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Abstract

A patrolling behavior is developed for a group of social robots used in a
hospital. The robots interact with humans and are used for edutainment
activities in the children’s ward of IPOL, Portugal. Based on centroidal
Voronoi coverage and extending existing ideas within robotic coverage, the
behavior is scalable in the number of robots and robust to robot failures,
allowing for exit and re-entry at run-time. Three types of experiments are
performed and measured in terms of a cost function for coverage efficiency,
and tested on different maps. Experiments are performed in simulation and in
reality with robots in an office environment similar to the real hospital. The
implementation works well in convex environments and one main challenge
is to make it work in a nonconvex environment as well. The chosen approach
uses virtual generating points, and other approaches are discussed with
potential for improvements by using the geodesic distance measure or discrete
graphs.
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1 Introduction

Robots are increasingly becoming part of everyday life. Although industrial
robots have been used for many years within production and automation, new
classes of social robots are leaving the factories behind to serve the public.
From the therapeutic Paro1 robot, resembling a cuddly toy, to Pepper2, ”the
first humanoid robot designed to live with humans”, social robots are designed
to interact with humans within education, healthcare, tourism and many
other fields[1], [2]. Two important technical aspects that separate many
social robots from their industrial ancestors are a) independent mobility
and b) human social interaction. Both of these functions are central to
the MOnarCH3 project, ”Multi-Robot Cognitive Systems Operating in
Hospitals”, which this thesis is a part of.

MOnarCH is a collaborative research project funded within the EU-FP7
framework4, including five European partner universities, a hospital and
three private companies. The purpose is to develop socially aware robots for
edutainment activities in the children’s ward of the Portuguese Oncology
Institute in Lisbon (IPOL) 5. The robots are currently being used at the
hospital, while continuous development is done by the partners. At École
polytechnique fédérale de Lausanne (EPFL), the DISAL6 group develops
algorithms for cooperative patrolling, human-aware navigation, sensor fusion
and interactive game playing.

1.1 Project aim

One planned functionality for MOnarCH is to have robots patrol the en-
vironment, searching for children who want to interact, as well as signs of

1http://www.parorobots.com
2https://www.aldebaran.com/en/a-robots/who-is-pepper
3http://monarch-fp7.eu
4http://ec.europa.eu/research/fp7/index en.cfm
5http://www.ipolisboa.min-saude.pt
6Distributed Intelligent Systems and Algorithms Laboratory, http://disal.epfl.ch
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unexpected events or emergencies. The purpose of this thesis project is to
develop the navigational parts of this behavior. Based on recent and related
research, the DISAL group wanted to apply Voronoi coverage (sec 2.2) for
this task. The behavior is to be tested with up to 4 robots in reality and
simulation, but must also scale well with larger numbers. The result of the
implementation is a new software package which will become part of the
MOnarCH repository.

The main research question is: How can Voronoi coverage methods be applied
for distributed coverage and patrolling in the MOnarCH project?

1.2 Requirements and limitations

Four requirements were stated during planning, presented in order of priority
for this project:

• Distributed calculation: No centralized controller may be used to direct
or make decisions for the group. The main motivation for this is to
create a robust system without a single point of failure. A single robot
may fail because of low battery charge or other software and hardware
errors, or it may be taken out of the group to perform other tasks, so
we cannot allow one of the robots to direct the whole system.

• Allow changing group size at run-time: Robots may enter and exit the
group during deployment, and the behavior should adapt to the current
group size and continue without interruption and without requiring a
restart or human intervention.

• Robustness to communication problems: Network quality may vary de-
pending on the target environment. It is valuable to test the algorithm
and routines developed for latency and packet loss.

• Nonobstructive behavior: For use in a hospital environment, it is
important that the robots do not obstruct other activities or block
paths and doorways for people. One example of when this may happen
is when two robots try to pass a doorway simultaneously from opposite
directions, they may block each other and cause a deadlock.

Some limitations are also stated, improving focus and leaving room for
extended study in the future:

• No recharge: The robots use batteries that need recharging from time
to time. This will not be accounted for in experiments and evaluations.
With a run time of up to 3 hours on a full charge, real experiments
will be conducted during a shorter time so that battery capacity is
not a constraint. Monitoring the battery levels and sending robots to
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recharge is also outside of the project, handled by a behavior manager
software on a higher level.

• Fewer obstacles: The test environment is an office space at the university.
The layout is similar to the target hospital environment, but with fewer
obstacles and people moving around. Static obstacles such as walls,
doors and furniture are present in both environments. Only walls are
present in simulation. Although there are humans in the environment,
there is no focus on human-aware navigation, which is a different part
of the MOnarCH project.

• No added noise: For distributed systems in general and robots in
particular, it is important to study system performance under less than
perfect conditions. Two important factors are network communication
(packet loss and latency), and navigation errors (due to imprecise
localisation and/or odometry). When running simulations, it is possible
to add arbitrary levels of noise for these factors, but this will not be
done during the project. During real experiments, there will naturally
be imperfect communication and positioning with the given hardware,
but no focus is put on how this impacts performance.

3



2 Theoretical framework

This chapter introduces some theoretical knowledge and research on which the
implementation is based. We start with a presentation of Voronoi diagrams
in the plane, and based on this we proceed to Voronoi coverage methods
used in robotics.

2.1 Voronoi diagrams

A Voronoi diagram1 is a subdivision of a Euclidean space according to a given
finite set of generating points2, such that each generating point is assigned
a Voronoi cell containing the space which is closer to this generating point
than to any other. An example is given in Fig. 2.1. For the purpose of this
thesis, only the 2-dimensional plane is interesting, but the Voronoi diagram
can also be constructed in higher dimensions by the same principles. The
following definition is given in [3, p. 148]:

Denote the Euclidean distance between two points p and q
by dist(p, q). In the plane we have

dist(p, q) :=
√
(px − qx)2 + (py − qy)2

Let P := {p1, p2, ..., pn} be a set of n distinct points in the
plane; these points are the sites. We define the Voronoi diagram
of P as the subdivision of the plane into n cells, one for each site in
P, with the property that a point q lies in the cell corresponding
to a site pi if and only if dist(q, pi) < dist(q, pj) for each pj ∈ P
with j 6= i. We denote the Voronoi diagram of P by Vor(P).

Each Voronoi cell is the intersection of a number of half-planes, and therefore
convex[4, p.20]. Each edge within a Voronoi diagram is equidistant to two of
the generating points, and is called Voronoi edge. A Voronoi diagram has

1The term Voronoi tessellation is sometimes used synonymously.
2also referred to as sites or generators
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Figure 2.1: A Voronoi diagram (left) and a centroidal Voronoi tessellation
(right), each with 30 generating points bounded by a square.

no natural outer bounds since the plane extends to infinity in all directions.
However, for the applications within this project, it will always be used within
a bounding polygon (a room or building) and illustrations will also include
boundary lines which are not part of the Voronoi diagram itself.

There are different ways to calculate the Voronoi diagram from a given set
of points in the plane, and Fortune’s sweep line algorithm[5] is optimal, with
complexity O(n log n) [3, p. 151].

Centroid and Area

The centroid is the center of mass of a shape or physical body. For a plane
figure with uniform density, it is positioned in the mean (x, y) position of
all points within the body. Given a closed, non-self-intersecting polygon
P, defined by its vertices {(x0, y0), (x1, y1), ..., (xN−1, yN−1)}, the area A and
centroid (Cx, Cy) of P can be calculated as given in [6]:

A =
1

2

N−1∑
k=0

(xk yk+1 − xk+1 yk)

Cx =
1

6A

N−1∑
k=0

(xk + xk+1)(xk yk+1 − xk+1 yk)

Cy =
1

6A

N−1∑
k=0

(yk + yk+1)(xk yk+1 − xk+1 yk)
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2.1.1 Centroidal Voronoi tessellations

A centroidal Voronoi tessellation (CVT) is a type of Voronoi diagram where
in each cell, the generating point has the same position as the centroid. An
example is shown in Fig. 2.1. The CVT has a wide range of applications
in science, some of which are described in [7]. In robotics, it is used in
particular because a CVT configuration is a local minimum for the locational
optimization cost function [6], [8] (see section 2.2.1) .

Calculating a CVT

Some methods to calculate a CVT are given in [7], in particular Lloyd’s
method, an iterative algorithm which inspired the implementation in this
thesis. Lloyd’s method can be used to deterministically construct a CVT
given a 2D plane and a set of starting positions[8]. The number of required
iterations depends on the number of generators, their starting positions, and
the termination condition. A sample termination condition might be ”each
generating point moved less than 0.1m in the last iteration”. With a given
bounding polygon P and k generating points, there can be several final states
depending on the starting positions, as shown in Fig. 2.3. Lloyd’s method is
described below and also illustrated in Fig. 2.2

Algorithm 1 Lloyd’s method, used to calculate a CVT

Given a polygon P and a set of k generating points at positions zi
loop

Construct the Voronoi diagram {Vi} for the points {zi}

Compute the centroid ci for each Voronoi cell Vi
Set each point zi to the position of its associated centroid ci
If this new set of points meets some convergence criterion, terminate.

end loop

2.2 Robotic Coverage

Robotic coverage concerns movement planning with the purpose of covering
an area, either by physically moving the robot or by positioning it such that
its sensors can be used within the area. Some applications include cleaning
robots sweeping a supermarket floor[9], demining robots scanning a field to
detect and remove explosives[10], or inspector robots sensing for damage on
jet turbine blades[11]. Coverage methods can be further classified according
to the type and dimensions of free movement, the number of robots involved,
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(a) Start configuration: t = 0 (b) t = 1

(c) t = 2 (d) t = 5

(e) t = 10 (f) t = 20

Figure 2.2: Lloyd iteration with 5 generators (colored circles) starting at
random locations. The centroid of each Voronoi cell is marked with an x.
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Figure 2.3: Three different CVT’s resulting from 7 generating points on a
square.

and other factors. Choset[12] provides an overview and classification of
coverage algorithms for mobile robots in the plane, up to 2001.

Multi-robot systems generally rely on distributed computation and commu-
nication, rather than centralized. A distributed model may be more difficult
to implement than a centralized one, but provides advantages for scalability
and robustness [6], and avoids having a single point of failure. In some
applications such as swarm robotics and sensor networks, a distributed model
is often the only option due to limited communication range, battery and
processing power.

When performing coverage in two dimensions, one common approach is to
calculate a cellular decomposition of the plane into polygon cells, and then
perform coverage in each cell [12]. With multiple robots, part of the problem
is to assign cells to robots in an efficient way.

2.2.1 Voronoi coverage

Voronoi coverage [6] is one approach used with multiple robots where the
target space is divided between the robots by forming a Voronoi diagram
based on their positions. Each robot is thus assigned one Voronoi cell to
cover. To divide the space evenly, a centroidal Voronoi tessellation is often
desirable, and some application of the Lloyd algorithm can be used to achieve
this [6]. Since robots cannot instantly move from one position to another,
the Lloyd algorithm may need to be adapted to the use case at hand and
the possible movement (sec 3.2.3).

Cost function

When performing Voronoi coverage, the locational optimization cost function
can be used to measure efficiency of coverage [6], [8]. A centroidal Voronoi

8



tessellation provides a local minimum for the cost function, expressed as
follows:

H(P) =

n∑
i=1

H(pi) =

n∑
i=1

∫
Vi

f(D(pi, x))φ(x)dx

With P the set of generating points pi, the cost H(P) is calculated by summing
H(pi) for all i. Each generating point pi has a Voronoi cell Vi, and the cost
calculation for pi is done by integrating over Vi the function f(D(pi, x))φ(x).
The x are the points in the Voronoi cell and the cost calculation has 3
parts:

• φ(·) is a density function, which can be used if different parts of the
space have different importance or weight. If no such weighting is
needed, a uniform density function φ(·) = 1 can be used[8].

• D(·) is the distance function between the generating point pi and a
given point x in Vi. A default choice is the Euclidean distance function,
but the geodesic distance is also a sensible option, in particular if the
environment is nonconvex [8].

• f(·) is a function to account for sensor reliability of a robot. With
increased distance, sensors are less reliable and therefore the cost should
increase [8]. The function should be smooth and nondecreasing[6].

For more details on the use of the cost function, see the implementation part
in sec. 3.2.2.

2.2.2 Nonconvex environments

One problem with a simple CVT algorithm is that it requires a convex and
obstacle-free environment to ensure that movement is always possible to
the centroids[13], otherwise it may not converge to a steady state. Most
real applications in robotics take place in nonconvex environments with
walls and other obstacles, which requires adaptations or different approaches.
Different types of environments, in 2D or 3D, as well as different types of
robots, movement and sensors, create a large number of related problems
with their own sets of solutions. Breitenmoser et al [8] replace the robots
with virtual generators to ensure convergence of the CVT algorithm, and
then use projections from virtual generators to the accessible space to solve
situations where the target is unreachable. In [14] Bhattacharya et al create
a Voronoi coverage based on the geodesic distance rather than the Euclidean,
ensuring that each robot is assigned a connected cell where it can reach all
the points without moving into the cell of another robot.
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2.2.3 Robotic Patrolling

Multi-robot systems can be used for surveillance and perimeter control,
extending the capabilities of human agents or replacing them altogether.
One important motivation is safety, since robots can be deployed in areas
that are risky or dangerous for humans to work in[15]. Another benefit is
economical, which applies more to this project: the use of robots enables
more frequent and extensive patrolling than might be affordable if done by
human personnel.

The goal of patrolling is to repeatedly visit a set of positions (waypoints)
and often to minimize the downtime between visits. Portugal [16] provides
an overview of patrolling algorithms, describing different strategies and opti-
mization criteria. Among these are the cyclic strategy where the each robot
in the group visits all the waypoints, compared to the partition strategy,
where each robot is solely responsible for its own subset of waypoints. Perfor-
mance evaluation is often based on vertex idleness (the downtime between
visits) and one may want to minimize the average idleness, or minimize the
maximum idleness for any vertex. Another suggested goal is to make the
frequency as uniform as possible between vertices, with the downside that
this becomes predictable and may be taken advantage of by an intruder
[16].

10



3 Methodology

This chapter introduces the hardware and software tools used during the
project, then it describes the implementation of algorithms and other main
parts of the project.

3.1 Hardware and Software

The hardware and software tools available were mostly predetermined by
what was already in use in the MOnarCH project. This section briefly
describes the robots and the software used during development.

3.1.1 The Mbot robot

The robot used in the project is named Mbot, designed and built by Por-
tuguese firms Idmind 1 and Selftech 2 in collaboration with the MOnarCH
consortium. There are two versions: the socially oriented (SO) and percep-
tion oriented (PO), built on the same design and looking almost identical
from the outside. However, the SO version is more complex and contains
hardware that the PO lacks, for example a touch monitor, Kinect camera
and AAXA P300 pico projector used for human interaction. Both versions
have an onboard computer used for navigation control (PC-NAV), and the
SO version also has a human-robot interaction computer (PC-HRI). The
PC-NAV runs Ubuntu Linux 12.04 LTS and ROS Hydro, with the mbot-ros
package3.

Their movement is omnidirectional, using 4 mechanum wheels independently
controlled by 4 motors. For obstacle detection, each robot has two laser
rangefinders (LRF) with a 5 m detection range, and 12 sonar sensors placed
in a ring around its body. It also contains a wireless router for network

1www.idmind.pt
2www.selftech.pt
3https://selftech.com/monarch/
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communication. The robot runs on batteries and is capable of docking
for recharge without human intervention, an important requirement for
autonomous operations over long time periods.

In this thesis project, only the SO robot and its PC-NAV functionalities
were used. A summary of information about the robot is given in Table 3.1,
for full details see [17].

3.1.2 ROS

The Robot Operating System (ROS)4 is a set of tools, libraries and con-
ventions used to develop robot software for different platforms. It is an
open-source, collaborative project dating back to the 2000’s, today main-
tained by the Open Source Robotics Foundation5. ROS has been adopted
on many levels and is used by hobbyists as well as educators and within
industrial, commercial applications. The MOnarCH project uses the 7th
release, Ros Hydro from 2013. The latest release was the 9th: Ros Jade
Turtle from May 2015.

actionlib

Actionlib6 is a ROS package which provides an interface to create and request
tasks for a robot. Some use examples are (1) movement to a target coordinate
or (2) performing a laser scan and returning the result. It uses a client-server
architecture where the client initiates an action by sending a goal message
to the server. The server may provide feedback messages in real time on how
the action is proceeding, and finally a result message if successful. An action
can also be preempted (canceled before being finished) by either sending a
cancel message or by sending a new goal to the same server. Within this
thesis project, the actionlib interface and axclient application were used
together with the move base actionserver to direct movement.

move base

Move base7 is a ROS package, built as an actionserver that gives access to
the navigation stack. It works as an interface between the application and
the robot’s path planner and hardware. In this project, an actionclient is
created in the application running on PC-NAV, and when the CVT algorithm

4www.ros.org
5www.osrfoundation.org
6http://wiki.ros.org/actionlib
7http://wiki.ros.org/move base
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has calculated a new centroid or movement target, the (x, y) coordinates
are sent as a move base goal to the actionserver. If the target coordinate is
feasible according to the environment map, the robot will attempt to move
there and take care of path planning and obstacle avoidance.

navigation by target (NBT)

This is a ROS package built within MOnarCH. It uses an actionserver to
navigate by continously following a target coordinate which may be updated
in real time. It creates a smoother movement and often reaches closer to its
target compared to move base. NBT works well in open spaces but lacks the
path planning around obstacles that move base has. It is used in the convex
coverage case where it performs better than move base, but cannot be used
in an environment with obstacles and walls.

3.1.3 Webots

Webots is a simulation software developed by Cyberbotics8, used for edu-
cation and professional development. It can realistically simulate a wide
range of hardware sensors, actuators, physical interactions as well as radio
communication, sound and light in three dimensions.

Webots has been extensively used in this project for running simulations and
navigation testing in 3D replica of the EPFL and IPOL environments. Testing
can be quickly set up and done safely thanks to the software simulation,
causing no wear on the robots, no hardware downtime, and no competition
with other users of the robots and the lab room. Webots integrates well with
ROS so that the code developed and tested with Webots can be directly
transferred and run on the real robots without modification.

3.1.4 Situational Awareness Module

The Situational Awareness Module (SAM)[18] is a software tool developed
within MOnarCH to handle communication between ROS nodes. It is built
on top of the ROS publish-subscribe architecture and adds some functionality
such as enforced identification of subscribers, limits the number of publishers
to 1 per communication channel, and enabling multi-master communication
required for developing group behaviors for MBot robots. SAM was used
in this thesis project for two purposes: (1) communicating robot positions
asynchronously over the tfPose slot and (2) communicating robots’ internal
states through message broadcast, on a new slot set up for this behavior.

8www.cyberbotics.com
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Size (H x W x L) 102 x 57 x 67 cm

Weight 49 kg

Battery autonomy >3 hours

Max velocity 2.5 m/s

Acceleration 1 m/s2

Emergency stop acceleration 3.3 m/s2

Table 3.1: Basic facts about the SO version of the mbot robot.

3.2 Implementation

This section describes how central parts of the project were implemented.
We start with the computation of the Voronoi diagram and the cost function,
then proceed with the algorithms used for CVT and patrolling. Finally, the
use of maps and waypoints are explained.

Most of the code was written in Python 2.7 and makes use of the packages
Matplotlib, NumPy, SciPy and Shapely. A minor amount of code was also
written in C++ because parts of the MOnarCH codebase is in C++.

3.2.1 Voronoi diagram computation

The desired implementation should be distributed and function without
central planning. It turns out that we do not need to calculate the complete
Voronoi diagram in one place, but it is sufficient if each robot can calculate its
own Voronoi polygon and centroid, to decide where to move next. Knowing
the static boundary and the positions of the other robots, each robot can
calculate the Voronoi edges and thereby its own polygon by iteratively
”cutting” pieces from the bounding polygon. This algorithm was devised
during the project and named ”polygon cutting”, see Algorithm 2 and Fig
3.1.

3.2.2 Cost function

Recall the cost function presented in sec. 2.2.1. For this project, the following
choices were made:

• φ(·) = 1 : a uniform density function is used since no weighting of
different areas is done.

• D(·) is set to the Euclidean distance function.

14



Algorithm 2 The polygon cutting algorithm, used to calculate a Voronoi
polygon

With r∗ the current robot,
R = {r1, r2, ...} the list of other robots, sorted by distance
P ← ∂Ω the static (convex) boundary
for all ri in R do

calculate l, the perpendicular bisector of (r∗, ri)
intersect l, with P, dividing P into p1, p2
determine whether r∗ is located in p1 or in p2
P ← px which contains r∗

end for
P is now the Voronoi polygon of r∗

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1: Polygon cutting algorithm illustrated. Starting with the full
room and the nearest generator, the Voronoi edge is used to cut away part of
the polygon, then repeated for each generator. When finished, the remaining
polygon is the Voronoi cell of the red generator.
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• f(·) the sensor reliability function is set to f(x) = x, which simplifies
the cost calculation.

With these choices, the cost function becomes:

H(P) =

n∑
i=1

H(pi) =

n∑
i=1

∫
Vi

D(pi, x)dx

In this implementation, a numerical integration is done to calculate the
cost for a given Voronoi diagram. The space is divided into square cells
representing the points x, and the distance is calculated from the center
point of each square to the nearest robot pi (see Fig. 3.2). The sum of these
distances is then divided by the total number of squares so that the cost
value represents the average distance in meters from any point to the nearest
robot.

In some of the following experiments, the normalised cost per robot is
mentioned, which has been calculated as the sum of distances in the robot’s
Voronoi cell, divided by the total number of squares in the full space. In this
way, the normalised costs per robot add up to the total cost, indicating how
big a fraction each robot covers, but the cost per robot does not represent
the average distance within its Voronoi cell in the way the total cost does
for the whole system.

The cost can be calculated with higher precision by making the squares
smaller, with the tradeoff of increased computation time since the number
of squares increase. For cost calculations in the experiments made, the
spatial resolution (square side length) was set to values between 5 cm and
30 cm.

3.2.3 Lloyd iteration with robots

The Lloyd algorithm, adapted to create a CVT with robots, is implemented
as described in Algorithm 3. It is used for the convex cases of experiments
1 and 2 (see Chapter 4). The third experiment takes place in a nonconvex
environment which requires a different approach. The implementation here is
inspired by Breitenmoser et al [8] and the use of virtual generators. A convex
hull is formed around the target nonconvex area (see sec 3.2.4) and Algorithm
3 is run but with a virtual generator moving instead of each robot. The
virtual generators only exist in the software and are allowed to move to
any coordinate in the space, even through walls and inside obstacles. This
resembles the original Lloyd algorithm and guarantees convergence. When
the CVT has formed, each robot ”owns” the Voronoi cell that corresponds
to its virtual generator, and is responsible for patrolling the waypoints
therein.
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Figure 3.2: Numerical integration to compute the value of the cost function:
a Voronoi diagram (left) and a division into square cells (right).

Algorithm 3 CVT algorithm running on each robot

loop
With P = {p1, p2, ...} the positions of robots (updated asynchronously)
Compute my Voronoi polygon by Algorithm 2
Compute the position of the centroid C
Send command to move to C
Wait for 250ms while moving towards the target

end loop
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3.2.4 Maps

The robots use maps as part of their navigation system. A map format
existed within MOnarCH prior to this thesis, and it was decided to use the
same format in this project.

Each map consists of one or more (YAML, GIF) file pairs, depending on
the functionality required for a given use case. The YAML file is a text file
containing the name of the corresponding GIF file, a coordinate transform,
and grayscale color data to tell the navigation system what is allowed terrain
or not. It may also contain information on zones in the map, if applicable.
Zones are defined by a (string, integer) tuple, where the string is the name
of the zone, and the integer is the color index for this zone as drawn in
the corresponding GIF image. An example is given in Code 1 and Fig.
3.3a.

image: EPFL -sections.gif

resolution: 0.050000

origin: [0.000000 , 0.000000 , 0.000000]

negate: 0

occupied_thresh: 0.65

free_thresh: 0.196

zones:

corridor1: 9

corridor2: 11

corridor3: 15

corridor4: 7

labcentre: 6

labboard: 18

labdesk: 14

labdoor: 4

kitchenboard: 8

kitchencup: 3

kitchendoor: 5

office1: 12

office2: 13

office3: 2

Code 1: Example of a YAML file containing MOnarCH map data, corre-
sponding to Fig. 3.3a.

Map processing

Given the existing map format, new development was required to make it
useful with the new behavior. The behavior needs two things to work: a
space to divide using CVT, and a set of waypoints to patrol. The map files
are read as input and used as follows.

Waypoints are created from the zones of the map. The GIF file is read and
for each zone, all the pixels of the associated color are read. Their mean
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(a) Sample map GIF from MOnarCH, corresponding to the YAML
data in Code 1.

(b) The waypoints (black X) and convex hull (black line) overlaid
on the map image.

(c) The resulting convex hull used for CVT and waypoints for
patrolling.

Figure 3.3: Sample map and processing into a convex hull and waypoints.
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x and y positions are calculated and used as a waypoint coordinate (see
coordinates overlaid on the map in Fig. 3.3b). This means that 1 pixel of
each color would be enough for creating waypoints, but it is still useful to
draw a bigger coloured shape to make the zone clearly visible for a human
working with the map GIF.

A convex hull is calculated from all the zones’ pixels together. This gives
a convex polygon boundary which can be used for the CVT algorithm. It
also excludes unused space, such as the white region on the left half of Fig.
3.3a, reducing the risk of a CVT division where one or several robots would
have no waypoints in their respective Voronoi cells. The resulting hull and
waypoints are displayed in Fig. 3.3c.

The coordinate transform (origin and scale) in the YAML file are used to
calculate real world coordinates from the pixel positions in the image. The
real world coordinates are sent to the robot for navigation targeting.

3.2.5 Greedy patrolling algorithm

Given a set of waypoints on the map, robots need instructions on how to
patrol. A simple, greedy algorithm was used: see Algorithm 4. Since we
use a division of the space into Voronoi cells, the strategy falls into the
partitioning category (sec 2.2.3): each robot patrols its own unique subset of
waypoints.

To prevent the robot from getting stuck, a timeout is used which allows the
robot to skip a waypoint if not reached within the given time. Unreachable
waypoints may be permanent if the map has been incorrectly drawn, or
temporary in cases such as someone closing a door which is later opened
again. When the robot is unable to reach a waypoint for 120 seconds, it will
skip this waypoint in the current iteration, but it will try again the next
time.

3.2.6 Communication and dynamic group size

Communication between the robots is done via SAM (sec. 3.1.4), over
communication channels called slots. Each SAM slot can be set up with
one publisher and multiple subscribers. Robot positions are sent on the
tfPose slot, which is already in place within MOnarCH, and by letting each
robot subscribe to the tfPose slot of every other robot, they asynchronously
receive updated information on each other’s positions. When using virtual
generators for CVT in the nonconvex case, the position of the virtual gener-
ator needs to be communicated as well. This was done by creating another
slot, named DistributedCoverageVirtualCoord, where each robot publishes
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Algorithm 4 Greedy patrolling algorithm

With W the list of waypoints, W ′ an empty list, R the current robot
loop

while W is not empty do
Calculate the euclidean distance from R to each waypoint w ∈W
Select w∗ the waypoint with the shortest distance
Remove w∗ from W and insert w∗ into W ′

Send command to move to w∗

Start a timer of 120 seconds
Wait until timer runs out or R is within 0.25 m of w∗

end while
let W ←W ′

let W ′ ← [ ]
end loop

its virtual generator position and subscribes to read the virtual positions of
the others.

A third slot ”DistributedCoverageRobotState” was created and used to com-
municate status codes between the robots. There are three status codes rep-
resenting the internal state of a robot: STATE CVT, STATE CONVERGE
and STATE PATROL. During CVT each robot continously broadcasts the
STATE CVT code, and when a robot (or virtual generator) reaches its
target, it broadcasts STATE CONVERGE instead. When they all broadcast
STATE CONVERGE for 30 time periods (30/4 seconds), they will switch to
STATE PATROL. A fourth possibility is that a robot does not broadcast any
status code at all, which may happen if it loses network contact or otherwise
fails. When no status is received for 40 periods (10 seconds), that robot
will be dropped from the CVT configuration, and if the group is currently
patrolling, it will switch back to CVT to create a new configuration with
the smaller group size. Similarly, if a robot has been offline for a while and
then starts broadcasting again, if the group is patrolling it will switch back
to CVT to recreate the Voronoi coverage with the new group member. An
illustration of the state machine behavior is given in Fig. 3.4.
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Figure 3.4: Illustration of the state machine. The start event takes care of
initial one-time needs such as map processing, then the behavior alternates
between CVT and Patrol. If the group size does not change, robots will
patrol indefinitely once they reach this state.
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4 Experiments

The behavior was developed step by step with a series of experiments used
to test and validate different parts. These experiments are described in this
chapter, with results and analysis from each.

4.1 Centroidal Voronoi coverage in a convex space

As a first milestone, it was decided to try and achieve centroidal Voronoi
coverage in a convex space. After many simulations with Matplotlib and
Webots, this is the first experiment on real robots, serving to confirm that
the CVT implementation, SAM communication, and movement all work in
reality, together.

This experiment has several simplifications when compared to the end goal,
namely:

• The environment is a single, convex room instead of a nonconvex space
with many rooms.

• No patrolling is done, only static coverage.

• No need to handle robot exit and entry during the experiment.

The experiment was carried out by choosing starting positions for the robots,
running the CVT algorithm until convergence and storing robot positions
for each time frame as output data. This experiment was performed in the
DISAL lab room, which is rectangle shaped with a size of approximately
5×9 m. From the digital maps used by the robots, the room corners were
manually approximated to [3.3, 6.5], [8.2, 5.8], [8.8, 14.5], [4.2, 14.8], and
input as polygon bounds to the program.

While running, each robot outputs the system time and current position
4 times per second, and these data are then used in post-processing to
calculate the cost function at each time frame. One representative run with
3 real robots was recorded on video and examined in more detail, with start

23



positions lined up at one end of the room. A further 40 experiments were
run in Webots simulation to gather data for an aggregate view. The 40
simulations were split into 10 each for a group size of 1, 2, 3 and 4 robots,
with random start positions to reduce bias in the results.

4.1.1 Results

The recorded experiment with 3 real robots took approximately 12 seconds
from start to convergence, determined visually by when the robots were
no longer moving. Fig. 4.1 shows images from the video recording of the
real run, with corresponding Voronoi diagrams and path traces of robot
movement. A plot of the cost function calculated for the whole system and
per robot is shown in Fig. 4.2. The cost value starts at 2.9 and decreases to
a final value of 1.5.

The costs calculated from the 4×10 simulations are aggregated and shown
in Fig. 4.3. For each group size, the average cost of the 10 experiments is
plotted with a bold colored line, and the minimum and maximum at each
time step are plotted as borders of the area of the same color. The simulated
experiments took up to 14 seconds to converge, depending on the number
of robots and their random start positions. There is a large spread in intial
cost values for different starting configurations, but the ranges of final values
are pretty tight, with mean cost values of 2.5, 1.7, 1.5 and 1.3 respectively
for a group size of 1, 2, 3 and 4 robots.

4.1.2 Discussion

Both experiments show the cost function decreasing gradually over time as
robots move, then movement stops and we arrive at a minimum cost value.
This is expected and indicates that the CVT/Lloyd implementation works
as it should.

From the 4×10 plot, we observe that the final cost becomes lower the more
robots we use. This confirms the idea that more robots can cover the room
more efficiently. From the overlapping start values, we see that it is possible
to configure 4 robots less efficiently than 3, or even 3 robots with less efficiency
than 1. But in the final states, the costs rank up in reverse order to the
number of robots used. The marginal improvement is largest from 1 to 2 and
decreases further for each robot we add: we have diminishing returns.

It can also be observed that for the cases of 1 or 2 robots, the cost function
converges to a single value for all 10 experiments, whereas for 3 and 4 robots,
there is a spread of final cost values. This is explained by observing the final
Voronoi diagram of the experiments: with 1 or 2 robots it seems empirically
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(a) Initial state (b) Middle state (c) Final state

(d) Initial state (e) Path trace (f) Final state

Figure 4.1: Experiment 1, real run. Images from the video recording (a,b,c),
corresponding Voronoi diagrams (d,f) and path trace (e).

Figure 4.2: Experiment 1, real run. Cost plot showing the cost for each robot
in different colors, and the sum cost in black.
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Figure 4.3: Experiment 1, simulation. Aggregate cost plot from the 4×10
experiments with random start positions and changing group size.

that there exists just one final configuration where all 10 experiments end
up. For 3 or 4 robots, there are several different final states which all are
local minima of the cost function, but they are not equally good. Some
of this spread occurs because there is a minimum distance below which
the real robots will not move when given a new target. The spread is
smaller in a software-based calculation model with perfect positioning and
millimeter-scale movement.

The running times are not fully comparable between simulation and reality,
because simulation speed varies with CPU load, which mostly depends on
the number of robots in the experiment. More robots generally means a
higher CPU load and a slower simulation speed, resulting in simulation times
higher than they should be in reality.

The simulation is run on a single computer with one system clock, while
in the real experiment each robot has its own system time. This initially
caused problems for the cost calculation time frames since the robots’ clocks
differed by as much as 13 seconds. They were synchronized using the Ubuntu
NTP tool, and any remaining difference between them (on the order of 0.1
seconds) is considered too small to be significant for the experiment.

From the aggregate values, we can see that convergence generally happens
earlier as we increase the number of robots. This should be expected since
more robots fill the room to a larger extent, no matter how they are placed,
and the travel distance to a converged state should be shorter on average.
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The effect is probably even larger in reality than it seems from these plots,
since the simulation speed decreases with more robots; without this bias the
time should be even shorter than reported here.

The cost plot and final Voronoi diagram from the real experiment show that
the yellow robot ends up covering a disproportionate fraction of the space:
more than the green or red robot does. Repeat experiments on different
room shapes indicate that the shape of the room determines how even the
distribution can become.

To summarize, the first experiment was a success: it behaves largely as
expected and confirms the functionality of fundamental parts of the imple-
mentation.

4.2 Dynamic entry and exit during coverage

The second experiment serves to test the dynamic entry and exit functionality
during coverage. The environment is still convex during this experiment,
but a different room was used. Many variants of this experiment were run
in simulation, and the real experiment was performed with 3 robots in the
lab corridor and recorded on video. The corridor is approximately rectangle
shaped with side lengths 2.5 and 24 meters. The coordinates used are [8.5,
5.7], [10.8, 5.2], [13.7, 29.2], [11.2, 29.4]. Like the lab room, the corridor
has some obstacles and is not truly convex, but these obstacles are situated
along the walls in such a way that they do not impede the movement of
the robots, and therefore it can be considered convex for the purpose of the
experiment.

The three robots were placed in the southern half of the corridor roughly 4 m
apart (see Fig.4.5a). The CVT algorithm was run until convergence, then one
of the robots was manually deactivated and moved out of the environment.
After a 10 second delay, the remaining two robots reconfigure and create
a new CVT on their own. They are again given time to converge. With a
CVT of 2 robots, the 3rd robot is moved back into the environment and
activated again. The three robots create a CVT together and we end up
with the same configuration as we started with. During this experiment, as
in the previous one, the robot positions are output at 4 Hz and this data
is then used in post-processing to calculate the cost function at every time
step of the experiment, with the cost of the whole system and the cost for
each robot plotted on a graph.
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Figure 4.4: Experiment 2, cost plot of the system and per robot during the
experiment.

4.2.1 Results

The three robots start in an inefficient configuration with a total cost just
above 4 (Figs 4.4, 4.5a). As the behavior runs, they converge to a CVT
with cost 2.1 (Fig. 4.5b). Then mbot06 is turned off, and the cost jumps
to a higher value (coincidentally, just above 4 again) (Fig. 4.5c). The two
remaining robots find a new CVT with a minimum cost of 3.25 (Fig. 4.5d).
When mbot06 is turned back on, the cost drops instantly (Fig. 4.5e) and
then decreases further as the robots find the final CVT at cost 2.1 (Fig. 4.5f,
same configuration as in 4.5b). Some images from the video recording are
shown in Fig. 4.6.

4.2.2 Discussion

The experiment worked as planned. The timeout mechanism marks a robot as
inactive if it does not communicate for 10 seconds, and disregards that robot
in the CVT computation. Even though there is no explicit synchronisation
of group size between the remaining team members, they react close enough
in time that no problems occur. If this was not the case, problems could
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(a) t = 0 s (b) t = 50 (c) t = 60 (d) t = 100 (e) t = 180 (f) t = 205

Figure 4.5: Experiment 2, Voronoi diagrams at different points in time.
Picture (a) shows the initial configuration, which leads to convergence with
3 robots (b). mbot06 is deactivated in (c) and a new convergence is reached
in (d) with 2 robots. mbot06 is reactivated in (e) and the final convergence
is shown in (f), similar to (b).

(a) (b)

Figure 4.6: Experiment 2, Images from the video capture. Picture (a)
shows convergence with 2 robots, corresponding to Fig. 4.5d. In (b) we see
convergence with 3 robots, corresponding to Fig. 4.5f.
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happen when one robot performs CVT based on a group of 3, while the other
considers a group of 2. Such situations have occured during development,
due to implementation bugs, and they tend to be unstable.

We can observe on the cost plot (Fig 4.4) that at convergence with 3 robots,
their respective fractions of the cost are almost perfectly balanced. This is
due to the shape of the room, which can be compared to experiment 1 where
no such balance was attainable with 3 robots.

The cost values are useful to compare different configurations within a
given room, but not necessarily to compare the results of experiment 1 vs
experiment 2.

4.3 Coverage and patrolling in a nonconvex space

The third experiment tests the full behavior in a non-convex environment,
with CVT, patrolling and dynamic entry and exit at run-time. A partial
experiment with patrolling was performed with 1 real robot and recorded on
video. Multi-robot patrolling was only performed in Webots simulation due
to the difficulty of monitoring multiple robots during a real run. Accidents
can happen and it would be preferable at this stage to have one person
closely follow each robot and be able to turn it off manually if something goes
wrong. For these reasons, only 1 robot was tested in reality for patrolling.
Multi-robot simulations were done on the EFPL corridor map and on the
IPOL map (Fig. 4.7a), to test the adaptability to a different environment
from the one on which it was developed.

The experiment is set up with three robots in different starting positions.
They perform CVT with virtual generators dividing the space between them.
After convergence, the robots change from the CVT state to the PATROL
state, each of them determines which of the waypoints are within its Voronoi
cell, and performs a greedy patrolling cycle between these waypoints. After
a certain time, one of the robots is manually deactivated. As in experiment
2, after a 10 second timeout the remaining two robots react, returning to
the CVT state and perform a new CVT on their own. When they have
converged, they again switch to the PATROL state. Each robot may have
a different set of waypoints from before. The 2 robots patrol for a while,
and then the third robot is manually started up again. It rejoins the group,
they all perform CVT anew and then switch to patrolling. The experiment
is recorded on screen.
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(a)

(b)

Figure 4.7: Experiment 3. IPOL map input file (a) and resulting convex hull
and waypoints (b).

4.3.1 Results

The experiment worked mostly as planned. Three robots performed CVT
and patrolling, then one was deactivated and the remaining two made a
new CVT configuration, which they then patrolled. The disabled robot was
reactivated, rejoined the group and a new CVT was created, and finally three
robots were patrolling again. The convex hull and waypoints on the IPOL
map are shown in Fig. 4.7b. The resulting CVT configurations and patrol
paths are shown in Fig. 4.8.

One problem happened a few times during the simulation: robots ran into
walls and got stuck, unable to get out of them. This error has also happened
in reality, and had to be corrected by manually moving the robot a few
centimeters to help it find its way back. This is a known problem with
the current state of navigation for the MBots, and it is unrelated to what
has been developed during this project. It seems to happen more often in
simulation than in real runs.

4.3.2 Discussion

The third experiment brings everything together and shows that we have
a working implementation. It works on the IPOL map which it was not
specifically developed for, indicating some generality. However, during the
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(a) (b)

(c) (d)

Figure 4.8: Experiment 3. Voronoi configuration and patrol paths with 3
robots (a,b) and with 2 robots (c,d).

development it also became clear that there are several situations where
the behavior will be suboptimal. These weak points suggest areas where
further development is needed, or parts of the implementation could be
changed.

Uneven distribution of waypoints

The CVT algorithm used produces a division of space as a function of the
shape of the environment and the number of robots, but does not consider
the placement of waypoints. This can easily lead to an uneven distribution of
waypoints between robots, causing large differences in the frequency of visits
to different regions and/or robots becoming idle because they are assigned
no waypoints at all. Looking again at the EPFL map (Fig.4.9a), with 2
robots the waypoints are split 5 vs 9. With 3 robots on the IPOL map (Fig.
4.9b), if the two ”green” waypoints weren’t there, then the Voronoi diagram
would be the same anyway, and the green robot would be assigned nothing
to do. To improve the situation, one should also consider the paths between
waypoints; a simple 7-7 split between two robots gives no guarantee of similar
travel time for the patrol paths.

Inefficient map splitting

The CVT computation based on Euclidean distance measure is not well
suited for use with a nonconvex environment. Depending on the shape of
the map, it may work or it may give very bad results. The experimental
results were acceptable since these maps are open and well connected, but on
other maps we could get a different outcome. One example is the map from
the Institute for Systems and Robotics (ISR) at IST, Portugal. This map
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(a) Uneven distribution of waypoints between 2
robots on the EPFL map.

(b) Green robot is not assigned any waypoints.

Figure 4.9: Examples of weaknesses caused by the disconnection between
waypoints and CVT algorithm.

has not been tested in simulation, but from the U-shape one can easily see
potential problems (Fig 4.10). One robot could be assigned a Voronoi cell
split to each end of the map, and have to walk long distances through areas
where it has no waypoints. This problem can occur to various degree on
many maps, and one suggested remedy is to use a CVT computation based
on geodesic distance. An interesting approach is used by Bhattacharya et al
[14], where the environment is discretized into square cells, then a geodesic
Voronoi computation performed. This gives a division of the space with
regards to real walking distance for the robots, which should solve several of
the existing problems, although at a higher computational cost.

Improving patrol paths

Patrolling efficiency was not a main concern during the project, and a simple
greedy algorithm was used which works but may be inefficient in many
situations. This leaves room for improvement. Path planning can be done
by running an Ant Colony optimization algorithm, or even brute forcing
the optimal solution should be possible, since there are few waypoints on
the given use cases. For either of these approaches, the environment should
first be represented as a discrete graph, taking into account the walkable
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(a) (b)

Figure 4.10: ISR map. The current approach with virtual generators and
Euclidean distance measure can lead to inefficient divisions of space, such as
(a) where the purple partition is disconnected. A better solution (b) could
be achieved by using a geodesic distance measure instead.

paths between waypoints. It may be useful to introduce intermediate nodes
between the waypoints on such a graph.
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5 Ethical considerations

The interaction between robots and humans in a social setting is a young
field in terms of both technology and research. This raises many ethical
questions which need consideration as robots rise from the rank of ”worker
slaves” to take on the roles of nurses, teachers and friends. This chapter
focuses on two ethical questions within social robotics and discusses them
based on the MOnarCH project.

5.1 Antropomorphization and relationships

To antropomorphize is to ascribe human qualities such as feelings or inten-
tional behavior to an inanimate object. This antropomorphization seems to
originate in a human social need, and is also expressed by naming robots or
caring for them in an affectionate way that may seem out of place considering
that the robot is ”just a machine”. Many cases have been observed where
humans do this with robots, in particular when working together or otherwise
spending time with them over a longer period[19]. With a robot such as
AIBO, which looks like a mechanical dog and imitates some dog behaviors,
it may not be a surprise that people treat it as a pet. On the other hand,
researchers were surprised to see how people care for their Roomba vacuum
cleaning robots and how soldiers cared for a robot used for defusing land
mines[19].

Antropomorphization can over time lead to humans developing relationships
to their robots, and Scheutz warns for this type of one-sided relationships,
which may lead to an unhealthy emotional dependence by the human on the
robot [19]. The relationship is one-sided because the robot does not have
any capabilities of reciprocating feelings or becoming ”dependent” on the
human in a similar way. The above examples are with robots which are
not built for social interaction and have very little or no such functionality.
Given that humans develop relationships to them, we should expect that
this behavior will be stronger when humans interact with social robots made
for that purpose. Scheutz further warns of a future scenario where these
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unidirectional emotional bonds may be exploited for profit or other purposes
on a large scale.

5.2 Social development of children

Sharkey & Sharkey warns that the social and mental development of children
may be at risk if they are cared for by robots rather than humans to a large
extent [19]. The problem is not the robots per se, but the lack of human
contact, and the danger is larger the younger the children are, which has been
documented in institutions for orphans [19]. We already have a development
towards robot caregivers for children and elderly, with Japan and South
Korea being at the forefront. If children were left entirely in robot care for
long periods, it is likely that their development would suffer similarly to the
orphans.

5.3 Looking at MOnarCH

The following discussion will be based on a video from the MOnarCH project,
recorded on site at IPOL [20] and released in 2015. In this video, two staff
members are interviewed about the robots and how they are used, and we
also observe patient children and their parents. Rather than refer to the
robot as ”Mbot” or ”the robot”, it has been inofficially named Gasparzhino,
Portuguese for ”little Casper”. We also see a mother talking to her child and
referring to the robot as ”he”, while discussing why the robot behaved in a
certain way, as if it had thoughts and intentions. A staff member from IST
tells us that the robots are intended to be both a classroom assistant and a
play-buddy for the children.

5.4 Discussion

The video shows several examples of antropomorphization: in naming the
robot and in talking about it almost like a person with intentions. The
distinction between human thoughts and the information processing of a
machine may be clear for an adult, but not for a child. With daily interaction
it becomes natural to refer to the robot almost as a person. It would
perhaps be more strange if we created machines to become part of our social
environment, but refused to use the pronouns ”he/she” when talking about
them. The robots are used to interact with the children, but cannot be said
to care for them, and the interaction that takes place is always supervised
by adults or staff, not exclusive between robots and children.
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For the applications within MOnarCH at IPOL, these things are barely
problematic. First, the social capabilities of the robot are not advanced
enough that a human should develop feelings for it or a unidirectional
relationship as discussed by Scheutz. Even if they did develop a relationship
of some sort, there is no way for the robot to abuse such a relationship.
Second, the hospital environment is well monitored and the children are being
taken care of by professionals. They are not being left on their own with the
robots to such an extent that we need to fear for their social development.
On the contrary, as told by a staff member in the video, the robots can
encourage and improve social interaction between the kids since the type of
activities and play that the robot does are social and physical in their nature.
This is different from most ”gadgets” such as tablets or video games, often
accused of making children physically passive and socially isolated.

It seems unlikely that the MOnarCH project will create ethical problems of
the kinds discussed, but it is still important to be aware of and consider the
potential issues. We may soon have far more advanced robot nannies which
can independently take care of our children, and that is an entirely different
situation.
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6 Conclusions

The purpose of the project was to investigate how Voronoi coverage methods
can be applied for distributed coverage and patrolling within MOnarCH. A
multi-robot behavior was developed and centroidal Voronoi coverage proven
useful for the implementation. One of the main challenges was how to handle
a nonconvex environment, and the implementation was inspired by recent
research in the field, mainly Cortes et al [6] and Breitenmoser et al [8].

The implementation works on different map layouts and allows for flexibility
in placement of waypoints and patrol areas. At the same time, it has several
drawbacks which can cause it to be inefficient on certain map types. Some
of these drawbacks can be compensated for through careful placement of
waypoints, but it would be preferrable if the behavior could autonomously
adapt to a wider range of map layouts. The known drawbacks give ideas for
future developments and improvements as discussed in the results section,
by using geodesic distance measures instead of Euclidean, and by optimizing
the patrol paths using graphs or otherwise discretizing the relevant parts of
the map.

Some requirements were stated in the beginning of the project. The first two
were fulfilled, which concern the distributed computation and allowing for a
changing group size during run-time, without human intervention. The third
requirement was for robustness to communication and network problems,
and while part of the implementation took this into account, it was not a
focus and there is much room for further work on this aspect. The fourth
requirement, a nonobstructive behavior, was not addressed at all. It may
finally be the responsibility of a higher level software planner/coordinator to
make sure that robots do not block paths, or it may be an extension of the
current behavior once the core navigation parts are settled on.
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