is given in Publication III. The method in 

Publication III has also been compared with calculation points with Swedish 

industry standard practice. This quantitative comparison shows that risk areas 

elaborated with the method in Publication III is able to capture points with a 

calculated subsidence greater than two centimetres (Sundell & Haaf, 2015). This 

comparison shows a good correspondence between the methods.  

As stated in Publication III, decisions regarding risk-reducing measures need to be 

taken before the model can be validated against additional observations. For the 

decision-making on these measures, it is important to evaluate if the process 

representation is detailed enough to be useful for predicting the dominant modes of 



5. Discussion and further investigations 

41 

response in the system (Beven, 2007). Since all sources of uncertainty cannot be 

evaluated quantitatively, it is important to be reflective upon the quality of evidence 

(van der Sluijs et al., 2008). As mentioned earlier, a current master thesis study is 

evaluating the effect of professional assumptions on groundwater modelling. The 

study will let different professional hydrogeologists, independently from each other, 

set up assumptions for a groundwater model. The comparison will be made both by 

the experts' own self-evaluation of the assumptions and the modelled result and by 

comparing the result between the different experts' models, similar to work by e.g. 

Refsgaard et al. (2005).  

Although multidisciplinary approaches are used to analyse the cause-effect chain, 

decisions on safety measures is not only a matter of technical understanding of a 

system and valuation of damage costs. Since stakeholders are affected by the 

consequences of subsidence damage, their preferences on risk and safety measures 

need to be considered. It is likely that the risk perception is considerably different 

between stakeholders potentially affected by damages and the contractor. An early 

involvement and transparent communication with stakeholders is therefore of great 

importance. Slovic (1987) argues that a key to successful risk communication is two-

way communication between experts and stakeholders. In this process, both side has 

something valid to contribute and each side must respect the insights and 

intelligence of the other. If models should be used as a tool for decision support 

when interests on e.g. safety measures are in dispute, Saltelli and Funtowicz (2014) 

emphasize that transparency should be aimed for. A Swedish review by professional 

hydrogeologists of effects on groundwater conditions due to leakage into facilities 

constructed in bedrock found that data, methods and assumptions were often 

difficult to access (Werner et al., 2012). If this information is difficult to access and 

understand for stakeholders, communication fails. Transparency includes clear 

communication of uncertainties of the potential consequences for a planned 

groundwater drawdown. A communication of uncertainties is often mistaken for 

insufficient control. Communicating uncertainties would rather mean that the 

contractor is prepared for actions on many possible scenarios. By this approach, 

stakeholders' safety and trust for the contractor would rather increase.  

With this licentiate thesis, improved multidisciplinary approaches for analysis and 

communication of risk have been presented. The overall aim to develop 

methodologies for risk estimation has been fulfilled by three different objectives: 

• The first objective to develop a framework for risk assessment of 

groundwater drawdown induced subsidence is fulfilled by the presentation in 
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Publication I. This framework embraces the whole cause-effect chain for 

groundwater drawdown induced subsidence. By doing so, the most 

appropriate safety measure can be implemented. The presented framework 

also serves as a basis for connecting the other two specific objectives to the 

overall aim. 

• The second specific objective to develop a method for probabilistic modelling 

of bedrock levels and soil stratification is fulfilled by the presentation in 

Publication II. The presented method is proven able to; efficiently combine 

different sources of information; handle large amounts of data; require little 

manual adjustments; easy to update, and; give a geologically sound result 

when applied on two case studies in Stockholm and Gothenburg. 

• The third specific objective to develop a method for probabilistic modelling 

of groundwater drawdown induced subsidence is fulfilled by the presentation 

in Publication III. The result of the simulation is presented as risk maps 

where the 95th percentile of two centimetres subsidence is suggested as a 

tolerability criterion. The maps have been used for risk communication in the 

application for permit to drain groundwater in the City Link case study. If 

these maps are connected with information on the vulnerability of risk 

objects, such as buildings and installation, the maps are useful decision 

support form planning of safety measures, monitoring and additional 

investigations. 
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