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Abstract
We provide upper and lower bounds on the coding rate of multiple-access channels
(MACs) and feedback channels. Traditional MACs have been extensively studied under
the assumption of availability of perfect channel state information (CSI). In Paper A
we relax this assumption for a Rayleigh block-fading MAC and provide bounds on the
sum-rate capacity. The upper bound relies on a dual formula for channel capacity
and on the assumption that the users can cooperate perfectly. The lower bound is
derived assuming a noncooperative scenario where each user employs unitary space-time
modulation (independently from the other users). Numerical results show that the gap
between the upper and the lower bound is small already at moderate SNR values.
Motivated by the growth of machine-type communication, in Paper B we present a

finite-blocklength analysis of the throughput and the average delay achievable in a wireless
system where (i) several uncoordinated users transmit short coded packets, (ii) interference
is treated as noise, and (iii) 1-bit feedback from the intended receivers enables the use of a
simple automatic repeat request protocol. Our analysis exploits the recent results on the
characterization of the maximum coding rate at finite blocklength and finite block-error
probability by Polyanskiy, Poor, and Verdú (2010), and by Yang et al. (2014). For a
given number of information bits, we determine the coded-packet size that maximizes the
per-user throughput and minimizes the average delay. Finally, in Paper C, we present
nonasymptotic achievability and converse bounds on the maximum coding rate (for a fixed
average error probability and a fixed average blocklength) of variable-length full-feedback
(VLF) and variable-length stop-feedback (VLSF) codes operating over a binary erasure
channel (BEC). For the VLF setup, the achievability bound relies on a scheme that
maps each message onto a variable-length Huffman codeword and then repeats each bit
of the codeword until it is received correctly. The converse bound is inspired by the
meta-converse framework by Polyanskiy, Poor, and Verdú (2010) and relies on binary
sequential hypothesis testing. For the case of zero error probability, our achievability and
converse bounds match. For the VLSF case, we provide achievability bounds that exploit
the following feature of BEC: the decoder can assess the correctness of its estimate by
verifying whether the chosen codeword is the only one that is compatible with the erasure
pattern.

Keywords: Shannon capacity, block-fading channel, multiple-access channel, Gaussian
collision channel, finite blocklength, quasi-static fading, full feedback, stop feedback

i



ii



List of Included Publications
This thesis is based on the following publications:

[A] R. Devassy, G. Durisi, J. Östman, W. Yang, T. Eftimov, and Z. Utkovski, “Finite-SNR
bounds on the sum-rate capacity of Rayleigh block-fading multiple-access channels
with no a priori CSI,” IEEE Trans. Commun., vol. 63, no. 10, pp. 3621–3632, Oct.
2015.

[B] R. Devassy, G. Durisi, P. Popovski, and E. G. Ström, “Finite-blocklength analysis of
the ARQ-protocol throughput over the Gaussian collision channel,” in Int. Symp.
Commun., Cont., Signal Process. (ISCCSP), Athens, Greece, May 2014, invited
paper, pp. 173–177.

[C] R. Devassy, G. Durisi, B. Lindqvist, W. Yang, and M. Dalai, “Nonasymptotic coding-
rate bounds for binary erasure channels with feedback,” IEEE Inf. Theory Workshop
(ITW), submitted for publication.

iii



iv



Acknowledgements
This thesis would not have been possible without the invaluable support of a lot of people.
I would like to acknowledge them in this section. First of all I am grateful to Associate
Professor Giuseppe Durisi for giving me the opportunity to be a researcher at Chalmers.
The consistent and precise feedback that you provided, has made me grow over the years.
It is always a pleasure working with you. I would like to thank my senior coauthors Prof.
Petar Popovski, Prof. Erik Ström, Dr.-Ing. Zoran Utkovski, and Prof. Marco Dalai for
their timely comments and suggestions for the research I performed.

Next, I would like to thank the people at Chalmers. Many thanks to Agneta, Natasha,
Malin, Madeleine, and Christine for helping me sort out administrative tasks at Chalmers.
A special thanks to Lars for all the help, you shall be missed. Thanks to the seniors at
communication systems (comsys) group for creating this diverse and creative research
environment. I owe a lot to the people in information theory group within comsys – Wei,
Sven, Johan, and Bejamin. Discussions with you guys were always stimulating and I
enjoy doing research with you guys. A special thanks to Sven and Johan in proof reading
this thesis and providing the comments. In my mental map, the comsys group has five
more sub groups – the optics people (Naga, Cristian, Li, Alireza, Kamran, and Arni), the
coding club (Christian, Mikhail, and Jesper), the COOPNET clan (names omitted due
to space constraints), the amplifier gang (Katharina and Jessica) and the tech society
(Wanlu, Anver, Keerthi, Behrooz, and Chao). Interactions with all of you have always
helped me think, reevaluate, and correct myself. Thanks a lot for everything.

I was a fat and shy software engineer before I began my PhD at Chalmers, but now I
have evolved. Next, I would like to thank the people who have made this change in me.
Many thanks to Rajet, Swathi, Maude, and Johan Östaneng for making my transition
to Sweden smooth and pleasant. Thanks to Keerthi, I got a free bike and I lost a lot of
weight. I can ski and ice skate because of Keerthi and Tilak, thanks for it. Many thanks
to Cristian, Markus, Erik, and Señor Gabriel E. Garcia for introducing me to climbing.
Thanks to participants at the Indian lunch table (Srikar, Naga, Abu, Sathya, Keerthi,
Tilak, and Anver) for inspiring as well as funny discussions.

I owe a lot of gratitude to my loving wife Liz Joy. Thanks for believing in me, leaving
your job, and agreeing to move to Sweden. A lot of thanks to Dany Devassy (my “mini
me”) for your innocent gestures that make me happy. And last but not the least, I would
like to thank the verdant vegetation in my room for providing the tranquility I needed
for thinking.

Rahul Devassy,
Gothenburg, April 2016

This research work was partly funded by the Swedish Research Council under grant 2012-
4571. The simulations were performed in part on resources provided by the Swedish
National Infrastructure for Computing (SNIC) at C3SE.

v



vi



Acronyms
ARQ: Automatic repeat request

AWGN: Additive white Gaussian noise

BEC: Binary erasure channel

CoMP: Coordinated multi-point

CSI: Channel state information

i.i.d.: Independent and identically distributed

MAC: Multiple-access channel

MIMO: Multiple-input multiple-output

SNR: Signal-to-noise ratio

VLF: Variable-length feedback

VLSF: Variable-length stop-feedback

vii



viii



Contents

Abstract i

List of Included Publications iii

Acknowledgements v

Acronyms vii

I Overview 1

1 Introduction 3
1.1 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Multiple-Access Channels 7
2.1 Rayleigh Block-Fading Multiple-Access Channel . . . . . . . . . . . . . . . 7
2.2 Sum-rate Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Feedback Channels 9
3.1 Gaussian Collision Channel with Feedback . . . . . . . . . . . . . . . . . . 9

3.1.1 System model and assumptions . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Throughput and delay . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Binary Erasure Channel with Feedback . . . . . . . . . . . . . . . . . . . 11
3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ix



3.2.2 Coding rate and minimum average blocklength . . . . . . . . . . . 13

4 Contributions 15
4.1 Included Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Publications Not Included . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Bibliography 17

II Papers 21

A Finite-SNR Bounds on the Sum-Rate Capacity of Rayleigh Block-Fading Multiple-
Access Channels with no a Priori CSI A1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3
2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A8
3 Bounds on Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A10
4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A14
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A17
Appendix A - Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . A17

A.1 - An Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . A17
A.2 - Limits of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . A18
A.3 - Expectation of the Log Determinant of a Gaussian Quadratic Form A18

Appendix B - Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . A21
Appendix C - Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . A24
Appendix D - Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . A25
Appendix E - Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . A26
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A27

B Finite-blocklength Analysis of the ARQ-protocol Throughput over the Gaus-
sian Collision Channel B1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3
2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B5
3 Maximum Coding Rate at Finite Blocklength . . . . . . . . . . . . . . . . B6

3.1 AWGN channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . B7
3.2 Quasi-static fading channels . . . . . . . . . . . . . . . . . . . . . . B8

4 Finite Blocklength Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . B8
5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B10
6 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . . B11
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B11

C Nonasymptotic Coding-rate Bounds for Binary Erasure Channels with Feed-
back C1

x



1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C3
2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C5
3 Existing Results for BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . C6
4 Novel Bounds for VLF Codes . . . . . . . . . . . . . . . . . . . . . . . . . C7
5 Novel Bounds for VLSF Codes . . . . . . . . . . . . . . . . . . . . . . . . C9
Appendix A - Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . C11
Appendix B - Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . C12
Appendix C - Sequential Probability Ratio Test (SPRT) . . . . . . . . . . . . . C12
Appendix D - Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . C14
Appendix E - An Auxiliary Result . . . . . . . . . . . . . . . . . . . . . . . . . C16
Appendix F - Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . C17
Appendix G - Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . C18
Appendix H - Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . C18
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C19

xi





Part I

Overview

1





CHAPTER 1

Introduction

We live in an era of ever-exploding amount of information, where communication technolo-
gies are often pushed to its limits. Market leaders in the communication sector predicts
an astounding ten-fold increase in the amount of mobile data and around a two-fold
increase in the number of smartphone users by the end of 2020 [1,2]. The need of large-
scale densification of mobile broadband infrastructure is evident from these predictions.
Several technologies have been proposed to deliver this increasing data demands like
coordinated multi-point (CoMP) [3], network multiple-input multiple output (MIMO) [4],
and interference alignment [5]. However, the theoretically predicted throughput increase
has not been visible in experimental demonstrations [3,6]. One potential reason for the
disagreement between theoretical analysis and experiments is the assumption of perfect
channel state information (CSI) being available. Often in practical systems pilots are used
to estimate the channel coefficients. Studying the Shannon capacity [7] with no assumption
of perfect CSI can help us quantify the cost of acquiring CSI. Some earlier works, e.g. [8,9]
present an asymptotic analysis (asymptotic in the signal-to-noise ratio (SNR)) of the
Shannon capacity of point-to-point multiple-antenna setting under the assumption of no
a priori CSI. We continue in this line of work and consider a multiple-access channel
(MAC) where two or more noncooperating users communicate with a single receiver. This
scenario is relevant for the uplink of wireless cellular networks, where the users may be
mobile terminals and the receiver may be a cellular base station. We model the fading
process using the so-called Rayleigh block-fading model [10, 11]. In this thesis we present
finite-SNR upper and lower bounds on the sum-rate capacity—the fundamental limit
on the sum of coding rates of all users—of the Rayleigh block-fading MAC under the
assumption of no a priori CSI.
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Chapter 1 Introduction

Along with the exponential increase in the mobile data traffic, the data in [1,2] also
show a similar trend for machine-type communication. Machine-type communication is
the key enabler for a whole new set of applications like traffic safety, traffic efficiency,
smart grid, e-health, and efficient industrial communications [12]. A common feature
of these applications is that they often require the transmission of short packets (no
more than hundreds of bits), which need to be correctly decoded at the intended receiver
within stringent latency requirements. Designing wireless communication systems able
to support such services is challenging because most of the results available within the
field of wireless communication theory are asymptotic in the packet length. Indeed, the
classic performance metric used in wireless communication theory, i.e., Shannon capacity,
which is the largest data rate at which reliable communication (i.e., communication
with arbitrarily low error probability) is possible, is an asymptotic performance measure
(asymptotic in the allowed packet length). In the emerging machine-type communication
based applications, the transmitted packets are short, and hence, channel capacity might
be a poor benchmark. In this scenario, a more suitable performance metric is instead
the maximum achievable rate at a given packet length and packet error probability. The
computation of the maximum achievable rate for discrete channels has been proven to be
an NP-hard problem [13]. Nevertheless, easy-to-compute bounds for various channels with
positive capacity have been developed in [14–16]. In this thesis, using the aforementioned
bounds, we provide a preliminary investigation on the trade-off between packet length
and throughput for a simple system, where several uncoordinated users transmit short
coded packets using frequency-hopping and a simple automatic repeat request (ARQ)
protocol. This setup is particularly relevant for machine-type communication systems
involving a very large number of devices.

The simplistic model we used to study machine-type communication systems assumes
a 1-bit feedback mechanism, namely the simple ARQ. One generalization of this setup is
to assume hybrid ARQ where when the receiver indicates a decoding failure, instead of
repeating the same codeword, the transmitter sends additional coded bits. Most of the
studies in the literature for this setup like [17,18] are tailored towards traditional wireless
communication systems where one can assume suitably large packet lengths. Motivated
by surge of machine-type communication systems, we aim to study the throughput of a
hybrid-ARQ systems for point-to-point communication links with feedback after every
channel use. Point-to-point communication with an instantaneous and error-free feedback
link have been studied extensively in the literature. In the pioneering work [19], Shannon
showed that a fixed-blocklength full-feedback setup—where the channel output is sent to
the transmitter through the feedback link—offers no increase in capacity compared to not
having feedback. However, if the use of variable-length codes is permitted, the availability
of full feedback turns out to be beneficial. Burnashev [20] derived the reliability function
for the case when full feedback is available and variable-length feedback (VLF) codes are
used, for all rates between zero and capacity. Furthermore, this full-feedback reliability
function is strictly greater than the reliability function for no feedback. There have been
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1.1 Scope of Thesis

many works on the asymptotic characterization (average number of channel uses being
very large) of full feedback systems [21–23]. Note that hybrid-ARQ system cannot be
modeled effectively by using the full feedback assumption. Polyanskiy et al. [24] obtained
nonasymptotic (finite average number of channel uses) bounds showing that with VLF
codes one can approach capacity faster than fixed-blocklength codes. Interestingly, the
achievability bound used in [6] to prove this result is actually based on variable-length
stop-feedback (VLSF) codes. In the VLSF setup, the feedback link is used by the receiver
only to send a single bit, indicating to stop the transmission of the current message. This
setup models exactly hybrid ARQ systems. In this thesis, we study the throughput of
hybrid ARQ systems with finite average blocklength (number of channel uses). We begin
our analysis by assuming one among the simplest channel models, i.e., the binary erasure
channel (BEC). We provide achievability and converse bounds for the minimum average
blocklength for a given number of codewords and maximum allowed probability of error
for both VLF and VLSF codes.

1.1 Scope of Thesis
The aim of this thesis is to present bounds on the coding rate of MAC and feedback
channels. We consider the Rayleigh block-fading MAC and provide finite-SNR upper
and lower bounds on the sum-rate capacity. These bounds are presented in Paper A. In
Paper B, we provide a preliminary investigation on the trade-off between packet length
and coding rate for simple ARQ protocol over the Gaussian collision channel. In Paper C,
we lay the foundation for studying the coding rate of hybrid ARQ systems with finite
average delay (number of channel uses or blocklength). We present achievability and
converse bounds for the minimum average blocklength for a given number of codewords
and maximum allowed probability of error for both VLF and VLSF codes, assuming the
underlying forward communication channel to be the BEC.

1.2 Organization of Thesis
The thesis is organized as follows: we introduce the problem setting for MAC in Chapter 2;
then we define the relevant quantities of interest related to feedback channels in Chapter 3;
in Chapter 4 we provide a brief overview of our contributions in the attached papers.

1.3 Notation
This section describes the notation used in Part I of this thesis. Uppercase letters denote
matrices, lowercase letters designate scalars, and boldface letters denote random quantities.
Uppercase calligraphic letters denote sets and the nfold Cartesian product of a set X is
denoted by Xn. The set of complex number is denoted by C, and Cm×n stands for the set

5



Chapter 1 Introduction

of matrices having m rows, n columns, and entries from C. The trace and the Hermitian
transpose of a matrix A are denoted by Tr{A} and A†, respectively. With E[ · ] we
denote expectation and I(x; y) stands for the mutual information between the random
variables x and y. We use CN (0, σ2) to denote a circularly symmetric complex Gaussian
random variable with zero mean and variance σ2.

6



CHAPTER 2

Multiple-Access Channels

In this chapter we introduce the concepts essential in understanding our contributions
in Paper A. Specifically, we will define the sum-rate capacity of a Rayleigh block-fading
MAC with no a priori channel state information (CSI).

2.1 Rayleigh Block-Fading Multiple-Access Channel
The MAC models a scenario where two or more noncooperating users communicate with
a single receiver. We consider the setup where neither the users nor the receiver have a
priori information on the realization of the fading process (no a priori CSI). We shall
focus on the so-called Rayleigh block-fading model [10, 11]. The two key features of
this model are that (i) the fading coefficients associated to the channels between each
transmit and receive antenna pair are independent and identically distributed (i.i.d.)
circularly symmetric complex Gaussian random variables; (ii) each fading coefficient
remains constant over tc channel uses before changing to a new independent realization.
The parameter tc, which is the ratio between the channel coherence time and the symbol
duration, will be referred to in this thesis as coherence interval.
We consider nu users communicating with a receiver having nr antennas. We assume

that each user is equipped with one or more antennas and denote by ni the number
of antennas at user i, i = 1, . . . , nu. The received signal over an arbitrary coherence
interval Y ∈ Cnr×tc can be compactly written in matrix notation as follows:

Y =
nu∑
i=1

SiXi + W. (2.1)

7



Chapter 2 Multiple-Access Channels

Here, Xi ∈ Cni×tc denotes the signal transmitted by user i during the coherence interval,
and the matrix Si ∈ Cnr×ni contains the fading coefficients associated with the channels
between each transmit antenna of user i and the receive antennas, within the coherence
interval. From the Rayleigh block-fading model, it follows that Si has i.i.d. CN (0, 1) entries
and that the channel matrices {Si}nu

i=1 are independent. Finally, the matrix W ∈ Cnr×tc ,

whose entries are i.i.d. CN (0, 1)-distributed, denotes the additive noise. Let

nt =
nu∑
i=1

ni (2.2)

be the total number of transmit antennas. We can rewrite (2.1) as

Y = SX + W (2.3)

where

S =
[
S1 S2 · · · Snu

]
∈ Cnr×nt (2.4)

and

X =


X1
X2
...

Xnu

 ∈ Cnt×tc . (2.5)

We assume that W and S are independent, and that their probability law does not depend
on X. We also assume that tc ≥ max(nt, nr) and focus on the no a priori CSI scenario
where neither the transmitter nor the receiver have prior knowledge of matrix S.

2.2 Sum-rate Capacity
The sum-rate capacity of the Rayleigh block-fading MAC in (2.3) is given by

C(ρ) = 1
tc

sup I(X; Y) (2.6)

where the supremum is over all probability distributions on X for which {Xi}nu
i=1 are

independent and the per-user power constraint

E
[
Tr{XiX†i}

]
≤ tcniρ

nt
, i = 1, 2, . . . , nu (2.7)

is satisfied. Here, ρ can be thought of as the total energy per channel use available over
all users. The particular form of the average power constraint in (2.7) allows all users to
transmit at the same average power per antenna. In Paper A we present nonasymptotic
(finite ρ) bounds for the sum-rate capacity C(ρ) of the Rayleigh block-fading MAC in (2.3).

8



CHAPTER 3

Feedback Channels

Two papers in this thesis, namely Paper B and Paper C, that focus on feedback channels.
This chapter introduces the problem setting in both of these papers. In Paper B we
examine the Gaussian collision channel with feedback and an overview of the same is
provided in Section 3.1. The BEC with two kinds of feedback (full and stop feedback),
which is the subject matter of Paper C, is presented in Section 3.2.

3.1 Gaussian Collision Channel with Feedback

We consider a wireless communication system where several uncoordinated users transmit
short coded packets using frequency hopping and a simple ARQ protocol. This setup is
closely related to the one known in the literature as slotted Gaussian collision channel with
feedback [17,25]. Unlike the asymptotic—infinite packet length—analysis of the system
presented in [17], in Paper B we provide a finite packet length analysis by utilizing the
recent finite-blocklength information-theoretic results presented in [14–16]. We consider
both the case when the channel among each users is impaired by additive Gaussian noise
only, and the quasi-static fading case, where the fading gains are random but stay constant
over the duration of each packet. In Section 3.1.1, we define the system model and state
our assumptions; and in Section 3.1.2 we give the expressions for throughput and delay
of the system.

9



Chapter 3 Feedback Channels

3.1.1 System model and assumptions
We assume nu transmitter-receiver pairs operating concurrently. For the fading scenario,
we consider communication over a time-frequency selective fading channel with coherence
time tc and coherence bandwidth bc. The available bandwidth ba > bc is divided into
nf = ba/bc non-interfering frequency bands. For simplicity, we shall assume in the
following that nf is an integer. For each slot, each user chooses a frequency band
uniformly at random and independently from the other users, and transmits over this
band a coded packet consisting of n complex symbols (corresponding to n channel uses)
of duration n/bc < tc seconds. These assumptions guarantee that the fading channel
stays constant over the duration of each coded packet. The received vector1 Y ∈ Cn
corresponding to the coded packet X1 ∈ Cn transmitted by user 1 during one (arbitrary)
packet transmission slot is given by

Y = h1X1 +
∑
s

hsXs + W. (3.1)

Here, hs denotes the fading coefficient corresponding to user s, the index s spans the set of
interfering users (i.e., users that chose the same frequency band as user 1 for transmission),
and W models the additive noise vector, whose entries are independent and identically
distributed circularly symmetric complex Gaussian random variables with unit variance.
The additive white Gaussian noise (AWGN) scenario is readily obtained from (3.1) by
assuming that the channel gains in (3.1) are deterministic.
At the intended receiver, which is assumed to be perfectly aware of the frequency

band chosen by the corresponding transmitter, but which ignores the choice of the other
(unintended) users, decoding is attempted. A binary feedback about the status of the
decoding operation is sent back to the transmitter. If the feedback indicates a decoding
failure, the transmitter repeats the same coded packet over the next packet transmission
slot, after having selected a different frequency band. If the feedback indicates decoding
success, then the next coded packet is transmitted. Each coded packet corresponds to k
information bits (we assume that all users need to deliver similar payloads). Furthermore,
each user maps the k information bits to n coded bits independently from the other users,
i.e., no coordination among users is assumed.
To simplify the analysis, we shall also assume what follows:

(i) Each user has an infinite number of information bits to transmit (full-buffer as-
sumption) and as soon as the transmission of the current packet is stopped because
decoding is successful, the transmission of the next packet is started.

(ii) The feedback is instantaneous and error free.

(iii) Interference resulting from several users contending the same medium is treated as
additive Gaussian noise.

1Note that in Section 3.1 we shall use uppercase letters to denote vectors instead of matrices.
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3.2 Binary Erasure Channel with Feedback

(iv) All users transmit at the same power.

(v) The fading coefficients {hs} are independent and identically distributed and perfectly
known to the receiver.

The assumption (iii) imply that, given the fading coefficients {hs}, the second and third
term on the right-hand-side of (3.1) can be jointly modeled as a circularly symmetric
Gaussian random variable.

3.1.2 Throughput and delay
Using the renewal-reward theorem [26] we conclude that the overall throughput η of the
system defined in Section 3.1.1, measured in bits per second per Hertz (or bits per channel
use), corresponding to the transmission of coded packets of length n is given by

η = nu
k

n

[
1− ε(n, k)

]
(3.2)

where, ε(n, k) denotes the packet error rate. The corresponding average delay (measured
in number of channel uses) is given by

δ = n

1− ε(n, k) . (3.3)

This expression holds under the assumption of unlimited number of retransmissions. In
Paper B we use the approximations for the minimum packet error rate as a function of
the number of information bits k and the packet length n provided in [14–16] to optimize
the packet length n for a fixed number of of information bits k.

3.2 Binary Erasure Channel with Feedback
In Paper C, we consider the BEC with two different feedback mechanisms, namely full
feedback and stop feedback. In the full-feedback scenario, the transmitter has noiseless
access to all the previously received symbols. We assume a variable-length setup where
the transmitter is allowed to transmit until the receiver decides to stop and declare its
estimate of the current message. Since the transmitter is aware of the channel outputs, it
can stop transmission of current message when the receiver has decided to stop. We shall
call the codes used in the full-feedback scenario as VLF codes. We are interested in the
minimum average blocklength (number of channel uses) of VLF codes with fixed number
of messages and fixed error probability.

Stop feedback refers to the setup where, through the feedback link, the receiver indicates
to the transmitter whether to stop or continue transmission of the current message. This
setup is also known as decision feedback and it encompasses hybrid ARQ schemes. The
codes used in the stop-feedback scenario will be called as VLSF codes. Analogous to the
full-feedback scenario, we are interested in the minimum average blocklength (number of

11
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channel uses) of VLSF codes under the assumption of a fixed number of messages and
fixed error probability.
The two setups are formally introduced below.

3.2.1 Definition
We consider a BEC with input alphabet X = {0, 1} and output alphabet Y = {0, e, 1},
where e denotes an erasure. A VLF code for the BEC is defined as follows.

Definition 1: ( [24, Def. 1]) An (`, nm, ε)–VLF code, where ` is a positive real
number, nm is a positive integer, and ε ∈ [0, 1], consists of:

1. A random variable u, defined on a set U with |U| ≤ 2, whose realization is revealed to
the encoder and the decoder before the start of transmission. The random variable u
acts as common randomness and enables the use of randomized encoding and decoding
strategies.

2. A sequence of encoders fn : U ×W×Yn−1→X , n ≥ 1 that generate the channel inputs

xn = fn(u,w,y1,y2, . . . ,yn−1). (3.4)

Here, w denotes the message, which is uniformly distributed on W = {1, 2, . . . , nm}.
Note that the channel input at time n depends on all previous channel outputs (full
feedback).

3. A sequence of decoders gn : U × Yn→W that provide the estimate of w at time n.

4. A nonnegative integer-valued random variable τ, which is a stopping time of the
filtration

Gn = σ{u,y1,y2, . . . ,yn} (3.5)

and satisfies

E[τ ] ≤ `. (3.6)

5. The final estimate ŵ = gτ (u,y1,y2, . . . ,yτ ) of w, which satisfies the error-probability
constraint

Pr{ŵ 6= w} ≤ ε. (3.7)

VLSF codes are a special case of VLF codes. The peculiarity of VLSF codes is that
the sequence of encoders is not allowed to depend on the past channel outputs, i.e.,

fn : U ×W→X , n ≥ 1. (3.8)

12
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3.2.2 Coding rate and minimum average blocklength
The coding rate r of an (`, nm, ε)–VLF code is defined as

r = log2 nm

E[τ ] . (3.9)

As pointed out earlier, VLSF codes are special case of VLF codes, and hence, the coding
rate of a VLSF code is defined analogously as in (3.9).
We define the minimum average blocklength of VLF codes with nm codewords and

error probability not exceeding ε as follows:

`∗f (nm, ε) = min{` : ∃(`, nm, ε)–VLF code}. (3.10)

Analogously, we define the minimum average blocklength of VLSF codes with nm code-
words and error probability not exceeding ε as

`∗sf (nm, ε) = min{` : ∃(`, nm, ε)–VLSF code}. (3.11)

In Paper C, we present upper and lower bounds on both `∗f (nm, ε) and `∗sf (nm, ε).

13
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CHAPTER 4

Contributions

The list of papers appended in this thesis and a summary of each one of them is provided
in Section 4.1 below. Additional publications by the author, which are not included in
this thesis, are listed in Section 4.2.

4.1 Included Publications
1. Paper A: “Finite-SNR bounds on the sum-rate capacity of Rayleigh block-

fading multiple-access channels with no a priori CSI”

We provide nonasymptotic upper and lower bounds on the sum-rate capacity of
Rayleigh block-fading MACs for the set up where a priori channel state information is
not available. The upper bound relies on a dual formula for channel capacity and on the
assumption that the users can cooperate perfectly. The lower bound is derived assuming
a noncooperative scenario where each user employs unitary space-time modulation
(independently from the other users). Numerical results show that the gap between the
upper and the lower bound is small already at moderate SNR values. This suggests
that the sum-rate capacity gains obtainable through user cooperation are minimal for
the scenarios considered in the paper.

2. Paper B: “Finite-blocklength analysis of the ARQ-protocol throughput
over the Gaussian collision channel”

We present a finite-blocklength analysis of the throughput and the average delay
achievable in a wireless system where (i) several uncoordinated users transmit short
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coded packets, (ii) interference is treated as noise, and (iii) 1-bit feedback from the
intended receivers enables the use of a simple ARQ protocol. Our analysis exploits the
recent results on the characterization of the maximum coding rate at finite blocklength
and finite block-error probability by Polyanskiy, Poor, and Verdú (2010), and by Yang
et al. (2013). For a given number of information bits, we determine the coded-packet
size that maximize the per-user throughput and minimize the average delay. Our
numerical results indicate that, when optimal codes are used, very short coded packets
(of length between 50 to 100 channel uses) yield significantly lower average delay at an
almost negligible throughput loss, compared to longer coded packets.

3. Paper C: “Nonasymptotic coding-rate bounds for binary erasure channels
with feedback”
We present nonasymptotic achievability and converse bounds on the maximum coding
rate (for a fixed average error probability and a fixed average blocklength) of VLF
and VLSF codes operating over a BEC. For the VLF setup, the achievability bound
relies on a scheme that maps each message onto a variable-length Huffman codeword
and then repeats each bit of the codeword until it is received correctly. The converse
bound is inspired by the meta-converse framework by Polyanskiy, Poor, and Verdú
(2010) and relies on binary sequential hypothesis testing. For the case of zero error
probability, our achievability and converse bounds match. For the VLSF case, we
provide achievability bounds that exploit the following feature of BEC: the decoder
can assess the correctness of its estimate by verifying whether the chosen codeword
is the only one that is compatible with the erasure pattern. One of these bounds is
obtained by analyzing the performance of a variable-length extension of random linear
fountain codes. The gap between the VLSF achievability and the VLF converse bound,
when number of messages is small, is significant: 23% for 8 messages on a BEC with
erasure probability 0.5. The absence of a tight VLSF converse bound does not allow
us to assess whether this gap is fundamental.

4.2 Publications Not Included
Publications by the author, which are not included in this thesis, are listed below.

1. G. Durisi, A. Tarable, C. Camarda, R. Devassy, and G. Montorsi, “Capacity bounds
for MIMO microwave backhaul links affected by phase noise,” IEEE Trans. Commun.,
vol. 62, no. 3, pp. 920–929, Mar. 2014.

2. T. R. Lakshmana, A. Tölli, R. Devassy, and T. Svensson, “Precoder design with
incomplete feedback for joint transmission,” IEEE Trans. Wireless Commun., vol. 15,
no. 3, pp. 1923–1936, Mar. 2016.
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