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On Battery Electric Vehicles  

Driving Patterns, Multi-car Households, and Infrastructure 

 

NIKLAS JAKOBSSON 

Department of Energy and Environment, Chalmers University of Technology 

ABSTRACT 

The transportation sector is responsible for a quarter of all greenhouse gas emissions in 

Europe. Though the transport system may be difficult to change into a less polluting system, 

electric vehicles may be a possible approach. For personal use, there are today different 

models of battery electric vehicles, and plug-in hybrid electric vehicles available. Though 

battery electric vehicles have the bigger potential for reducing emissions, they also have the 

biggest hurdle in terms of range limitation and investment cost. 

 

In this thesis we have assessed battery electric vehicles performance as replacements for 

conventional cars using GPS-based driving pattern analysis. We have found that for common 

battery electric vehicle ranges of 120 km, a noteworthy adaptation is required for the average 

user. However, it is possible to specifically adopt battery electric vehicles within multi-car 

households to significantly reduce the need for adaptation. When applying a cost, resembling 

that of a rental car, for the days that the battery electric vehicle cannot fulfill the driving need 

of the user, close to 14% of the second cars in multi-car households would have a lower total 

cost of ownership as a battery electric vehicle compared to a conventional car in Sweden. We 

have also assessed the degree of adaptation in a small set of Swedish two-car households who 

adopted a battery electric vehicle for 3-4 months. Though the data set is small, it displays a 

large degree of heterogeneity in behavior, with some households increasing the use of the 

battery electric vehicle compared to the replaced car, while some decrease it, and others make 

virtually no change in travel behavior. Overall, we do not see a large increase in driving of the 

battery electric vehicle compared to the replaced car. 

 

We have also done methodological development by analyzing the effect of modelling driving 

data with three probability distributions. Contrary to earlier literature we find that the Weibull 

and Log-Normal distributions overall fit driving data better than the Gamma distribution. 

Additionally, for electric vehicles there are specific applications that are interesting, for 

battery electric vehicles: estimating the frequency of long-distance driving above the range 

limitation; and for plug-in hybrids, estimating the frequency of short-distance driving that 

may give rise to a high electric drive fraction. With regards to these applications, we find that 

the distributions systematically give different estimates, and that a researcher may choose 

distribution according to the chosen research question. 

 

Finally, we have analyzed the usage of fast charging infra-structure in Sweden to support 

assumptions made for a queueing model of charging infra-structure usage developed at 

Fraunhofer ISI, in Karlsruhe, Germany. 

 

Keywords: Electro-mobility, BEV, battery size, GPS-logging, individual movement pattern. 
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1 INTRODUCTION 
 

Climate change is one of the most difficult issues facing humanity. The Intergovernmental Panel 

on Climate Change project that global mean temperatures are likely to exceed 2 degrees Celsius 

by 2100 in most scenarios due to anthropogenic greenhouse gas emissions (GHG) [1]. A 

reduction of greenhouse gas emissions (GHG) will affect all aspects of society, one that may be 

more difficult to change is transport and mobility. Transport accounts for a quarter of all GHG 

emissions in Europe [2], in Sweden it is 30% [3]. The reasons that it may be difficult to change 

the transport sector is partly due to decentralized decision-making in the sense that many 

individuals need to collectively transition to more sustainable solutions such as electric vehicle 

usage and biofuels, and partly due to strong lock-in of gasoline and diesel. Besides GHG, 

conventional cars have local emissions that cause urban pollution. In 2012, urban pollution 

caused 3.7 million premature deaths according to the OECD and World Health Organisation [4]. 

A way to reduce, or remove, these two problems is to change the engine, and fuel, of cars. The 

fully electric vehicle, or battery electric vehicle (BEV) has no tail-pipe emissions and may have 

lower well-to-wheel GHG emissions dependent on the electricity system within which it 

operates. The two main drawbacks of the BEV are that it has a limited electric driving range, 

based on the size of the battery, and that the battery is expensive, causing the investment cost to 

be much higher than for a conventional car. The drawback of a limited driving range has 

prompted the development of PHEVs that combine an electric engine with a conventional 

engine. This type of vehicle has very different properties compared to a BEV from a user’s 

perspective, and will not be analysed in depth here. 

As of today (April 2016), there are different models of both BEVs and PHEVs on the market. Most 

BEVs on the market up until today have had driving ranges around 130 km according to the EPA 

driving cycle, this is the case for e.g. the Nissan Leaf and Volkswagen e-Golf [5]. The cars obtain 

this range using a battery size of 24 kWh, however, these batteries can be increased in size. The 

model of Nissan Leaf for 2016 has a battery of 30 kWh, and towards the end of 2016 Chevrolet 

plans to release the Bolt which will have a 60 kWh battery and a real world driving range of 

around 300 km. Tesla, which will release its Tesla Model 3 the following year has a similar range 

and similar price. The much higher range of these cars has prompted the electric vehicle 

community to consider them next generation BEVs with the potential for mass-market adoption. 

The Tesla Model 3 has received close to 400000 reservations (as of end of April 2016) one year 

ahead of its scheduled release [6]. This number should be compared to the most sold electric car 

until today, which is the Nissan Leaf with 200000 sold cars from 2011-2015 [7]. 

Though electricity is available almost everywhere, there are not charging points for BEVs 

everywhere, and especially not ‘fast chargers’. Fast chargers usually refer to chargers that output 

50 kW of power, and thus charge a 24 kWh battery from 0-80% in half an hour. As a comparison, 

the slowest chargers would require 12 hours for a full charge, and most public chargers fall 

somewhere in-between these two extremes. This means that fast chargers would be required to 

extend travel distance for long driving days, while the slower chargers could be used at 

workplaces, homes, or inside cities. One way to mitigate the effect of BEVs is to extend the 

charging infra-structure. 

Given the range limitation of BEVs, it is important to understand to what extent peoples driving 

needs are fulfilled. And, if they are not fulfilled, can this be mitigated by focussing on certain 
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usage scenarios until the technology is further developed? In this thesis I utilize GPS measured 

driving data to analyse three topics: 

 How well driving is fulfilled by BEVs with common range limitations, and if they, given 

the low cost of operation, can have a lower TCO than conventional cars. A special focus 

here is on multi-car households, where we identify different usage patterns for different 

vehicles in the household. This topic is further extended into analysing how households 

adapt to the use of a real electric car. 

 What is the consequence of using three common probability distributions to analyse 

driving data with respect to two important measures, being the days requiring 

adaptation for BEVs, and electric drive fraction, for PHEVs? 

 How is existing charging infra-structure in Sweden used? 

Throughout the analysis, I take a user’s perspective in the sense that I analyse the driving need 

and economics of the user of a BEV, rather than optimizing average battery sizes for the whole 

car fleet.  
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2 ON THE SUSTAINABILITY OF ELECTRO-MOBILITY 
 

The underlying motivation for academia to interest itself in electro-mobility, and the underlying 

reason for society to motivate subsidies to electro-mobility is that it may bring about a more 

sustainable mobility system. Sustainable mobility, as a broader concept, can be visualised in 

ways such as public transport, car sharing, car pools and demand management through e.g. re-

designing cities. Though all of these approaches may be employed in lieu of maintaining the 

current car-based society, the car, as well, has its own merits. One is simply that societal 

structure is well adapted to the car, which means there are stakeholders, such as industry, that 

can be employed in the service of facilitating the diffusion of the technology. Another is that the 

car offers a utility that none of the other solutions fully does, which is the possibility to live away 

from urban and sub-urban areas while maintaining access to these areas, and vice versa. Note 

though, that the fact that I recognize these merits of the car, does not mean I think the car is a 

perfect solution that should be defended in all cases. I do, for example, question the wide use of 

cars inside cities, and I believe much of today’s travels, especially for commuting, could, and 

should, be replaced by public transport. However, given the present focus on electro-mobility, 

let us consider some of the sustainability implications of the technology. 

The two most common environmental arguments for BEVs are that they have no local emissions, 

thus reducing urban pollution, and that they have lower overall CO2 emissions compared to 

conventional cars. The counter-argument from an environmental perspective are usually two-

fold, firstly that current batteries are dependent on rare earth minerals that are sometimes also 

mined under bad working conditions, and secondly, that the overall CO2 emissions are highly 

dependent on the energy system and may not be lower in some circumstances, such as having 

coal on the margin. All of these points are valid, though especially the later one can be discussed 

since many electricity systems are not pure coal, and there may be other energy sources than 

coal on the margin. Furthermore, what is relevant from an energy system point of view, is what 

energy system we have in 30-40 years when electric cars may have a large market share, and not 

what energy system we have today.  

It should be emphasized that the electric car is a technical solution to an environmental problem, 

compared to a large-scale increase of public transport or demand management, it is thus an end-

of-pipe solution. This means that it will retain its own problems with material use, large energy 

use, and a lock-in in a car-based society. If a lock-in in a car-based society is good or bad is a 

matter of perspective, but when it comes to material use and scarce minerals we need to keep in 

mind that some of these are mined in Congolese mines using child workers. In 2015, at least 80 

miners died in these mines [8]. Given the large amounts of cell-phones and laptops produced, 

this should not all be attributed to the electric car though. 

The automotive industry directly generates 6.3% of European GDP, and even more due to ripple 

effects in connected industries [9]. This means it is a significant part of the economy a strong 

decline in car use would have negative consequences for society on both short and semi-long 

term. A transition to an electric car fleet would preserve this industry and its turnover, thus 

disrupting society a lot less than other ways to clean up the transport sector.  
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3 DATA AND METHODOLOGICAL BACKGROUND 
 

This research is based on real-world data sets. Throughout the papers, we use seven data sets, of 

which I am the main analyst of four. Five of the seven data sets consist of GPS measured driving 

data, one of surveyed driving data, and one of charging infra-structure data. Table 1 contains an 

overview of the driving data sets used, and Table 2 an overview of the charging data used. 

Especially the Swedish Car Movement Data (SCMD) should be highlighted, this data set consist of 

cars which were randomly sampled from the national vehicle registry and then had its drivers 

enquired for participation in the measurement project. Up until recently, large data sets with 

representative driving has not been widely available to researchers. Discourse concerning BEVs 

in electro-mobility conferences and workshops tend to focus on trip distances rather than daily 

distances and are occasionally based on survey data that systematically under-count total 

driving distance [10]. Furthermore, if one, for simplicity, consider average driving distance, 

either for individual drivers, or for the whole fleet, these averages tend to be below the range 

limitation of BEVs. However, they do not catch how often the range limitation is actually 

breached given current movement patterns. That we use real-world GPS measurements over 

several months enables us to make statements about how often individual drivers will be limited 

by the range of a BEV instead of national or fleet averages of the same measure, in the context of 

driving data, this is what we call user’s perspective. The present research draws its main value 

from this data and our focus on individual driving patterns. 

Table 1 Description of driving data sets 

 Location Collection 

Method 

Sample 

Size 

Avg. 

Observation 

period 

Extra information Ref. 

SCMD1 Sweden GPS 429 58 days  [11] 

SCMD2 
Sweden GPS 130 74 days 

Contain 65 two-car households 

with both cars measured. 

N/A 

SCMD3 Sweden GPS 50 1061days Subset of SCMD2, one car replaced 

by a BEV in each household. 

N/A 

MoP Germany Survey 6339 7 days  [12] 

PSRC USA GPS 484 251 days  [13] 

Winnipeg 

data 

Canada GPS 72 216 days  [14] 

 

                                                             
1 The full data set contain 25 households, however as of the writing of this thesis, only 10 households have finished 
their measurements and been pre-processed enough for analysis. The average observation period reflects these 10 
households. 
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Table 2 Description of charging data set 

 Location Number of 

50 kW 

chargers 

Avg. Number of 

charging events 

Extra information Ref. 

Charging 

data 

Sweden 43 812 Licensed under CC3.0, attributed to Nobil, 

Enova, Norway2. 

[15] 

 

Like all data sets, GPS measurements have limitations. A GPS may take time to find its location 

after the car is started and occasionally they may lose satellite reception, resulting in longer trips 

being cut up in sequences of small trips. The lost distance driven in the data can often be 

recreated due to knowledge of geographical position at start of different trips (see [16] for 

details). However, this leads to a lower accuracy when it comes to single trip analysis and 

location analysis. In all the results presented here, we have aggregated trips to daily distances, 

this leads to accurate distance measurements on individual days since the driven distance is 

either not lost, or can be recreated when it has been lost. This also effectively means that we 

assume charging once a day in most cases (overnight charging). A key quantity is the number of 

days that a user drives longer than the range limitation, we call this quantity ‘days requiring 

adaptation’ (DRA), this measure is directly obtained from the daily driving distances for each 

user. For comparison, the DRA for a vehicle is then scaled to annual basis for all individuals in 

those data sets that have a long enough measurement period to perform a direct extrapolation 

(e.g. SCMD1, PSRC). 

In the German data which has a short measurement period of seven days we have assumed that 

daily driving distances follow a Log-Normal distribution: 

𝑓(𝑟) = exp[− (ln 𝑟 − 𝜇)2 (2𝜎2)⁄ ] /(𝑟√2𝜋𝜎) 

From this, the probability for a DRA can be calculated as the integral summed from the range 

limitation to infinity: ∫ 𝑓(𝑟)d𝑟
∞

𝐿
=  1 − 𝐹(𝐿). The annual number of DRA can then be scaled up as 

𝐷(𝐿) = 365 (
𝑛

𝑁
) [1 − 𝐹(𝐿)] where 

𝑛

𝑁
 is the share of driving days in the measurement period. 

Further methodology relating to the different parts of my research follow in each part in the 

research summary below. 

  

                                                             
2 CC3.0 License: https://creativecommons.org/licenses/by/3.0/legalcode, Nobil, Enova, Norway: 
http://info.nobil.no/index.php/api/66-api-informasjon  

 

https://creativecommons.org/licenses/by/3.0/legalcode
http://info.nobil.no/index.php/api/66-api-informasjon
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4 RESEARCH SUMMARY 

4.1 BATTERY ELECTRIC VEHICLES IN MULTI-CAR HOUSEHOLDS 
 

Given no adaptation compared to conventional car usage, a large fraction of users will have 

problems fulfilling their driving need. Figure 1 uses the SCMD1 data and shows the share of 

users with a certain number of days requiring adaptation (DRA), that is days where they would 

drive over the range limit w.r.t. range. For a common range of 120 km a majority of users would 

need to adapt at least once a month, with more than 20% adapting more than once a week. The 

group with no DRA increases approximately linearly, adding another two percentage units per 

extra 10 km of range. Specifically, a BEV with 230 km of range would be needed for half the 

users to fulfil all their driving, and 400 km would be needed for 79% of the users to fulfil all their 

driving. This raises the need to identify specific user groups where driving need could more 

easily be fulfilled. 

 

Figure 1 Share of cars with different number of DRA as a function of range in the SCMD1 data. The categories are: cars 
that fulfil all driving (blue), cars with 0-1 DRA per month (cyan), cars with 1-2 DRAs per month (green), cars with 0.5-
1 DRA per week (magenta), and cars with more than 1 DRA per week (red). 

One way to circumvent the range limitation of BEVs is to adopt them in multi-car households. 

The line of argumentation for BEVs in multi-car households builds on two assumptions. The first 

assumption is that households have cars for different purposes; where one car is used for 

towing, longer trips, and when transporting more people, while another car is used for shorter 

everyday trips. The second car usage scenario could be satisfied by a BEV more easily. The 
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second assumption is that households may be able to shift trips between the cars to circumvent 

the range limitations of the BEV. In Paper 1, we focus on the first assumption. 

Specifically, in Paper 1 we address the following two questions: Are the second cars in a multi-

car household better suited as BEVs from a driving pattern point of view? And taking into 

consideration total cost of ownership, are these BEVs economical compared to conventional 

vehicles? Here we define a first car as the car in a household that has the highest annual VKT, 

while the second car is the car with a lower annual VKT. 

Figure 2 shows the share of users with no DRA, and with 12 DRA per year separated on first car, 

second car, and all cars in the SCMD1 data. The group with 12 DRA per year thus represents a 

group that has to accept some adaptation of their driving. Here it is clear that second cars are 

better adapted to be replaced by BEVs compared to first cars, for a range of 120 km, around 30% 

of second cars fulfil all their driving compared to first cars, where only 5% fulfil all their driving. 

It is also noteworthy that a focus on second cars only, would yield as high user shares that fulfil 

all their driving as a focus on all cars, while having this user group accept adaptation for 12 days 

per year, or once a month. 

 

Figure 2 Share of vehicles w.r.t. range for an adaptation acceptance level of zero days, as well as maximally 12 days 
per annum (blue lines, black lines, respectively) for first cars, second cars and all cars (dashed line, dashed-dotted line, 
and full line, respectively), SCMD1 data. 

However, second cars are by definition those cars that have a lower annual VKT. There is thus a 

possibility that a focus on cars with low annual VKT would be an as good, or better, group for 

adopting BEVs. This is undesirable, as a BEV has a high investment cost and a low operational 

cost, thus you would want cars with a high annual VKT to be replaced by BEVs, as these could 
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more easily economize compared to conventional cars. To investigate this, we calculate the total 

cost of ownership (TCO) for using a BEV, a gasoline car, and a diesel car, for users that have 

driving patterns according to SCMD1. The full parameter list and the equations we use for the 

TCO calculation can be observed in Paper 1, however the important aspects are that we impose a 

cost for DRAs reflecting the cost of a rental car, a cost per kWh for the battery, and that we use 

economic parameters for 2020, as they are projected by a national survey into clean transport in 

Sweden [3]. Our choice to include a cost for DRA means that cars not only need a high annual 

VKT, but also a low number of DRAs to economize as BEVs. It is also notable, that the economic 

conditions in Sweden are significantly more favourable to BEVs than in Germany, this is due to 

an included direct subsidy in Sweden, as well as cheaper electricity and more expensive gasoline 

and diesel compared to Germany. In Figure 3 we show the cumulative share of first cars, second 

cars, and cars in one-car households (single cars), that have a lower TCO when using a BEV 

compared to the cheapest alternative of a gasoline and diesel car w.r.t. accepted number of DRAs 

for a range of 120 km. The SCMD1 data is displayed in the left sub-panel and the German data in 

the right sub-panel. In both cases the second car perform better than the first car, though in the 

German case both categories have very low number of economical cars due to the cheaper gas, 

more expensive electricity, and lack of direct subsidy in Germany compared to Sweden. For a 

harsh requirement of no adaptation, almost 14% of Swedish second cars are economical as 

BEVs. This share would have been higher with a milder cost for DRA, though then the gap 

between first and second cars would start to close as well. 

 

Figure 3 Share of economical BEVs w.r.t car category and less than specified number of DRA. The shares are calculated 
as quotients of all cars in a specific car category using a range of 120 km. SCMD1 results to the left, German results to 
the right. 

The result from Paper 1 shows that in the general car fleet, a low percentage of cars would fulfil 

their driving need. However, if focussing on second cars in multi-car households, a more 

substantial share (30%) of cars fulfil all their driving. When imposing a high cost for DRAs, a 

rental car cost for these days, and demanding that the BEV have a lower TCO than a conventional 

car, almost 14% of second cars manages to achieve this. This means that given range limitations 

of around 120 km, a focus on multi-car households is warranted. This could be part of 

information campaigns from both industry and policy makers. 

In Paper 3 we analyse one of the unanswered questions from Paper 1, that is, how much do 

households actually adapt their driving when adopting a BEV. In this study we first measured 

the driving of 65 two-car households in Western Sweden (SCMD2). These households were 
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randomly selected from the vehicle registry for enquiry of participation with some selection 

criteria. These criteria were that the households should have two cars, both should be used for 

commuting, and the cars had to be restricted in terms of motor power, size and age. In the 

second data set (SCMD3) a subset of 25 of the original 65 households were measured again, but 

with one car of their choice replaced by a Volkswagen e-Golf with a 24 kWh battery. The 

marketed range of the car according to the NEDC driving cycle used in Europe is 190 km, 

however the EPA driving cycle used in North America rates it at 130 km, while our users has 

stated a usable range of up to 120 km during interviews. However daily variations in a number 

of factors, such as driving speed, temperature, and humidity, can vary the actual range from 

around 100 km to 140 km. For the comparisons made here, we have chosen to use a range of 

120 km. As of the writing of this thesis, data collection is still ongoing for some of the 25 

households, and some others need additional pre-processing of the data before analysis. So the 

results here refer to 10 households. These 10 were using their electric car for 3-4 months during 

the fall-winter of 2015. We use the terminology ‘replaced car’ for the conventional car in BRD2 

that the households chose to not use during SCMD3, ‘electric car’ for the Volkswagen e-Gold, and 

‘persistent car’ for the car that remained in the household over both measurement periods. 

A key feature of the data used here is that they come from households who did not themselves 

take the initiative to obtain an electric car. Instead a selection of the original 65 households was 

presented with the option of doing so, to which the vast majority answered positively, and thus, 

cannot be considered early adopters, but instead would represent an early majority, using the 

terminology of Rogers (2003) [17]. In this sense, our study differs from most other travel 

measurements of electric vehicle users. Note however, that since the sample size is very small in 

our study, the results should be considered as illustrative of possible behaviours rather than 

representative of car users in general. 

Note that in some cases the households have acquired new cars in-between the two evaluation 

periods, thus the EV may have replaced a different car then the one actually driven in the 

comparison period, or the persistent car may have changed between the periods. In these cases, 

we have designated replaced and persistent car such that the person in the household who 

mostly (>90% according to interview results) drove the respective car in the comparison period 

would drive the corresponding car in the evaluation period. This also means that the commuting 

distances should be consistent for the replaced-EV and persistent-persistent cars in the two data 

sets, assuming no changed behaviour or optimization of EV usage. Thus, we attribute the 

changes in commuting distances, or total distances between the EV and the replaced car to 

adaptations the household has made given the new situation of having one EV and one 

conventional car. 
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Figure 4 Distribution of daily driving distances for the EV and the replaced car. The top left figure displays the 
average of all ten households, the other three figures display some typical results. Blue colour marks the 
replaced car, light brown marks the electric car, and dark brown shows overlap between the two car types. 

In order to judge how much, and in what way the households change their driving behaviour we 

have analysed the distribution of daily driving distances. As in Paper 1, we aggregate driving 

distances to daily basis and compare the driving distances between the household car types. 

Figure 4 show these distributions of daily driving distances as normalized histograms for the 

electric car, and the conventional car it has replaced. The top left sub-panel show the average 

distribution over all the households, while the other sub-panels contain three interesting 

individual results. In the top left sub-panel we can see that there is a tendency for the EV to take 

driving tasks within a fairly narrow range of around 40 km to 70 km, while the replaced car 

increases its driving in the other ranges. Thus the electric car both reduces the amount of long 

distance trips (70-140 km) of the replaced car, and increases the number of short distance trips 

(0-30 km) of the same. This might represent both an effect of range anxiety and a wish to utilize 

the EV more. The top right figure shows an example of a household that to a large extent keeps 

the same driving distances for the EV as for the replaced car, this is also a case of a typical 

commuting car. The bottom left and bottom right contain households where the electric car to a 

large extent have increased and decreased its driving compared to the replaced cars, 

respectively. Most households have behaviours in-between these three examples, however the 

three examples show the heterogeneity of behaviour. 

By extrapolating the driven distances in the two measurement periods to annual driving 

distances we can obtain the fraction of total household distance driven by the EV in the SCMD3 

data, and the corresponding fraction for the replaced car in the SCMD2 data. This, as well as the 
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fraction between them, are shown in Table 3. In most cases, the adjustments in driving due to 

the adoption of an EV is small, with three households lowering their driving of the EV compared 

to the replaced car. Among the others, there are two with low-moderate increase of driving 

distance (12%), and one with very large increase of driving distance (160%). In general, it 

cannot be said that households overall increase their driving of the EV compared to the replaced 

car. 

Table 3: Share of total household driving distance taken up by the EV in the evaluation period, the replaced car in the 
comparison period, and the fractional increase of driving for the EV compared to the replaced car. 

EV Replaced car Fractional increase 

65% 63% 2% 

32% 29% 12% 

52% 20% 160% 

59% 59% -1% 

45% 47% -4% 

45% 42% 7% 

50% 48% 3% 

35% 34% 4% 

58% 52% 12% 

57% 63% -8% 

 

When interpreting the results from Paper 3, we see that it is not unrealistic to assume a low 

degree of adaptation, this has implications for how to interpret the results of Paper 1, where we 

would focus more on the results relating to accepting few number of DRAs instead of many, it 

also motivates having a high cost for DRA. However, to make a refined statement about 

households’ willingness to adapt, deeper analysis needs to be performed on trip level, this will 

be part of my upcoming research. 

A reasonable criticism against Paper 1 is that 120 km is a quite low range to assume for EVs in 

2020. However, this range category will remain relevant in the future as well. Even though cost 

for batteries may decrease over time, they will remain a large part of the full car cost, and large 

batteries that can run car for 300 km may not be relevant in all usage scenarios, in those cases it 

may be desirable to keep the car investment cost low. Our results will thus remain relevant to 

highlight that different battery ranges will have market potential in the future. Furthermore, 

there may be usage scenarios, such as strong cold, where specific battery technologies could be 

desirable. In the case of cold it could be Ni-MH, which performs better in cold climate compared 

to Li-Ion, but is twice as heavy per kWh. In these cases, knowledge that low range is sufficient in 

some cases can enable the use of these alternative battery technologies. 
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4.2 ON THE DISTRIBUTION OF DAILY TRAVEL DISTANCE 
 

In the previous analysis we chose to model the German data with a Log-Normal probability 

distribution. As briefly outlined in Paper 1, this choice is not obvious, and there are several 

distributions that could be considered for modelling daily driving data. The choice of 

distribution may also have implications for results obtained. Especially when it comes to electric 

vehicles where a researcher could be interested in either days requiring adaptation for BEVs, or 

electric drive fraction for PHEVs. These measures are mainly influenced by, respectively, 

particularly long, or short, driving; and the choice of distribution would mainly affect predictions 

of long distance (the tail of the distribution) and short distance driving.   

Earlier literature has argued that driving distance data follow peaked and right-skewed 

distributions, such as the Weibull, Log-Normal and Gamma distributions. Specifically, Greene 

[18] and Lin, et al., [19] analyse two data sets and argue that the Gamma distribution is the most 

suitable for driving data. However, there are other findings, such as that from Blum (2014) [20] 

and Plötz et al., (2012) [21] who argue that the Log-Normal distribution provides the best fit for 

most drivers. Thus, further research is required to judge not only the overall best distribution 

for driving data, but also to investigate the effect of choosing one distribution over another for 

common measures relating to electric vehicles. 

In this study, we use four data sets to analyse three probability distributions with respect to 

daily driving data. The distributions analysed are Log-Normal, Weibull and Gamma: 

Log-Normal 𝑓(𝑟) = exp [−(ln(𝑟) − 𝜇)2 (2𝜎2)⁄ ] (𝑟√2𝜋𝜎)⁄  

Gamma 𝑓(𝑟) = 𝑟𝑘−1exp [−𝑟 𝜃⁄ ] (𝛤(𝑘)𝜃𝑘)⁄  

Weibull 𝑓(𝑟) = (𝑘 𝜆⁄ )(𝑟 𝜆⁄ )𝑘−1exp[−(𝑟 𝜆⁄ )𝑘] 

The data sets used for analysis is SCMD1, PSRC, the Winnipeg data, and the German data. The 

data sets have complementary properties in that The German data set has a large number of 

users and short measurement period, the Winnipeg data have few users, but a long 

measurement period, and the SCMD1 and PSRC data fall in-between these. That the data sets are 

from different countries with different geographical settings make our results more robust. As 

outlined above, we focus on the following two questions: 

1. Which is the best overall distribution for daily driving data?  

2. What consequence does the choice of one distribution have on the results obtained when 

calculating electric drive fraction for PHEVs, and days requiring adaptation for BEVs? 

We estimate the parameters for the probability distributions by maximum likelihood estimates. 

In order to judge the best overall distribution, we employ four Goodness of Fit (GOF) measures. 

These are the: (1) Akaike information criterion (AIC), a penalized log-likelihood where AIC =

−2 LL + 2 (𝑝 + 1), 𝑝 is the number of model parameters and LL the log-likelihood; (2) the root 

mean squared error RMSE = ∑ (𝑦𝑖 − 𝑓𝑖)2 /𝑛𝑖 , (3) the mean average percentage error MAPE =

∑ |(𝑦𝑖 − 𝑓𝑖)/𝑓𝑖| /𝑛𝑖 , and (4) the χ2 statistic χ2 = ∑ (𝑦𝑖 − 𝑓𝑖)2 /𝑓𝑖𝑖  where 𝑛 is the number of driving 
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days, 𝑦𝑖  the observed and 𝑓𝑖 the expected value at 𝑟𝑖. We calculate the GOF for each driver in each 

data set separately. 

Table 4 shows the share of users for which a given distribution performs best according to each 

of the four GOF measures for the four data sets. Contrary to earlier research, we find a low 

performance for the Gamma distribution, and a high performance for either the Log-Normal 

distribution or the Weibull distribution depending on the data set used. 

Table 4 Summary of goodness of fit statistics. The best distribution for most users in bold face. 

 Mobility Panel Winnipeg Sweden Seattle 

Goodness-
of-fit 

ln N Weib. Γ ln N Weib. Γ ln N Weib. Γ ln N Weib. Γ 

AIC 32,3% 59,9% 7,8% 40% 35% 25% 34,7% 39,2% 26,1% 16,0% 71,6% 12,4% 

RMSE 74,0% 12,5% 13,5% 36% 35% 29% 43,6% 37,3% 19,1% 36,8% 35,7% 27,5% 

χ2 88,2% 9,1% 2,7% 17% 41% 41% 29,6% 33,8% 36,6% 68,9% 18,3% 12,8% 

MAPE 75,2% 21,9% 2,9% 9% 51% 40% 19,8% 44,5% 35,7% 65,0% 24,0% 11,0% 

 

To analyse the second question above we calculate the number of DRA for each distribution 

equivalently to the description in Section 3. Confidence intervals (95%) are generally calculated 

as Clopper-Pearson intervals, the exception is mean and median calculations for the DRA and 

EDF estimates where they are calculated by BCa bootstrap. Electric drive fraction is calculated 

by simulating 50000 driving days for each user and distribution, this individual EDFs are then 

used to form   mean and median EDFs, as well as shares of users with more than 50% and 80% 

electric drive fractions. 

In Tables 5 and 6 we present estimates of DRA in the four data sets for the different 

distributions, and using three range limitations of 100 km, 150 km, and 200 km. Table 5 shows 

the percentage of users with number of DRA<1, DRA<12 and DRA<52 for three range limitations 

(100, 150, 200 km). Similarly, Table 6 shows the mean and median percentage of DRA for the 

same range limitations. Though there are differences among all three distributions, it is clear 

that Log-Normal differ more in prediction of share DRA from Weibull and Gamma, then Weibull 

and Gamma does from each other (especially for mean and median). What should especially be 

noted, is that Log-Normal estimate a higher fraction of DRAs than Weibull and Gamma. Consider, 

for example, the share of users with DRA<1 for a range of 150 km in the SCMD data. Log-Normal 

predicts 7.9% of the users to have so few DRA, while Weibull and Gamma predict 21.2% and 

17.5% respectively. Thus the choice of distribution has a large impact on results when 

considering DRA. If one wishes to have a conservative estimate of the number of users who 

would fulfil their driving with a BEV, one might wish to choose to model driving data with the 

Log-Normal distribution. It should also be noted that the empirical values for mean and median 

in Table 6 to a larger extent agrees with the estimate from the Weibull and Gamma distributions.  

Similarly, Tables 7 and 8 show the estimated electric drive fractions for the different data sets 

and distributions using common range limitations for PHEVs of 25 km, 50km, and 75 km. Table 

7 show the fraction of users with an EDF above 50% and 80%, while Table 8 show the mean and 

median electric drive fraction. Again we see that Log-Normal differ more from the other results 

than Weibull, Gamma and the empirical calculations differ from each other. Log-Normal 

consistently estimate lower EDF than the other distributions and the empirical calculation. This 

means that a researcher interested in a conservative estimate of the EDF might wish to choose 
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the Log-Normal distribution over the others. However, that the other distributions and the 

empirical calculation gives similar results hints at that they may give a more accurate prediction 

of what the electric driving share would be for these users, if they were provided with a PHEV. 
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4.3 USAGE OF CHARGING INFRASTRUCTURE IN SWEDEN 
 

An alternative to focussing on multi-car households to deal with the range limitation, as 

suggested in Papers 1 and 3, is to extend the range by usage of charging infra-structure. As 

outlined in the introduction, public charging can either be slow (below 50 kW) or fast (50 kW or 

higher). The slow and fast chargers serve different purposes in that the slow ones are more 

usable when a car stands idle for several hours at a specific location, such as work. While the fast 

chargers best serve their purpose in situations where a user would not want to stay more than 

approximately half an hour, such as a diner or viewpoint along a highway, though not to say that 

fast chargers don’t have a function inside cities as well. In Paper 4 which strictly analyse fast 

charging, my co-authors have developed a queueing model for estimating the needed number of 

fast chargers in Germany. This model is valuable because it estimates the number of chargers, 

rather than the position of chargers which most of earlier work has [22]–[24]. My contribution 

to the paper has been to analyse charging data from fast chargers in Sweden to verify some of 

the assumptions of the model, while also presenting general charging usage. 

The total number of fast chargers in Sweden amounts to 121 Chademo chargers and 117 CCS 

chargers (some at the same charging site) [25] for a BEV fleet of 6600 cars [26], yielding 

36 chargers per 1000 BEV, though less charging sites per BEV. Charging infrastructure in 

Sweden is either provided by the municipalities and is free of charge, or by one of the big power 

utilities where a user has to pay a fixed per-minute price for charging. The charging data we use 

here consists of 43 fast chargers (Chademo and CCS) and has been gathered over 14 months 

from 2014-12-30 to 2016-03-09  [15]. When the data has been cleaned by removing registered 

charging events that are shorter than 3 minutes or longer than 3 hours it contains 34,934 

charging events. This equates to 1.9 charging events per charger and day. The results presented 

here are probability densities which have been calculated using kernel density estimates. The 

results further use all charging events for all chargers, so they are averages in a sample where 

there may be large heterogeneity in usage. 

Figure 5 shows the distribution of charging 

time for a car standing by the charging station. 

The peak is around 25 minutes, which is below 

the expected time to charge from empty battery 

to 80% state of charge, and logically most cars 

would not arrive with completely empty 

battery, thus requiring a shorter time than 30 

minutes at the station. After this point, the 

charging time has an approximate exponential 

decrease. The model in Paper 4 assumes an 

exponential distribution for the charging times 

and the empirical data do not support this 

assumption over the whole spectrum of charging 

times. It can however, be interpreted to support 

the assumption pf exponential distribution for 

charging times above 25 minutes. The model assumes a mean charging time of 30.3 minutes and 

this mean falls within the exponentially distributed part of the charging time spectrum. 

Figure 5 Distribution of duration of charging time 
(minutes) 
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Figure 6 shows the distribution of inter-arrival 

times for the fast chargers. That is, the time it 

takes from the arrival of one car, to the arrival 

of the second car to the charging station. The 

average behaviour resembles an exponential 

distribution, which the model also assumes, and 

thus the empirical data supports this 

assumption. We can also see tendencies to some 

inter-arrival times being more common than 

others, this is an effect of heterogeneity in how 

charging stations are used. A conclusion from 

this is that more thorough analysis of charging 

data should consider individual chargers rather 

than network averages, similar to how we 

analysed individual driving patterns rather than 

fleet averages in the multi-car household analysis. 

Figure 6 could also be interpreted as a measure of how much the charging infrastructure is used 

in Sweden, which is not very much, as idle times for the stations are in the order of dozens of 

hours. If Figure 6 is also interpreted in tandem with Figure 5, we see that the probability of 

having to wait at a charging station is low. Note that most charging events occur during the day 

(see Paper 4 for details) which slightly increases the probability of experiencing a queue. 

Another measure of how much the charging network is used, is the number charging events per 

car. Given 6600 BEVs in Sweden, and 34934 charging events on our 43 chargers out of the total 

238 fast chargers in Sweden, we can crudely calculate the number of charging events per BEV 

per year to approximately 25. One can expect though, that this number is unevenly distributed 

among the BEVs. 

 

  

Figure 6 Distribution of inter-arrival time for the 
charging stations (minutes) 



22 
 

5 REFERENCES 
 

[1] IPCC, “Summary for Policymakers,” in Climate Change 2014: Impacts, Adaptation, and 
Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the 
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, C. B. Field, V. R. 
Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. 
Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, and 
L. L. White, Eds. Cambridge, United Kingdom, and New York, NY, USA: Cambridge University 
Press, 2014, pp. 1–32. 

[2] N. Hill, C. Brannigan, R. Smokers, A. Schroten, H. van Essen, and I. Skinner, “Developing a 
better understanding of the secondary impacts and key sensitivities for the decarbonisation 
of the EU’s transport sector by 2050 - EU-Transport-GHG-2050-II-Final-Report-29Jul12.pdf,” 
Jul. 2012. 

[3] SOU 2013:84 Fossilfrihet på väg. 2013. 
[4] The Cost of Air Pollution. OECD Publishing, 2014. 
[5] E. Loveday, “2015 Volkswagen e-Golf Gets EPA Rated - 83 Mile Range, 116 MPGe.” [Online]. 

Available: http://insideevs.com/2015-volkswagen-e-golf-gets-epa-rated-83-mile-range-
116-mpge/. [Accessed: 27-Apr-2016]. 

[6] F. Lambert, “Tesla Vice President says Model 3 reservations are ‘approaching 400,000’, real 
success will be delivery,” Electrek, 14-Apr-2016. . 

[7] D. King, “Nissan has now sold 200,000 Leaf EVs around the world,” Autoblog. [Online]. 
Available: http://www.autoblog.com/2015/12/14/nissan-sold-200000-leaf-evs/. 
[Accessed: 25-Apr-2016]. 

[8] “THIS IS WHAT WE DIE FOR” HUMAN RIGHTS ABUSES IN THE DEMOCRATIC REPUBLIC OF 
THE CONGO POWER THE GLOBAL TRADE IN COBALT,” Amnesty International. 

[9] “Facts about the Automobile Industry | ACEA - European Automobile Manufacturers’ 
Association.” [Online]. Available: http://www.acea.be/automobile-industry/facts-about-the-
industry. [Accessed: 25-Apr-2016]. 

[10] P. Stopher, C. FitzGerald, and M. Xu, “Assessing the accuracy of the Sydney Household 
Travel Survey with GPS,” Transportation, vol. 34, no. 6, pp. 723–741, Jun. 2007. 

[11] S. Karlsson, “The Swedish car movement data project Final report.,” Chalmers University 
of Technology, Report, 2013. 

[12] “MOP. Mobilitätspanel Deutschland 1994-2010,” Karlsruhe, Project conducted by the 
Institute for Transport Studies at the Karlsruhe Institute of Technology (KIT), 2010. 

[13] National Renewable Energy Laboratory, “Puget Sound Regional Council Traffic Choices 
Study,” 2008. 

[14] R. Smith, S. Shahidinejad, D. Blair, and E. L. Bibeau, “Characterization of urban commuter 
driving profiles to optimize battery size in light-duty plug-in electric vehicles,” Transp. Res. 
Part Transp. Environ., vol. 16, no. 3, pp. 218–224, May 2011. 

[15] Nobil, 2015. [Online]. Available: www.info.nobil.no. [Accessed: 01-Nov-2015]. 
[16] L.-H. Björnsson and S. Karlsson, “Plug-in hybrid electric vehicles: How individual 

movement patterns affect battery requirements, the potential to replace conventional fuels, 
and economic viability,” Appl. Energy, vol. 143, pp. 336–347, Apr. 2015. 

[17] E. M. Rogers, Diffusion of Innovations, 5th Edition, 5th edition. New York: Free Press, 
2003. 

[18] D. L. Greene, “Estimating daily vehicle usage distributions and the implications for 
limited-range vehicles,” Transp. Res. Part B Methodol., vol. 19, no. 4, pp. 347–358, Aug. 1985. 

[19] Z. Lin, J. Dong, C. Liu, and D. Greene, “PHEV energy use estimation: validating the gamma 
distribution for representing the random daily driving distance,” in Transportation Research 
Board 2012 Annual Meeting. http://pubsindex. trb. org/view/2012/C/1129781, 2012. 

[20] A. Blum, “Electro-mobility: statistical analysis of human mobility patterns,” Master 
Thesis, infernum, Wuppertal, 2014. 



23 
 

[21] P. Plötz, T. Gnann, and M. Wietschel, “Total ownership cost projection for the German 
electric vehicle market with implications for its future power and electricity demand,” in 7th 
Conference on Energy Economics and Technology Infrastructure for the Energy 
Transformation, 2012, vol. 27, p. 12. 

[22] T. D. Chen, K. M. Kockelman, and M. Khan, “The electric vehicle charging station location 
problem: a parking-based assignment method for Seattle,” in Transportation Research 
Board 92nd Annual Meeting, 2013, vol. 340, pp. 13–1254. 

[23] S. Ge, L. Feng, and H. Liu, “The planning of electric vehicle charging station based on Grid 
partition method,” in 2011 International Conference on Electrical and Control Engineering 
(ICECE), 2011, pp. 2726–2730. 

[24] A. Y. S. Lam, Y. W. Leung, and X. Chu, “Electric vehicle charging station placement,” in 
2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), 
2013, pp. 510–515. 

[25] “Power cirle - Laddinfra,” Laddinfra.se. [Online]. Available: 
http://laddinfra.se/start/statistik/. [Accessed: 25-Apr-2016]. 

[26] “Nära 17 000 laddbara bilar i Sverige,” Power Circle. [Online]. Available: 
http://powercircle.org/nyhet/nara-17-000-laddbara-bilar-sverige/. [Accessed: 25-Apr-
2016]. 

 




