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Abstract

Kinetic modelling of runaway in plasmas
Ola Embréus

Department of Physics
Chalmers University of Technology

The phenomenon of runaway occurs in plasmas in the presence of a
strong electric field, which overcomes the collisional friction acting on
the charged particles moving through the plasma. A subpopulation of
particles can then be accelerated to energies significantly higher than
the thermal energy. Such events are observed in both laboratory and
space plasmas, and are of great importance in fusion-energy research,
where highly energetic runaway electrons can damage the plasma-facing
components of the reactor.

In this thesis, a series of papers are presented which investigate var-
ious aspects of runaway dynamics. The emission of synchrotron and
bremsstrahlung radiation are important energy-loss mechanisms for rel-
ativistic runaway electrons. Photons emitted in bremsstrahlung radia-
tion often have energy comparable to the energetic electrons, and we
therefore use a Boltzmann transport equation in order to describe their
effect on the electron motion. This treatment reveals that electrons can
reach significantly higher energies than previously thought. In compari-
son, synchrotron radiation has lower frequency, and is well described by
the classical electromagnetic radiation-reaction force. This loss mech-
anism, often dominant in laboratory plasmas, significantly alters the
electron dynamics, and is found to produce non-monotonic features in
the runaway tail.

A study is also presented of the related phenomenon of ion runaway
acceleration, which differs from electron runaway due to their larger
mass. Renewed interest in this topic has been sparked after recent ob-
servations of fast ions in various experiments. Finally a new method is
explored to treat the non-linear Fokker-Planck equation which is com-
monly used to describe the collisional dynamics in a plasma. The new
method is appealing for its physically intuitive description and analytic
simplicity.

Keywords: plasma, runaway, Boltzmann equation, Fokker-Planck
equation, bremsstrahlung, synchrotron radiation





Publications
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Ola Embréus, Göteborg, May 3, 2016



Chapter 1

Introduction

A plasma is an ionized gas, sufficiently hot that the electrons have de-
tached from the atoms that carried them. Because it consists of free
charges, rather than neutral atoms, the plasma behaves differently to
the familiar gases and fluids encountered in everyday life. Indeed, the
addition of electric and magnetic forces between the particles creates a
rich interplay, allowing a wide range of strange and wonderful phenom-
ena to occur. Some of these are well-known to most: lightning, electric
sparks, fluorescent lamps, the Sun and the stars, and even the aurora bo-
realis – the northern lights – are examples of plasmas. In fact, a majority
of the visible matter in the universe is in the plasma state. The study
of plasmas is a huge field of research, ranging from academic contempla-
tions in astrophysical research and space physics, through fusion-energy
research to various industrial and medical applications.

Runaway is a phenomenon which occurs in any plasma in the pres-
ence of a sufficiently strong electric field. It is a process related to dielec-
tric breakdown, which occurs when electric sparks are created. Runaway
breakdown occurs in laboratory plasmas, such as those in tokamak fusion
devices [1], as well as in lightning discharges during thunderstorms [2],
and in astrophysical plasmas, such as solar flares [3]. In these scenarios,
a subpopulation of particles — typically electrons, which are lightest —
are accelerated by the applied field to energies significantly higher than
the thermal energy, at which point they start emitting radiation.

The phenomenon of runaway can be understood by considering in
detail the frictional drag force due to collisions which acts on a charged
particle moving through a plasma which is near thermodynamic equilib-
rium. The friction is a non-monotonic function of speed: at low speed,
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the drag steadily grows in magnitude as the speed increases; however,
above the thermal speed of the particles, the drag force will instead de-
crease in magnitude as the speed increases further. In the absence of an
electric field, the friction force on the thermal particles will be balanced
by velocity-space diffusion induced by collisions, which tends to increase
the width of the velocity distribution. An equilibrium between fric-
tion and diffusion is reached when the distribution takes the Maxwellian
form, fM = n(m/2πT )3/2 exp(−mv2/2T ), where m, n and T are the
mass, number density and temperature (in energy units, throughout
this work) of the species, respectively, and v is the speed.

In the presence of an electric field which acts to accelerate charged
particles, an electron with sufficiently high initial speed will experience
an unbounded acceleration to highly relativistic energies, where the elec-
trons move at nearly the speed of light. At these energies competing
physical effects become important, such as radiation losses caused by
the rapidly accelerated motion experienced by the particles when mov-
ing in electromagnetic fields (leading to synchrotron radiation) or in
collisions (causing bremsstrahlung emission). Figure 1.1 schematically
illustrates the forces which act on a runaway electron.

Speed

eE

0.43eED

F
o
rc
e

Thermal
speed

Critical
speed

Collisional drag
dominates

Radiation losses
dominate

Runaway region

Figure 1.1: A schematic view of the speed-dependent force acting on a
particle in a plasma, showing friction due to collisions and radiation (solid,
black) and acceleration by an electric field (dashed, red). Not to scale (the
speed where radiation losses become important can be thousands of times larger
than the thermal speed).
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1.1 Runaway generation

Historically, the runaway phenomenon in plasmas was first discussed
by Dreicer [4] in 1959. He considered the total friction force between
two Maxwellian particle species moving uniformly with a given speed
relative to each other. When accelerated by a sufficiently strong electric
field, greater than approximately 43% of the so-called Dreicer field ED =
ne ln Λe3/(4πε2

0Te), the electric field overcomes the maximum frictional
force, and he concluded that the particles would “run away” towards
infinite energy (given infinite time). The Coulomb logarithm ln Λ is a
plasma parameter which typically takes values 10-20 in the applications
we consider [5].

In 1964, Kruskal and Bernstein [6] rigorously treated the runaway
problem with an analytic solution to the kinetic equation (although using
a simplified model for collisions). They solved the kinetic equation with
an asymptotic technique, matching approximate solutions across five
regions in momentum space, thereby obtaining expressions for the shape
of the velocity distribution of runaway electrons and the rate at which
new runaways are generated (here called the runaway growth rate, or
runaway rate). It was found that all electrons moving with a velocity
above a critical velocity vc, defined approximately as that velocity above
which the electric field becomes stronger than friction, will run away
towards infinite energy. In addition, diffusion would supply the runaway
region (v > vc) with new particles from the bulk at a constant rate. This
mechanism of runaway generation is referred to as primary generation,
or Dreicer generation.

Early work on runaways considered primarily the initial generation
of runaways at relatively low, non-relativistic speeds. A full description
of electron runaway requires the use of a relativistic kinetic equation,
a scenario which was first analyzed by Connor and Hastie [7] in 1975.
They extended the method of Kruskal and Bernstein to account also for
relativistic effects. Unlike the case of non-relativistic runaway, where the
frictional force appears to tend towards zero for large speeds, the friction
in the relativistic model attains a minimum value, corresponding to a
critical electric field eEc = ne ln Λe4/(4πε2

0mec
2). This is smaller than

the Dreicer field by the factor T/mec
2. It is found that the runaway

growth rate Γ = ∂nRE/∂t is exponentially sensitive to the electric field,
scaling approximately as Γ ∝ exp(−λED/4E), with a (generally) small
correction factor λ(E) which forces the growth rate to zero as E → Ec.

In a seminal paper by Rosenbluth and Putvinski [8] in 1997, the ef-
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fect of large-angle collisions on the runaway rate was detailed. Runaway
generation by large-angle collisions (also called knock-on or close colli-
sions) is possible when runaway electrons already exist in the plasma.
Then, in a single large-momentum-transfer collision event, an initially
slow electron may obtain a velocity great enough to enter the runaway
region where friction is smaller than the electric force. Thus, an ini-
tial runaway particle can become two after undergoing a knock-on colli-
sion, which can become four after further knock-on collisions, and so on.
Therefore, the runaway rate due to knock-on collisions is proportional
to the number of runaways already present, which causes an exponential
growth of the runaway population and hence is referred to as a runaway
avalanche. Large-angle collisions in plasmas will generally have a smaller
effect on the evolution of the distribution than small-angle collisions by
a factor of the inverse Coulomb logarithm 1/ ln Λ. Since Dreicer gen-
eration is exponentially sensitive to the electric field, however, it will
be completely negligible for small enough E/ED. Because of this large-
angle collisions can sometimes dominate the runaway rate even though
they give a “small” modification to the equation (in the sense of being
of order 1/ ln Λ), with a contribution to the runaway rate that scales as
Γ ∝ nRE(E/Ec − 1).

1.2 Runaway in tokamaks

Runaways are of particular interest in magnetic-fusion research, where
they pose a great threat to the successful operation of tokamaks [9].
These are a promising concept for fusion-energy reactors, which confine
the plasma by magnetic fields and heat it to several hundred million
K. A magnetic field is partially generated by driving a strong current
of several MA through the plasma, with the downside that this is then
available for conversion into a runaway-carried current. The mechanism
for this conversion is the runaway breakdown. This typically occurs dur-
ing so-called disruptions, which are sudden unintentional events where
heat confinement is lost. During these disruptions the plasma loses its
energy and cools rapidly on a timescale of milliseconds [10], sometimes
to one-thousandth of its original temperature. The temperature reduc-
tion is associated with a decrease in the electrical conductivity of the
plasma, which causes the large plasma current to rapidly decay. By the
induction equation (or Lenz’s law), this induces an electric field in order
to maintain the current, finally enabling runaway breakdown to occur.
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It can be shown that avalanche runaway multiplication often dom-
inates the runaway generation, although initiation of the avalanche re-
quires the presence of an initial seed population of runaways. This can be
provided either by Dreicer generation, as described above, or by so-called
hot-tail generation [11, 12, 13, 14]. This third generation mechanism is
enabled by the rapid temperature change that occurs during disruptions.
If the cooling is sufficiently fast, the fastest particles in the tail of the
thermal distribution (which experience a weaker drag force) will main-
tain their initial energy. During the cooling their velocities may at some
point be greater than the critical velocity for runaway generation, and
thus they can become runaways.

It can be shown that, if there is an initial seed population nRE,0

of runaways, avalanche multiplication will increase this number to ap-
proximately nRE ∼ exp (2.5I[MA])nRE,0 before the electric field has de-
cayed [9], where I[MA] is the original plasma current in MA. While the
multiplication factor is fairly small in present-day experiments (of order
104 [9] in the JET tokamak [15], the biggest current experiment), in fu-
ture tokamaks such as the international collaboration ITER [16] this im-
plies a devastating number of 1016 or greater [9]. Because of this immense
number, runaway-electron dynamics and disruption mitigation is a field
of active study. Recent reviews can be found in Refs. [17, 18, 19, 20].

The qualitative features of the basic runaway phenomenon in plasmas
can thus be summarized as:

• Runaway is only possible for electric fields exceeding the critical
field, E > Ec.

• Primary (Dreicer) runaway generation is exponentially sensitive
to electric field, and only gives an appreciable growth rate when
E & 0.01ED.

• Secondary (avalanche) runaway generation depends weakly on elec-
tric field and is caused by knock-on collisions, requiring a signifi-
cant fraction of runaways to already be present in the plasma.

• Hot-tail runaway generation is caused by a rapid temperature drop,
and describes the conversion of previously thermal electrons into
runaways.

At highly relativistic (multi-MeV) energies, additional effects such as
radiation losses become important for the dynamics of the fast electrons.
These effects only weakly impact runaway generation, however, which
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typically occurs at low velocities. In Papers A and C we have investi-
gated in detail the effect of the radiation losses by synchrotron radiation
and bremsstrahlung emission. A significant fraction of the plasma en-
ergy can be emitted in the form of such radiation, and these effects will
often have a strong impact on the motion of the electrons.

1.3 Ion runaway

Runaway acceleration of ions was first invoked in order to explain ex-
perimental observations at the Zeta device [21] in 1959. In 1972, Furth
and Rutherford [22] used an asympotic technique similar to that used
for electron runaway in order to obtain an analytic solution of the ion
drift-kinetic equation. Their treatment provided only limited informa-
tion about the runaway growth rate in most scenarios, however, due to
the more complicated structure of the ion kinetic equation. A limited
time-dependent solution of the ion kinetic equation was more recently
developed in order to explain observations at the Mega Ampere Spherical
Tokamak [23, 24, 25]. Simpler test-particle methods have also been used
to study the ion runaway phenomenon in astrophysical contexts [26].
The lack of widely applicable analytic results has motivated a numeri-
cal study of the ion drift-kinetic equation, which is presented in Paper
D. Experimentally observed ion acceleration in the Madison Symmetric
Torus reversed-field pinch has lead to recent work where similar methods
have been employed [27, 28].

Outline

Chapter 2 contains an introduction to the kinetic theory of plasmas,
which describes the phase-space dynamics of charged particles. The
theory presented here covers the physics required to understand the ba-
sic runaway phenomenon, but is also the foundation upon which further
extensions of the theory can be developed. In chapter 3, we further de-
velop the theory by describing a model for the effect of bremsstrahlung
emission based on the Boltzmann collision operator, and its validity is
investigated in detail. The theory for ion runaway requires a modified
treatment compared to electron runaway; this theory is briefly summa-
rized in chapter 4, and here we also derive improved analytic formulas
for the runaway velocity and critical electric field. Finally the work is
concluded in chapter 5.



Chapter 2

The kinetic equation

A detailed study of runaway particles requires the resolution of their
momentum-space structure, accounting for the randomizing collisions in
an accurate way. This is achieved using a kinetic equation, which pro-
vides a full description of the time evolution of the distribution function
fa(t,x,p) of a particle species a, where t is time, x is the particle po-
sition, p = mav/

√
1− v2/c2 is the momentum and v is the velocity.

The distribution function is the particle density function in phase space,
defined such that na(t,x) =

´
dp fa(t,x,p) is the number density, and

Na(t) =
´

dxna(t,x) is the total number of particles of species a. In the
absence of collisions, the distribution function describes particles moving
along trajectories x = x(t) and p = p(t), governed by the equations of
motion for a charged particle

dx

dt
= v,

dp

dt
= qa

(
E + v ×B

)
,

where qa is the charge. The continuity equation in phase space is [29]

0 =
dfa
dt

=
∂fa
∂t

+ v · ∂fa
∂x

+ qa
(
E + v ×B

)
· ∂fa
∂p

, (2.1)

7



8/56

where the electric and magnetic fields are given by the charge and current
distribution of the plasma according to Maxwell’s equations,

E(t,x) =
1

4πε0

ˆ
dx′

x− x′

|x− x′|3 ρ(t,x′),

B(t,x) =
µ0

4π

ˆ
dx′ j(t,x′)× x− x′

|x− x′|3 ,

and the charge and current are in turn determined by the distribution
functions,

ρ(t,x) =
∑

b

eb

ˆ
dp fb(t,x,p),

j(t,x) =
∑

b

eb

ˆ
dpvfb(t,x,p),

with the sum taken over all particle species b present in the plasma.
In order to obtain a useful kinetic equation, Eq. (2.1) needs to be
ensemble-averaged over macroscopically equivalent systems. The dis-
tribution function will then be a smooth function, but the microscopic
interactions between the discrete particles in the plasma will need to be
accounted for by the addition of a new term [30], which is called the
collision operator C, or the collision integral (as it generally takes the
form of an integral operator). The kinetic equation then takes the form

∂fa
∂t

+ v · ∂fa
∂x

+ qa
(
E + v ×B

)
· ∂fa
∂p

=
∑

b

Cab{fa, fb}, (2.2)

where the electromagnetic fields denote the macroscopic fields, not in-
cluding fluctuations caused by individual particles which are instead
captured by the collision operator C. We shall focus on the simplest
physical scenario that exhibits the runaway phenomenon: an infinite
homogeneous plasma with an electric field in a constant direction. In
this case we can suppress the space variables and write fa = fa(t,p),
and introduce a spherical momentum coordinate system (p, θ, ϕ), where
the azimuthal angle ϕ is referred to as the gyroangle, the longitudinal
angle θ is referred to as the pitch-angle, and we shall mostly use its
cosine ξ = cos θ. The kinetic equation then becomes

∂fa
∂t

+ qaE

(
ξ
∂fa
∂p

+
1− ξ2

p

∂fa
∂ξ

)
=
∑

b

Cab{fa, fb}. (2.3)
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This equation allows us to study the effects of various contributions in
the collision operator C on the dynamics of the runaway particles. We
do not at present take an interest in the dynamical evolution of the
electric field but instead assume it to be some prescribed external field
E = E(t).

An essential part of the description of runaway electrons is the col-
lision operator. This term in the kinetic equation describes the effect
of microscopic particle-particle interactions, in contrast to the macro-
scopic interactions with the electromagnetic field set up by the charge
distribution in the plasma. The collisions drive the particle distributions
towards thermal equilibrium by always increasing entropy in the system,
and this is the restoring effect which needs to be overcome by the electric
field in order to generate runaway particles. Therefore the details of the
collision operator can be expected to strongly influence the description
of the runaway process.

In this chapter we will provide a detailed discussion of the collision
operator, revealing a unified picture of small-angle collisions, knock-on
collisions and bremsstrahlung radiation in the same framework. We shall
begin by investigating in more detail how the collision operator can be
obtained.

2.1 BBGKY hierarchy and the kinetic equation

A systematic framework for obtaining kinetic equations was initially de-
veloped by Bogolyubov, Born, Green, Kirkwood and Yvon (BBGKY) [31,
32, 33, 34, 35]. The starting point of their analysis is the Liouville theo-
rem [36], which deterministically describes the time evolution of an N -
body system according to Hamiltonian mechanics. The system is fully
described by the phase space density function fN (t,x1,p1, ...,xN ,pN )
giving the location and momentum of all its constituents. A kinetic equa-
tion describes the time evolution of the distribution function, which is de-
fined as f(t,x,p) =

´
dx2dp2 · · · dxNdpN fN (t,x,p,x2,p2, ...,xN ,pN ).

Note that, while this definition appears to single out the particle with
subscript 1 as special, the particles described by the phase-space density
function are identical, and hence it is symmetric in all indices. That is,
non-identical particle species are each described by their own function.

The Liouville equation [37] for a species interacting pair-wise with a
central potential Vij = V (|xi − xj |), with the force on particle i being

Fi = −∑N
(j 6=i)=1 ∂Vij/∂xi (for simplicity assuming a single species and
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no magnetic interaction, which would require a generalized form of the
potential), is given by

∂fN
∂t

+
N∑

i=1

pi
ma
· ∂fN
∂xi
−

N∑

i=1

N∑

(j 6=i)=1

∂Vij
∂xi

· ∂fN
∂pi

= 0.

By integrating over all but s particle coordinates, a reduced phase space
density, or the s-particle correlation function, can be defined as fs =´

dxs+1dps+1 · · · dxNdpN fN . Here, s = 1 gives the distribution func-
tion in which we are most interested, and s = N returns the full N -
particle phase space density. When performing such an integration over
the Liouville equation, an equation for the time-evolution of the reduced
distribution function is obtained; however, the equation for ∂fs/∂t in-
variably contains fs+1 due to the pair-wise interaction term. Thus, the
time-evolution of the distribution function depends on the two-particle
correlation function f2, which in turn is affected by f3, and so on. This
set of coupled partial differential equations is called the BBGKY hier-
archy. A systematic approximation scheme to close this set of equations
was developed by Frieman [38], Sandri [39] and collaborators, which
takes the form of a perturbation expansion in two parameters µ and η.
These appear naturally when normalizing the equation to characteristic
values of particle separation r0, velocities v0 and interaction strength V0,
and are given by

µ =
1

nr3
0

,

η =
V0

mv2
0

∼ e2

4πε0Tr0
.

Here 1/µ is the number of particles in the interaction region (defined
by a characteristic range r0), and η is a measure of the strength of the
interaction (described by the potential function V0) compared to the
kinetic energy. There are three domains of primary interest [40, 41]
which can be described as (1) “dilute, short-range”, (2) “weak coupling”
(small momentum transfer) and (3) “long-range”. These, respectively,
correspond to the choices (with ε a small expansion parameter)

(1) µ = O(ε−1), η = O(1),

(2) µ = O(1), η = O(ε),

(3) µ = O(ε), η = O(ε).
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These lead, in turn, to the so-called Boltzmann equation, the Fokker-
Planck equation and the Balescu-Lenard (or Bogolyubov-Lenard-Balescu)
equation. Plasmas are particularly pathological, as no specific ordering
applies to the entire phase space. The long-range Coulomb interaction
allows for collisions where any of the orderings may apply, depending on
the impact parameter.

An analysis shows that the Balescu-Lenard operator takes a similar
form to the Fokker-Planck operator, but where the dielectric constant
of the plasma appears in the collision integral. This factor accounts for
dynamical screening in the plasma, which ensures that collisions with im-
pact parameter of order the Debye length λD =

√
ε0T/ne2 or greater are

exponentially damped. This effect demonstrates the well-known behav-
ior of Debye screening [42], where the electric field from a point charge in
a plasma will be exponentially damped on a length scale λD by the rear-
rangement of the surrounding plasma. The Fokker-Planck collision oper-
ator diverges in the contribution from large-impact-parameter collisions,
but by following Landau’s prescription from the original derivation [43]
to cut the integration off at impact parameters λD (which can be moti-
vated by the Balescu-Lenard equation), one obtains a convergent inte-
gral. The contribution from small-angle collisions in the Fokker-Planck
operator is then found to be larger than the contribution from large-
angle collisions in the Boltzmann operator by a factor lnnλ3

D ' ln Λ,
the so-called Coulomb logarithm.

In this chapter we will not pursue a detailed analysis of the BBGKY
hierarchy of equations. Instead, we will derive the Boltzmann and
Fokker-Planck collision operators with a heuristic argument, based on
an analysis of binary collisions. This method gives the same result as
the more rigorous derivation from first principles, and also provides some
physical insight into how we may view collisions in a plasma.

2.2 The Boltzmann collision operator

The Boltzmann equation was originally derived by Ludwig Boltzmann
in the late nineteenth century [44, 45] in order to study the dynamics of
gases. As we indicated in the previous section, the Boltzmann equation
for a plasma is valid when describing those large-angle collisions where
the impact parameter is much smaller than the mean distance between
particles in the plasma, that is for µ � 1. The Boltzmann collision
operator describes the rate-of-change of the distribution function due to
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binary collisions, and we shall briefly derive it here in a form that will
be suited to our applications.

We describe a binary interaction with a differential cross-section
dσab(p1,p2; p,p′) for particles a and b to be taken from initial mo-
menta p and p′, respectively, to final momenta p1 and p2, respectively.
The cross-section is defined such that the total differential change of
the phase-space particle density dna(t,x,p) = fa(t,x,p)dp due to these
interactions in a time interval dt is

[dna(p)]c,ab = fa(p1)fb(p2)gø(p1,p2)dσ(p,p′; p1,p2)dp1dp2dt

− fa(p)fb(p
′)gø(p,p′)dσ(p1,p2; p,p′)dpdp′dt, (2.4)

where p1 and p2 are related to p and p′ by the conservation of energy and
momentum. The relativistic generalization of the relative speed vrel =
|v−v′|, is the Møller relative speed gø(p,p′) =

√
(v − v′)2 − (v × v′)2/c2 [46].

The collision operator can formally be defined as

Cab{fa, fb} ≡
(
∂2na
∂t∂p

)

c,ab

=

ˆ
dp1 fa(p1)

ˆ
dp2 fb(p2)gø(p1,p2)

∂σ(p,p′; p1,p2)

∂p

− fa(p)

ˆ
dp′ fb(p

′)gø(p,p′)σ(p,p′), (2.5)

where the total cross-section σ(p,p′) is defined as

σ(p,p′) =

ˆ
dp1

∂σ(p1,p2; p,p′)
∂p1

.

A symmetric form is obtained in the special case of elastic collisions
by utilizing the principle of detailed balance [46], which is a symmetry
relation for the cross-section stating that

gø(p1,p2)dσ(p,p′; p1,p2)dp1dp2 = gø(p,p′)dσ(p1,p2; p,p′)dpdp′.

Using this relation, which is valid for classical particles interacting with
a central potential and also in the first order spin-averaged Born approx-
imation in quantum mechanics [47, 48], Eq. (2.4) leads to

Cab{fa, fb} =

ˆ
dp′dσ(p1,p2; p,p′) gø(p,p′)×

×
(
fa(p1)fb(p2)− fa(p)fb(p

′)
)
. (2.6)
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This is the operator which is typically known as the Boltzmann operator,
although we shall apply the term more generally here to any integral
operator of the form of Eq. (2.5). In Eqs. (2.4), (2.5) and (2.6) the
first – the gain term – describes the rate at which particles a of initial
momentum p1 are scattered into p, while the second – the loss term –
describes the rate at which particles scatter away from p.

Two-dimensional form — The Boltzmann operator is inconvenient
to work with because of the complicated relation between (p,p′) and
(p1,p2), combined with the singular nature of the Coulomb cross-section.
However, it is significantly simplified under the conditions that
(i) the target particles are stationary, i.e. fb(p) = nbδ(p);
(ii) the cross-section depends only on p1, p and cos θs = p1 ·p/p1p, which
excludes particles with internal degrees of freedom such as molecules, or
spin-polarized plasmas;
(iii) and the distribution function is independent of gyroangle.
In this case, introducing again spherical coordinates p = (p, cos θ, ϕ)
and p1 = (p1, cos θ1, ϕ1), the Boltzmann operator (2.5) takes the form

Cab{fa, fb}(t, p, cos θ) = nb

ˆ
dp1 v1fa(t, p1, cos θ1)

∂σ

∂p
(p; p1, cos θs)

− nbvf(t, p, cos θ)σ(p).

The angle cos θs can be related to cos θ1, cos θ, ϕ1 and ϕ by

cos θs = cos θ1 cos θ + sin θ1 sin θ cos(ϕ1 − ϕ).

As we will now show, the Boltzmann operator for stationary targets
is diagonalized by the Legendre polynomials, making this a particularly
convenient representation of the distribution function for the runaway
problem. By introducing

fa(t, p, cos θ) =
∑

L

fL(t, p)PL(cos θ),

Cab(t, p, cos θ) =
∑

L

CL(t, p)PL(cos θ),

an application of the addition theorem for spherical harmonics,

PL(cos θs) = PL(cos θ1)PL(cos θ)

+
L∑

m=1

(L−m)!

(L+m)!
cos
(
m(ϕ1 − ϕ)

)
PmL (cos θ1)PmL (cos θ),
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yields

CL(t, p) = nb

ˆ
dp1 p

2
1v1fL(p1) 2π

ˆ 1

−1
d cos θs PL(cos θs)

∂σ

∂p
(p; p1, cos θs)

− nbvfL(p)σ(p). (2.7)

This form for the Boltzmann collision operator is particularly suitable
for numerical calculations, as the angular part is encoded in the Leg-
endre modes in a simple way; the general form for a linear operator
takes the form C(p, cos θ) =

∑
L,L′ CL{fL′}(p)PL(cos θ), but the Legen-

dre polynomials diagonalize the collision operator in the sense that CL
depends only on the corresponding mode fL of the distribution function.
Numerically, this leads to a sparse matrix representation of the system,
allowing a time and memory efficient treatment.

The Boltzmann operator given here is valid both for inelastic and
elastic collisions, although in the elastic case ∂σ/∂p will contain a delta
function, as the kinematics then constrain p1 = p1(cos θs).

Special case: Self-collisions — Equation (2.7) is also valid for self-
collisions with a simple modification to the last term (the sink term);
in this case, the assumption of stationary targets can be viewed as a
linearization around a cold bulk population, fa = naδ(p) + fa1. This is
a suitable description for scenarios where a relatively small population
of energetic electrons is present, with momenta much greater than the
thermal momentum. The collision operator then takes the form

CL(t, p) = na

ˆ
dp1 p

2
1v1fL(p1) 2π

ˆ 1

−1
d cos θs PL(cos θs)

∂σ

∂p
(p; p1, cos θs)

− 1

2
navfL(p)σ(p)− 1

2

δ(p)

p2
na

ˆ
dp′ p′2v′δL,0f0(p′)σ(p′). (2.8)

The new term at the end describes the removal of the initially station-
ary particle, and the factors 1/2 are introduced to avoid double counting
collisions. From this expression the collision operator for knock-on col-
lisions (avalanche generation) can be derived. For example, the model
by Rosenbluth and Putvinski [8] follows by setting fe(p) = nREδ(cos θ−
1)δ(p−p0)/2πp2

0 and letting p0 →∞, i.e. by assuming that all runaways
have infinite energy and zero pitch-angle.

Special case: Heavy targets — Another interesting special case
is given by elastic collisions with infinitely heavy targets. In that case,
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the energy of the light particle is conserved, and the cross-section takes
the form ∂σ/∂p = (δ(p1− p)/2πp2)∂σ/∂ cos θs. This leads to a collision
operator

CL(t, p) = −navfL(t, p)

ˆ 1

−1
d cos θs

[
1− PL(cos θs)

]∂σ(p, cos θs)

∂ cos θs
.

(2.9)

It is interesting to further reduce this in the case where the integral is
dominated by the contribution from small scattering angles. We may
then Taylor expand

1− PL(cos θs) =
L(L+ 1)

4
θ2
s +O(θ4

s),

which yields

CL(t, p) = −navfL(t, p)
L(L+ 1)

4

ˆ π

0
dθs θ

3
s

∂σ(p, cos θs)

∂ cos θs
.

Although the angles are assumed to be small, the integration is extended
to π as the contribution from large angles is assumed to be negligible.
We identify this as a familiar eigenvalue equation for the Legendre poly-
nomials, yielding the collision operator

Cab(t,p) = −nbvL{fa}
ˆ π

0
dθs

θ3
s

2

∂σ(p, cos θs)

∂ cos θs
, (2.10)

where the Lorentz operator L is half the pitch-angle part of the Laplace
operator p2∇2

p:

L{f} =
1

2

∂

∂ξ

(
(1− ξ2)

∂f

∂ξ

)
.

This is an energy-conserving diffusion operator in pitch-angle. It is in-
teresting to note that, in the Legendre-polynomial representation, the
Boltzmann operator (2.9) and the diffusion operator (2.10) have the
same structure – the only difference is that the coefficients are given by
different integral moments of the scattering cross-section. Therefore the
small-angle approximation in this limit does not provide a significant de-
crease in computational cost compared to the Boltzmann operator here,
unlike the general case which we shall now treat.
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2.3 The Fokker-Planck collision operator

When the interaction distance is significant compared to the mean par-
ticle separation, but the interaction is weak, the appropriate collision
term is the Fokker-Planck operator, rather than the Boltzmann operator.
However, as we will now show, the Fokker-Planck operator can in fact be
derived from the Boltzmann operator in the limit of small momentum
transfers in the collisions. That the seemingly opposite description of
weak interactions in the Fokker-Planck picture can be contained in the
Boltzmann picture of binary collisions appears counter-intuitive. It can,
however, be physically understood by the fact that the small momen-
tum transfers described by the Fokker-Planck operator only negligibly
change the particle momentum in a single collision; then the net effect
of the many-body interaction can be viewed as a linear superposition of
pairwise momentum transfers [49].

The procedure is as follows: a general integral moment of the Boltz-
mann operator is

J [φ] =

ˆ
dpφ(p)Cab =

ˆ
dp

ˆ
dp′dσ(p1,p2;p,p′) fa(p)fb(p

′)

× gø(p,p′)
[
φ(p1)− φ(p)

]
,

which is most easily seen by integrating Eq. (2.4) and switching names
of the dummy variables p1 and p2 in the first term with p and p′,
respectively. For convenience we will suppress the arguments of dσ and
gø as they will remain unchanged for the rest of the calculation. Here
we introduce the small-momentum-transfer argument: the integral is
assumed to be dominated by the contribution from p1 ≈ p. We then
Taylor expand

φ(p1)− φ(p) ' (p1 − p) · ∂φ(p)

∂p
+

(p1 − p)(p1 − p)

2
:
∂φ(p)

∂p∂p
,

where we use dyadic notation such that the rank-2 tensor T = ab has
components Tij = aibj . By introducing the quantities

∆p = p1 − p,

A =

ˆ
dp′ gøfb(t,p

′)
ˆ

dσ∆p, (2.11)

D =

ˆ
dp′ gøfb(t,p

′)
ˆ

dσ∆p∆p, (2.12)
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integrating by parts twice immediately yields

J [φ] =

ˆ
dpφ(p)

[
∂

∂p
·
(
−A(t,p)fa(t,p) +

1

2

∂

∂p
·
[
D(t,p)fa(t,p)

])]
.

As this equality holds for any φ, the small-momentum-transfer assump-
tion therefore leads to the well-known Fokker-Planck operator [50, 51]

Cab{fa, fb} =
∂

∂p
·
(
−Aab(t,p)fa(t,p) +

1

2

∂

∂p
·
[
Dab(t,p)fa(t,p)

])
.

(2.13)

For collisions with infinitely heavy stationary targets, to leading order
in scattering angle, this reduces to Eq. (2.10). For relativistic elastic
electron-electron collisions, the Fokker-Planck operator was first given
by Beliaev and Budker [52], with a direct derivation from Eqs. (2.11),
(2.12) and (2.13) later given by Akama [53]. The Fokker-Planck operator
is conveniently expressed in the form

Cab{fe, fe} =
∂

∂p
·
ˆ

dp′ E ·
(
∂fe(p)

∂p
fe(p

′)− ∂fe(p
′)

∂p′
fe(p)

)
, (2.14)

where the collision kernel E is the symmetric rank-2 tensor [54]

E = 2π

(
e2

4πε0

)2

ln Λ
γ′γ(1− v′ · v/c2)2

c{[γ′γ − p′ · p/(mec)2]2 − 1}3/2×
{

[(
γ′γ − p′ · p

m2
ec

2

)2

− 1

]
I− pp + p′p′

m2
ec

2
+

(
γ′γ − p′ · p

m2
ec

2

)
p′p + pp′

m2
ec

2

}
,

where I is the unit tensor and γ =
√

1 + (p/mec)2 is the relativistic
Lorentz factor. In this expression, only the leading-order term in ln Λ
has been retained, which corresponds to the small-angle contribution to
the integrals (2.11) and (2.12).

An approximate collision operator to study runaway electrons was
developed in Ref. [55]. It is an asymptotic matching of the linearized
Beliaev-Budker operator (2.14) in the high-energy limit with the non-
relativistic collision operator [43, 56] (corresponding to Eq. (2.14) for
v � c, linearized with a cold bulk of thermal velocity vTe =

√
2Te/me �

c). The operator is

C =
B(p)

p2
L{fe}+

1

p2

∂

∂p

[
p2

(
F (p)fe +A(p)

∂fe
∂p

)]
, (2.15)
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where

A(p) =
m2
ec

2

τc

c

v
G

(
v

vTe

)
,

F (p) = 2
mec

τc

c2

v2
Te

G

(
v

vTe

)
,

B(p) =
m2
ec

2

τc

c

v

[
Zeff + φ

(
v

vTe

)
−G

(
v

vTe

)
+

1

2

v2
Te

c2

v2

c2

]
.

We have here introduced the collision time τ−1
c = ne ln Λe4/(4πε2

0m
2
ec

3),
the error function φ(x) = 2π−1/2

´ x
0 ds exp(−s2) and the Chandrasekhar

function G(x) = (φ(x)−xφ′(x))/2x2. A term proportional to the plasma
effective charge Zeff =

∑
i niZ

2
i /ne (the sum taken over all ion species

in the plasma) has been added to the pitch-angle scattering operator
coefficient, which corresponds to the contribution from a set of stationary
ion species, as in Eq. (2.10). For a non-relativistic bulk population, this
collision operator has the correct asymptotic behaviour both as v → 0
and γ →∞, although the expression is never exact.

2.4 Synchrotron radiation reaction

In this section we will show how the effect of synchrotron radiation
losses can be accounted for. In paper C, this has been used to find the
energy which electrons can be accelerated to by an electric field before
radiation losses stop their acceleration, as illustrated in Fig. 1.1. The
conditions for which a non-monotonic feature, a “bump”, can form in the
tail of the runaway-electron distribution was also analyzed in the paper.
The presence of such a feature can destabilize the runaway beam, and
also effectively limits the maximum electron energy. This makes bump
formation an interesting attribute of the solutions to the kinetic equation
to study.

In the kinetic equation (2.2), it has been assumed that the only force
acting on a particle is the Lorentz force F = q(E + v × B) due to the
presence of an electric field E or a magnetic field B. However, this
description can be generalized to account for a general force F = F(p)
by replacing [57]

q(E + v ×E) · ∂f
∂p
7→ ∂

∂p
·
[
F(p)f(p)

]
. (2.16)
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With this replacement, Eq. (2.1) still takes the form of a continuity
equation in phase space, and reduces to the familiar equation when the
force F is chosen as the divergence-free Lorentz force.

The energy which runaway electrons lose by emitting radiation limits
the maximum energy that they can reach [58], which shows that this ef-
fect must be carefully accounted for in order to understand the dynamics
of runaway electrons. In the late nineteenth century, around the same
time as Boltzmann derived his famous kinetic equation for dilute gases,
it was discovered that – according to Maxwell’s equations – a charged
particle in accelerated motion will emit radiation [59]. Synchrotron ra-
diation is the radiation emitted by a charged particle moving near the
speed of light in a circular motion [60, 61]. In magnetized plasmas, syn-
chrotron radiation is therefore emitted by runaway electrons due to their
gyrating motion around the magnetic field, and also due to their orbit
motion in a curved magnetic field. The synchrotron radiation reaction
force can be understood classically by accounting for the electromagnetic
radiation emitted by a particle in accelerated motion, which leads to the
Abraham-Lorentz-Dirac (ALD) force [62, 63, 64]

FALD =
q2γ2

6πε0c3

[
v̈ +

3γ2

c2
(v · v̇)v̇ +

γ2

c2

(
v · v̈ +

3γ2

c2
(v · v̇)

)
v

]
. (2.17)

This formula was simplified in Ref. [65] for the case of magnetized plas-
mas, where the motion is dominated by gyromotion such that v · v̇ ' 0,
and using the Landau method [61] of neglecting the acceleration by the
ALD-force itself. This approximation yields the force components (in a
spherical coordinate system, when averaged over the gyromotion)

(
dp

dt

)

ALD

= −(1− ξ2)
γp

τr
,

(
dξ

dt

)

ALD

= (1− ξ2)
1

γτr
,

1

τr
=

e4B2

6πε0m3
ec

3
.

Thus, a non-isotropic reaction force is produced by the emission of syn-
chrotron radiation. At high energy, the retarding component is approxi-
mately dp/dt ' p2

⊥/mecτr, and increases rapidly in magnitude with per-
pendicular momentum. However, as the electric field only accelerates
runaways in the parallel direction, force-balance alone cannot explain
how synchrotron radiation losses limit the maximum runaway energy. It
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is the pitch-angle scattering due to collisions that increases the perpen-
dicular momentum of the electrons, which together with the subsequent
synchrotron emission causes all electrons to eventually reach a steady-
state velocity distribution. This steady state often exhibits a “bump” in
the tail of the distribution, beyond which the distribution decays expo-
nentially with momentum, as demonstrated in paper C.

2.5 CODE

In order to study the momentum-space dynamics of runaway electrons,
a numerical tool CODE (COllisional Distributions of Electrons [66]) has
recently been developed. The code obtains solutions to the kinetic equa-
tion (2.3) with the collision operator (2.15), treated as an initial-value
problem. By representing the distribution function in terms of Legendre
polynomials in pitch-angle cosine and a finite-difference discretization
of the momentum coordinate, a flexible and computationally efficient
scheme is obtained. The model contains the essential physics needed
in order to study a wide range of momentum-space runaway dynamics,
making it highly suited for studies such as those presented in this thesis.

Various models for large-angle collisions are implemented in CODE,
which can all be derived from the Boltzmann equation (2.8). As previ-
ously mentioned, the model by Rosenbluth and Putvinski [8] follows by
assuming the runaway distribution function to be of the form

fe(t, p, ξ, ϕ) =
nRE(t)

2πp2
δ(p− p0)δ(cos θ − 1), (2.18)

and then taking the limit p0 → ∞ of the resulting collision operator.
That is, all runaways are assumed to be infinitely energetic, and have
no perpendicular momentum. The basic assumption here is that the
runaways will have energies much larger than the thermal energy, and
also larger than the knock-on particles – which predominantly have en-
ergies corresponding to the critical runaway speed (see Fig. 1.1). This
model can be powerful for example in the later phase of a runaway dis-
charge after a tokamak disruption, where most of the runaways have had
time to be accelerated to highly relativistic (γ � 1) energies, but is not
suited for studying the initial runaway phase where most electrons have
near-thermal energies.

A more accurate model for knock-on collisions was derived by Chiu
et al. [67] by relaxing some of the assumptions made in the preceding
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work, instead using the form

fe(t, p, ξ, ϕ) =
1

2π
fe(t, p)δ(cos θ − 1) (2.19)

for the distribution function. However, in their treatment they only
follow the target particle, which in practice follows from neglecting the
second term of (2.8) and integrating over only half the energy interval
in the first term. While this still neglects the perpendicular momentum
of the runaways and ignores the slowing-down of the runaway particle,
it accounts fully for the energy distribution which makes it applicable
for both low energies in the initial runaway phase, as well as for large
runaway energies where it reduces to the Rosenbluth-Putvinski model.

These models for knock-on collisions have been compared in detail
in paper B, using kinetic simulations with CODE to determine the
differences they produce in avalanche runaway growth rate. Agreeing
qualitatively with an approximate analytic model, it is shown that the
difference can indeed be large when the runaway momentum does not
far exceed the thermal momentum; sometimes the Chiu model yields
higher avalanche runaway rates than the Rosenbluth-Putvinski model,
and sometimes lower, depending on the strength of the electric field.

In paper B we also investigate the runaway growth by hot-tail gen-
eration, which occurs during a rapid temperature drop [11, 12, 13, 14].
Electrons which were initially in the far tail of the hot thermal popu-
lation may become runaway due to their lower collisionality, allowing
them to retain their energy during the temperature drop. In the paper,
previous non-relativistic studies of hot-tail generation [68] were extended
to the relativistic equation which CODE solves, and the effect of the
electric field on the hot-tail generation was also investigated. Runaway
growths of up to almost an order of magnitude larger were demonstrated
in the more complete treatment achievable using CODE, compared to
previous findings.

We have now briefly described the basic kinetic theory needed for
electron-runaway investigations, introducing primarily well-known con-
cepts and results. Based on this framework, we will in the following
chapter develop a powerful method of accounting for the effect of brems-
strahlung emission.





Chapter 3

Bremsstrahlung

When charged particles collide, the resulting emission is referred to as
bremsstrahlung (German for “braking radiation”, as it causes the parti-
cles to decelerate) [69, 70]. In this chapter we will describe in detail how
the effect of bremsstrahlung emission on the motion of runaway elec-
trons can be accounted for in plasmas. This question has recently been
investigated in the context of magnetic-fusion plasmas in Refs. [58, 71],
where an approximate model for the bremsstrahlung losses was used in
order to determine the maximum energy reached by runaway electrons.
In paper A we have extended their work by introducing a more realistic
framework for bremsstrahlung losses based on the Boltzmann operator,
which produces a qualitatively different response of the electrons com-
pared to the previous studies.

Unlike synchrotron radiation – where typical frequencies are low
enough that the energies of individual photons can be ignored – it is
found that at relativistic electron energies the frequency of the emitted
bremsstrahlung radiation corresponds to photon energies comparable
to the electron energy. Because of this, to describe the bremsstrahl-
ung emission from highly relativistic runaways, a quantum-mechanical
description is necessary. The quantum-mechanical treatment was first
described in detail in an extensive 1934 paper by Bethe and Heitler [72].
In the quantum-mechanical picture, bremsstrahlung is the result of a bi-
nary interaction between two charged particles resulting in the emission
(creation) of one or more photons. The analysis of Bethe and Heitler
provides a differential cross-section for the process p1 7→ p,k, where
p1 and p are the incident and outgoing electron momenta, respectively,
and k is the photon momentum. The target is treated as a stationary

23
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scattering center, meaning that we neglect the recoil of the target which
would generally cause modifications of order γme/M when M is the
target mass.

This description of bremsstrahlung as a binary collision process al-
lows us to describe its effect on the electron distribution with the Boltz-
mann collision operator. The differential cross-section ∂σ/∂p (in the
form that it appears in the collision integral (2.5)) for bremsstrahl-
ung interactions in the Born approximation was originally published by
Racah [73], with a crucial misprint that was corrected by McCormick et
al. [74] 22 years later. The interactions, of the form p1 7→ p + k, satisfy
conservation of energy

√
1 + p2

1/m
2
ec

2 =
√

1 + p2/m2
ec

2 + kc, however,
momentum is not conserved, as any amount can be transferred to the in-
finitely heavy scattering center (the nucleus). The cross-section formula
is given by

∂σ̄ab
∂p

= Z2
bαr

2
0

2k

p1γ
W (p; p1, cos θs)

W (p; p1, cos θs) =
2γ1γ + (γ2

1 + γ2 − 1)λ− λ2

k2λ2
√
λ(λ+ 2)

ln
(

1 + λ+
√
λ(λ+ 2)

)

− 2γ1γ − λ
k2λ2

− 3(γ2
1γ

2 − 1)2

λ2p4
1p

4

+
4(γ2

1γ
2 − γ1γ + 1)− γ1γ(p2

1 + p2) + (γ2
1 + γ2 + γ1γ − 1)λ

2λ2p2
1p

2

+

(
2
γ1γ − 1

λ3
− k2

λ4

)
2(γ2

1 + γ2 − γ1γ)p2
1p

2 + 3k2(γ1 + γ)2

p4
1p

4

+
l

p3

[
γ + 2γ3

λ2p2
+

2γ4 + 2p2
1p

2 + γ1(γ1 + γ)− (γ1γ + p2)λ

2kλ2

+ γ

(
2
γ1γ − 1

λ3
− k2

λ4

)
2γ1p

2 − 3kγ2

kp2

]

+
l1
p3

1

[
γ1 + 2γ3

1

λ2p2
1

− 2γ4
1 + 2p2

1p
2 + γ(γ1 + γ)− (γ1γ + p2

1)λ

2kλ2

− γ1

(
2
γ1γ − 1

λ3
− k2

λ4

)
2γp2

1 + 3kγ2
1

kp2
1

]
. (3.1)

In the expression for W , the electron momenta p1 and p, and pho-
ton momentum k, have been normalized to mec for clarity. The fine-
structure constant is denoted α = e2/(4πε0~c) ≈ 1/137, and r0 =
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e2/(4πε0mec
2) ≈ 2.8 · 10−15 m is the classical electron radius. We have

also introduced the auxiliary quantities

l = ln(γ + p),

l1 = ln(γ1 + p1),

λ = γ1γ − p1p cos θs − 1,

where the full angular dependence of the cross-section is captured in λ.
This is the simplest bremsstrahlung formula that provides a complete
and self-consistent description. The validity of the Born approximation
is limited to v/c & Zα and v1/c & Zα, i.e. both the incident and
outgoing electron must be sufficiently fast, otherwise the plane-wave
assumption in the Born approximation will be violated. For runaways
typically moving near the speed of light, in plasmas where Z � 100,
this is well satisfied for the incident velocity. The condition on the
outgoing velocity, however, puts an upper limit on photon energies for
which the formula is valid. The correction when v/c is comparable to
αZ can approximately be accounted for by multiplying the cross-section
formula with the so-called Elwert factor [75]

FE =
v

v1

1− exp(−2παZc/v1)

1− exp(−2παZc/v)
.

A thorough analysis of bremsstrahlung emission is given in Ref. [76]
(and references therein), on which our current discussion is primarily
based. More sophisticated models of bremsstrahlung can be obtained
by numerical methods, of which a few examples are: a full partial-wave
expansion solution of the Dirac equation; Elwert-Haug theory where
the lowest-order wavefunction is taken as Coulomb-problem free states
instead of plane waves; or accounting for screening in the Born approx-
imation by including the effect of bound electrons through an atomic
form factor. The latter can be studied analytically in the limit of com-
plete screening [72], but an analytic expression for ∂σ/∂p has, to our
knowledge, not been published.

In addition, the formula given in Eq. (3.1) is only strictly valid
for electron-ion bremsstrahlung; for electron-electron interactions, ex-
change and retardation effects are important, and complicate the anal-
ysis greatly. The full quadruply differential cross-section was origi-
nally given in a Ph.D. thesis [77], but a reprint can also be found in
Ref. [76]. Despite a lengthy formula covering more than 5 full pages, it
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has been analytically integrated over electron and photon emission an-
gles in Refs. [78, 79]. The expression for ∂σ/∂p needed for the collision
operator does, however, not appear to exist in the published literature.
Because of this, we also apply Eq. (3.1) to electron-electron bremsstrahl-
ung. Beyond the prohibitive complexity of the full formula, this can be
further motivated by the fact that in the high-energy limit, the full
electron-electron and electron-ion bremsstrahlung formulas produce the
same total radiation cross-section, indicating that our choice is suitable
for a first approximation.

3.1 Screening

In many scenarios of interest the ions in the plasma will not be fully
ionized. For example, during tokamak disruptions the temperature may
drop to a few electronvolts, which is lower than typical atomic ionization
energies, and large quantities of high-atomic-number gases are some-
times injected as a disruption mitigation strategy [17, 19]. The presence
of electrons which remain bound to the nuclei in a plasma have a so-
called screening effect, as the electron cloud effectively cancels (partially
or totally, depending on the degree of ionization) the charge of the nu-
cleus, as seen from afar. The importance of screening can be estimated
in the following way. The differential cross-section in the Born approxi-
mation involves the Fourier transform Ṽ of the scattering potential V ,

Ṽ (q) =

ˆ
drV (r)eiq·r/~.

Here, q = p1 − p− k is the momentum transferred to the nucleus, and
by the conservation of energy p =

√
(γ1 − k)2 − 1 =

√
p2

1 − 2γ1k + k2

(again using normalized units). The effect of screening will be important
when significant contributions to Ṽ originate from distances of the order
of the atomic size or greater, i.e. near the Bohr radius r ∼ a0 = ~/mecα
(with α again the fine-structure constant). For sufficiently large q, the
exponential factor in the integrand will be rapidly oscillating and the
contribution will vanish; therefore, the minimum value of q sets the
length-scale that is probed in the interaction. For qmin . ~/a0 = αmec
screening effects are important, as the bound electrons of the atom are
then probed. The minimum momentum transfer (corresponding to a
maximum probed radius) is given when the vectors p1, p and k are
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aligned, and has the value

qmin = p1 − p− k ≈
k

2γ1γ
, (3.2)

where in the last step large energies were assumed, p1 � mec. Note
the seemingly counter-intuitive behavior that the momentum transfer to
the ion decreases with increasing electron energy, a direct consequence
of the conservation laws involving the creation of a third particle. The
threshold for the importance of screening effects is then given by the
condition

k

2γ1(γ1 − k)
. α.

Approximately 80% of the contribution to the total radiative stopping
power (see Eq. (3.3)) comes from photon energies greater than 10% of
γ1. Therefore, setting k = 0.1γ1, we find the condition γ1 & 7.6 for
screening effects to be important. This means that Eq. (3.1) must be
modified for highly relativistic electron energies in the presence of ions
which are not fully ionized. The modification will act to reduce the rate
of bremsstrahlung interactions compared to when the full nuclear charge
is inserted into the Bethe-Heitler formula (3.1). Here we will, however,
restrict the study to fully ionized plasmas or sufficiently low electron
energies where these effects can be neglected. For more details on how
atomic screening effects collisions, a thorough analysis of screening in
elastic collisions has recently been given in Ref. [80].

3.2 Low-energy photon contribution

Bremsstrahlung reactions resulting in the emission of photons with en-
ergies comparable to the incident-electron energy are responsible for the
dominant contribution to the radiative stopping power, which is propor-
tional to the energy moment of the cross-section [72];

〈kσ〉 =

ˆ
dk k

∂σ

∂k
. (3.3)

Indeed, for an incident electron of energy γ1, the relative contribution
to the integral from those photons with energy k ≤ k0 � γ1 is of order
k0/γ1. Therefore it is commonly argued that the low-energy photons
contribute negligibly to the fast-electron dynamics [81]. However, the
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above argument only proves that the energy loss is small; the reactions
are kinematically allowed to change the direction of the incident electron
arbitrarily, as the nucleus acts as a momentum sink. As the cross-section
for small k goes as dσ ∝ 1/k, it is clear that many reactions involving
low-energy photons occur, indicating that this may be a significant effect.

The singularity in the cross-section also proves to be a challenge
when numerically evaluating the Boltzmann operator, as the gain and
loss terms are both infinitely large. However, with the method described
below a simplified model can be derived, where the singularity is ana-
lytically resolved by considering the contribution from the low-energy
photons separately, and utilizing the smallness of k/p1, the ratio of pho-
ton to electron momentum.

To leading order in k/p1, for large energies γ1 � 1, the bremsstrahl-
ung cross-section (3.1) takes the form

∂σ

∂ cos θs∂k
=

1

k
W (γ1, γ),

where W (γ1, γ) = W (γ, γ1) = W (γ1) is symmetric, and k = γ1 − γ. We
can rewrite the Boltzmann operator, Eq. (2.7), by writing

∂σ

∂p
=

1

2π

1

pγ

∂σ

∂k∂ cos θs
,

and changing variables in the integral, dp1 = (∂p1/∂k)dk = dk/v1. This
yields the equivalent form

CL(t, p) = nb

ˆ
dkd cos θs

p2
1

pγ
fL(p1)PL(cos θs)

∂σ

∂k∂ cos θs

− nb
ˆ

dkd cos θs vfL(p)
∂σ

∂k∂ cos θs
,

where the symmetry property of the cross-section was (indirectly) used
in the bottom line. Now, to leading order in k/p1 we also have p1 = p,
which finally yields the operator

CL(t, p) = −nbvfL(p)

ˆ
d cos θs

[
1− PL(cos θs)

] ∂σ

∂ cos θs
, (3.4)

where

∂σ

∂ cos θs
=

ˆ
dk

∂σ

∂k∂ cos θs
= 2πγp

ˆ
dk

∂σ(p; p1, cos θs)

∂p
.
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The operator thus obtained is the stationary-target elastic-scattering
operator of Eq. (2.9), which is expected as we have neglected the energy
carried by the photons. For small angles θ . 1/γ1, the cross-section
∂σ/∂ cos θs goes as 1/θ2. This is in contrast with the cross-section for
purely elastic Coulomb collisions, which goes as 1/θ4, indicating that
the low-energy photon contribution to bremsstrahlung will not be so
dominated by small-angle collisions. Indeed, a significant contribution
to the integrals in CL are given by scattering angles θs ∼ 1, showing that
a Fokker-Planck treatment is inadequate. The vanishing of the L = 0
term (corresponding to the spherically symmetric part of the operator,
since P0(x) = 1) ensures that these reactions contribute only to pitch-
angle deflection, and not energy loss, consistent with the argument at
the beginning of the section and the result obtained in Ref. [81].

To quantify the importance of the low-energy photon effect, we an-
alytically evaluate the L = 1 term of Eq. (3.4) and compare it to the
corresponding term of the elastic Coulomb-scattering operator. The lat-
ter is proportional to the term containing Zeff in Eq. (2.15). In the limit
γ1 � 1 and k/γ1 � 1, after a tedious integration of the full cross-section
formula in Eq. (3.1), the ratio between the bremsstrahlung and Coulomb
expressions is found to be

Csmall-k
1

Celastic
1

= α
2

π

ln ΛB

ln Λ

[(
ln

2p

mec
− 1

)2

+ 1

]
. (3.5)

We have introduced the bremsstrahlung logarithm ln ΛB, which arises in
a manner analogous to the Coulomb logarithm for elastic collisions and
is due to the logarithmic divergence with k of the bremsstrahlung cross-
section. If the operator is constructed to account for all bremsstrahlung
emissions of energy k ≤ k0, the bremsstrahlung logarithm is defined as
ln ΛB = ln(k0/kc), where kc is a lower cut-off in photon energy which has
a physical origin, to be discussed below. The ratio in Eq. (3.5) decreases
monotonically with L (which can be verified numerically by performing
the integration in Eq. (3.4)), indicating that for the comparison it is
sufficient to evaluate the L = 1 term.

3.3 Lower limit in photon energy

We will now discuss the integration limits in the evaluation of ∂σ/∂ cos θs.
The operator (3.4) will be used to account for those bremsstrahlung
emissions with photon energy k ≤ k0, where k0 is some arbitrary cutoff
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satisfying k0 � γ1 − 1. However, the integral is singular, and needs to
be cut off at some lower limit as well, which we denote kc. There are
three mechanisms which need to be considered in determining this lower
limit:

1. Polarization of the background medium – in a semi-classical treat-
ment, scattering in a dielectric medium can be modeled by multi-
plying the cross-section by a suppression factor depending on the
dielectric constant of the medium. This will have the effect of effec-
tively screening those interactions in which the radiation is emitted
with frequency below the plasma frequency, thus effectively cutting
off the integral.

2. Many-photon emissions – at low photon energies, many-photon
emissions will become increasingly important for the reaction rate.
It is known that this quantum-electrodynamical effect naturally
resolves the singularity in the cross-section.

3. Stimulated emission and absorption – at sufficiently low photon
energy, there will be a high enough number of photons that they
will significantly interact with the plasma before escaping. This
has the effect of limiting the validity of our equation to photon
energies above some critical value.

We shall discuss these effects in turn, and investigate what the respective
cutoff energies are.

Polarization of the background medium: The effect on the cross-
section of the polarization of the background medium was originally
treated in Ref. [82]; it was experimentally verified by the SLAC-E-136
accelerator [83], and the effect (together with related phenomena) has
been discussed at length in a more recent review article [84]. The argu-
ment goes as follows: as we discussed in connection with the screening
effect of bound electrons, there is a length-scale associated with a brems-
strahlung reaction, related to the momentum q transferred to the ion by
l = ~/q (which is the wavelength of the virtual photon exchanged be-
tween electron and nucleus). Here, however, we are interested in the
parallel length scale lB = ~/q‖, which is sometimes referred to as the
formation length. The parallel momentum transfer is

q‖ =
p1

p1
· (p1 − p− k) = p1 − p cos θs − k cos θ1,
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where cos θs = p1·p/p1p and cos θ = p1·k/p1k. As we are now concerned
about the contribution from photons carrying momentum much smaller
than the electron momenta, we Taylor expand this formula to first order
in k/p1, using p =

√
(γ1 − k)2 − 1. This gives

q‖ = p1(1− cos θs) + k

(
1

v1
cos θs − cos θ1

)
.

If we here expand in large electron energy γ1 � 1 and small angles
θs ∼ θ1 � 1, we find

q‖ =
k

2γ2
1

+
γ1

2
(θ2

1 − θ2
s).

As expected, for vanishing scattering angles (when electron and pho-
ton momenta are aligned), we obtain again the minimum momentum
transfer of Eq. (3.2). If we neglect the contribution due to the angular
deviation, i.e. for (γ1θ)

2 � k/γ1, we find a formation length

lB =
2~γ2

1

k
.

The analysis in Ref. [84] shows that the effect is covered by the intro-
duction of a suppression factor S, defined so that

∂σ

∂p
= S

(
∂σ

∂p

)

0

,

where (∂σ/∂p)0 is the cross-section of Eq. (3.1) with polarization effects
unaccounted for. The suppression factor S is given by the ratio between
formation lengths when the photon energy k is replaced by

√
εk (to

account for the change in the speed of light of photons in the medium)
and when it is left unchanged. That is, we evaluate

S =
p1 − cos θs

√
(γ1 − k)2 − 1− k cos θ1

p1 − cos θs
√

(γ1 − k)2 − 1−√εk cos θ1

,

ε(k) = 1−
~2ω2

p

ω2
,

where the high-frequency limit of the dielectric tensor ε is used. In the
limit where angular deflection is ignored, we find a suppression factor

S(k) =
1

1 + (γ~ωp/kc)2
,
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indicating that the cross-section is effectively cut off at photon momenta
k = γ~ωp/c, or when the frequency of the radiation is γωp. However,
as mentioned, this is valid only when (γ1θ)

2 � k/γ1. In practice, the
low photon-energy operator acquires significant contributions from k/γ1

much smaller than 1%, and when γ1θ is of order unity, or significantly
larger. Therefore we are in fact often in the opposite limit, where the
momentum transfer to the nucleus depends only on the scattering angle,
and not on the photon energy. Hence the above argument (with an
effective cut-off in parallel momentum transfer) will sometimes not cause
a cut-off in photon energy, as the suppression factor stays close to unity.

However, if we anyway apply this model which has been commonly
used in the literature and was experimentally observed, and since the
final expression is only logarithmically sensitive to our choice, it is found
that the effect of background polarization ensures that radiation with
frequency below the plasma frequency ωp =

√
nee2/meε0 will be sup-

pressed. This corresponds to photon energies kcc = ~ωp, or in normal-
ized units

kc
mec

=
~ωp
mec2

= 7.3 · 10−10√n20,

where n20 = ne/(1020 m−3). Introducing κ0 = k0/mec as a normalized
photon energy, the bremsstrahlung logarithm is given by

ln ΛB = ln
κ0mec

2

~ωp
= ln

√
meε0κ0mec

2

√
nee2~

≈ 21.0− ln

√
n20

κ0
. (3.6)

For typical runaway scenarios in fusion plasmas, where γ ranges from
10 to 100 and n20 ranges from 0.1 to 10, and if we choose κ0 = γ/1000,
the bremsstrahlung logarithm ln ΛB takes values in the range 15 to 20.

2. Many-photon emissions: We have discussed the bremsstrahlung
cross-section in lowest-order perturbation theory, which corresponds to
only accounting for bremsstrahlung processes where a single photon is
emitted. This is known to break down (in the infamous infrared diver-
gence of QED [85]) as the photon energies approach zero, where multi-
photon processes contribute significantly. However, these multi-photon
processes can be elegantly accounted for with a simple modification to
the cross-section. To show this, we present an argument from Ref. [86]:
assume that the cross-section is determined by a measurement device
that can measure only photons with energy above some minimum en-
ergy El. Then, the observed cross-section is obtained by integrating
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over all multi-photon processes where photons of energy less than El are
involved. This procedure yields the correction

∂σ

∂p
= F (q)

(
∂σ

∂p

)

0

, (3.7)

where q2 = (p− p1)2 − (γ − γ1)2, and

F (q) = exp

[
−α
π
fIR(q2) ln

q2

E2
l

]
,

fIR(q2) =

ˆ 1

0
dx

1 + q2/2

1 + q2x(1− x)
− 1

=
2 + q2

q
√
q2 + 4

ln

√
q2 + 4 + q√
q2 + 4− q

− 1.

The effect of soft-photon processes is then negligible whenever

α

π
fIR

(
q2
)

ln

(
q2

E2
l

)
� 1. (3.8)

The left-hand side is monotonically increasing with q, indicating that we
need to verify that the inequality (3.8) is well satisfied for the case where
q is the greatest. In our case of low-energy photon emissions, q ∼ |p−p1|
is the momentum transferred to the nucleus, which is maximized by
large-angle collisions where q ∼ p. For q � 1, the asymptotic form of
the infrared correction is fIR = log q2. We then obtain the condition

α

π
ln

p2

m2
ec

2
ln
p2c2

E2
l

� 1.

Solving for p then yields

p

mec
�
√

El
mec2

exp

√√√√
(

log

√
El
mec2

)2

+
π

4α
.

As we will consider“hard photons” (primary ones) emitted with frequen-
cies as low as the plasma frequency, we will be interested in determining
what the effect on the cross-section is of soft-photon emissions with
lower energy. If we can demonstrate that the cross-section is negligi-
bly affected in this worst-case scenario, we can safely ignore the effect
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entirely. Therefore, setting El = ~ωp we obtain the condition

p

mec
� 2.7 · 10−5√n20 exp

√(
10.5− 1

4
lnn20

)2

+ 108

' 70.1(n20)1/5.6 (for lnn20 � 40).

Because of this, for typical runaway energies of order 10-100 MeV, we
see that the soft-photon contribution will become important approxi-
mately at the plasma-frequency scale of photon energies, but only for
the largest-angle reactions (where q ∼ p). Note that the inequality is in
fact logarithmic, indicating that this effect will also affect the process
at lower energies. However, note that this is a pessimistic estimate. In
fact, a large contribution to the collision operator is given by interac-
tions with emission angles θs ∼ 1/γ, for which the momentum transfer
q is of order mec. At this scale, the soft-photon correction will always
be negligible in practical scenarios.

3. Stimulated emission and absorption: It is well known that
existing photons in the plasma can interact with the electrons by the re-
lated processes of stimulated emission and absorption. These effects are
proportional to the number of photons in the plasma, and will therefore
be increasingly significant for low-energy photons, as the cross-section
then grows as 1/k. To ensure the validity of our proposed bremsstrahl-
ung operator, we need to verify that these effects are small in the sce-
narios that we consider.

In Ref. [87] the electron bremsstrahlung Boltzmann operator is given,
accounting for spontaneous and stimulated emission and absorption, as

Cdp = ni

ˆ
dp′dνdΩdΩp fe(p

′)α̃ν(p′;n, e)

[
1 +

c2

2hν3
Iν(n)

]

+ ni

ˆ
dp′dνdΩdΩp fe(p

′)β̃ν(n,p′; e)Iν(n)

− ni
ˆ

dpdνdΩdΩ′p fe(p)α̃ν(p; n, e′)
[
1 +

c2

2hν3
Iν(n)

]

− ni
ˆ

dpdνdΩdΩ′p fe(p)β̃ν(n,p; e′)Iν(n).

We here follow the original notation in [87], where the essential part
is the specific intensity of radiation Iν , which is related to the photon
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distribution function φ(r,k, t) by

φ(r,k, t) =
c2

h4ν3
Iν(n, r, t).

The emission and absorption coefficients are denoted α̃ and β̃, respec-
tively, and are related by the three-body version of the principle of de-
tailed balance [48, 87]

β̃ν(n,p; e′) =
v′

v

c2

2hν3
α̃ν(p′; n, e).

In this formula, the terms involving α̃ but not Iν correspond to spon-
taneous emission, as described by our operator, while the rest account
for absorption and stimulated emission. Therefore, the relative impor-
tance of these effects compared to the spontaneous emission that we
have considered is of order

effect of absorption and stimulated emission

effect of spontaneous emission
∼ c2

2hν3
Iν =

h3φ

2
.

Thus we see that the effect is expected to be small when the mean
phase-space volume occupied by photons is less than two Planck units,
i.e. when

h3

2
φ� 1.

To complete the argument we only need to find an estimate for the
photon distribution function, φ. We can do so by using the following
order-of-magnitude estimate:
The rate at which photons are created, per unit volume and momentum,
is given by

dnφ(t, r)

dtdk
=
∑

b

nb(t, r)

ˆ
dp fe(t, r,p)v

∂σeb
∂k

,

where ∂σeb/∂k is the bremsstrahlung differential cross-section (with re-
spect to emitted-photon energy and direction), which can be found for
example in Ref. [88], and the sum is taken over all particle species in the
plasma. Since the cross-section goes as 1/k for small k, it will be suffi-
cient to show that our assumption is justified in the low-photon-energy
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limit where the photon distribution is expected to be the largest. The
differential cross-section is

∂σ

∂k
∼ 1

4πk2

∂σ

∂k
' 4

3π

αZ2r2
0

k3
ln

2p2

meck
,

as obtained from Eq. (3.1) integrated over electron angles (a calculation
initially performed in Ref. [73]) in the low-k, high-p limit. Assuming
a mono-energetic relativistic electron beam with momentum p, and the
plasma to be confined in a volume V = L3, the total number of pho-
tons created per second per momentum-space volume k is (summed over
particle species)

dNφ

dtdk
≈ 4

3
V nenRE

(1 + Zeff)cr2
0

137π

1

k3
ln

2p2

meck
.

Multiplying the expression by L/c yields the total number of photons in
the volume, which divided by V gives the distribution function:

φ(r,k, t) ∼ 4

3
LnenRE

(1 + Zeff)r2
0

137π

1

k3
ln

2p2

meck
. (3.9)

At the minimum value of k = kc = ~ωp/c, we thus require the smallness
of

h3

2
φ ∼ 16π2

3

1 + Zeff

137

Lr2
0nenREc

3

ω3
p

(
2 ln

p

mec
− ln

~ωp
2mec2

)

≈ 4.6(1 + Zeff)
LnRE,20√

n20

(
21.7 + 2 ln

p

mec

)
, (3.10)

where L is in meters and densities are in units of 1020 m−3. As an
upper limit for reasonable values of this quantity in laboratory plasmas,
we take a post-disruption runaway scenario with Zeff = 15, L = 10 m,
nRE = 10−3ne and ne = 50 ·1020 m−3, with p = 200mec. Eq. (3.10) then
takes the value 170, which means that there are many photons per Planck
unit of phase-space volume, and absorption and stimulated emission
can thus be expected to have a significant effect on those photons with
the lowest energy. Note, however, that due to the 1/k3 sensitivity to
photon energy in Eq. (3.9), less than an order of magnitude above ~ωp
the photon distribution will again be negligible. If we were to instead
cut the integration off at the photon energy where h3φ is small, ln ΛB

would typically change by less than 10%, because of the weak logarithmic
sensitivity to kc in the bremsstrahlung logarithm.
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In a more realistic scenario, one could have L ∼ 1 m, ne ∼ 1020 m−3,
nRE ∼ 10−4ne and p ∼ 50mec, giving h3φ/2 ∼ 0.2. Then absorption
and stimulated-emission effects become important close to the plasma
frequency, making ωp again a suitable cut-off point when these effects
are accounted for.

In conclusion, it appears that in laboratory plasmas the lower limit
kc in photon energy is well described by considering only the screening
effect of scattering in a dielectric medium, where the plasma frequency
effectively cuts off the bremsstrahlung reaction rate. The QED effect
of (soft) many-photon emissions typically becomes important at higher
electron energies, or significantly lower plasma densities, while stimu-
lated emission and absorption processes become important for larger
systems, or higher runaway densities. Therefore the bremsstrahlung dif-
ferential cross-section can be cut off near the plasma frequency, which
introduces the bremsstrahlung logarithm ln ΛB from Eq. (3.6). This
factor enhances the contribution to pitch-angle deflection from photons
which carry energies much smaller than the electron energy.





Chapter 4

Ion runaway

In this chapter we will describe ion runaway, which is a process related
to electron runaway. This will provide an introduction to the theory
underlying the work presented in paper D, which numerically treats the
ion kinetic equation to determine the conditions for ion runaway. For
this purpose, the tool CODE for electron-runaway studies was extended
to solve the ion kinetic equation, resulting in the new open-source code
CODION (COllisional Distributions of IONs [89, 90]).

Ion runaway is a phenomenon similar to electron runaway in many
ways. The initial runaway-generation mechanism is the same – a suf-
ficiently strong electric field can overcome the collisional friction force
of the thermal bulk and accelerate a subpopulation of ions to high en-
ergy. However, there are a few key differences between ion runaway and
electron runaway:

1. The ions are not the lightest particle species in the plasma; the
ion-electron collisions are qualitatively different to the electron-ion
collisions.

2. The collisional friction force on a runaway ion is strongly non-
monotonic, with the consequence that, unless the electric field is
comparable to the Dreicer field, the kinetic energy of runaway ions
is bounded from above because of electron friction

3. A non-relativistic treatment is sufficient, and radiation losses are
negligible.

The kinetic description of runaway ions can be constructed in the fol-
lowing way. The particle species in a homogeneous plasma each satisfy
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a kinetic equation.

∂fa
∂t

+
qa
ma

E‖
∂fa
∂v‖

=
∑

b

Cab{fa, fb}, (4.1)

where the sum on the right-hand side is taken over all particle species b in
the plasma. We will consider only that ion species which is accelerated
at the highest rate, in order to be able to assume that the other ion
species remain near equilibrium (i.e. that they are well described by a
Maxwellian distribution function). However, this cannot be assumed
for self-collisions of this species, nor for ion-electron collisions. Instead
the self-collision operator can be linearized by writing Caa{fa, fa} ≈
Caa{fa, fMa}+ Caa{fMa, fa} where fMa is the Maxwellian distribution
for particle species a with density na and temperature Ta, we obtain the
kinetic equation

∂fa
∂t

+
qa
ma

E‖
∂fa
∂v‖

=Caa{fMa, fa}+ Cae{fa, fe − fMe}

+
∑

b

Cab{fa, fMb}.

As argued in Ref. [57], the perturbed electron distribution fe−fMe varies
over velocities much greater than the ion velocity, and therefore yields
a collision operator that describes a uniform friction force. For an ion
species i, the ion-electron collision operator is

Cie{fi, fe − fMe} = − Rie

mini
· ∂fi
∂v

,

where Rie =
´

dvmivCie is the mean ion-electron friction force. This
assumes that fMe is chosen as a Maxwellian in the rest frame of the ions,
otherwise the operator Cae{fa, fMe} will contribute additional friction
that would need to be accounted for in the above term. Due to the
conservation of momentum in collisions, the ion-electron friction force is
related to the electron-ion friction by Rie = −Rei, and Rei can readily
be calculated from the electron kinetic equation.

Taking the momentum moment
´

dvmev . . . of the electron kinetic
equation yields the force-balance equation

∂(nemeVe)

∂t
= −neeE +

∑

j

Rej , (4.2)
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where the sum is taken over all ion species j (the electron-electron con-
tribution vanishing due to momentum conservation in collisions). Due
to the large mass ratio mj/me, the ions are generally much slower than
the electrons. As a consequence, the dependence on ion species in the
electron-ion friction is to leading order entirely captured in the collision
frequency νej ∝ njZ2

j , yielding

∑

j

Rej = Rei

∑

j

njZ
2
j

niZ2
i

=
neZeff

niZ2
i

Rei.

The electrons equilibrate with the electric field on a time scale much
shorter than that of the ion runaway process, due to their lower mass.
Therefore, unless significant electron-runaway generation occurs which
effectively acts as a momentum sink, the time-derivative can be neglected
in the force-balance equation (4.2), yielding

Rie = −Rei = − Zi
Zeff

niqiE.

In the ion kinetic equation this readily allows the ion-electron collision
operator to be combined with the electric-field term. Equation (4.1) can
then be written

∂fi
∂t

+
qi
mi
E∗

∂fi
∂v‖

= Cii{fMi, fi}+
∑

b

Cib{fi, fMb},

E∗ =

(
1− Zi

Zeff

)
E‖,

and describes a population being accelerated by the effective electric
field E∗, and only experiencing collisions with Maxwellian background
species (and the field-particle contribution from self-collisions in order
to ensure the conservation of momentum and energy in such collisions).
The effective electric field thus arises due to friction between ions and
the electrons drifting in the electric field.

In a pure plasma, Zi = Zeff, and complete cancellation occurs be-
tween electric field and electron friction; no ion runaway is possible in
this case. Only in impure plasmas does a finite effective electric field re-
main, and indeed, for an ion species with Zi � Zeff the effective electric
field can exceed the original electric field in magnitude, and is anti-
parallel to the electric field. In this scenario, runaway occurs due to
acceleration by electron friction rather than by the electric field.
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As we consider the initial-value problem starting from a thermal equi-
librium, we will typically work in the initial rest frame. As the runaway-
ion population builds up, the total friction against the Maxwellian elec-
trons may end up being comparable to the friction−(Zi/Zeff)ZieE against
the drifting electrons, at which point the model is no longer valid. This,
together with the use of a linearized self-collision operator, puts an upper
boundary on the ion runaway densities we may consider.

4.1 Ion friction-force estimates

Valuable physical insight into the ion runaway process can be obtained
by considering the friction force acting on a test-ion moving through
the plasma. Formally, the test-particle equations of motion can be ob-
tained by considering velocity moments of the kinetic equation for a
delta distribution fa = δ(v − u(t)) representing the test particle [91].
This method was pursued in Refs. [24, 26] where ion runaway in solar
flares was considered, and later expanded upon in paper D to consider
general plasma compositions. The momentum moment of the ion kinetic
equation yields the test-particle equation of motion

∂(miv)

∂t
= ZieE

∗ξ − mivT i
τie


Zeff + n̄

v2/v2
T i

+
4

3
√
π

√
meT 3

i

miT 3
e

v

vT i


 ,

where we use the pitch-angle cosine ξ = v‖/v, the ion-electron collision

frequency τ−1
ie = ne ln ΛZ2

i e
4/(4πε20m

2
i v

3
T i), and introduced the quan-

tity n̄ =
∑

j njZ
2
jmj/(nemi). Here explicit expressions for the collision

operator with a Maxwellian background species [91] have been used, un-
der the assumption that the velocities satisfy vTj � v � vTe for all
ion species j. The term containing the parentheses represents collisional
friction, in which the first term expresses ion-ion friction which decreases
with velocity and dominates for low velocities, whereas the second term
describing ion-electron friction increases with velocity and dominates at
high velocities.

The solutions ∂(miv)/∂t = 0 represent those velocities where electric-
field acceleration exactly balances collisional friction. For electric fields

E∗ > E∗min = 2
mivT i
Zieτie

Ti
Te

(
3

2π

me

mi
(Zeff + n̄)

)1/3

,
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two solutions vc1 and vc2 exist which describe the runaway velocity above
which an ion is accelerated by the electric field, and the maximum ve-
locity before electron friction overcomes the electric field, respectively.
Therefore, ions with velocity vc1 < v < vc2 will be accelerated, before
accumulating at vc2.

However, it should be noted that the above test-particle equation of
motion is not unique. By considering the energy moment

´
dv (miv

2/2) . . .
of the ion kinetic equation, one instead obtains

∂(miv)

∂t
= ZieE

∗ξ − mivT i
τie


n̄v

2
T i

v2
+

4

3
√
π

√
meT 3

i

miT 3
e

(
v

vT i
− 3Te

Ti

vT i
v

)
 .

If we assume that (v/vT i)
2 � 3Te/Ti, this reduces to the momentum-

moment equation (4.2) with the simple exchange n̄ 7→ Zeff + n̄. This
equation may provide more accurate estimates of the critical veloci-
ties; using the same procedure to estimate the electron runaway velocity
shows that the energy-balance equation yields the well-known formula
vc/vTe =

√
ED/2E, while the momentum-balance equation incorrectly

gives a result which is larger by a factor
√

2. The discrepancy may be un-
derstood by the fact that pitch-angle scattering contributes to friction in
the momentum-balance equation, but not in the energy-balance equation
as it is an energy-conserving effect. The angular deflection will not stop a
particle from running away (except sometimes indirectly), and hence the
energy-balance equation provides a better estimate. The substitution
(Zeff + n̄) 7→ n̄ may thus improve the results given in Refs. [24, 26] and
paper D, although these estimates should perhaps primarily be viewed
as a guide to interpret solutions of the kinetic equation, and to make
qualitative predictions regarding the features of the ion runaway distri-
bution.

Note finally the limits to the validity of the model described here.
The linearization of the self-collision operator requires small runaway
densities, corresponding to short times or electric fields E∗ ∼ E∗min.
Extending far above E∗min requires the use of a non-linear self-collision
operator. At the same time, the electric field must be sufficiently weak
to avoid significant runaway-electron generation which would affect E∗,
therefore requiring E . 0.1ED.





Chapter 5

Conclusions and outlook

Conclusions

Runaway is an important phenomenon, which occurs in both terrestrial
and space plasmas. It is of particular interest in magnetic-fusion research
where runaway electrons can strike the wall of the reactor after being
accelerated to highly relativistic energies, at which point they can cause
severe damage to plasma-facing components. Runaway is also of interest
in space and astrophysical applications, where they may be responsible
for observed gamma-ray emissions.

In this thesis, we have described a kinetic model of runaway in plas-
mas, accounting for acceleration by an electric field, elastic Coulomb
collisions and dissipation by radiation. We have discussed how a com-
bination of a Boltzmann collision operator and Fokker-Planck operator
is needed in order to describe both the large-angle collisions which lead
to runaway avalanches, as well as the small-angle collisions that other-
wise dominate the collisional dynamics. The framework described here
is applicable to model the runaway dynamics of both electrons and ions.

An existing numerical tool which solves the electron kinetic equation
in a homogeneous plasma, CODE (COllisional Distribution of Elec-
trons) [66], has been extended to include a range of new effects. The
radiation reaction force due to synchrotron emission in a magnetized
plasma was described in chapter 2 within the framework of the electro-
magnetic Abraham-Lorentz-Dirac force, and its effect on the dynamics
of runaway electrons was considered in paper C. It is shown that the syn-
chrotron reaction force has a tendency to form a non-monotonic “bump”
in the runaway distribution, which effectively also limits the maximum
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energy of the electrons. A condition on plasma parameters for when such
bumps can form – and at what energy – was derived, which is of impor-
tance in magnetic-fusion research as such features have the potential to
destabilize the runaway beam.

In paper B the runaway dynamics was considered in plasmas where
temperatures are rapidly varying in time. This causes hot-tail runaway
generation to occur, and by generalizing previous studies to also ac-
count for relativistic corrections and the effect of an electric field, it
was demonstrated that CODE is well-suited to study this phenomenon.
In the same paper, a comparison was also performed between different
knock-on collision operators that have been used in the literature. It was
demonstrated that, while the more accurate model of Chiu et al. [67] re-
duces to the simpler Rosenbluth-Putvinski model [8] when the runaway
energies are large, at lower energies the avalanche growth rates differ
significantly. At low electric fields (E ∼ Ec) the former model yielded
runaway growth rates as small as an order of magnitude lower than the
simpler model, while at high electric field (E � Ec) more than twice as
large runaway rates were observed.

In chapter 3 the effect of bremsstrahlung emission was treated as a
binary collision using the Boltzmann collision operator, which is neces-
sary since the emitted photons often have energies comparable to the
electron energy. The bremsstrahlung collision operator is explored in
careful detail, as bremsstrahlung losses have previously only been ac-
counted for in plasmas using approximate methods, where either photon
energies or electron directions have been neglected. Accounting for both
of these effects causes qualitatively new behavior of the electrons, such
as enhanced pitch-angle scattering caused by the emission of low-energy
photons.

In paper A the effect of bremsstrahlung is investigated with a nu-
merical study of the kinetic equation, using CODE in which the brems-
strahlung collision operator has been implemented. It is revealed that
broad runaway-electron energy distributions form, unlike in previous
studies where all runaways accumulate at a well-defined energy where
energy loss due to bremsstrahlung equals the gain from the electric field.
In the new, more accurate model, a significant fraction of electrons are
consistently found to be more than twice as energetic as predicted in the
previous approximate models.

A sister code to CODE has been developed which solves the ki-
netic equation for runaway ions, using similar numerical methods. The
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new tool, CODION (COllisional Distribution of IONs) [90], includes
the physics described in chapter 4 and is utilized in paper D to study
runaway acceleration of ions, and under what conditions it occurs. The
ion-runaway growth rate is investigated for various plasma compositions
and electric fields for a solar-flare like scenario. It is also demonstrated
that significant ion acceleration by the runaway mechanism alone is un-
likely to occur during tokamak disruptions due to the large electric fields
and long acceleration times required.

Papers A-D utilize a linearized equation, which limits the investi-
gations to those scenarios where the electrons are sufficiently close to
equilibrium. In order to study scenarios with large electric fields, or
with rapidly time-varying plasma parameters, non-linear methods are
required. In paper E, a novel method of numerically solving the non-
linear Landau-Fokker-Planck equation is presented. By expressing the
distribution function approximately as a finite sum of (non-orthogonal)
Gaussian basis functions fn(p) = cn exp

[
−(v − vn)2/2mTn)

]
, the non-

linear Fokker-Planck equation can be represented as a quadratic alge-
braic equation where the coefficients take the form of simple, analyti-
cally known functions. The conservation properties of density, momen-
tum and energy of the numerical scheme is investigated, as well as the
relaxation of an initial multi-peaked distribution into the Maxwellian
equilibrium distribution.

Outlook

The Boltzmann transport equation has rarely been considered in the
context of runaway modelling with continuum kinetic models (unlike
Monte Carlo particle-following codes, where the corresponding processes
are more naturally accounted for). We have presented a procedure to
simplify the equation in the case of a cylindrically symmetric plasma
near equilibrium, enabling accurate modelling of collisional processes
with large momentum transfers in a computationally efficient way.

In the future this framework can be applied to investigate other run-
away phenomena, which are not yet fully understood. For example, the
models which have previously been used to consider knock-on collisions
suffer from certain defects:

• The knock-on model by Rosenbluth and Putvinski [8] shows un-
physical behavior, such as the creation of an infinite amount of
momentum and energy per second in the plasma.
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• The improved model by Chiu et al. [67], which was also used in
paper B, resolves this issue but still breaks momentum and energy
conservation by only following the target particle – the effect of
the knock-on collisions on the incoming fast electron is ignored.

• The pitch-angle distribution of the runaway distribution is ignored
in both models, and it is instead assumed that all electrons move
purely in the parallel direction.

The Boltzmann operator described here is the necessary tool to develop
a self-consistent and complete model for avalanche generation which suf-
fers from none of these problems.

The impact on runaway-electron dynamics of partially ionized atoms
in the plasma is another phenomenon which can be investigated using
this framework. The screening effect of the bound electrons is analogous
to the description in Section 3.1, which indicates that for momentum
transfers greater than q ∼ ~/a0 the bound electrons may be ignored,
and a runaway electron will feel the full charge of the nucleus. In a
collision this implies that in such plasmas, large-angle electron-ion col-
lisions will be enhanced relative to the small-angle collisions, hence a
Boltzmann approach such as Eq. (2.9) is required in future studies in
order to describe this effect accurately.

We thus see that there are several phenomena of importance to run-
away where the methods developed in this work can be used to further
improve current understanding.
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[14] H. M. Smith, T. Fehér, T. Fülöp, K. Gál and E. Verwichte. Runaway
electron generation in tokamak disruptions. Plasma Phys. Control.
Fusion 51, 12 (2009).

[15] JET, EUROfusion. https://www.euro-fusion.org/jet/

[16] ITER organization. http://www.iter.org/

[17] E. M. Hollmann et al. Status of research toward the ITER disruption
mitigation system. Phys. Plasmas 22, 021802 (2015).

[18] A. H. Boozer. Theory of runaway electrons in ITER: Equations, im-
portant parameters, and implications for mitigation. Phys. Plasmas
22, 032504 (2015).

[19] M. Lehnen et al. Impact and mitigation of disruptions with the
ITER-like wall in JET. Nucl. Fusion 53, 093007 (2013).

[20] P. Helander, L-G. Eriksson and F. Andersson. Runaway acceleration
during magnetic reconnection in tokamaks. Plasma Phys. Control.
Fusion 44, 12B (2002).

[21] A. Gibson. Possibility of ion runaway in Zeta. Nature 183, 4654
(1959).

[22] H. P. Furth and P. H. Rutherford. Ion runaway in tokamak dis-
charges. Phys. Rev. Lett. 28, 545 (1972).

[23] P. Helander, L.-G. Eriksson, R. J. Akers, C. Byrom, C. G. Gim-
blett and M. R. Tournianski. Ion acceleration during reconnection
in MAST. Phys. Rev. Lett. 89, 235002 (2002).

https://www.euro-fusion.org/jet/
http://www.iter.org/


51/56 BIBLIOGRAPHY
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