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Abstract 
 

Until	recently,	little	has	been	known	about	what	exactly	happens	in	the	seconds	
leading	up	to	a	car	crash.	Due	to	the	emergence	of	naturalistic	driving	data,	e.g.	
video	data	of	the	forward	roadway	and	of	the	driver	combined	with	various	
sensor	readings	from	real	traffic	incidents,	it	is	now	possible	to	research	
underlying	crash	causation	mechanisms	with	much	greater	detail.	An	analysis	of	
a	100	different	rear‐end	events,	70	crashes	and	30	near‐crashes,	was	performed	
with	the	aim	of	replicating	the	findings	of	the	SHRP2	naturalistic	driving	study	
performed	by	SAFER.		The	findings	were	in	correspondence	with	those	of	the	
SHRP2	study;	that	rear‐end	crashes	usually	occur	due	to	a	combination	of	glance	
duration	and	change	rate	of	the	situation	kinematics,	and	that	a	short	glance	
usually	requires	a	rapid	change	in	the	situation	kinematics	while	a	longer	glance	
could	cause	a	crash	even	if	the	kinematic	situation	changes	relatively	slowly.	The	
key	mechanism	behind	crashes	was	found	to	be	the	timing	of	the	last	glance	off	
the	road	relative	to	the	change	in	urgency,	represented	optically	by	looming	cues,	
during	the	glance.	Brake	lights	were	frequently	ignored	and	the	act	of	missing	
the	brake	light	onset	(BLO)	in	itself	was	not	found	to	be	a	key	mechanism	in	
causing	crashes	and	near‐crashes.	Drivers	that	ended	up	in	a	crash	were	twice	as	
likely	to	have	looked	away	from	the	road	after	having	seen	the	last	BLO	as	those	
who	ended	up	in	a	near‐crash.	

  

 

Key words: Driver distraction, Off-path glances, Crash analysis, Brake lights, Adapted 
time headway, Missed looming, Inopportune glances, Perfect mismatch 

  



	
	

2  CHALMERS, Applied Mechanics, Master’s Thesis 2016:10 
	

Acknowledgement 
	
First	and	foremost	I	would	like	to	express	my	sincere	gratitude	to	my	supervisor,	
Johan	Engström,	for	all	his	invaluable	support,	guidance	and	encouragement	
throughout	the	process	of	writing	this	thesis.	His	enthusiasm	and	sheer	interest	
in	the	project	has	been	a	constant	source	of	inspiration.	I	also	want	to	thank	my	
examiner,	Jonas	Bärgman,	for	all	his	helpful	advices,	explanations,	discussions	
and	needed	criticism.	Thanks	to	Robert	Thomson	for	the	support	during	the	first	
steps	of	the	thesis	work.	To	my	friends	at	SAFER	I	would	like	to	thank	you	for	all	
the	good	fun.	Special	thanks	go	out	to	Karin	Brolin	at	SAFER	for	giving	me	the	
opportunity	to	present	my	work	at	the	TRIPP	conference	in	New	Delhi.	I	also	
want	to	acknowledge	my	India	travel	companions,	mis	comadres	Jóna	and	
Ramiro,	for	creating	unforgettable	memories	in	the	Himalayas.	I	want	to	send	
many	thanks	to	my	Gothenburg	family	for	great	fun	during	my	years	of	seeking	
the	M.Sc	degree.		I’m	also	forever	thankful	to	my	actual	family	for	all	their	
support.	I	want	to	thank	Volvo	for	financial	support.	And	last	but	not	least,	I	want	
to	thank	my	boyfriend,	Gunnar	Thoroddsen,	for	being	extremely	patient	and	
supportive	throughout	this	thesis	writing.		
	
	
Hrafnhildur	Hekla	Eiríksdóttir,	
Reykjavík,	Iceland,	1/3/16	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	

 CHALMERS, Applied Mechanics, Master’s Thesis 2016:10	 3 
	

Contents 

 
Abstract	..............................................................................................................................................	1	

Acknowledgement	.........................................................................................................................	2	

Contents	..............................................................................................................................................	3	

Abbreviations	...................................................................................................................................	5	

1	 Introduction	.................................................................................................................................	6	

2	 Empirical	and	theoretical	background	..........................................................................	10	

2.1	 Inattention	and	crash	risk	..........................................................................................	10	

2.2	 Off	road	glances	as	crash‐contributing	factor	....................................................	13	

2.3	 Visual	time	sharing	........................................................................................................	14	

2.4	 What	visual	stimuli	trigger	avoidance	reactions	in	a	car	following	
situation?	.........................................................................................................................................	15	

2.5	 Glance	timing	vs.	situation	kinematics;	SAFER	SHRP2	analysis	................	16	

2.6	 Research	questions	........................................................................................................	18	

2.6.1	 General	objectives	.................................................................................................	19	

2.6.2	 Specific	research	questions	...............................................................................	19	

3	 Method	........................................................................................................................................	21	

3.1	 Data	......................................................................................................................................	21	

3.1.1	 The	ANNEXT	data	set	...........................................................................................	21	

3.1.2	 Initial	data	reduction	...........................................................................................	22	

3.2	 Crash	scenario	reconstruction	..................................................................................	22	

3.2.1	 Filtering	the	POV	measured	width	and	reducing	noise	........................	23	

3.2.2	 POV	edges	out	of	frame	.......................................................................................	23	

3.2.3	 Camera	rectification	.............................................................................................	23	

3.2.4	 Optical	parameters	...............................................................................................	24	

3.2.5	 Kinematics	/	Derived	parameters	..................................................................	25	

3.3	 Analysis	Methodology	..................................................................................................	26	

3.3.1	 Aligning	data	............................................................................................................	26	

3.3.2	 Key	concepts	............................................................................................................	26	

4	 Results	.........................................................................................................................................	28	

4.1	 Prevalence	of	off	path	glances	..................................................................................	28	

4.2	 Distribution	of	the	last	glance	...................................................................................	29	

4.3	 Timing	of	glances	relative	to	brake	light	onsets	...............................................	29	

4.4	 Timing	of	the	last	glance	relative	to	situation	kinematics	............................	30	

4.4.1	 Time	head	way	........................................................................................................	31	



	
	

4  CHALMERS, Applied Mechanics, Master’s Thesis 2016:10 
	

4.4.2	 Relative	velocity	.....................................................................................................	32	

4.4.3	 Inverse	Tau	..............................................................................................................	34	

5	 Conclusions	...............................................................................................................................	39	

6	 References	.................................................................................................................................	42	

	

 
 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	

 CHALMERS, Applied Mechanics, Master’s Thesis 2016:10	 5 
	

Abbreviations 
 
AOI Area of interest 
EOP Eyes-off-path 
InvTau Inverse Tau 
LG  Last glance 
NDS Naturalistic driving study 
NHTSA National Highway Traffic Safety Administration 
OBSM  On board safety monitoring 
POV Principle other vehicle 
SV Subject vehicle 
TTC  Time-to-collision 
WHO World Health Organization 
 
 



	
	

6  CHALMERS, Applied Mechanics, Master’s Thesis 2016:10 
	

1 Introduction  
 
About	1.25	million	people	lose	their	lives	in	traffic	accidents	each	year	and	
additionally	up	to	50	million	people	suffer	injuries.	Traffic	accidents	are	
currently	ranked	number	nine	of	the	leading	causes	of	fatalities	in	the	world	and	
are	the	leading	cause	amongst	young	people	in	the	age	of	15‐29	years	(WHO,	
2015).	Understanding	the	detailed	mechanisms	underlying	crash	causation	is	of	
fundamental	importance	for	crash	prevention.	In	traditional	crash	data,	such	as	
police	reports	and	in‐depth/on‐site	investigations,	relatively	little	information	is	
available	from	the	seconds	preceding	the	crash.		The	information	is	typically	
about	the	severity	of	the	crash	in	terms	of	injuries	and	deaths,	and	
environmental	circumstances,	such	as	road	condition,	weather	and	time	of	crash.	
Usually	little	information	can	be	found	about	pre‐crash	factors	that	lead	to	the	
crash.	Driver	inattention	has	often	been	mentioned	as	the	dominant	factor	
behind	traffic	accidents.	It	has	however	been	difficult	to	gain	an	understanding	
on	how	exactly	inattention	contributes	to	accidents.	
	 	
In	2009	distracted	driving	was	considered	a	contributing	factor	in	20%	of	injury	
crashes,	and	16%	in	the	fatal	ones	in	the	United	States	(NHTSA,	2010).	These	
figures	do	however	have	very	big	uncertainties	since	it	can	be	problematic	for	
police	officers	to	point	out	at	the	site	of	the	accident	when	inattention	was	a	
contributing	factor	to	the	crash	and	when	it	wasn’t	(Engström,	2011).	Most	crash	
data	collections	are	gathered	by	observation	and	self‐report	methods	that	are	
usually	obtained	in	a	retrospective	investigation	after	the	crash	has	occurred.	
The	data	often	comes	from	police	reports	or	in‐depth	investigations	that	are	
done	on‐site	of	the	accidents.	Information	is	gathered	from	those	involved	in	the	
crash	and	other	witnesses	so	their	remembrance	of	the	scenario	is	very	
important.	There	are	however	known	factors	that	limit	how	accurate	the	
recollection	of	events	is,	and	chances	are	that	a	person’s	memory	is	influenced	
and	modified	after	the	crash	occurs	(Loftus,	1979).	Many	basic	motor	and	
perception	processes	also	become	automated	very	quickly	when	people	learn	
how	to	drive,	drivers	are	therefore	unaware	of	performing	those	processes,	or	
they	simply	do	not	tell	the	truth	about	what	happened.		
	
Nowadays	however,	thanks	to	the	availability	of	naturalistic	crash	data	the	
situation	has	changed.	Significant	public	funding	has	been	assigned	to	
performing	naturalistic	driving	studies	(NDS)	in	order	to	get	a	better	
understanding	on	what	causes	accidents.	This	has	mainly	been	done	in	the	US	
but	there	are	also	some	initial	studies	being	conducted	in	Europe	and	Japan.	
Detailed	crash	data,	offered	by	NDS,	has	not	been	available	to	analysts	in	this	
quantity	up	until	recently	and	such	data	has	great	promises	to	increase	the	
understanding	of	driver	behavior.	(Dozza	et	al.,	2012)		
	
Naturalistic	driving	studies,	such	as	the	100‐car	study	(Dingus	et	al.,	2006),	the	
first	extensive	NDS,	have	confirmed	the	role	of	inattention	in	crashes	further.	In	
fact	in	the	100‐car	study	driver	inattention	was	found	to	be	contributing	to	the	
crash	risk	in	78	%	of	the	crashes,	93%	of	rear‐end	crashes	and	65%	of	the	near‐
crashes	(Dingus	et	al.,	2006).	
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In	NDS	vehicles	are	equipped	with	video	cameras	and	sensors	and	data	is	
collected	unobtrusively	in	real	traffic.	The	data	can	be	collected	continuously,	
like	in	the	100‐car	study,	or	it	can	be	collected	only	during	specific	safety	critical	
events,	for	example	crashes	and	near‐crashes,	where	a	certain	event	triggers	the	
data	sampling.	The	sensors	offer	a	large	number	of	time‐history	measurements,	
such	as	speed	and	acceleration,	and	the	video	cameras	record	both	the	driver’s	
behaviour	as	well	as	the	traffic	environment.	This	builds	up	to	a	detailed	
information	base	about	the	driver,	vehicle	and	environmental	factors	in	real	
traffic	(Klauer	et	al.,	2011).	NDS	data	that	is	collected	continuously	usually	
contains	a	large	amount	of	information	about	normal	driving	situations,	a	decent	
amount	of	near‐crashes	and	a	small	amount	of	crashes.	Crashes	are	rare	events	
so	it	takes	time	to	gather	up	enough	records	of	a	specific	crash	type	in	order	to	
be	able	to	analyse	it.	In	contrast,	NDS	that	are	event‐triggered	do	not	have	
information	about	driving	exposure	but	are	a	cost‐efficient	way	to	gather	crash	
data	and	study	contributing	factors	leading	to	a	crash	or	a	near‐crash.		
	
Since	crash	video	data	can	be	very	sensitive	and	not	intended	to	be	distributed	
freely,	gathering	data	for	research	purposes	has	been	somewhat	limited.	There	
are	certain	privacy	legislations	that	must	be	obeyed	when	handling	this	kind	of	
NDS	data.	In	Sweden,	for	example,	an	employer	is	not	allowed	to	record	his	
employees	while	driving	with	an	in‐vehicle	camera	without	them	giving	their	
consent	first.	The	camera	might	also	catch	number	plates	or	pedestrians	and	
other	commuters	that	have	not	given	any	consent	for	the	data	being	used.		
However,	new	sources	of	naturalistic	data	is	arising	where	the	researchers	get	
the	video	annotated	but	are	not	able	to	access	the	videos	themselves.	This	is	the	
case	with	the	LYTX	data	that	was	made	available	for	SAFER,	the	vehicle	and	
traffic	safety	center	at	Chalmers	University.	The	events	are	therefore	completely	
anonymous	and	untraceable.	
	
Volvo	and	Chalmers	initiated	collaboration	with	the	US‐based	company	LYTX	
(http://www.lytx.com),	formerly	known	as	DriveCam,	which	offers	a	video‐
based	service	for	coaching	drivers	towards	safer	driving	behaviour	and	more	
efficient	way	of	driving.	The	service	is	mainly	aimed	at	commercial	vehicle	fleets,	
such	as	bus	fleets	and	logistic	companies.	The	service	uses	an	on‐board	safety	
monitoring	(OBSM)	devices,	currently	installed	in	about	200.000	vehicles,	to	
record	safety‐critical	events	based	on	kinematic	triggers	(such	as	an	impact,	hard	
braking	or	other	evasive	maneuvers).	This	data	is	then	used	as	the	basis	for	a	
behaviour‐based	safety	management	program.	As	part	of	this	service,	a	large	
number	of	crashes	are	regularly	captured	on	video.	One	such	dataset	was	used	
for	the	ANNEXT	project.	
	
A	set	of	193	rear‐end	and	intersection	crashes	and	near‐crashes	with	trucks,	
buses	and	passenger	cars	was	made	available	for	analysis	at	SAFER	as	part	of	the	
ANNEXT	project.	Based	on	this	data,	Engström	et	al.	(2013)	investigated	the	
contributing	role	of	driver	inattention	in	crashes	compared	to	other	contributing	
factors.	Furthermore	the	roles	of	different	forms	of	inattention	were	examined,	
especially	driver	distraction	involving	the	diversion	of	gaze	from	the	forward	
roadway,	versus	distraction	that	is	purely	cognitive.	The	main	findings	were	that	
the	role	of	driver	inattention	as	a	crash‐contributing	factor	varies	significantly	
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with	which	types	of	crashes	are	being	considered.	For	rear‐end	crashes	it	was	
especially	driver	distraction	requiring	the	driver	to	look	away	from	the	forward	
roadway	that	was	the	leading	crash‐contributing	factor	(Engström	et	al.,	2013).	
This	supported	what	had	been	found	in	previous	findings	from	NDS,	namely	that	
visual	diversion	from	the	forward	roadway	is	the	key	mechanism	by	which	
inattention	leads	to	rear‐end	crashes	(Klauer	et	al.,	2006;	Olson	et	al.,	2009;	
Victor	et	al.,	2015).		
	
Rear‐end	crashes	constituted	for	approximately	33%	of	all	police	reported	
crashes	in	the	US	in	2010	and	2011	according	to	data	collected	by	the	General	
Estimate	System	(GES)	(Kusano	and	Gabler	2013).	One	third	of	all	reported	
crashes	is	a	considerable	part	of	the	whole	and	therefore	really	important	to	dive	
deeper	into	what	factors	are	causing	those	particular	accidents	in	order	to	being	
able	to	prevent	them.	In	order	to	gain	an	understanding	on	how	looking	away	
from	the	forward	road	really	contributes	to	rear‐end	crashes,	a	team	at	SAFER	
conducted	an	analysis	of	rear‐end	crashes	and	near‐crashes	from	the	SHRP2	
driving	study,	the	largest	NDS	that	has	been	carried	out	(Victor	et	al.,	2015).	In	
the	study,	data	was	collected	continuously	from	over	3000	passenger	vehicles	in	
the	US	over	a	period	of	three	years.	The	main	aim	of	the	study	was	to	address	the	
role	of	driver	performance	and	behaviour	in	relation	to	traffic	safety	and	
understand	how	the	driver	interacts	and	adapts	to	the	vehicle,	as	well	as	the	
traffic	environment.	The	data	that	was	collected	consisted	of	the	speed	of	the	
vehicle,	acceleration,	braking,	lane	position,	vehicle	control	when	it	was	
available,	forward	radar	and	video	with	a	view	of	the	forward	and	rearward	
roadway	as	well	as	the	face	and	hands	of	the	driver.	The	data	collected	contained	
about	50	million	vehicle	miles	and	more	than	1	million	hours	of	video.	
	
The	SHRP2	analysis	included	a	detailed	analysis	of	the	timing	of	off‐road	glances	
relative	to	the	kinematics	of	the	crash	scenario.	The	key	finding	was	that	rear‐
end	crashes	typically	occur	due	to	a	specific	combination	of	glance	duration	and	
the	rate	at	which	the	situation	kinematics	changes	(as	determined	by	the	
deceleration	rate	of	the	lead	vehicle,	the	initial	speed,	time	headway	etc.).	More	
specifically,	the	data	revealed	how	a	short	glance	typically	requires	a	rapidly	
changing	situation	to	produce	a	crash	while	a	longer	glance	may	lead	to	crash	
even	if	the	situation	changes	relatively	slowly.	
	
The	main	objective	of	this	Master's	thesis	was	to	replicate	the	rear‐end	crash	
mechanism	analysis	conducted	on	SHRP2	data	on	the	ANNEXT	data	mentioned	
above	to	see	if	the	findings	would	further	support	the	role	of	driver	inattention	in	
rear‐end	crashes.	In	the	present	analysis	the	data,	obtained	from	the	ANNEXT	
dataset,	included	100	rear‐end	events,	thereof	70	crashes	and	30	near‐crashes.	A	
specific	objective	of	the	thesis	was	to	implement	the	data	processing	algorithm	
so	it	would	be	possible	to	perform	the	same	analysis	on	the	ANNEXT	dataset	as	
was	done	on	the	SHRP2.	That	included	data	manipulation	relevant	to	adapting	
the	filtering,	smoothing,	interpolating	and	extrapolating	necessary	to	be	able	to	
perform	similar	analysis	on	lower	sample	rate	data	set.	One	objective	was	to	look	
into	how	the	timing	of	off	path	glances	relates	to	crash	risk	by	analyzing	the	
timing	relation	between	the	driver’s	visual	behavior	and	the	changes	in	situation	
kinematics.	The	main	goal	was	thus	to	understand	better	what	characterizes	safe	
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glances	by	analyzing	how	the	timing	relation	distinguished	crashes	from	near‐
crashes.	Furthermore	the	aim	was	to	analyze	the	relation	between	the	duration	
of	the	last	glance	and	the	changes	in	visual	cues,	mainly	focusing	on	brake	light	
onsets	and	visual	looming.		
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2 Empirical and theoretical background  
 

2.1 Inattention and crash risk 
	
As	mentioned	previously,	driver	inattention	contributes	very	often	to	the	causes	
of	traffic	accidents.	New	sources	of	inattention	are	emerging	and	driving	habits	
are	rapidly	changing	with	new	technology.	In	order	to	estimate	how	big	part	
inattention	plays	in	road‐safety	and	compare	study	results	a	common	taxonomy	
for	concepts	regarding	driver	inattention	was	needed.	A	work	group	on	Driver	
Distraction	and	Human	Machine	Interaction	was	formed	by	the	initiative	of	the	
US‐EU	Bilateral	ITS	TF	(United	States	and	European	Union	Bilateral	Intelligent	
Transportation	Systems	Technical	Task	Force)	to	define	a	theoretical	framework	
and	taxonomy	of	driver	inattention	(Engström	et	al.,	2013).	The	group	divided	
inattention	broadly	into	two	categories;	(1)	insufficient	attention,	relating	to	the	
activation	of	attention	and	(2)	misdirected	attention	that	refers	to	the	selective	
aspect	of	attention.	Insufficient	attention	was	then	sub‐divided	to	sleep‐related	
impairment	and	insufficient	attentional	effort,	which	refers	to	the	driver	failing	
to	allocate	enough	resources	to	activity	that	is	critical	to	safe	driving	to	match	the	
needed	attention	for	the	specific	task.	A	sub‐category	of	misdirected	attention	is	
driver	distraction	where	the	driver	allocates	resources	to	a	non‐safety	critical	
activity	and	not	enough	resources	are	allocated	to	activities	crucial	for	safe	
driving.	
	
One	advantage	of	data	from	NDS	is	the	possibility	to	calculate	the	associated	risk	
of	distraction	from	various	activities	and	secondary	tasks.	Additionally	to	the	
SHRP2	analysis	mentioned	above,	three	naturalistic	driving	studies	that	have	
been	made	with	special	focus	on	driver	inattention	should	be	mentioned	here.	
The	US	100‐car	study	(Dingus	et	al.,	2006	and	Klauer	et	al.,	2006)	was	one	of	the	
first	major	NDS.	CVO	(Olson	et	al.,	2009)	was	aimed	especially	at	driver	
distraction	in	commercial	vehicle	operation	and	finally	in	2010	Hickman	et	al.	
analysed	commercial	vehicle	data	from	LYTX	(then	known	as	DriveCam)	that	
included	a	large	amount	of	safety	critical	events.	See	Table	1.		
	
Table	1:	Number	of	safety	critical	events	in	the	four	NDS	analysis	mentioned	in	the	text	that	focused	
especially	on	driver’s	inattention.	

Study   Crashes  Near‐crashes 

100‐car study (Dingus et al., 
2006; Klauer et al., 2006) 

69  761 

CVO (Olson et al., 2009)  21  197 

DriveCam (Hickman et al., 
2010) 

2421  24239	 

SHRP2 (Victor et al., 2015)  46  211 
	

	
In	all	studies	listed	in	the	table	above	the	odds	ratios	for	various	secondary	tasks	
was	calculated.	Odds	ratios	are	used	to	estimate	the	relative	risk	of	a	certain	
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event	happening	by	means	of	secondary	task	distraction.	The	equation	is	as	
following:	
	

ܱܴ ൌ 	 ைௗௗ௦
ሺௌ௧௬ି௧	௩௧ሻ

ைௗௗ௦ሺ௦	௩௧ሻ
											 	 (1)																				

	
The	higher	the	odds	ratio	is	for	a	secondary	task,	the	stronger	the	association	of	
that	task	with	crash	or	a	near‐crash	risk.	(Victor	et	al.,	2015)	Also,	if	the	ratio	is	
significantly	lower	than	1.0	it	implies	a	considerably	lower	relative	risk	of	being	
involved	in	a	safety‐critical	event.	Some	of	the	odds	ratios	calculated	in	the	
studies	can	be	seen	in	Table	2.		

Table	2:	Odds	ratio	for	different	secondary	task	activities	found	in	the	four	studies.	The	numbers	in	
bold	indicate	ratios	that	differ	significantly	from	one	and	show	either	an	increased	or	decreased	
relative	risk.	This	table	is	based	on	a	table	from	Engström	(2011)	and	used	here	with	his	permission.	

	

It	should	be	noted	that	in	both	the	100‐car	study	and	the	SHRP2	study	only	
crashes	and	near‐crashes	were	considered	when	the	ORs	was	calculated	while	
Olson	et	al.	(2009)	and	Hickman	et	al.	(2010)	also	considered	other	types	of	
safety	critical	events	in	their	OR	calculations.		
	
As	can	be	seen	in	Table	2	the	types	of	secondary	tasks	that	were	analyzed	vary	
between	the	studies.	The	100‐car	and	SHRP2	studies	included	merely	private	
cars	while	the	other	two	involved	commercial	vehicle	drivers	and	therefore	the	
nature	of	the	secondary	tasks	differs.	The	ever‐changing	technology	also	offers	
new	types	of	distraction	every	year	and	can	explain	to	some	extent	how	the	
secondary	tasks	vary	from	study	to	study.	The	resulting	ORs	are	however	

Activity 

100‐car 
study 
(Klauer et 
al., 2006) 

CVO (Olson 
et al., 2009) 

DriveCam 
(Hickman 
et al., 
2010) 

SHRP2 
(Victor et 
al., 2015) 

Looking at external object   3.7        2.1 

Reading  3.38  3.97     0.6 

Applying makeup  3.13        0.6 

Dial cell phone  2.79  5.93  3.5  2.7 

Talking/listening to a hand‐
held phone 

1.29  1.04  0.9  0.1 

Talking/listening to a hand‐
free phone 

   0.44  0.65    

Text messaging on a cell 
phone  

   23.2  163.6  5.6 

Interact with/look at a 
dispatching device 

   9.93     1.6 

Write on pad/note‐book     8.98       

Use calculator     8.21       

Talk or listen to citizens band 
radio 

   0.55       
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generally	consistent	between	studies	and	suggest	that	secondary	tasks	that	
require	the	driver	to	take	his	eyes	of	the	road	are	considerably	riskier	than	
others.	In	the	commercial	vehicle	studies,	the	secondary	task	that	showed	the	
most	extreme	OR	in	both	of	them	was	text	messaging	on	a	cell	phone.	The	same	
was	the	case	for	the	SHRP2	analysis.	However,	text	messaging	was	not	possible	
in	the	US	at	the	time	of	the	100‐car	study	and	was	therefore	not	included	in	that	
study.	Olson	et	al.	(2009)	looked	into	this	mechanism	further,	and	their	analysis	
revealed	that	the	relative	risk	linked	with	a	secondary	task	was	strongly	
correlated	to	the	degree	of	which	the	task	required	the	driver	to	take	his	eyes	of	
the	road.	Secondary	tasks	that	had	the	highest	OR	were	also	associated	with	the	
largest	proportion	of	eyes	of	the	forward	road.	(Engström,	2011)	
Tasks	that	were	purely	cognitive	and	did	not	require	any	visual	efforts,	such	as	
having	a	conversation	on	a	mobile	phone,	did	not	increase	the	risk	in	any	of	the	
studies.	In	both	Hickman’s	and	Olson’s	commercial	studies	the	risk	of	being	
involved	in	a	safety‐critical	event	was	found	to	be	significantly	reduced	when	
engaging	in	a	hand‐free	phone	conversation.	The	strongest	protective	effect	was	
however	noticed	in	the	SHRP2	analysis	(Victor	et	al.,	2015),	which	only	included	
rear‐end	events,	where	talking/listening	on	cell	phone	was	found	to	decrease	the	
risk	significantly	compared	to	not	engaging	in	a	phone	conversation,	with	an	OR	
value	of	0.1	representing	an	estimated	ten‐fold	decrease	in	risk	when	compared	
to	a	baseline	event.	Olson	et	al.	also	found	the	usage	of	a	CB	radio	to	have	the	
same	effect.	 

	

Figure	1:	Odds	ratios	as	a	function	of	the	duration	of	eyes	off	path.	Asterisks	indicate	odds	ratios	that	
differ	significantly	from	one.	The	graph	is	from	Engström’s	Ph.D	thesis	(2011),	based	on	data	from	
the	studies	of	Olson	et	al.	2009,	and	Klauer	et	al.	2006	and		reprinted	here	with	his	permission.	

	
Klauer	et	al.	(2006)	and	Olson	et	al.,	(2009)	also	estimated	the	odds	ratios	of	
getting	into	a	safety	critical	event	or	a	crash	or	a	near‐crash	as	a	function	of	the	
duration	of	eyes	off	path	for	the	period	of	5	seconds	prior	to	and	1	second	after	
the	start	of	the	critical	event.	The	results,	as	can	be	seen	in	Figure	1,	are	very	
consistent	between	studies	and	indicate	that	the	main	increase	in	risk	is	when	
the	total	eyes	off	path	time	exceeds	2	seconds.		



	

 CHALMERS, Applied Mechanics, Master’s Thesis 2016:10	 13 
	

	
	It	is	clear	from	existing	studies	that	performing	visually	demanding	tasks	while	
driving	increases	risk.	However,	this	does	not	say	anything	about	the	
mechanisms	behind	this	effect.		
	

2.2 Off road glances as crash-contributing factor 
	
In	the	ANNEXT	project	70	rear‐end	LYTX	crashes	were	analysed	based	on	a	new	
methodology	for	assigning	and	combining	crash‐contributing	factors	(Engström	
et	al.,	2013a).	In	this	study,	the	contributing	role	of	driver	inattention	in	crashes	
compared	to	other	contributing	factors	was	analysed,	as	well	as	how	the	factors	
contributed	and	to	what	extent.	Unlike	risk	analysis	like	those	mentioned	in	the	
previous	chapter,	this	analysis	was	built	on	an	expert	judgement	of	what	factors	
actually	had	a	contributing	role	to	the	crash,	the	mere	existence	(prevalence)	of	a	
factor	was	not	sufficient	for	it	being	considered	as	a	crash	contributing	factor.		
	
Furthermore	the	roles	of	different	forms	of	inattention	were	of	interest,	
especially	driver	distraction	involving	the	diversion	of	gaze	from	the	forward	
roadway,	versus	distraction	that	is	purely	cognitive.		
	

	
Figure	2:	Contributing	and	precipitating	factors	in	the	70	rear‐end	crashes	from	ANNEXT.	The	chart	
was	published	in	an	analysis	by	Engström	et	al.	(2013a)	and	is	reprinted	here	with	permission.	

	
	
Figure	2	shows	the	distribution	of	crash‐contributing	factors	for	the	rear‐end	
crashes,	where	it	can	be	seen	that	in	52	of	the	70	rear‐end	crashes	at	least	one	
form	of	drivers	inattention	contributed	to	the	crash.	For	rear‐end	crashes	it	was	
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especially	drivers	distraction	requiring	the	driver	to	look	away	from	the	forward	
roadway	that	was	the	leading	crash‐contributing	factor.	(Engström	et	al.,	2013a)	
The	underlying	mechanism	was	found	to	be	the	delay	of	the	drivers	avoidance	
maneuver	due	to	the	co‐occurrence	of	the	drivers’	diversion	of	gaze	from	the	
road	and	the	initiation	of	the	lead	vehicle	braking,	hereafter	referred	to	as	POV	
(principle	other	vehicle).	The	second	main	contributing	factor	was	close	
following,	contributing	to	18	of	70	crashes,	where	the	majority	involved	a	heavy	
vehicle	that	was	following	the	POV	to	close	given	its	limited	brake	capacity.	
Visual	occlusion	and	insufficient	selection	of	safety	margins	were	however	found	
to	be	the	main	crash‐contributing	inattention	factors	in	the	intersection	crashes.	
Furthermore,	cell	phone	conversations	and	other	cognitively	distracting	
activities	that	do	not	demand	a	look	away	from	the	road,	were	not	found	to	
contribute	often	to	neither	rear‐end	nor	intersection	crashes	(Engström	et	al.,	
2013a).	The	results	of	this	qualitative	analysis	supports	previous	findings	from	
naturalistic	driving	studies,	suggesting	that	visual	diversion	from	the	forward	
roadway	is	the	key	mechanism	by	which	inattention	leads	to	rear‐end	crashes	
(Dingus	et	al.,	2006).	
	
To	better	understand	these	mechanisms,	a	closer	look	is	needed	on	drivers’	
visual	behaviour	and	what	critical	information	drivers	are	actually	missing	
during	a	glance	away	from	the	road	and	under	what	circumstances	it	leads	to	a	
crash.		
	

2.3 Visual time sharing 
	

Driving	is	an	ever‐changing	task,	which	relies	heavily	on	a	steady	stream	of	
visual	information	(Sivak,	1998).	Drivers	get	detailed	information	using	the	
foveal	vision,	in	the	direction	of	gaze,	while	the	peripheral	vision	senses	motion	
but	cannot	be	used	to	extract	precise	information.	In	order	to	get	a	
comprehensive	overview	of	the	road	situation	the	drivers	therefore	use	visual	
time	sharing	and	constantly	shift	their	gaze	to	different	areas	of	the	traffic	
environment	(Tivesten,	2014).	Although	a	driver	constantly	needs	new	
information	he	can	get	by	with	surprisingly	sparse	periodic	samples	of	the	
roadway.	Between	these	periodic	samples	the	driver	becomes	increasingly	
uncertain	about	the	state	of	the	vehicle	relative	to	the	road.	When	the	
uncertainty	exceeds	a	certain	threshold	the	driver	needs	to	refresh	his	visual	
state	(Senders	et	al.,	1967).	
	
Wierwille	(1993a,	1993b)	quantified	this	uncertainty	threshold	and	concluded	
that	drivers	feel	comfortable	taking	glances	off	the	road	for	up	to	one	second	but	
try	to	avoid	exceeding	1,5	seconds.	When	drivers	need	to	perform	a	visually	
demanding	secondary	task,	which	takes	longer	than	1,5	seconds	to	perform,	they	
therefore	tend	to	shift	their	attention	periodically	between	the	forward	view	and	
the	secondary	task	until	they	have	completed	the	task	(Wierwille,	1993b).	
	
Several	other	models	have	been	proposed	to	describe	normal	driving	behaviour.	
The	comfort	zone	model	describes	a	certain	safety	margin	that	controls	the	
driver’s	behaviour	and	the	drivers	strive	to	maintain	a	state	where	they	feel	
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comfortable.	When	pushed	towards	a	shorter	safety	margin,	e.g.	because	of	time	
constraint,	the	drivers	experience	discomfort.	They	then	tend	to	compensate	for	
the	discomfort	by	e.g.	putting	extra	effort	into	attention	and	vigilance	or	
adjusting	the	task,	e.g.	slowing	down.	(Summala,	2007)	In	a	car‐following	
situation,	drivers	usually	do	not	look	away	from	the	road	unless	the	range	rate	
between	them	and	the	lead	vehicle	is	effectively	zero.	(Tijerina	et	al.,	2004)		
They	do	not,	in	general,	appear	to	take	range	or	time	headway	into	account	to	
any	substantial	degree.		
	
	

2.4 What visual stimuli trigger avoidance reactions in a car 
following situation?  

	
As	mentioned	above	the	drivers	do	not	to	take	their	eyes	of	the	road	unless	the	
relative	velocity	of	their	vehicle	and	the	lead	vehicle	is	close	to	zero.	The	visual	
cues	that	are	considered	relevant	for	longitudinal	vehicle	control	have	been	
classified	as	contextual,	augmenting	or	primary	cues.	(Tijerina	et	al.,	2004)	
Traffic	queues	building	up	ahead,	red	lights	at	the	next	intersection	or	upcoming	
curves	are	all	examples	of	contextual	cues.	Augmenting	cues	refer	to	synthetic	
alerts	such	as	brake	lights	of	the	lead	vehicle	or	in‐vehicle	collision	warnings.	
Brake	lights	are	activated	before	the	range	between	two	cars	in	a	car	following	
situation	gets	smaller	and	they	are	therefore	generally	the	first	signal	that	alerts	
the	driver	that	there	is	a	possible	risk	of	a	rear‐end	collision.	The	onset	of	brake	
lights	is	however	common	in	a	non‐threatening	situation,	e.g.	when	the	driver	of	
the	lead	vehicle	is	only	tapping	the	brakes	lightly.	The	brake	light	onset	does	
therefore	not	necessarily	imply	that	he	is	breaking	with	a	force.	Crash	records	
have	shown	that	although	being	available,	brake	light	onsets	may	not	be	effective	
for	triggering	avoidance	reactions	(Tijerina	et	al.,	2004,	Markkula,	2015).	
Similarly	have	in‐vehicle	collision	warnings	been	found	to	re‐orient	the	gaze	to	
the	road	without	having	a	direct	effect	on	the	avoidance	reaction	of	the	drivers	
(J.D.	Lee	et	al.,	(2002),	Engström,	Ljung	Aust	and	Viström	(2010)).	
	
Finally	there	are	primary	cues,	such	as	changes	in	optical	kinematics,	which	in	
several	studies	have	found	to	be	the	main	factor	initiating	avoidance	manoeuvres	
in	rear‐end	safety	critical	events	(Engström	et	al.,	2013a).	The	term	optic	flow	
was	introduced	by	Gibson	in	the	1940s	to	describe	the	optical	stimulus	
presented	to	animals	when	they	are	moving.	His	followers	have	then	further	
demonstrated	the	role	of	optic	flow	in	perceiving	movement.	When	a	driver	
approaches	a	leading	vehicle	that	is	slowing	down	or	stopping,	the	impending	
vehicle	will	expand	on	the	retina	with	an	optical	angle	θ,	at	an	optical	expansion	
rate	θ	ሶ ,	commonly	referred	to	as	visual	looming.	The	ability	of	detecting	looming	
has	been	located	in	specialized	neural	circuits	in	animal	brains	which	are	used	
e.g	for	collision‐avoidance	(Fotowat	et	al.,	2011,	Sun	et	al.,	1998).	Looming	is	
directly	linked	to	changes	in	the	kinematics	and	does	therefore,	unlike	the	
previously	mentioned	visual	cues	(e.g.,	brake	lights),	represent	the	urgency	of	
the	situation.	According	to	Lee	(1976)	the	decision	to	initiate	braking	is	
determined	by	estimating	an	optically	specified	time‐to‐collision	(TTC),	often	
referred	to	with	tau	(τሻ.	The	parameter	tau	is	specified	for	small	angles	and	
defined	as:		
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TTC	 ൎ τ ൌ 	 

ሶ
	 	 	 	 	 	 (2)	

	
Where	θ	is	the	optical	angle	of	the	impending	object	and	θሶ 	is	its	time	derivative.		
Drivers	initiate	braking	manoeuvre	however	only	when	a	certain	threshold	of	
tau	is	obtained	regardless	of	their	speed.	(Lee.	D,	1976)	
	
The	inverse	of	tau	was	used	as	the	key	measurement	of	looming	in	the	SHRP2	
analysis	(Victor	et	al.,	2015).	Since	tau	decreases	from	infinity	when	approaching	
the	POV,	the	inverse	tau,	which	increases	from	zero	was	chosen	as	a	more	
convenient	variable.	Inverse	tau	can	be	directly	translated	into	the	relative	rate	
of	change	of	the	POVs’	optical	expansion	on	the	retina.	For	example,	if	the	POV	
grows	on	the	retina	by	a	third	in	1	second,	then	1/TTC	~	1/3,	implying	that	the	
collision	is	3	seconds	away	under	all	circumstances,	no	matter	the	vehicle’s	
approaching	speed	or	distance	(Markkula,	2015). 
	
	

2.5 Glance timing vs. situation kinematics; SAFER SHRP2 
analysis 

	
Does	the	occasion	of	an	unexpected	event	occurring	at	the	same	time	as	eyes	off	
path	play	a	fundamental	role	in	rear‐end	crash	causation?	Drivers	have	certain	
expectation	about	how	the	traffic	situation	will	evolve	which	they	base	on	their	
current	understanding	of	the	environment	and	their	experience.	An	unforeseen	
event	violates	driver	expectations	and	if	it	occurs	during	an	off	path	glance,	it	
might	result	in	a	crash.		
	
One	of	the	objectives	of	the	SHRP2	analysis	performed	by	SAFER	(Victor	et	al.,	
2015)	was	to	observe	how	common	the	“inopportune	glance	due	to	expectation	
violation”	mechanism	was	in	the	data	set.	The	kinematic	situation	was	therefore	
analysed	at	the	start	and	end	of	the	last	glance	(LG)	before	a	crash	or	near‐crash.	
T‐tests	were	performed	on	each	of	the	kinematic	variables	(e.g.	relative	velocity,	
time	headway	and	inverse	Tau)	to	evaluate	if	there	was	a	statistically	significant	
difference	between	crashes,	near‐crashes	and	matched	baseline	events.		
	
The	mean	values	for	relative	velocity	at	the	start	of	LG	proved	to	be	similar	for	
crashes	and	near‐crashes	but	significantly	lower	compared	to	the	matched	
baseline	events.	Negative	values	represent	that	the	SV	was	closing	in	on	the	POV.	
In	all	event	types	the	majority	of	cases	had	a	relative	velocity	close	to	zero	at	the	
start	of	the	LG,	as	was	expected	in	line	with	Tijerina	et	al.	(2004).	When	
measured	at	LG	end,	the	difference	between	relative	velocity	values	for	crashes	
and	near‐crashes	was	not	statistically	significant	and	it	was	therefore	concluded	
that	changes	in	relative	velocity	during	LG	does	not	have	an	impact	on	whether	
or	not	the	event	develops	into	a	crash	or	not.	
	
The	distribution	of	time	headway	at	the	start	of	the	LG	was	similar	for	all	event	
types,	but	at	the	end	of	LG	the	time	headway	had	reduced	significantly	for	
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crashes	and	near‐crashes,	with	the	reduction	being	a	significantly	larger	for	the	
crashes.	The	time	headway	at	the	start	of	LG	was	also	analysed	with	regards	to	
the	duration	of	the	glance.	There	were	some	indication	of	drivers	adopting	
longer	time	headway	for	the	longer	glance	duration	(>2	s)	but	in	general	it	
seemed	like	the	time	headway	was	not	taken	into	account	when	the	drivers	
decided	on	how	long	they	should	look	away	from	the	road.	Crashes	with	time	
headway	larger	than	2	seconds	at	the	start	of	LG	were	very	rare,	and	only	
occurred	when	the	glances	were	extremely	long	(>4	s).	
	
For	the	majority	of	the	events	in	the	data	set,	the	inverse	tau	(invTau)	was	close	
to	zero	at	the	start	of	the	LG,	indicating	a	normal	non‐critical	car	following	
situation.	There	was	no	significant	difference	between	the	invTau	value	at	LG	
start	for	crashes	and	near‐crashes.	There	was	however	a	significant	difference	
between	the	matched	baseline	and	the	crashes/near‐crashes	combined,	which	
indicated	that	some	crashes	or	near‐crashes	involved	drivers	look	away	despite	
already	being	closing	in	on	the	lead	vehicle.	At	the	end	of	LG	the	invTau	had	
notably	changed	in	both	crashes	and	near‐crashes,	representing	that	the	
situation	had	turned	critical	over	the	glance	period.	Crashes	could	be	
distinguished	from	near‐crashes	by	a	larger	invTau	value	and	shorter	time	
headway	at	the	end	of	LG,	indicating	a	higher	criticality.	
	
Another	objective	of	the	analysis	in	Victor	et	al.	(2015)	was	to	understand	better	
how	brake	light	onsets	affected	the	drivers’	behaviour.	The	co‐occurrence	of	
brake	light	onsets	and	off‐path	glances	in	the	dataset	was	investigated	and	
turned	out	to	be	the	case	in	23%	of	the	crashes,	34%	of	the	near‐crashes	and	
31%	of	the	matched	baselines.	That	indicates	that	whether	the	driver	misses	the	
brake	light	onset	or	not	does	not	play	a	significant	role	for	whether	the	event	
develops	into	a	crash	or	a	near	crash.	What	was	even	more	interesting	was	that	
drivers	took	their	eyes	off	the	road,	despite	having	seen	the	brake	light	onset	
(assuming	that	weather	conditions	were	good	and	the	brake	lights	salient	
enough	to	be	noticed),	in	almost	half	of	the	crashes	and	30%	of	near‐crashes	and	
matched	baselines.	From	that	it	can	be	concluded	that	the	brake	lights	are	often	
ignored.	
		
The	relative	contribution	of	LG	duration	and	invTau	change	rate	to	crash	and	
near‐crash	causation	was	also	analysed.	The	invTau	change	rate	was	calculated	
with	the	robustfit	function	in	Matlab	that	gave	a	linear	slope	that	fitted	the	
invTau	data	over	the	last	glance	period.	It	was	concluded	that	the	change	rate	of	
invTau	during	LG	was	able	to	distinguish	many	of	the	crashes	from	near‐crashes	
(Figure	3).	The	events	that	are	located	above	the	hypothetical	boundary	for	safe	
glances,	see	Figure	3,	occur	due	to	a	“perfect	mismatch”	mechanism	in	line	with	
the	general	mismatch	model	of	driver	inattention	(Engström	et	al.,	2013b).	The	
“perfect	mismatch”	mechanism	strongly	violates	the	driver’s	expectations	and	is	
explained	as	a	“perfect	mismatch”	between	the	visual	attention	to	the	road	and	
the	kinematic	change	of	the	surrounding	traffic.	The	longer	the	glance	duration,	
the	more	likely	it	is	that	the	kinematics	will	change	so	that	a	“perfect	mismatch”	
occurs.	Since	long	glances	occur	less	often	than	short	glances,	many	crashes	
result	from	a	combination	of	high	change	rate	and	shorter	glances.	An	important	
finding	of	that	analysis	was	thus	that	glances	do	not	have	to	be	long	to	produce	a	
crash.		
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Figure	3:	SHRP2	analysis	(Victor	et	al.,	2015)	on	the	interaction	on	invTau	change	rate	and	LG	
duration.	The	figure	is	reprinted	here	with	permission.	

	
In	the	SHRP2	analysis,	the	crashes	in	Figure	3	were	divided	into	three	main	
categories.	Majority	of	the	crashes	(60%)	were	grouped	in	Category	1,	as	
inopportune	glance,	where	the	drivers	looked	away	from	the	road	in	a	non‐
critical	situation	(invTau	close	to	zero).	Those	crashes	occur	largely	due	to	the	
“perfect	mismatch”	mechanism	mentioned	above.	In	Category	2,	the	drivers	
looked	away	in	an	already	kinematically	critical	situation,	which	was	suggested	
to	be	mainly	due	to	reduced	visibility.	In	Category	3,	the	drivers	looked	back	on	
the	road	before	the	situation	got	critical	and	in	those	few	cases	the	short	time	
headway	between	the	vehicles	appeared	to	be	the	main	crash	causation.	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

2.6 Research questions 
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2.6.1 General objectives 

As	reviewed	above,	previous	research	has	shown	that	off‐road	glances,	especially	
those	longer	than	2	seconds	are	strongly	related	to	crash	risk,	especially	in	rear‐
end	crashes.	The	goal	of	this	analysis	was	to	understand	further	how	off‐path	
glances	lead	to	rear‐end	crashes.	To	this	end,	the	timing	relations	between	off‐
road	glances,	kinematics	and	visual	cues	were	analyzed	and	compared	between	
crashes	and	near‐crashes.		As	mentioned	before,	the	main	objective	of	the	
present	analysis	was	to	replicate	the	rear‐end	crash	analysis	conducted	on	the	
SHRP2	data	on	a	different	naturalistic	dataset,	the	ANNEXT	data.		
	
The	ANNEXT	dataset	differs	in	some	ways	from	the	SHRP2	data:	
		

 It	contains	rear‐end	crashes	and	near‐crashes	but	no	matched	baselines.	
 Different	vehicle	types,	with	passenger	cars	only	being	about	1/3	and	the	

rest	trucks	and	buses.	
 It	has	more	crashes	that	are	also	more	severe.	
 The	sampling	frequency	is	lower,	4	Hz	in	the	ANNEXT	compared	to	10Hz	

in	SHRP2.		
 The	data	collection	is	event	triggered	as	compared	to	SHRP2	where	the	

data	collection	is	continuous.	That	results	in	fewer	possible	interval	
samples	of	recorded	data	both	before	and	after	the	crashes.	

 

2.6.2 Specific research questions 

The	following	specific	research	questions	were	addressed	in	this	thesis:		

1. What	is	the	prevalence	of	off‐path‐glances	in	crashes	and	near‐crashes?	
a. What	is	the	proportion	of	crashes	and	near‐crashes	where	the	

driver	looked	away	just	prior	to	the	crash		(also	split	between	cars,	
trucks	and	buses)	

2. How	is	the	duration	of	the	last	glance	(LG)	before	the	crash/near‐crash	
distributed?	Is	there	a	difference	between	crashes	and	near‐crashes?		

3. What	does	the	situation	look	like	at	the	start	of	the	last	glance	and	does	it	
differ	between	crashes	and	near‐crashes?	

a. Has	the	brake	light	onset	(BLO)	of	the	POV	already	illuminated	
while	the	driver	still	looked	forward?	

b. What	safety	margin	(time	headway)	does	the	driver	adopt	before	
looking	away?	Is	it	related	to	the	duration	of	the	subsequent	
glance?	

c. Is	the	distance	to	the	POV	constant	when	the	driver	looks	away	(a	
steady‐state	situation,	as	would	be	predicted	by	Tijerina	et	al.	
(2004))	or	do	drivers	often	look	away	when	the	POV	is	closing	in?	
(i.e.,	relative	velocity	different	from	zero)	
What	is	the	urgency	of	the	situation	when	the	driver	looks	away,	as	
optically	represented	by	invTau	(looming)?	
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4. What	does	the	situation	look	like	when	the	driver	looks	back	the	last	time,	
and	does	it	differ	between	crashes	and	near‐crashes?	

a. Has	the	POV	brake	light	onset	(BLO)	illuminated	while	the	driver	
looked	away?	

b. How	much	has	the	kinematics	(THW	and	relative	velocity)	
changed?	

c. How	much	has	the	urgency	of	the	situation	(invTau)	changed?	
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3 Method 
	

3.1 Data 
	
In	this	project	a	total	of	100	rear‐end	events	from	the	ANNEXT	project	were	
analysed.	The	data	set	used	consisted	of	the	70	rear‐end	crashes	that	have	
previously	been	partly	analysed	by	Engström	et	al.,	(2013a)	and	additional	30	
rear‐end	near‐crashes	that	have	not	been	analysed	before.		
	

3.1.1 The ANNEXT data set 

The	data	from	the	70	rear‐end	crashes	were	sampled	between	the	4th	of	October	
2011	and	the	1st	of	March	2012.	The	near‐crash	events	were	sampled	over	a	
shorter	period	of	time,	from	the	24th	of	January	until	the	29th	of	February	2012.	
Most	of	the	100	rear‐end	events	occurred	in	the	US,	or	53	of	the	crashes	and	24	
of	the	near‐crashes,	and	the	remaining	17	crashes	and	6	near‐crashes	occurred	
in	Africa	(South	Africa,	Nigeria,	Zambia	and	Zimbabwe).	92	of	the	subject	vehicle	
(SV)	drivers	were	male	and	the	crashes	occurred	at	various	times	of	the	day,	
with	most	crashes	happening	between	6	and	8	AM.		
	
The	SV	was	a	truck	in	28	crashes	(40%)	of	all	crashes,	a	passenger	car	in	26	
crashes	(37%)	and	a	bus	in	the	remaining	16	crashes	(23%).	The	near‐crash	
events	were	then	selected	to	match	the	distribution	of	SV	types	from	the	crash	
event	set,	with	the	SV	being	a	truck	in	11	cases	(36,5%),	a	bus	in	8	cases	(27%)	
and	a	passenger	car	in	the	remaining	11	cases	(36,5%).		
	
	
Table	3:	Distribution	of	SV	vehicle	types	in	the	dataset	

SV	Type	 Truck	 Bus	 Passenger	car	 Total	

Crashes	 28	(40%)	 16	(23%)	 26	(37%)	 70	

Near‐crashes	 11	(36,5%)	 8	(27%)	 11	(36,5)	 30	

	
	
	
The	following	criteria	were	used	for	selecting	the	events	for	the	ANNEXT	dataset:	
heavy	vehicles	were	prioritized,	the	driver	should	be	an	adult	and	he	should	not	
be	wearing	sunglasses,	the	speed	of	the	SV	should	be	higher	than	15	km/h	at	the	
initiation	of	the	evasive	manoeuvre	(or	at	the	crash	point	when	no	evasive	
manoeuvre	was	present)	and	the	POV	should	remain	in	the	same	lane	from	the	
beginning	of	the	event	until	the	evasive	manoeuvre	or	the	crash	point.		
	
The	OBSM	device	used	by	LYTX	consists	of	an	event‐triggered	video,	with	a	
forward	scene	view	as	well	as	a	view	of	the	driver/cabin,	and	a	data‐recording	
unit	that	measures	lateral	and	longitudinal	acceleration,	vehicle	ground	speed	
based	on	GPS	data	and	global	position	(GPS	based).	The	video	data	is	collected	at	
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4	Hz,	the	acceleration	at	approximately	8	Hz	and	the	GPS	sample	rate	is	close	to	1	
Hz.	The	video	cameras	record	8	seconds	prior	to	the	kinematic	trigger	point	and	
4	seconds	after.	Data	collection	is	triggered	when	the	SV	faces	an	impact	or	if	
there	is	a	hard	braking	or	other	kind	of	evasive	maneuvers.		
	

3.1.2 Initial data reduction  

	
The	actual	video	data	was	not	made	available	for	analysis	and	therefore	the	
parameters	of	interest	for	this	analysis	had	to	be	extracted	in	another	way.	The	
data	was	reduced	based	on	a	reduction	scheme	that	was	used	in	the	100‐car	ND	
study	(Dingus	et	al.,	2006),	but	adapted	for	current	purposes.	A	trained	analyst	at	
LYTX	performed	the	reduction	of	the	videos	manually.	For	each	event	a	variety	of	
general	information	(e.g.	the	type	of	SV	and	POV,	the	weather	conditions	and	the	
SV	driver	gender)	was	coded.	Furthermore,	time	series	data	for	the	driver	visual	
behavior,	onset	of	POV	brake	lights	and	the	POV	optical	size	in	the	video	image	
were	gathered,	frame‐by‐frame.	The	visual	behavior	of	the	SV	driver	was	coded	
according	to	the	area	of	interest	to	which	the	driver	directed	his	gaze,	for	
example	towards	the	mirrors,	the	windows,	the	instrument	cluster	etc.	If	the	
transition	of	the	gaze	was	captured,	that	frame	was	assigned	to	the	following	
glance.	Eyes	closure	or	coverage	was	also	coded.		

The	optical	size	of	the	POV	in	the	video	was	used	to	derive	parameters	such	as	
the	range,	optical	angle,	optical	expansion	rate,	and	tau	based	on	camera	
calibration.	The	width	of	the	lead‐vehicle	was	measured	between	the	outer	edges	
of	the	two	rear‐lights	as	seen	from	the	forward	video	and	manually	annotated	for	
each	video	frame.	The	LYTX	annotator	used	the	same	screen	when	measuring	the	
POV	width	in	all	events.	The	annotations	were	done	for	each	video	frame	and	
therefore	had	the	frequency	of	4	Hz.	In	order	to	align	the	GPS	data	gathered	at	1	
Hz	with	the	other	data	gathered	from	the	video	at	4	Hz,	the	GPS	data	was	
upsampled	to	4	Hz	with	a	linear	interpolation.	
	
The	real	vehicle	width	was	estimated	based	on	the	car	model	or	by	selecting	a	
standard	width	for	that	vehicle	type,	see	Table	4.	
	
	

3.2 Crash scenario reconstruction 
	
The	range	to	a	lead	vehicle,	the	optical	angle,	optical	expansion	rate	and	tau	of	
the	vehicle	as	seen	by	the	SV	driver	were	estimated	using	methods	developed	by	
Bärgman	et	al.	(2013).	These	methods	use	manual	annotation	of	video	together	
with	established	image‐rectification	and	transformation	algorithms	to	estimate	
useful	kinematics	and	optical	parameters	from	videos.	The	following	subsections	
describe	how	the	measured	width	is	filtered	and	how	it	is	possible	to	retrieve	the	
useful	optical	parameters	from	the	measured	POV	width	on	a	screen,	the	screen	
resolution	and	information	about	the	camera	optics.	Additionally	it	is	described	
how	estimation	of	the	estimated	real	width	of	the	POV	can	be	used	to	obtain	the	
kinematic	parameters.		
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3.2.1 Filtering the POV measured width and reducing noise 

The	initially	measured	width	of	the	lead	vehicle	was	filtered	in	order	to	minimize	
the	effect	of	noise,	image	compression	artifacts	etc.	The	width	was	used	in	order	
to	reconstruct	the	visual	angle	from	the	video	and	since	the	measurements	were	
done	manually	the	accuracy	depends	a	lot	on	how	precise	the	annotator	was	
when	measuring	the	outer	edges	of	the	POV	since	the	tool	used	for	the	width	
annotation	was	a	regular	ruler.	Limited	screen	resolution	and	noise	lowered	the	
accuracy	of	the	measurements.	All	optical	variables	that	were	calculated	based	
on	the	visual	angle	were	affected	by	this	noise.	It	was	especially	problematic	
when	measuring	the	POV	at	a	long	distance,	where	the	uncertainty	was	large	
compared	to	the	pixel	size,	and	for	those	variables	that	involve	time‐derivatives	
(theta‐dot	and	invTau).	The	filter	that	was	applied	to	the	raw	manually	measured	
width	data	in	order	to	reduce	the	noise‐effect	was	the	square‐kernel	smoothing	
filter	with	amplitude‐adapted	width.	The	kernel	averages	across	a	dynamic	
number	of	POV	width	measurements	(frames),	which	number	in	this	case	was	N	
=	(W0/W)2	with	W0	=	60	mm,	and	W	the	measured	width	in	millimeters	at	each	
frame.	The	maximum	kernel	size	was	limited	to	2	in	order	to	react	to	rapid	
changes	in	the	observed	pixel	width	and	instead	the	filter	is	added	3	times.	The	
same	smoothing	filter	was	used	in	the	SHRP2	analysis	(Victor	et	al.,	2015)	with	
some	modifications	to	reduce	edge	artifacts.	In	the	modified	version	the	edge	
value	was	kept	constant	between	filter	passes	instead	of	letting	the	filter	clip	the	
edge	value	and	thereby	loose	information.	This	was	crucial	in	the	slower	
sampled	ANNEXT	data	while	not	as	important	in	SHRP2.	
	
	
	

3.2.2 POV edges out of frame 

	
One	problem	with	the	vehicle	width	annotation	is	that	the	POV	edges,	at	close	
distances,	sometimes	appeared	outside	the	video	frame.	In	order	to	address	this	
problem,	these	occasions	had	previously	been	annotated	based	on	video	
observation	at	Lytx.	This	annotation	represented	the	time	stamp	in	each	event	
time	series	where	the	POV	edges	first	went	out	of	frame.	This	annotation	was	
used	to	define	up	to	what	time	point	the	data	was	reliable.	In	a	few	cases,	where	
the	POV	edges	went	out	of	frame	before	the	end	of	the	LG	was	reached,	the	data	
was	extrapolated.	The	last	second	of	reliable	data,	or	4	data	points,	were	used	as	
a	base	for	a	2nd	degree	polynomial	fit.		
	
	

3.2.3 Camera rectification  

To	compensate	for	optical	distortion	in	the	image,	the	pixel	coordinates	of	the	
width	on	the	right	and	left	side	of	the	lead	vehicle	were	adjusted	as	if	the	vehicle	
was	in	the	center	of	the	screen.	In	order	to	do	this	a	linear	model,	which	
parameters	were	extracted	from	the	Camera	Calibration	Toolbox	for	Matlab	
(Bougeuet,	2010),	was	used,	see	equation	1.		
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Where	the	filtered	size	of	POV	vector,	Sୢ୧ୱ୲,	comes	from	
the	square‐kernel	filter	and	Wୗ	/	Wୗ	is	used	as	a	
screen	scaling,	so	the	equation	fits	for	other	sizes	of	
screens.	The	WS	stands	for	the	width	of	screen	used	in	
the	method	development,	Wୗ	=	449	mm,	and	the	Wୗ	
for	the	new	screen	width,	which	in	this	case	was	Wୗ	=	
330	mm.	The	result	is	a	vector,	S୰ୣୡ୲,	which	contains	the	
rectified	size	of	POV	in	millimeters.	This	model	is	
specially	intended	for	rectifying	measurements	from	
the	DriveCam	Event	Recorder	video	(Bärgman	et	al.,	
2013).	
	
	

3.2.4 Optical parameters 

	
The	optical	parameters	were	calculated	by	using	knowledge	about	the	focal	
length	of	the	camera.	No	knowledge	of	the	POVs	real	width	is	required	to	get	the	
visual	angle	and,	hence,	no	small	angle	approximations	are	needed	in	the	
calculation	of	the	optical	variables.		
	
	

	
Figure	5:		A	schematic	showing	how	the	visual	angle,	θ,	is	obtained.	The	black	arrows	represent	the	
POVs	real	width,	the	width	captured	by	the	camera	and	the	width	as	measured	on	the	screen.		

Theta	(ી)	is	the	visual	angle	of	the	rear	end	of	the	POV	as	seen	from	the	camera.	
By	looking	at	Figure	5	it	can	be	seen	that	the	angle	θ/2	is	given	by	the	focal	
length	and	half	of	the	width	of	the	POV	as	measured	on	the	screen.	Since	the	focal	
length	of	the	Lytx	camera	was	given	in	pixels	(fpix		=	545,9	pixels),	and	the	POV	
width	measured	in	mm,	the	focal	length	is	converted	to	millimeters	by	using	the	
pixel	width	of	the	screen.	Wୗ୰ୣୡ୲	is	the	rectified	maximum	screen	width	
(obtained	from	equation	1	by	having	Sୢ୧ୱ୲ ൌ 	Wୗ 	ൌ 330	mm),	W୮୧୶	is	the	width	
of	the	video	in	pixels	(here	W୮୧୶	=	655	pixels)	and	fpix	is	the	focal	length	in	pixels	.		

Figure	4:	A	schematic	of	
how	an	image	can	be	
rectified	by	using	camera	
calibration	techniques	
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Theta	was	calculated	according	to	equation	2	where	S୰ୣୡ୲	is,	as	before,	the	
rectified	POV	width	on	the	screen	in	mm.		
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Before	deriving	other	optical	parameters	needed	for	this	analysis	from	the	theta	
a	3‐	point	floating	average	filter	was	applied	to	the	theta	calculation.		
	
	
Theta	dot	(ࣂሶ ),	the	optical	expansion	rate	of	the	POV	is	obtained	by	taking	the	
time	derivative	of	ߠ.	This	is	done	with	a	3	point	floating	linear	regression.	Special	
care	must	be	taken	at	the	ends	of	the	time	series	to	minimize	bias.	Points	outside	
the	edges	of	the	data	are	therefore	first	extrapolated	and	then	the	linear	
regression	filter	is	applied.	
	
Tau	(࣎ሻ,	equals	the	ratio	of	ߠ	to	ߠሶ ,	and	InvTau	(ି࣎ሻ	is	the	inverse	of	Tau,	or	1/	
Tau.	
	
	

3.2.5 Kinematics / Derived parameters  

By	assuming	the	real	width	of	the	POV	the	kinematic	parameters	can	be	
obtained.	The	assumed	widths	for	the	three	vehicle	types	are	given	in	Table	4.	
	
Table	4:	The	estimated	width	of	the	lead	vehicle.	Used	to	calculate	the	range	from	POV	pixel	width.	

Vehicle type  Estimated width 
(m) 

Lighter passenger cars  1.6 

SUV (Sport utility vehicle)  1.75 

Heavier vehicles (e.g. buses, trucks, ..)  2.5 

	

The	range	between	the	vehicles	could	be	calculated	with	the	second	least	square	
linear	regression	model	given	in	equation	3	where	Srect	comes	from	equation	1	
and	ܵ௧	is	the	width	of	the	reference	vehicle	(1.56	m)	that	was	used	to	produce	the	
model.	The	actual	width	of	the	lead	vehicle	in	the	image,	SNCReal,	is	estimated	
based	on	the	type	of	vehicle,	see	Table	4.		
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∙

ௌ
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	 	 	 	 (3)	

	

The	range	was	then	filtered	with	a	3‐point	floating	average	filter.		

The	range	rate	was	then	obtained	with	the	same	method	used	for	theta‐dot	
calculations,	namely	taking	a	time	derivative	of	the	range	using	a	3‐point	floating	
linear	regression	with	data	points	outside	the	edges	first	being	extrapolated	to	
minimize	the	bias	at	the	ends	when	the	regression	is	used	



	
	

26  CHALMERS, Applied Mechanics, Master’s Thesis 2016:10 
	

The	Time	Headway	(THW)	between	the	SV	and	the	POV	was	calculated	as	the	
ratio	of	the	range	over	the	SV	speed.		

The	SV	speed	/	relative	velocity	consists	of	the	merged	velocity	from	the	GPS	
and	the	velocity	obtained	from	integrating	the	accelerometer	signal.	The	velocity	
from	the	GPS	was	used	until	the	start	of	the	evasive	maneuver	and	then	the	
acceleration	based	velocity	after	that.	If	there	was	no	evasive	maneuver,	the	GPS	
signal	was	used	until	1	second	before	the	trigger.	Before	adding	the	acceleration‐
based	velocity,	the	values	were	offset	according	to	the	difference	between	them	
and	the	GPS.	This	was	done	to	smooth	the	curve.		
	

3.3 Analysis Methodology 
	
In	this	section	key	terms	used	in	this	analysis	are	defined	and	explained.	These	
terms	describe	where	the	driver	is	directing	his	gaze.	The	event	data	was	
furthermore	aligned	to	mutual	reference	points,	which	was	the	contact	point	for	
crashes	and	the	point	of	minimum	tau	for	near‐crashes.	Only	data	that	was	
logged	prior	to	the	reference	point	was	of	interest	in	this	analysis,	in	most	cases	
that	included	about	8	seconds	of	data.		
	

3.3.1 Aligning data 

	
For	time‐series	analysis,	the	events	were	aligned	according	to	a	reference	point	
that	was	specified	for	each	event	type.	The	crash	events	were	aligned	so	that	the	
collision	point	as	determined	from	the	video	annotator	was	set	to	as	the	
reference	point.	The	near‐crash	events	were	aligned	according	to	the	optically	
defined	inverse	time‐to‐collision	(invTau)	so	that	the	maximum	invTau	point	
was	specified	as	the	reference	point	and	set	to	0s.	
	

3.3.2 Key concepts 

	

3.3.2.1 Eyes On Path and Eyes Off Path 

The	driver’s	visual	behavior	was	categorized	based	on	the	ANNEXT	coding	
scheme	mentioned	earlier.	Each	time	frame	of	the	videos	was	assigned	an	area	of	
interest	(AOI)	towards	which	gaze	was	directed.	In	this	analysis	the	variable	
Eyes‐On‐Path	was	defined	as	all	instances	where	the	driver	directed	his	gaze	out	
of	the	straight	forward	windshield.	This	definition	could	include	glances	that	are	
directed	to	vehicles	in	the	adjacent	lanes	or	other	external	distraction	in	front	of	
the	car.	It	could	exclude	instances	where	the	vehicle	is	turning	and	the	driver’s	
gaze,	although	directed	to	the	path,	is	not	straight	through	the	forward	
windshield.	Eyes	Off	Path	does	then	represent	all	other	instances,	including	eyes	
closure	or	obstructed	vision	of	the	driver	due	to	eyes	being	covered	by	e.g.	hand	
as	well	as	all	glances	away	from	the	forward	path.	
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3.3.2.2 Last Glance 

Last	glance	(LG)	was	defined	as	the	last	glance	off	the	forward	roadway	to	take	
place	prior	to	the	reference	point,	which	was	set	as	the	contact	point	for	the	
crashes	and	the	maximum	value	off	the	inverse	tau	for	the	near‐crashes.	
However,	if	the	driver	showed	an	evasive	manoeuvre	reflex	(braking	or	steering)	
prior	to	the	onset	of	a	last	glance,	then	that	glance	was	discarded	and	the	
previous	glance,	if	existing,	noted	as	the	last	one.	The	start	of	the	last	glance	was	
annotated	when	the	driver	took	his	eyes	of	the	road	and	the	end	was	when	the	
eyes	were	back	on	the	road.	This	was	not	completely	in	line	with	SHRP2	where	
the	off‐path	glance	ended	when	the	driver	took	his	eyes	off	the	AOI,	before	the	
gaze	was	back	on	the	forward	roadway.	In	cases	where	the	eyes	were	closed	or	
covered	it	was	not	considered	as	a	glance	away	from	the	road.	
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4 Results 
	

4.1 Prevalence of off path glances  
In	the	ANNEXT	dataset,	some	events	did	not	contain	any	off‐path	glances	before	
the	reference	point.	Overall,	there	were	22	such	crashes	(6	passenger	cars,	6	
buses	and	10	trucks	)	and	9	near‐crashes	(5	passenger	cars,	2	buses	and	2	
trucks)	
	
There	were	additionally	4	crashes	and	2	near‐crashes	that	were	missing	in	the	
glance	onset.	These	events	were	excluded	when	the	change	in	situation	
kinematics	relative	to	glance	duration	was	analyzed.	Table	5	shows	the	
prevalence	of	off	path	glances	and	summarizes	the	number	of	excluded	events	
due	to	missing	or	incomplete	glances.	
	
Table	5:	Prevalence	of	off	path	glances	in	the	dataset	

Event 
type 

Original 
number 
of 
events 

Cases 
excluded due 
to lack of off‐
path glances 

Additional 
missing LG 
start 

Additional 
missing 
LG ends 

Remaining 
LG starts 

Remaining 
LG ends 

 Crashes  70  22   4   0  44  48 
Near‐
crashes  30  9  2   0  19  21 

	
	
An	off‐path	glance	was	prevalent	in	total	of	69	%	of	the	crash	events	
(48/70=0.69),	of	which	42%	were	passenger	cars,	21%	buses	and	37%	trucks.	
The	prevalence	of	off‐path	glances	was	similar	for	near‐crashes	with	70%	of	
them	containing	at	least	one	(21/30	=	0.7).	The	distribution	of	vehicle	types	was	
the	following:	28.5%	passenger	cars,	28.5	%	buses	and	43	%	trucks.		
	
Prevalence	of	eyes	closure	and	coverage		
In	8	of	the	22	crash	events	(11%	of	the	total	crash	events)	that	were	excluded	
due	to	lack	of	off	path	glances,	drivers	closed	their	eyes	or	they	were	covered.	
These	were	drivers	of	3	passenger	cars	and	5	trucks.	Eyes	closure	was	prevalent	
in	2	of	the	9	excluded	near‐crash	events	(7%	of	the	total	near‐crashes),	one	of	
them	was	a	passenger	car	and	one	truck.		
	
To	conclude,	the	majority	of	crashes	and	near‐crashes	involved	off‐path	glances	
or	eyes	closure/coverage,	but	the	specific	action	of	looking	away	could	not	
distinguish	between	crashes	and	near	crashes.		
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4.2 Distribution of the last glance 
	
In	this	analysis,	the	difference	in	the	duration	of	the	last	glance	for	crashes	and	
near‐crashes	was	mainly	in	the	tail,	where	long	glances	(exceeding	2	seconds)	
were	slightly	more	prevalent	in	crashes	(see	Figure	6.	This	difference	is	however	
minor	and	not	statistically	significant.	This	result	is	fairly	consistent	with	the	
SHRP2	analysis	although	the	glances	in	general	are	slightly	longer	for	the	
ANNEXT	dataset.	The	mean	duration	of	LG	for	crashes	and	near‐crashes	in	the	
present	dataset	was	1.84	and	1.51	respectively	compared	to	1.52	and	1.20	for	
SHRP2.	A	part	of	the	explanation	could	be	that	due	to	lower	sampling	rate	in	this	
analysis,	the	glance	durations	might	be	annotated	as	slightly	longer	than	they	
would	be	with	higher	sampling	rate.	
	
For	shorter	glances,	glance	duration	does	not	distinguish	between	crashes	and	
near‐crashes.	Are	these	glances	causally	unrelated	to	the	crash?	Or	is	the	key	
issue	what	happened	while	looking	away?	This	is	further	addressed	in	the	result	
sections	below.		

	

Figure	6:	Duration	of	last	glances	in	crash	and	near‐crash	events	

	

4.3 Timing of glances relative to brake light onsets 
In	this	analysis	all	events	that	had	at	least	one	brake	light	onset	prior	to	the	
reference	point	were	included.	The	dataset	then	contained	55	crashes	and	25	
near‐crashes,	see	Table	6.	It	should	be	noted	that	10	of	the	excluded	crashes	and	
2	of	the	excluded	near‐crashes	had	a	brake	light	onset	prior	to	the	recorded	12‐
second	timeframe.	Thus,	for	these	events,	the	light	was	on	for	the	whole	event	
but	there	was	no	BLO	recorded.		
	
The	co‐occurrences	of	any	brake	light	onset	and	eyes	off	path	were	investigated	
in	the	remaining	events	and	found	to	occur	in	25%	of	the	crashes	and	24%	of	the	
near‐crashes.	The	co‐occurrences	of	the	last	brake	light	onsets	and	eyes	off	path	
were	almost	the	same	as	for	any	brake	light	onset	(Table	6).	However,	drivers	
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ending	up	in	a	crash	were	about	twice	as	likely	to	look	away	from	the	road	after	
having	seen	the	last	brake	light	onset.		
	

Table	6:	Off	path	glances	relative	to	brake	light	onsets,	where	EOP	=	Eyes‐off‐path	,	BLO	=	Brake	light	onset	

	

	

According	to	these	results,	the	share	of	drivers	missing	the	BLO	was	about	the	
same	whether	the	event	ended	up	in	a	crash	or	not.	The	drivers	saw	the	last	
brake	light	onset	in	the	majority	of	crashes	and	near‐crashes,	but	still	ended	up	
in	a	safety	critical	situation.	This	indicates	that	the	brake	lights	are	often	ignored	
and	that	missing	the	BLO	in	itself	is	not	a	key	mechanism	distinguishing	crashes	
from	near‐crashes.	Drivers	that	ended	up	in	a	crash	were	twice	as	likely	to	have	
looked	away	from	the	road	after	having	seen	the	last	BLO	as	those	who	ended	up	
in	a	near‐crash.	The	same	relation	between	crashes	and	near	crashes	was	found	
in	SHRP2	(Victor	et	al.,	2015).	However,	compared	to	SHRP2,	there	were	
relatively	fewer	drivers	in	this	dataset	that	looked	away	after	having	seen	the	
BLO.	That	is	somewhat	difficult	to	explain.	

	

4.4 Timing of the last glance relative to situation 
kinematics 

So	far	the	results	have	indicated	that	the	prevalence	of	an	off‐path	glance,	the	LG	
duration	or	missing	a	BLO	does	not	play	a	fundamental	role	in	distinguishing	
rear‐end	crashes	from	near‐crashes.	It	may	be	that	the	situation	kinematics	at	
the	end	of	a	LG	is	more	critical	in	crashes	than	in	near‐crashes.	To	investigate	
this	hypothesis,	t‐tests	were	used	to	test	for	statistically	significant	differences	at	
the	start	and	end	of	a	last	glance	for	different	kinematic	variables	and	between	
the	event	types.	Two‐sample	t‐tests	were	used	to	compare	on	one‐hand	crashes	
vs.	near‐crashes	at	LG	start	and	on	the	other	at	LG	end.	Paired	sample	t‐tests	
were	then	used	to	look	at	the	situation	at	LG	start	vs	LG	end	for	crashes	and	
near‐crashes.	The	significance	level	in	all	tests	was	ߙ ൌ 0.05.	

Events	where	the	invTau	<	0.2	s‐1	at	the	end	of	the	last	glance	are	referred	to	as	
eyes‐on‐threat	events	in	accordance	to	what	was	done	in	the	SHRP2	analysis	

Event type 

Total 
number 
of valid 
events 

N events 
with 
brake 
light 
onset  

N events with 
BLO where any 
BLO occured 
during EOP (%of 
N BLO) 

N events with 
BLO where the 
last BLO occured 
during EOP (% of 
N BLO) 

N events with BLO 
where the driver 
looked away after 
having seen the 
last BLO (%of N 
BLO) 

 Crashes  70  55 (79%)  14(25%)  14 (25%)  8 (15%) 
Near‐
crashes  30  25 (83%)  6 (24%)  5 (20%)  2(8%) 
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(Victor	et	al.	2015).	When	invTau	>	0.2	s‐1	at	the	end	of	the	last	glance	that	event	
is	referred	to	as	eyes‐off‐threat	event.		
	

4.4.1 Time head way 

	

The	distribution	of	initial	time	headway	at	the	start	and	end	of	a	last	glance	is	
shown	in	Figure	7.	The	mean	time	headway	is	slightly	more	than	2	seconds	when	
the	driver	looks	away,	with	no	significant	difference	being	between	crashes	and	
near‐crashes,	2.62	and	2.54	seconds	respectively.	This	is	in	line	with	SHRP2	and	
Tijerina	et	al.	(2004)	and	indicates	that	the	situation	at	the	start	of	a	glance	
typically	represents	a	normal	following	situation.	These	mean	values	are	
considerably	higher	compared	to	the	initial	time	headways	recorded	at	the	start	
of	glances	in	SHRP2	analysis,	which	on	average	were	closer	to	1.5	seconds.	That	
difference	is	not	easily	explainable.	Since	different	vehicle	types	are	being	used	
in	the	two	studies	one	assumption	could	be	that	drivers	of	heavier	vehicles	adapt	
longer	time	headway	due	to	a	longer	stopping	distance.	Figure	8	does	however	
not	show	any	apparent	difference	between	the	adapted	headway	of	light	and	
heavy	vehicles.		

At	the	end	of	the	last	glance	the	time	headway	has	become	significantly	reduced	
for	both	crashes	and	near‐crashes	(ݐସଷ ൌ 	6.34, p ≪ 0.001	and	ݐଵଽ ൌ 	2.65, p ൌ
0.016ሻ,	the left	tail	is	however,	slightly	more	pronounced	for	crashes.	 

	
	
	

	
Figure	8	shows	the	time	headway	at	the	start	of	the	last	glance	versus	the	
duration	of	the	glance.	Most	events	occur	at	a	short	THW	with	relatively	short	
glances.	There	is	some	weak	indication	that	the	drivers	allow	longer	glances	at	

Figure	7:	THW	at	start	and	end	of	LG	
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longer	time	headways.	A	linear	regression	gave	a	correlation	of	R2	=	0.1721,	after	
the	two	extremely	long	THW	cases	had	been	excluded.		

All	in	all,	at	the	start	of	LG	the	time	headway	alone	could	not	predict	whether	or	
not	the	event	would	evolve	into	a	crash	or	a	near‐crash	(t62	=	‐0.1868,	p	=	
0.8525).	At	the	end	of	a	last	glance	the	time	headway	had	on	average	reduced	
more	for	crashes	than	near‐crashes	and	short	headways	were	more	common	for	
crashes.	The	difference	was	however	not	significant	(t67	=	1.07,	p	=	0.2897).		

	

	
Figure	8:	Time	headway	at	the	start	of	the	LG	vs.	the	duration	of	the	LG.	Heavier	vehicles	(trucks,	
buses)	are	represented	with	bolder	markers.	

	

4.4.2 Relative velocity  

	
In	Figure	9	the	relative	speed	is	plotted	at	the	start	and	end	of	the	last	glance.	
For	the	majority	of	the	events,	in	both	crashes	and	near‐crashes,	the	drivers	
looked	away	when	the	relative	velocity	was	small,	indicating	a	normal	
following	situation	and	thus	supporting	the	findings	of	Tijerina	et	al.	(2004).	
The	negative	tails	at	the	start	of	LG	indicate	that	a	significant	proportion	of	
drivers	did	look	away	when	the	POV	was	closing	at	a	relatively	high	speed.	As	
can	be	seen	in	Figure	10	this	was	mainly	the	case	when	the	time	headway	
was	large	and	the	drivers	did	therefore	perhaps	not	perceive	a	great	urgency.		
	
Looking	back	at	Figure	9	a	difference	can	be	seen	between	crashes	and	near‐
crashes	in	how	the	relative	velocity	has	changed	during	the	last	glance.	The	
change	over	the	LG	duration	is	statistically	significant	for	the	crashes	(ݐସଷ ൌ
	4.5113, p ≪ 0.001ሻ,	indicating	that	the	amount	of	closing	that	is	missed	while	
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looking	away	from	the	forward	road	place	a	role	in	why	some	events	evolve	
into	a	crash	and	others	not.	The	change	over	LG	duration	for	near‐crashes	is	
not	statistically	significant	(t19	=	1.238,	p	=	0.2315)	and	the	difference	
between	near‐crashes	vs.	crashes	at	LG	start	(t62	=	0.9958	,	p	=	0.3233)	and	at	
LG	end	(t67		=	1.888,	p	=	0.0634)	is	neither.	
	

 
Figure	9:	Relative	velocity	at	the	start	and	end	of	the	LG.	

	

	
	
Figure	10:	The	relative	velocity	vs.	the	THW	at	start	of	LG.	Heavier	vehicles	(trucks,	buses)	are	
represented	with	bolder	markers.	
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4.4.3 Inverse Tau 

	
The	distribution	of	inverse	tau	at	the	start	and	end	of	an	LG	can	be	seen	in	Figure	
11.	The	invTau	is	approximately	the	inverse	time‐to‐collision,	and	as	such	
representing	of	the	urgency	of	the	situation.	Since	it	is	optically	specified	in	
terms	of	relative	rate	of	the	angle	subtended	by	the	POV,	or	looming,	it	would	be	
expected	to	also	represent	the	degree	of	the	urgency	perceived	by	the	driver.	In	
support	of	Tijerina	et	al.	(2004),	the	majority	of	the	drivers	looked	away	when	
the	invTau	was	close	to	zero	or	when	the	situation	was	still	non‐critical,	and	
there	was	no	statistically	significant	difference	at	LG	start	between	crashes	and	
near‐crashes.	

	
However,	in	some	cases,	more	frequently	in	crashes,	the	driver	looked	away	
despite	rather	high	values	of	invTau.	It	may	be	hypothesized	that	the	main	
mechanism	for	this	was	erroneous	expectancy;	the	drivers	expected	the	situation	
to	develop	differently	than	it	did	due	to	missed	contextual	cues.	Moreover,	in	few	
cases	the	visibility	was	not	ideal,	heavy	rain	or	glare	from	the	sun	impaired	
looming	detection.	

	
The	invTau	changed	significantly	during	the	last	glance,	both	for	crash	and	near‐
crash	events	(ݐସଷ ൌ 	െ6.23, p ≪ 0.001	for	crashes	and	ݐଵଽ	=	‐3.17	,	p<0.01	for	
near‐crashes).	At	the	start	of	LG	the	difference	between	near‐crashes	and	crashes	
was	already	statistically	significant	(t62	=	‐2.543,	p	=	0.0136)	and	the	change	at	
the	end	of	LG	also	differed	substantially	between	crashes	and	near‐crashes	
ݐ) ൌ െ3.3450, p ൌ 0.0014	).	That	suggests	that	the	missed	urgency	information	
(amount	of	looming)	during	the	LG	is	a	key	factor	in	developing	crashes.		

	
At	the	end	of	LG	the	prevalence	of	eyes‐on‐threat	events	(invTau	<	0.2	s‐1	at	LG	
end)	was	26%	for	crashes	(12/46	=	0.26)	and	57%(12/21=0.57)	for	the	near‐
crashes,	further	supporting	that	conclusion	that	the	change	in	urgency	(or	
missed	looming)	during	the	last	glance	is	also	a	key	factor	in	crash	causation.	
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Figure	11:	Inverse	tau	at	the	start	and	end	of	LG.	

	

The	amount	of	missed	looming	depends	partly	on	the	glance	duration,	but	also	
on	the	kinematics	of	the	situation.	For	example,	the	looming	will	grow	faster	at	
shorter	initial	headways	and	for	higher	closure	rates.	To	investigate	the	relation	
between	these	factors,	the	invTau	difference	was	plotted	against	LG	duration	
(see	Figure	12).		

	
Figure	12:	The	change	of	inverse	tau	over	the	LG	period	vs.	the	duration	of	the	glance.	Heavier	
vehicles	(trucks,	buses)	are	represented	with	bolder	markers.	The	dotted	and	dashed	lines	enclose	
an	area	for	“safe	glances”,	more	about	that	in	the	text.	
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The	plot	seen	in	Figure	12	indicates	that	both	factors	play	a	role.	Most	eyes‐on‐
threat	events,	shown	in	gray	in	the	figure,	have	a	missed	invTau	value	clustered	
around	zero	regardless	of	the	LG	duration,	as	would	be	expected.	The	vertical	
dotted	line	divides	the	glances	in	shorter	and	longer	glances	(above/below	2	
seconds).	There	are	not	many	near‐crashes	with	LG	longer	than	2	seconds	but	
there	is	a	considerable	amount	of	crashes	with	LG	longer	than	2	seconds.	For	
longer	glances,	crashes	may	occur	for	a	wide	range	of	missed	invTau	values	
(depending	on	at	what	point	during	the	glance	the	lead	vehicle	brakes),	with	the	
requirement	that	the	situation	must	be	sufficiently	urgent	when	looking	back	to	
become	a	crash.	For	shorter	glances,	the	missed	invTau	for	both	near‐crashes	
and	crashes	increases	approximately	linearly	with	LG	duration.	However,	the	
urgency	(invTau)	needs	to	change	more	rapidly	to	produce	a	crash.	The	dashed	
line	represents	a	hypothetical	threshold	that	decently	separates	crashes	from	
near‐crashes.	When	put	together,	the	lines	in	Figure	12	enclose	an	area	of	what	
could	be	seen	as	relatively	“safe	glances”.	Thus,	for	a	subset	of	the	events,	the	
outcome	seems	almost	solely	determined	by	the	combination	of	glance	duration	
and	change	rate.		

The	invTau	change	rate	was	then	plotted	against	LG	duration	in	order	to	
replicate	the	SHRP2	analysis.	In	SHRP2	the	cornerstone	of	the	findings	was	the	
invTau	change	rate	mechanism	(Figure	13).	

	

	
	
Figure	13:	Inverse	tau	change	rate	during	a	last	glance.	Heavier	vehicles	(trucks,	buses)	are	
represented	with	bolder	markers.	The	dashed	line	represents	hypothetical	boundaries	for	“safe	
glances”.	
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The	change	rate	of	the	inverse	tau	during	the	last	glance	was	computed	as	the	
slope	of	a	linear	function	fitted	to	the	invTau	data	during	the	last	glance.	This	was	
done	by	using	a	Matlab	function	called	robustfit.	In	events	where	the	last	glance	
was	short	and	there	were	not	enough	values	to	use	the	robustfit,	the	data	was	
fitted	with	a	multiple	linear	regression	function	from	Matlab	called	regress.	
			
The	property	of	the	robustfit	function	is	to	give	the	mean	slope	over	the	selected	
data	segment	of	interest,	in	this	case	the	last	glance.	The	change	rate	is	thus	very	
dependent	on	the	length	of	the	last	glance	and	usually	the	longer	the	glance,	the	
lower	the	change	rate.		
	
Figure	13	replicates	the	findings	in	SHRP2	(Figure	3),	indicating	that	a	large	
portion	of	the	crashes	occur	due	to	a	“perfect	mismatch”	between	the	timing	of	
the	last	glance	and	the	change	in	urgency	of	the	situation.	For	short	glances,	the	
urgency	(invTau)	needs	to	change	fast	during	the	LG	in	order	to	produce	a	crash.		

These	relatively	short	glances	clearly	play	a	causal	role	in	the	development	of	the	
crashes,	or	at	least	in	the	outcome	impact.	However,	like	in	SHRP2,	there	are	also	
some	crashes	intermingled	with	the	near‐crashes.	These	may	involve	other	
factors	like	skidding,	adverse	visibility	etc.	that	increases	the	stopping	distance,	
or	slows	down	the	reaction,	which	then	makes	an	event	that	would	normally	
have	resulted	in	a	near‐crash	develop	into	a	crash.		

Although	both	the	invTau	change	rate	plot	(Figure	13)	and	the	invTau	difference	
plot	(Figure	12)	manage	to	distinguish	crashes	from	near‐crashes	fairly	well	the	
invTau	change	rate	and	the	LG	duration	are	very	dependent	variables	and	thus	
the	change	rate	may	perhaps	not	be	the	best	indicator	of	urgency.	As	can	be	seen	
in	Figure	14,	the	invTau	change	rate	flattens	drastically	with	longer	glance	
duration.	By	comparing	two	variables	this	dependent	a	linear	behavior	is	
automatically	created,	like	the	one	seen	in	Figure	13.	Longer	glances	have	an	
intrinsically	lower,	more	flattened	out,	change	rate.		
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Figure	14:	A	diagram	explaining	the	fundamental	difference	between	invTau	change	rate	and	the	
difference	in	invTau	(missed	looming)	during	a	last	glance.	The	dashed	lines	show	a	hypothetical	
event	where	the	glance	duration	is	much	longer	and	how	that	affects	the	invTau	change	rate.			

	
Figure	14	also	shows	that	the	difference	of	invTau	at	the	start	and	end	of	LG,	or	
missed	looming,	appears	to	be	a	much	more	independent	variable.	For	different	
LG	durations	the	missed	amount	of	looming	is	still	the	same.	It	could	therefore	be	
stated	that	less	bias	is	introduced	by	plotting	the	missed	looming	against	the	LG	
duration	(Figure	12)	and	that	missed	looming	might	be	a	better	indicator	of	the	
change	of	urgency	during	a	glance	than	the	invTau	change	rate.		
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5 Conclusions 
	
In	the	previous	chapter	the	results	of	the	present	analysis	were	displayed	and	
compared	with	what	was	found	in	the	SHRP2	analysis	(Victor	et	al.,	2015).	When	
all	is	taken	together	it	can	be	concluded	that	the	findings	are	very	consistent	with	
what	was	found	in	the	SHRP2	analysis.	Namely	that	the	combination	of	glance	
duration	and	the	change	in	urgency,	represented	optically	by	looming	cues	
during	the	glance,	is	a	key	crash	causation	mechanism.	These	findings	add	great	
support	to	the	design	of	active	safety	systems	and	other	driving	support	
countermeasures	that	protect	the	driver	during	a	critical	situation.	If	there	is	a	
sudden	change	in	the	situation	kinematics	during	a	glance	off	the	forward	road	
the	active	safety	systems	could	initiate	braking	to	create	more	time	headway	as	
well	as	alert	the	driver	about	the	oncoming	threat.		
	
The	main	difference	found	between	those	two	datasets	was	that	the	drivers	in	
the	present	analysis	adopted	significantly	larger	safety	margin	than	drivers	in	
SHRP2.	One	of	the	mechanisms	found	in	SHRP2	was	that	the	onset	of	brake	lights	
was	generally	ignored	as	a	possible	crash	indicator	with	drivers	looking	away	
from	the	road	after	having	seen	the	brake	light	onset	in	50%	of	the	crashes.	This	
mechanism	did	however	only	occur	in	15%	of	the	crashes	in	the	present	analysis.	
It	is	therefore	difficult	to	draw	any	safe	conclusions	about	how	the	brake	light	
onset	affects	drivers	in	crash	avoidance	behaviour.		
	
The	research	questions	asked	in	section	2.6.2	are	answered	here	below:		
	
1. What	is	the	prevalence	of	off‐path‐glances	in	crashes	and	near‐crashes?	

This	refers	to	the	proportion	of	crashes	and	near‐crashes	where	the	driver	
looked	away	within	the	time	window	(also	split	between	cars,	trucks	and	buses).	
The	prevalence	of	off‐path	glances	did	not	differ	between	crashes	and	near‐
crashes	and	was	in	both	cases	around	70%.	However,	the	proportion	of	eyes‐off‐
threat	glances	was	higher	for	crashes,	indicating	that	the	timing	of	the	glance	in	
the	time	window	played	a	crucial	role	for	event	outcome.	

	
2. How	is	the	duration	of	the	last	glance	distributed?	Is	there	a	difference	between	

crashes	and	near‐crashes?		

The	main	difference	is	in	the	tail	–	several	crashes	involve	very	long	glances	that	
do	not	occur	for	near‐crashes.	SHRP2	included	baselines	and	also	found	that	
crashes	and	near‐crashes	mainly	differ	from	baselines	in	the	tail	(separate	glance	
distributions	for	crashes	and	near	crashes	were	not	plotted	in	Victor	el	at.	
(2015).	This	indicates	that,	for	shorter	glances,	glance	duration	alone	cannot	
explain	crash	outcome.	
	
3. What	does	the	situation	look	like	at	the	start	of	the	last	glance	and	does	it	differ	

between	crashes	and	near‐crashes?	
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a. Has	the	brake	light	onset	of	the	POV	already	illuminated	while	the	driver	
still	looked	forward?	

In	this	study,	looking	away	after	having	seen	the	BLO	was	quite	rare	for	both	
crashes	and	near‐crashes.	This	was	in	strong	contrast	to	SHRP2,	where	this	
happened	in	50%	of	crashes.	That	could	perhaps	be	explained	somewhat	by	
shorter	time	recorded	prior	to	the	crash,	were	in	many	of	the	cases,	the	BLO	had	
already	happened	and	was	perhaps	seen	by	the	driver.	In	this	analysis	those	
cases	were	not	considered	because	of	lack	of	data.	
	

b. What	safety	margin	(time	headway)	does	the	driver	adopt	have	when	
looking	away?	Is	it	related	to	the	duration	of	the	subsequent	glance?	

The	THW	at	LG	start	was	on	average	2,5	seconds,	which	is	about	1	second	larger	
than	in	SHRP2.	One	explanation	could	be	that	the	drivers	in	the	current	dataset	
were	professional	drivers	while	the	drivers	in	SHRP2	were	not.	No	significant	
difference	in	adapted	time	headway	between	crashes	and	near‐crashes	indicates	
that	time	headway	did	not	determine	the	outcome.	A	safety	margin	of	2,5	
seconds	is	considered	relatively	large,	so	in	the	present	crashes	(where	drivers	
looked	away	at	least	once),	headway	does	not	seem	strongly	involved	in	crash	
genesis.	
	

c. Is	the	distance	to	the	POV	constant	when	the	driver	looks	away	(a	
steady‐state	situation,	as	would	be	predicted	by	Tijerina	et	al.	(2004))	or	
do	drivers	look	away	when	the	POV	is	closing?	

Most	drivers	looked	away	in	a	steady	state	situation	(as	indicated	by	both	
relative	velocity	and	invTau),	thus	supporting	Tijerina’s	et	al.	(2004)	hypothesis	
that	drivers	looked	away	in	a	situation	they	perceived	as	non‐critical	and	the	
POV	braked	shortly	thereafter.	However,	some	drivers	did	look	away	during	
closing,	even	at	relatively	high	urgency	(invTau).	This	was	somewhat	more	
common	in	crashes	(however,	not	in	SHRP2).	Several	mechanisms	may	lead	to	
this	(expectations,	adverse	visibility,	short	look	back	before	LG),	but	this	was	not	
further	analysed	here.	
	
4. What	does	the	situation	look	like	when	the	driver	looks	back	the	last	time,	and	

does	it	differ	between	crashes	and	near‐crashes?	
a. Has	the	POV	brake	light	onset	illuminated	while	the	driver	looked	away?	

This	only	occurred	in	25%	of	the	crash	cases	and	24%	of	the	near‐crash	cases.	
That	indicates	that	whether	the	BLO	is	seen	or	not	may	not	be	critical	for	the	
outcome.		
	

b. How	much	has	the	situation	changed	when	looking	back?	

Both	THW,	relative	velocity	and	invTau	changed	significantly,	indicating	that	
POV	braking	after	looking	away	is	a	key	mechanism	in	producing	crashes	and	
near‐crashes.	InvTau,	representing	urgency,	led	to	the	clearest	difference	
between	crashes	and	near‐crashes.	This	indicates	that	the	timing	of	the	last	
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glance	relative	to	the	change	in	urgency,	represented	optically	by	looming	cues,	
during	the	glance	is	a	key	mechanism	behind	crashes.		
This	was	confirmed	by	analysis	of	the	relation	between	the	invTau	difference	
(missed	looming)	and	LG	duration.	Further,	plotting	the	invTau	change	rate	
against	LG	duration	yields	a	relatively	strong	separation	between	crashes	and	
near‐crashes.	This	indicates	that	crashes	are	sometimes	produced	also	by	short	
glances	given	that	the	urgency	changes	quickly	enough	during	the	glance.	
However,	the	strong	prevalence	of	short	glances	that	do	not	lead	to	crashes	
generally	means	that	the	relative	crash/near‐crash	risk	associated	with	short	
glances	alone	is	not	significant.	On	the	other	hand,	the	present	analysis	indicates	
that	some	of	these	short	glances	are	indeed	involved	in	crashes,	and	if	they	could	
be	selectively	mitigated,	rear‐end	crash	rate	would	be	expected	to	go	down.				
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