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Abstract—The state of polarization and the carrier phase
drift dynamically during transmission in a random fashion in
coherent optical fiber communications. The typical digital signal
processing solution to mitigate these impairments consists of two
separate blocks that track each phenomenon independently. Such
algorithms have been developed without taking into account
mathematical models describing the impairments. We study a
blind, model-based tracking algorithm to compensate for these
impairments. The algorithm dynamically recovers the carrier
phase and state of polarization jointly for an arbitrary modu-
lation format. Simulation results show the effectiveness of the
proposed algorithm, having a fast convergence rate and an
excellent tolerance to phase noise and dynamic drift of the
polarization at low complexity, which make the algorithm a
strong candidate for future optical systems.

Index Terms—Coherent optical fiber communication, model-
based, phase noise, phase recovery, polarization demultiplexing,
polarization drift, polarization recovery.

I. INTRODUCTION

D IGITAL signal processing (DSP) enables spectrally effi-
cient communications based on coherent transmission.

Contrary to traditional optical transmission links that are
based on intensity-modulation and direct-detection, coherent
transmissions carry the information in both the intensity and
phase of the optical field, in both polarizations, and benefit
from improved sensitivities, higher-order modulation formats,
and digital impairment mitigation. Polarization-multiplexed
quadrature phase-shift keying (PM-QPSK) introduced for 100
Gb/s transmission has been widely deployed and reached ma-
turity. Recently, 200 Gb/s transceivers have been made com-
mercially available based on 16-ary polarization-multiplexed
quadrature amplitude modulation (PM-16-QAM) and it is
expected that in the near future, higher-order PM-M -QAM
modulation formats will become a necessity for higher data
rates. However, the improved spectral efficiency comes at the
cost of a reduced tolerance to impairments such as laser phase
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noise and drift of the state of polarization (SOP), which have
to be dynamically tracked in the receiver [1], [2].

The phase and SOP tracking are important DSP blocks at
the receiver and are different from the chromatic dispersion
compensation, which can be set once and then forgotten due
to its static behavior. The SOP drift has its origin in the
imperfections of the manufacturing process of the fiber cables,
mechanical/thermal stress on the deployed fibers, splices, etc.
Due to these random variations, the SOP changes dynamically
in time and along the fiber, which makes it difficult to fully
compensate for. The phase noise originates from the finite
coherence length of the transmitter and receiver lasers and
it drifts in time as a Wiener random walk. Despite the fact
that the SOP drift and the phase noise arise due to different
hardware imperfections, they can be modeled jointly as dy-
namic rotations of the optical field [3]. A deterministic or static
behavior of these phenomena would be straightforward to
resolve, but when the impairments drift randomly, the receiver
must adjust dynamically to track the phenomena.

The common DSP solution for SOP tracking is done in the
Jones space using the constant modulus algorithm (CMA) [2],
initially developed for two-dimensional modulation formats
[4], or modified versions of it to accommodate for various
modulation formats, such as the multiple modulus algorithm
(MMA) [5], [6] or the polarization-switched (PS-)CMA [7].
Alternatively, the polarization demultiplexing can be done in
the Stokes space [8], [9], which in addition also aligns the
phase of the two polarizations, thus improving the phase
tracking by enabling joint phase estimation over the two
polarizations. In general, the phase tracking is performed
independently of the SOP tracking, using algorithms such
as the Viterbi–Viterbi algorithm [10] or the blind phase-
search algorithm (BPS) [11], which treat each polarization
independently.

Recently, Louchet et al. proposed the Kabsch algorithm
[12], which addresses the two impairments jointly in both
polarizations in the real four-dimensional (4D) space and
accommodates any modulation format. In general, joint es-
timation leads to better performance, and it is expected that
future transceivers will benefit from improved performance
from such integrations of different DSP blocks [13].

However, very few algorithms present in the literature take
into consideration analytical models describing the behavior
of the impairments. Model-based algorithms have a restricted
flexibility and therefore fewer degrees of freedom (DOFs) to
adjust. The DOFs of model-based algorithms are restricted
to only the ones covered by the impairment to compensate
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for, thus resulting in a more efficient impairment cancellation,
rather than scanning over a larger domain in order to find the
optimal setup.

In this paper, we propose a model-based algorithm to jointly
recover the carrier phase and SOP for arbitrary modulation
formats. The design of the algorithm is based on a channel
model (described in Section II) that can emulate temporal
stochastic polarization and phase drifts, and has been suc-
cessfully validated with data measured on installed fibers
[3]. The algorithm (described in Section III) uses a non-
data aided decision-directed architecture, hence zero overhead,
and operates jointly on both polarizations. The performance
of the algorithm is investigated in Section IV by comparing
it with state-of-the-art algorithms for different modulation
formats, whereas the complexity is evaluated in Section V.
The proposed algorithm performs similarly or better than state-
of-the-art algorithms and provides a good trade-off between
complexity and performance regardless of the modulation
format. High performance and fast convergence rate at low
complexity, for any modulation format, make the algorithm
a strong candidate for future elastic optical systems, where
the modulation format can be changed dynamically during
transmission to accommodate for various channel and network
conditions.

The following notation conventions are used throughout the
paper: column vectors are denoted by bold lower case (e.g.,
u) and matrices by bold upper case (e.g., U), except a few
specific cases, for literature consistency reasons, denoted by
small Greek letters such as the Pauli matrices σσσi, the 4D basis
matrices ρρρi, λλλi, and the electric field Jones vector E. Trans-
position is written as uT, conjugation as u∗, and conjugate
transpose as uH. The n×n identity matrix is written as In and
the expectation operator as E[·]. The dot operation ααα ·σ⃗σσ should
be interpreted as a linear combination of the three matrices
forming the tensor σ⃗σσ = (σσσ1,σσσ2,σσσ3). Multiplication of a
matrix with the tensor σ⃗σσ result in a tensor with element-wise
multiplications, e.g., Uσ⃗σσ = (Uσσσ1,Uσσσ2,Uσσσ3). The absolute
value is denoted by |·| and the Euclidean norm by ∥·∥.

II. DISCRETE-TIME CHANNEL MODEL

The coherent optical signal has two quadratures in two
polarizations and can be described by a Jones vector

E(z, t) =

(

Ex(z, t)
Ey(z, t)

)

, (1)

at propagation distance z and time t, where Ex (Ey) is the x-
polarized (y-polarized) electric field, represented as a complex
baseband signal. The linearly modulated transmitted electric
field into the transmission medium is

E(0, t) =
∑

k

ukp(t− kT ), (2)

where uk ∈ C2 are the information symbols for k ∈ Z, T
is the symbol (baud) interval, and p(t) is a real-valued pulse
shape.

The received discrete symbols, at distance L, are obtained
from the received electric field E(L, t) after matched filtering
and sampling

rk =

∫ ∞

−∞

E(L, t)p∗(t− kT )dt. (3)

The discrete transmitted symbols uk are drawn indepen-
dently from a finite constellation C = {c1, c2, ..., cM} with
equal probability. The average energy per symbol is the
average of ∥uk∥2 and in this case equals

Es =
1

M

M
∑

k=1

∥ck∥2. (4)

Assuming that the chromatic dispersion has been success-
fully compensated for and polarization-dependent losses and
polarization mode dispersion are negligible, the propagation of
the optical field can be described by a unitary 2× 2 complex-
valued Jones matrix Jk [14, p. 18]. The received symbol
rk ∈ C2, in the presence of optical amplifier noise, SOP drift,
and laser phase noise, can be related to the input uk as

rk = e−iφkJkuk + nk, (5)

where i =
√
−1, φk models the carrier phase noise, and

nk ∈ C2 denotes the additive noise, which is represented
by two independent complex circular zero-mean Gaussian
random variables with variance N0/2 per real dimension, i.e.,
E[nkn

H
k ] = N0I2 [15].

The phase noise is modeled as a Wiener process [11], [16]

φk+1 =
•

φk + φk, (6)

where
•

φk is the innovation of the phase noise. The innovation
•

φk is a random variable drawn independently at each time
instance k from a zero-mean Gaussian distribution

•

φk ∼ N (0,σ2
ν), (7)

where the variance σ2
ν = 2π∆νT , ∆ν is the sum of the

linewidths of the transmitter and receiver lasers. The initial
phase φ0 is modeled as a random variable uniformly dis-
tributed in the interval [0, 2π).

The time evolution of the SOP drift can be emulated by
modeling Jk as a sequence of random Jones matrices [3]

Jk+1 = J(
•

αααk)Jk, (8)

where J(
•

αααk) is the SOP innovation matrix (cf.
•

φk in (6)). The
matrix function J(ααα) is defined using the matrix exponential

[17, p. 165] parameterized by three DOFs ααα [18] as

J(ααα) = exp(−iααα · σ⃗σσ), (9)

where ααα = (α1,α2,α3) is a three-component real vector and
σ⃗σσ = (σσσ1,σσσ2,σσσ3) is a tensor of the Pauli spin matrices [14,
eq. (2.5.19)]

σσσ1 =

(

1 0
0 −1

)

, σσσ2 =

(

0 1
1 0

)

, σσσ3 =

(

0 −i
i 0

)

. (10)

The vector ααα can be expressed as a product ααα = θa of its
length θ = ∥ααα∥ and the unit vector a = (a1, a2, a3), which
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Figure 1. Receiver block diagram with elementary DSP modules.

represents its direction on the unit sphere. Based on this
decomposition of ααα, (9) can be rewritten into an explicit form

J(ααα) = I2 cos θ − ia · σ⃗σσ sin θ. (11)

Since the transformation J(ααα) is unitary, the inverse can
be found by the conjugate transpose operation or negating the
argument, J(ααα)−1 = J(ααα)H = J(−ααα).

The random nature of the SOP drift is emulated by drawing
the three innovation parameters

•

αααk of the innovation J(
•

αααk)
independently from a zero-mean real Gaussian distribution at
each time instance k

•

αααk ∼ N (0,σ2
p I3), (12)

where σ2
p = 2π∆p T and ∆p is referred as the polarization

linewidth, which quantifies the speed of the SOP drift, analo-
gously to the linewidth describing the phase noise, cf. (7).

The initial state of the channel J0 = J(ααα0) is formed
from the vector ααα0 = θa, which is identified from the
unit vector (cos θ, a1 sin θ, a2 sin θ, a3 sin θ)T = g/∥g∥ where
g ∼ N (0, I4). This ensures that J0u is uniformly distributed
over all possible SOP for a fixed u [3], [19].

The phase noise and the SOP drift can be combined into a
single operation Hk = e−iφkJk and (5) can be rewritten as

rk = Hkuk + nk. (13)

The update of Hk can be expressed analogously to (8) as

Hk+1 = H(
•

φk,
•

αααk)Hk, (14)

where the phase innovation
•

φk and the random vector
•

αααk

are defined as (7) and (12), respectively. The matrix function
H(φ,ααα) can be expressed as

H(φ,ααα) = e−iφJ(ααα) = exp(−i(ααα · σ⃗σσ + φI2)) (15)

= (cosφ− i sinφ)(I2 cos θ − ia · σ⃗σσ sin θ), (16)

which combines the effects of both phase noise and SOP drift.

III. POLARIZATION AND PHASE TRACKING ALGORITHM

In order to successfully decode the data at the receiver,
the channel matrix Hk (or, equivalently, φk and Jk) needs
to be estimated and tracked during transmission such that
it is possible to accurately estimate uk from the received
sample rk. This section provides a description of the proposed
algorithm to estimate Hk, first using the Jones formalism,
thereafter alternatives using the Stokes and real 4D formalisms
are given.

The Jones description can be replaced by the Stokes or real
4D descriptions, which can provide benefits in some situa-
tions [3]. The analytics describing wave propagation based

on the Jones formalism rely on complex two-dimensional
vectors and matrices that have four DOFs. This description
is sufficient for wave propagation since it can cover any linear
phenomenon that can arise during photon propagation. The
Stokes description is preferred in some situations since the
Stokes vectors are observable quantities and can be visualized
as points on a three-dimensional sphere, called the Poincaré
sphere. In this case, the channel matrix Jk is replaced by a
3× 3 Mueller matrix Mk with three DOFs that models only
the changes of the SOP. The Stokes description cannot model
absolute phase shifts, therefore it is immune to phase noise.
The real 4D formalism models the channel behavior using
4 × 4 real rotation matrices that have six DOFs, which span
over a richer space than the Jones (four DOFs) or Mueller
(three DOFs) matrices can. However, only four of them are
physically realizable for propagating photons and the other
two can be synthesized using DSP [20].

In the remainder of this section, we will provide the
derivation of the proposed tracking algorithm using the Jones
description, after which the equivalent algorithms using the
Stokes and the real 4D descriptions are given. The details of
the channel model descriptions using the Stokes and real 4D
descriptions are omitted and can be found in [3].

A. Jones Description

The considered DSP setup is shown in Fig. 1, where
we combine the SOP drift and carrier phase tracking, i.e.,
estimation of Hk, into a single block after the frequency
offset compensation, which can be done in this case using
spectrum-based methods [21], [22]. Considering that Hk does
not change significantly over a symbol duration, we estimate
the transmitted symbol from Ĥ−1

k rk based on a previously

calculated estimate of the channel matrix Ĥk using the mini-
mum Euclidean distance criterion

ûk = argmin
c∈C

∥

∥

∥
Ĥ−1

k rk − c
∥

∥

∥

2
. (17)

Thereafter Ĥk is updated as

Ĥk+1 = H(φ̂k, α̂ααk)Ĥk, (18)

where φ̂k and α̂ααk are estimates of
•

φk and
•

αααk. These estimates
are calculated such that the error function

ek =

∥

∥

∥

∥

(

H(φ,ααα)Ĥk

)−1
rk − ûk

∥

∥

∥

∥

2

, (19)

is minimized with respect to φ and ααα, i.e.,

[φ̂k, α̂ααk] = argmin
φ,ααα

ek. (20)
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This can be achieved by computing φ̂k and α̂ααk using the
gradient descent method [23, p. 466]

φ̂k = −µφRe

(

∂ek
∂φ

∣

∣

∣

∣

φ=0
ααα=[0,0,0]T

)

(21)

= −2µφRe

(

i(Ĥ−1
k rk − ûk)

HĤ−1
k rk

)

, (22)

α̂ααk = −µαααRe

(

∇αααek

∣

∣

∣

∣

φ=0
ααα=[0,0,0]T

)

(23)

= −2µαααRe

(

i(Ĥ−1
k rk − ûk)

HĤ−1
k σ⃗σσrk

)

, (24)

where µφ and µααα are positive tracking step sizes of the phase
and of the SOP parameters, respectively, which determine the
speed of the algorithm’s convergence, the tracking accuracy,
and the rate at which changes in the channel can be tracked.
The derivations of (22) and (24) can be found in the Appendix.
Both innovation parameters

•

φk and
•

αααk have zero mean by
(7) and (12); therefore the partial derivatives in (21) and (23)
are evaluated at φ = 0, ααα = [0, 0, 0]T, which results in no
preferred direction of φ̂k and α̂ααk. Evaluating the gradient at
non-zero values could compensate for constant offsets; e.g.,
using φ ̸= 0 could compensate for frequency offsets.

It is important to note that H(φ,ααα) is a many-to-one
function. Therefore φ̂k and α̂ααk are not necessarily equal to

•

φk,
•

αααk and can have different values, but resulting in same
matrix H(φ,ααα).

Since the typical drift time of the SOP is slower (∼ 1 ms
or larger) [3], [24], [25] than the drift of the phase noise (∼
1 µs) [11], we chose the tracking steps µφ, µααα of the two
phenomena differently. For the same reasons, the update of the
SOP estimate α̂ααk can be done less often than the update of the
absolute phase estimate φ̂k , which will result in a decreased
DSP complexity. In this case, φ̂k can be calculated using (22)
at every time instance k and α̂ααk using (24) only at every P
symbols, otherwise should be set to [0, 0, 0]T.

Fig. 2 shows an example of the algorithm’s tracking capa-
bility, where we compare the sum of the innovations

•

φk,
•

αααk

with their estimates φ̂k, α̂ααk obtained using the proposed al-
gorithm. Even though, as mentioned above, φ̂k, α̂ααk do not
have to follow

•

φk,
•

αααk to obtain a good estimate of the
channel matrix Hk, the algorithm manages to obtain similar
parameters efficiently without exhibiting cycle slips over the
105 simulated symbols. Perhaps different values of φ̂k, α̂ααk may
be obtained if the initial values φ̂0, α̂αα0 are not set to be the
same as φ0,ααα0. Note that the plotted parameters are just for
demonstration purposes and do not reflect the behavior of
Hk or Ĥk, since Hk ̸= H(Σ

k

•

φk,Σ
k

•

αααk) because in general

H(φ1 + φ2,ααα1 +ααα2) ̸= H(φ1,ααα1)H(φ2,ααα2).
In a prestudy for this work [26], we investigated a similar

algorithm that tracks both the carrier phase and the SOP
jointly. That algorithm was based on the assumption that α1,
α2, and α3 corresponding to Jk drift as independent Wiener
processes, in analogy with φ. While intuitively reasonable,
this assumption turned out on closer investigation to be phys-
ically incorrect, and the algorithm in [26] is therefore not in
its original form suitable for implementation in fiber-optical
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Figure 2. Tracked channel parameters using the proposed algorithm with
Es/N0 = 21.28 dB, ∆ν = 1 MHz, and ∆p = 1 kHz at 28 Gbaud PM-
16-QAM are shown. As can be seen, the algorithm has excellent tracking
capabilities without exhibiting cycle slips.

transmission systems. In contrast, the work in this paper is
derived from a physically more accurate SOP drift model,
which is based on matrix multiplication (8) and was proposed
and validated in [3].

B. Stokes Description

In this case, the propagation of the electric field can be
modeled as [3]

srk = Mksuk + snk , (25)

where suk = uH
k σ⃗σσuk and srk = rHk σ⃗σσrk are the corresponding

Stokes vectors of uk and rk [14, eq. (2.5.26)]. The noise
term is snk = (Hkuk)Hσ⃗σσnk + nH

k σ⃗σσHkuk + nH
k σ⃗σσnk and

can be identified by equating terms after substituting (13) in
srk = rHk σ⃗σσrk. As can be noted, snk is signal dependent and
(31) is not an additive noise model, opposed to (13). The
channel matrix Mk modeling the evolution of the SOP can
be expressed using a 3× 3 Mueller matrix defined as [18]

M(ααα) = exp(2K(ααα)), (26)

where K(ααα) denotes the cross-product operator [20, eq. (11)]

K(ααα) =

⎛

⎝

0 −ααα3 ααα2

ααα3 0 −ααα1

−ααα2 ααα1 0

⎞

⎠ . (27)

The inverse can be obtained as M(ααα)−1 = M(ααα)T =
M(−ααα). The polarization transformations introduced by Mk

can be seen as rotations of the Poincaré sphere around the unit
vector a by an angle 2θ.
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Analogously to the Jones description, the algorithm decides
first which was the transmitted Stokes vector based on the
minimum Euclidean distance criterion

ŝuk = argmin
c∈C

∥

∥

∥
M̂−1

k srk − sc

∥

∥

∥

2
, (28)

using the inverted estimate of Mk, where1 sc = cHσ⃗σσc.
Thereafter, M̂k is updated analogously to (18) as

M̂k+1 = M(α̂ααk)M̂k. (29)

Analogously with (20)–(24), it can be shown that the optimal
α̂ααk = [α̂k,1, α̂k,2, α̂k,3]T are computed as

α̂k,i = 4µααα(M̂
−1
k srk − ŝuk)

TM̂−1
k K(ei)srk (30)

for i = 1, 2, 3, using the gradient descent algorithm such that
the Euclidean distance in the Stokes space is minimized. The
vectors ei form the standard basis in R3.

Note that the error function that minimizes the Euclidean
distance is not optimum in this case since snk includes not
only noise, but signal–noise interaction. Furthermore, the noise
term nH

k σ⃗σσnk is non-Gaussian. Better metrics [8] that take into
account the non-Gaussian distribution of the noise can be used,
but it is outside the scope of this work.

C. 4D Real Description

In the 4D formalism, the phase and SOP drifts are combined
and modeled using a 4 × 4 real orthogonal matrix Rk [20],
[27], [28] as

vrk = Rkvuk + vnk , (31)

where vz for any z = [z1, z2]T ∈ C2 is defined as
[Re(z1), Im(z1),Re(z2), Im(z2)]T. The channel matrix Rk can
be expressed using the matrix function [20]

R(φ,ααα) = exp((φ, 0, 0) · λ⃗λλ−ααα · ρ⃗ρρ), (32)

where ρ⃗ρρ = (ρρρ1,ρρρ2,ρρρ3) and λ⃗λλ = (λλλ1,λλλ2,λλλ3) are six2 constant
basis matrices [20, eqs. (20)–(25)]

ρρρ1 =

⎛

⎜

⎜

⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟

⎟

⎠

, ρρρ2 =

⎛

⎜

⎜

⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞

⎟

⎟

⎠

, (33)

ρρρ3 =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞

⎟

⎟

⎠

, λλλ1 =

⎛

⎜

⎜

⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟

⎟

⎠

. (34)

The inverse can be obtained as R(φ,ααα)−1 = R(φ,ααα)T =
R(−φ,−ααα).

Analogously to the Jones/Stokes description, the algorithm
decides first which was the transmitted symbol based on the
minimum Euclidean distance criterion

v̂uk = argmin
c∈C

∥

∥

∥
R̂−1

k vrk − vc

∥

∥

∥

2
, (35)

1Note that for constellations with rotational symmetry, more than one
constellation point will correspond to the same Stokes vector; e.g., the PM-
QAM modulation format has a four-fold rotational symmetry, therefore four
distinct constellation points c will correspond to the same Stokes vector sc.

2The matrices λλλ2 and λλλ3 are not shown since they do not influence R(φ,ααα)
in (32).

using the inverted estimate of Rk. The estimate of the channel
matrix R̂k is updated analogously to (18) as

R̂k+1 = R(φ̂k, α̂ααk)R̂k, (36)

where, analogously with (21)–(24) and (30),

φ̂k = 2µφ(R̂
−1
k rk − ûk)

TR̂−1
k λλλ1rk, (37)

α̂ααk = −2µααα(R̂
−1
k rk − ûk)

TR̂−1
k ρ⃗ρρ rk. (38)

In the above description, only four DOFs, i.e., the scalars
φ, α1, α2, and α3 corresponding to λλλ1, ρρρ1, ρρρ2, and ρρρ3,
respectively, of the matrix R(φ,ααα) were used, which corre-
spond to the carrier phase and the SOP drift. The other two
DOFs, i.e., the scalars corresponding to λλλ2,λλλ3 in (32), can
be used to correct certain transmitter and/or receiver hardware
imperfections, which cannot be done using Jones or Stokes
formalisms, such as 90◦ I/Q error or the time skew between I
and Q [29].

The algorithm presented in this section is fully equivalent to
the one in Section III-A and will have the same performance,
but not to the one in Section III-B. The latter may have a
different performance in terms of polarization tracking and
a separate solution to mitigate the phase noise is required
since it will not be covered by M̂k. The polarization-tracking
performance is degraded by the suboptimal error function (28),
but at the same time, the performance may increase due to the
four-fold reduction of the number of constellation points sc
in the Stokes space for PM-QAM modulation formats, which
increases the minimum Euclidean distance.

IV. RESULTS

We evaluated the achievable performance of the proposed
recovery algorithm numerically. The details of the simulation
setup are described in Section IV-A, whereas in Sections IV-B
to IV-E various performance metrics of the algorithm are
evaluated.

A. Simulation Setup

The considered modulation formats are PS-QPSK, PM-
QPSK, PM-16-QAM, PM-64-QAM, and PM-256-QAM at a
symbol rate of 28 Gbaud. The performance is quantified by
counting the number of erroneous (4D) symbols to obtain the
symbol error rate (SER) at the receiver for various setups in
the presence of laser phase noise, SOP drift, and additive white
Gaussian noise (AWGN). The latter is quantified through the
signal-to-noise (SNR) ratio defined as SNR = Es/N0. The
four-fold phase ambiguity of QAM constellations is resolved
using coherent differential coding [30, Sec. 2.6.1] employed
independently in each polarization. At SER = 10−3, coherent
differential coding induces an SNR penalty of ∼ 0.44 dB for
PS/PM-QPSK and decreases to ∼ 0.03 dB for PM-256-QAM.
Note that the presented results when only AWGN is considered
(for comparison reasons) still imply differential coding. These
curves can be regarded as performance bounds, since these are
the results that would be achieved with perfect phase and SOP
tracking. The presented results are obtained using the Jones
description of the algorithm from Section III-A.
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Table I
ALGORITHM PARAMETERS, ACHIEVABLE PERFORMANCE, AND HARDWARE COMPLEXITY

Algorithm
parameters

Max. tol.
∆p · T

Max. tol. ∆p
at 28 Gbaud

Max. tol.
∆ν · T

Max. tol. ∆ν
at 28 Gbaud

Adds. Mults. Comps. Memory
units

PS-QPSK

Kabsch NKab = 31 0.46 · 10−4 1.29 MHz 0.92 · 10−4 2.58 MHz 63 69 7 0.5

PS-CMA+BPS

NBPS = 13
0.33 · 10−4 0.93 MHz 6.80 · 10−4 19.04 MHz 846 474 267 856PBPS = 32

µCMA = 0.04/Es
2

Proposed alg. c = 27 3.50 · 10−4 9.8 MHz 11.6 · 10−4 32.48 MHz 145 201 7 8

PM-QPSK

Kabsch NKab = 16 0.28 · 10−4 0.78 MHz 0.81 · 10−4 2.27 MHz 80 91 4 1

CMA+BPS

NBPS = 19
0.37 · 10−4 1.04 MHz 8.65 · 10−4 24.22 MHz 2040 896 304 1264PBPS = 32

µCMA = 0.16/Es
2

Proposed alg. c = 64 1.61 · 10−4 4.51 MHz 9.18 · 10−4 25.70 MHz 145 201 4 8

PM-16-QAM

Kabsch NKab = 16 0.57 · 10−5 159.6 kHz 0.16 · 10−4 0.45 MHz 80 91 12 1

MMA+BPS

NBPS = 19
0.14 · 10−5 37.8 kHz 1.67 · 10−4 4.68 MHz 2044 896 840 1264PBPS = 32

µMMA = 0.04/Es
2

Proposed alg. c = 400 3.14 · 10−5 879.2 kHz 1.39 · 10−4 3.89 MHz 145 201 12 8

PM-64-QAM

Kabsch NKab = 16 1.28 · 10−6 35.8 kHz 0.35 · 10−5 98.0 kHz 80 91 28 1

MMA+BPS

NBPS = 19
0.11 · 10−6 3.1 kHz 3.87 · 10−5 1083.6 kHz 4040 1728 3806 2480PBPS = 64

µMMA = 0.035/Es
2

Proposed alg. c = 2352 6.79 · 10−6 190.1 kHz 2.96 · 10−5 828.8 kHz 145 201 28 8

PM-256-QAM

Kabsch NKab = 16 0.30 · 10−6 8.4 kHz 0.83 · 10−6 23.2 kHz 80 91 60 1

MMA+BPS

NBPS = 19
8.42 · 10−9 0.2 kHz 7.88 · 10−6 220.6 kHz 4086 1728 8058 2480PBPS = 64

µMMA = 0.017/Es
2

Proposed alg. c = 6084 1.75 · 10−6 49.0 kHz 7.40 · 10−6 207.2 kHz 145 201 60 8

Adds.=additions, mults.=multiplications, comps.=comparisons (see Sec. V).

The proposed algorithm was implemented such that both
(22) and (24) were calculated for every k, i.e., P = 1.
The tracking step size µφ and µααα were chosen for each set
of system parameters according to the heuristically obtained
relations

µφ =

√
∆νTc

Es
, (39)

µααα =

√
∆pT c

Es
, (40)

where c is a constant given in Table I, which depends on the
modulation format. The constant c was optimized to ensure the
best performance in the steady-state regime at SER = 10−3. In
some applications, the linewidth parameters of the optical link
may be unknown at the receiver, and therefore it is impossible
to accurately compute µφ and µααα. To overcome this problem,
the ∆p and ∆ν parameters should be overestimated to be on
the safe side. Typically, overestimating these parameters does
not lead to considerable degradation in the performance.

For comparison, results obtained by the Kabsch algo-
rithm [12] and combinations of the (PS-)CMA/MMA [2],
[6], [7] and BPS [11] algorithms are presented. The Kabsch
algorithm operates simultaneously on both polarizations in
a decision-directed block-wise3 fashion, using a rectangular

3The algorithm can be modified to be used with a sliding window, and
such a modification may possibly increase the performance, as well as the
complexity. No such modification yet exists in the literature, to our knowledge.

filter of size equal to NKab = 16 [12], except for PS-QPSK,
where it was set to NKab = 31 since we observed better results
with a longer block size. The BPS algorithm uses a sliding-
window technique in each polarization independently since a
relative phase offset between the two polarization may occur.
The length of the window was set to NBPS = 19 [11], except
for PS-QPSK, where for the same considerations as above the
filter length was set to NBPS = 13. The number of test phases
of the BPS algorithm was set to PBPS = 32 for PS-QPSK,
PM-QPSK, PM-16-QAM and PBPS = 64 for PM-64-QAM
and PM-256-QAM [11]. The convergence parameter of the
(PS-)CMA/MMA algorithm µCMA was optimized to tolerate
the most polarization noise and the chosen values are listed in
Table I.

In Sections IV-B to IV-D, the SOP and phase tracking
capabilities of the algorithms are evaluated and therefore, in
order to accurately quantify the tracking performance and
avoid misconvergence of the algorithms, it is assumed that
the algorithms have converged to the true channel matrix H0,
i.e., we set Ĥ0 = H0. Section IV-E presents results on the
convergence rate of the algorithms, where the channel matrix
H0 is unknown to the receiver. The achieved results are shown
in Fig. 3, where each row corresponds to one of Sections IV-B–
IV-E and each column corresponds to a modulation format. We
omitted results obtained for PS-QPSK and PM-QPSK in the
figure for space reasons, and these are summarized in Table I.
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Figure 3. The achievable performance of the three tracking schemes for PM-16-QAM, PM-64-QAM, and PM-256-QAM is shown. Each column corresponds
to a modulation format, whereas the rows present different performance metrics. The polarization-noise tolerance is shown in the first row by plotting SER
versus ∆p · T . The tolerance to phase noise is plotted on the second row, where ∆ν · T is varied, whereas the noise sensitivity is shown in the third row by
varying the SNR. The convergence rate is compared on the fourth row, where the SER is plotted versus the symbol index k.

B. Polarization-Noise Tolerance

In this section, the ability to track time-varying SOP drift is
evaluated. To measure the polarization sensitivity, the polariza-
tion linewidth ∆p is varied while keeping the other parameters
fixed. The SNR is set such that SER = 10−3 is achieved in
an AWGN scenario and the accumulated laser linewidth is
∆ν = 0.

The results of the simulation are shown in the top row
of Fig. 3, where the SER is plotted versus the polarization
linewidth times the symbol time. As can be seen, the proposed
algorithm offers the best tolerance to SOP drift at any ∆p · T

for all modulation formats. High tolerance to SOP drift enables
the use of high-order modulation formats even on rapidly vary-
ing channels, such as aerial fibers. Both competitor algorithms
show error floors higher than the proposed algorithm, possibly
due to the block-wise operation of the Kabsch algorithm and fi-
nite number of test phases of the BPS algorithm4, respectively.
Perhaps the performance of both competitor algorithms could
be improved if the block size/tracking step/number of test
phases would be optimized for each set of system parameters.

4Even though phase noise is not present in this simulation setup, the BPS
is still employed since the output of the MMA may have an absolute and/or
relative phase offset introduced by the MMA and/or by the drift of the SOP.
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However, this is outside the scope of the paper. The perfor-
mance of the MMA-based algorithms degrades significantly
as the size of the constellation increases, providing the worst
performance for PM-256-QAM.

Table I summarizes the maximum-tolerable polarization
linewidth times the symbol time such that the receiver requires
an extra 1 dB SNR to achieve SER = 10−3 compared to the
case without polarization noise. As can be seen in Table I, the
proposed algorithm performs the best in all scenarios, being
able to tolerate up to nine times more polarization noise.

C. Phase-Noise Tolerance

Another important feature of the considered tracking al-
gorithms is the tolerance to phase noise. The phase-noise
sensitivity is evaluated by varying ∆ν and keeping the rest of
the parameters fixed. The SNR is set such that a SER = 10−3

is achieved in an AWGN scenario and ∆p = 0.

Fig. 3, second row, shows results obtained by the evaluated
algorithms, where the SER is plotted versus the accumulated
laser linewidth times the symbol time. The proposed algorithm
has similar performance compared to BPS, which is known
to have one of the best phase-noise sensitivities for QAM
modulation formats [31].

Table I summarizes the maximum tolerable laser linewidth
times the symbol time for an extra 1 dB SNR to achieve
SER = 10−3 compared to the case without laser noise. As
can be seen in Table I, the proposed algorithm performs the
best in all scenarios, except for PM-16-QAM, PM-64-QAM,
and PM-256-QAM, where it has a slightly worse phase-noise
sensitivity, being able to tolerate laser linewidths up to 32
MHz.

D. Additive-Noise Sensitivity

Fig. 3, third row, shows the SER as a function of SNR for
fixed ∆p and ∆ν shown in the figure. The Kabsch algorithm
has the biggest penalty compared to the AWGN scenario, up
1.2 dB for PM-256-QAM, while the proposed algorithm has
the smallest penalty for all three modulation formats with
a maximum of 0.4 dB for PM-256-QAM. The performance
of the MMA+BPS combination is in between the two other
algorithms, but is the worst at low SNR.

E. Convergence Rate

An important quality of non-data aided algorithms is the
convergence rate based on blind data. To compare the con-
vergence rates of the three algorithms, additional numerical
simulations have been performed, in which the initial channel
matrix H0 was not known by the algorithms and generated
by the method described in Section II. Note that the channel
matrix was dynamic and updated according to (14). In order to
compare the algorithms in a fair manner, the initial estimates
of the channel matrix were set to be the identity, i.e., Ĥ0 = I2
or I4 for the Kabsch algorithm.

The convergence rates for the different modulation formats
are shown in Fig. 3, bottom row, where the SER evolution is
plotted versus the symbol index k. The results were obtained

by averaging over 4·105 realizations, where in each realization
the initial channel matrix was randomly generated. To improve
the convergence rate of the MMA algorithm, the training
regime has been split into several stages with increasing
numbers of target radii from QPSK to the final constellation
[32], as is shown in the figures. To further improve the
convergence rate, the error function of the MMA can be
modified as in [5] at the cost of a weakened tolerance to
phase noise. The performance of the Kabsch algorithm could
be improved by splitting the training regime into different
stages with different window lengths NKab, but it is outside
the scope of this work. However, it is worth mentioning that
the Kabsch algorithm has been proposed in [12] to be used in
conjunction with training sequences such that the convergence
stage is avoided by estimating the channel from the training
sequence. The convergence rate of the proposed algorithm
is improved by dividing the training regime into two stages,
each with different tracking parameters µφ, µααα. The first stage,
k = 1, . . . , 2000, uses the same value for both step sizes
µφ = µααα = 0.1/Es, which is bigger than the ones used in
the second stage, k > 2000, where the values were obtained
using (39) and (40). It was observed that high step sizes give
faster convergence but less accurate tracking in steady state.

Fig. 3, bottom row, shows that the proposed algorithm
provides the fastest convergence compared to the other two
algorithms and it approaches the AWGN scenario the closest.
In the considered scenarios, the convergence takes up to 2500
symbols, depending on the constellation, corresponding to
∼ 100 ps.

The convergence rate of the three algorithms can be im-
proved by parallelization [33], where the computations are
performed for a number of different initial matrices in parallel
and the best candidate is chosen at a later stage.

V. HARDWARE COMPLEXITY

The assessment of the hardware complexity of the three
considered algorithms is done by comparing the number of
required real5 additions, multiplications, comparisons, and
memory units. Although this approach of quantifying com-
plexity does not accurately measure the algorithm’s efficiency
and is a rough approximation, it is a starting point.

For pedagogical reasons, in (18), (29), and (36), the estimate
of the channel matrix is computed (instead of the estimate
of the inverse), which is then inverted and used throughout
the rest of the algorithm. The inversion step is unnecessary
and can be skipped by estimating the inverse of the channel
matrix already in (18), (29), and (36) by negating φ̂k, α̂ααk, thus
reducing the required number of operations. In addition, cal-
culations that occurs multiple times in the decoding procedure,
e.g., Ĥ−1

k rk in (17), (22), (24), are computed only once. This
holds for all three algorithms.

In Table I, the obtained results corresponding to one pro-
cessed 4D symbol are listed. In this evaluation, the required
number of operations was minimized by using memory units

5The complex multiplications have been converted to real operations such
that a complex multiplication requires four real multiplications and two real
summations.
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instead. This choice highly affects the BPS algorithm, where
instead of recomputing previously done calculations for every
processed symbol, the values are stored in the memory.
Therefore, the results are different from the ones presented
in [34], where no memory was used.

As can be seen in Table I, the Kabsch algorithm6 has
the lowest complexity since it operates in a block-wise
fashion processing the entire block at a time. This reduces
the complexity significantly, which depends on the block
length, i.e., a longer block will require less computing power
per symbol, but also degrades the performance since it as-
sumes that the channel does not change during the block.
The (PS-)CMA/MMA+BPS combination requires the highest
computational effort and it increases with the constellation
size and the size of the sliding-window over which the BPS
algorithm operates. The complexity of the proposed algorithm
was evaluated using the Jones description, which is the same
with respect to different modulation formats and it is in
between the other two algorithms. The overall complexity
of the algorithm can be reduced if the SOP tracking is not
updated at every symbol in (18), as discussed in Section
III-A. This is a reasonable approach since the SOP does not
drift as fast as the phase noise and it can be considered
constant over a limited observation time in some scenarios.
In this case, if α̂ααk is computed every P symbols and φ̂k

(which compensates for the phase noise) is updated at every
symbol, the number of required operations is reduced from
346 (Table I) to 203 + 143/P . Of course in this scenario
the performance will degrade, thus resulting in less tolerable
polarization noise, but still sufficient for most installed fiber
links.

VI. ALGORITHMIC SUMMARY

This section provides an easily implementable form of the
proposed algorithm without requiring knowledge about the
details of the derivations.

The algorithm is summarized in Algorithm 1, where for
ease of notation we denote Gk = Ĥ−1

k to be the inverted
estimate of the channel matrix at time k. The algorithm
receives as inputs the received symbol rk, the previous inverse
estimate of the channel matrix Gk, and the symbol index k,
and outputs the decided symbol ûk and the updated matrix
Gk. The step sizes, which should be precomputed, are higher
during convergence (k ≤ 2000) than tracking (k > 2000).
In the tracking stage, they are computed based on the laser
linewidth ∆ν and the polarization linewidth ∆p, which should
be overestimated if they are unknown to the receiver. The Pauli
matrices σ⃗σσ are given in (10), C is the set of constellation
points, Es is the average symbol energy (4), T is the symbol
time, and H(·) is computed according to (15).

To decrease the computational effort, for slowly-varying
channels, the update of Gk can be done less frequently than for
every received symbol. Moreover, since the SOP drift varies
slower than the phase noise, the SOP update of Gk can be

6We considered the Golub–Reinsch method [35, p. 493] for singular value
decomposition required by the algorithm.

Algorithm 1: Proposed algorithm

Input: rk , Gk, k
Output: ûk, Gk+1

1 G0 = I2 //initialize the channel matrix

2 ûk = argmin
c∈C

∥Gkrk − c∥2 //decide the

symbol
3 if k ≤ 2000 then //set the tracking steps

4 µφ = µααα = 0.1/Es //convergence stage

5 else

6 µφ =
√
∆νTc
Es

//tracking stage

7 µααα =
√
∆pTc
Es

8 φ̂k = −2µφRe

(

i(Gkrk − ûk)
HGkrk

)

9 α̂ααk = −2µαααRe

(

i(Gkrk − ûk)
HGkσ⃗σσrk

)

10 Gk+1 = GkH(−φ̂k,−α̂ααk) //update the

channel matrix

done less often by not calculating α̂ααk in line 9 at each iteration
but setting it to α̂ααk = [0, 0, 0]T instead.

The description shown in Algorithm 1 uses the Jones
formalism. This can be interchanged with the Stokes or real
4D formalisms by replacing the Jones matrix Gk with M̂−1

k

(Section III-B) or R̂−1
k (Section III-C), and φ̂k , α̂ααk should

be calculated using (30) or (37)–(38), respectively. In this
case, the Jones vectors rk, ûk become Stokes vectors or
real 4D vectors. The Jones description of the algorithm is
fully equivalent with the real 4D description and they achieve
the same performance. However, the latter involves more
computations since multiplying two 4×4 real matrices requires
more operations than multiplying two 2×2 complex matrices.
Nevertheless, the real 4D description can be modified to
account for hardware imperfections. On the other hand, the
Stokes description is immune to absolute phase shifts and only
tracks the SOP, requiring a separate solution for absolute phase
tracking. This can be beneficial in some situations since fast
oscillations of the phase noise will not affect the algorithm,
and therefore the SOP tracking. Performance-wise, the Stokes
description will behave differently from the other two as it
relies on a suboptimal error function (28), but at the same time,
the performance may increase due to the four-fold reduction of
the number of constellation points sc in the Stokes space for
PM-QAM modulation formats, which increases the minimum
Euclidean distance.

VII. DISCUSSION AND CONCLUSIONS

We have proposed a model-based algorithm to jointly track
random polarization and phase drifts. The algorithm uses
the gradient descent optimization algorithm in a decision-
directed architecture processing one symbol at a time. The
achievable performance of the algorithm was evaluated by
means of numerical simulations and compared to state-of-the-
art algorithms. Results show the effectiveness of the proposed
algorithm, having a fast convergence rate and an excellent
tolerance to phase noise and dynamic drifts of the polarization,
in particular when using high-order modulation formats. At
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similar or better performance, the computational complexity
of the proposed algorithm is considerably lower compared
to CMA/MMA+BPS, whereas compared to the Kabsch algo-
rithm, our algorithm provides at least a five-fold performance
improvement at the price of doubling the complexity. The in-
creased phase- and polarization-noise tolerance for high-order
modulation formats at low complexity makes the algorithm a
strong candidate for future optical systems.

The proposed algorithm is tested in a somewhat idealized
scenario assuming that the polarization-mode dispersion is
negligible, which is not the case for long-haul transmission.
The performance of the proposed algorithm will be affected
if polarization-mode dispersion is present, which limits the
applicability of the algorithm. However, the algorithm can
be applied after a separate equalization stage as in [36]
that compensates for polarization-mode dispersion neglecting
the SOP, after which the SOP is corrected by the proposed
algorithm.

APPENDIX

In this appendix, the gradient of the error function (19) with
respect to φ,ααα is derived as

∇αααek = ∇ααα

∥

∥

∥

∥

(

H(φ,ααα)Ĥk

)−1
rk − ûk

∥

∥

∥

∥

2

(41)

= Re

(

2

(

(

H(φ,ααα)Ĥk

)−1
rk − ûk

)H

·∇ααα

(

(

H(φ,ααα)Ĥk

)−1
rk − ûk

)

)

(42)

= 2Re

(

(

Ĥ−1
k H(−φ,−ααα)rk − ûk

)H

Ĥ−1
k

·∇αααH(−φ,−ααα)rk

)

, (43)

where (42) follows because, for any y ∈ Cn and x ∈ Rm,
∇x∥y∥2 = ∇x(yHy) = 2Re(yH∇xy). The partial derivatives
of H(−φ,−ααα) = eiφJ(−ααα) are, from (11) and (15),

∂H(−φ,−ααα)
∂φ

= ieiφJ(−ααα), (44)

∂H(−φ,−ααα)
∂αi

= eiφ
∂J(−ααα)
∂αi

(45)

= eiφ
∂
(

I2 cos θ + ia · σ⃗σσ sin θ
)

∂αi
(46)

= eiφ
(

− I2ai sin θ + i
(σσσi

θ
− ai

θ
a · σ⃗σσ

)

sin θ

+ia · σ⃗σσ ai cos θ

)

, (47)

where (47) follows because ∂θ/∂αi = αi/∥ααα∥ = ai.
Evaluating (44) and (47) at φ = 0, ααα = [0, 0, 0]T results in

∂H(−φ,−ααα)
∂φ

= iI2,
∂H(−φ,−ααα)

∂αi
= iσσσi, (48)

as θ → 0 for any direction a. The gradient of the error function
can be obtained by substituting (48) and H(0, 0) = I2 in (43),

which is then substituted in (21) and (23) to obtain (22) and
(24), respectively.
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