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Abstract: We propose a novel regenerator site selection scheme for nonlinear impairment-
aware elastic optical networks. The proposed scheme reduces bandwidth use by up to 40% in
a realistic network by employing only 6 regenerator sites.
OCIS codes: (060.4510) Optical communications, (060.4256) Networks, network optimization.

1. Introduction
Orthogonal frequency division multiplexing (OOFDM)-based elastic optical networks (EONs) increase bandwidth
utilization by allocating a contiguous set of subcarriers with “just enough” bandwidth to every connection. In these
networks, regenerators are used to counter the detrimental effect of linear and nonlinear physical layer impairments
(PLI) and thereby increase the transmission reach of traffic connections. While regenerator site selection in EONs is a
relatively new and understudied issue [1–6], a few researchers have attained impressive spectral efficiency gains [1,6],
reduced power consumption [3], or reduced bandwidth blocking ratio [4, 5] by appropriately selecting regenerator
sites. However, these studies do not accurately account for PLI because the transmission reach of their modulation
formats was assumed to be independent of the actual network state and because of the use of fixed-size guardbands
(GBs) [7].

To overcome these limitations, we propose a novel scheme to identify the appropriate regenerator sites in realistic
impairment-aware EONs using the Gaussian Noise (GN)-based PLI model of [8,9]. The proposed schemes, which are
expressed as an integer linear program (ILP) and a low-complexity heuristic, select the regenerator sites and assign
routes, modulation format, and spectrum to offline traffic connections to increase spectral efficiency of the EONs.

2. Physical-layer impairment model
The PLI model and values of the relevant parameters are directly adopted from [9]. Let Al denote the set of all
connections in link l in a network. For any connection i ∈ Al , the signal-to-noise ratio (SNR) in a single span
is SNRi = G/(GASE + GNLIi), where G, GASE, and GNLIi denote the power spectral density (PSD) of the sig-
nal, the amplified spontaneous emission (ASE) noise, and the noise from nonlinear impairments (NLI), respec-
tively. The GNLIi consists of two terms: self-channel interference (SCI) and cross-channel interference (XCI), where
XCI = ∑ j∈Al\{i} ln [(∆ fi j +∆ f j/2)/(∆ fi j−∆ f j/2)] [8, 9]. Here, ∆ fi is the bandwidth of connection i at its assigned
modulation format and ∆ fi j is the center frequency spacing between connections i and j.

While SCI can be calculated given the connection’s bit rate and the spectral efficiency of the assigned modulation
format, prior knowledge (i.e., the bit rate, modulation format, and spectrum) of other co-propagating connections is
needed to calculate XCI. To obtain this information, every link needs to be closely scrutinized, which is both complex
and time-consuming. Thus, we propose an approximation method to estimate the worst case XCI for connection i in
a single span. The worst case XCI for connection i, which has a bandwidth of yik using modulation format k, occurs
when this connection is surrounded by the maximum number of adjacent connections t on both sides, each having the
maximum bandwidth of 2q, as shown in Fig. 1. In this case, the XCI is 2∑

t
n=1 ln [(yik +2nq)/(yik +2(n−1)q)]. In this

expression, we choose t such that 2t +1 equals the highest number of connections in a single link using shortest-path
routing for every connection, and q such that 2q equals the bandwidth of the connection with the highest bit rate using
the lowest-order modulation format.
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As GNLIi can now be estimated, the transmission reach for connection i at modulation format k can be calculated
in terms of the number of spans as Rik = [(G/SNRk)/(GASEi +GNLIi)], where SNRk represents the SNR threshold
needed to satisfy the bit error rate (BER) performance of the assigned modulation format k. The proposed approx-
imation method provides a more accurate transmission reach estimation than existing work [1, 3, 6] as it relies on



the actual bit rate and bandwidth of the connection (without GBs), its assigned modulation format, and the SNR
requirement, and as t is based on the traffic distribution in the actual topology.

3. Problem statement
Given a network with a set of nodes V , a set of links E (all links l ∈ E have two fibers that carry traffic in opposite
directions), and a set of connections T , the goal is to identify regenerator sites, perform routing, assign modulation
formats, and allocate spectrum to minimize the bandwidth, quantified as the highest subcarrier index ξ assigned to any
connection. The transmission parameters are C, the spectral width of each subcarrier; M, the set of modulation formats;
ck, the spectral efficiency of modulation format k ∈M; Λi, the data rate of connection i ∈ T ; SNRk, the required SNR
threshold of the modulation format k ∈M; and RG, the maximum number of regenerator sites. We denote with sl and
dl respectively the source and destination nodes of link l, which has a length of Nl (or Nsldl ) spans.

The following parameters are predetermined using simple heuristics and the proposed approximation method: Pi,
the set of K shortest routing paths for connection i ∈ T ; Tik, the number of subcarriers required by connection i when
assigned modulation format k ∈M; and Rik, the approximated reach of connection i when assigned modulation format
k. The transparent distance to node n when connection i is routed along path r ∈ Pi is denoted as Wirn.
3.1. ILP formulation
The proposed ILP aims to minimize ξ by finding the optimal combination of the following binary variables, which are
0 when the condition is not satisfied: Ψn = 1 if node n is a regenerator site, Dir = 1 if connection i ∈ T is routed along
path r ∈ Pi, pirl = 1 if connection i travels through link l when routed along path r, mirlk = 1 if connection i routed
along path r and through link l is assigned modulation format k, yir jr′l = 1 if connection i that is routed along path r
and connection j ∈ T that is routed along path r′ ∈ Pj share link l, and uir jr′l = 1 if yir jr′l = 1 and firl +Birl ≤ f jr′l ;
and the following integer variables: Birl , the number of subcarriers assigned to connection i on path r and through link
l ∈ r, and firl , the lowest subcarrier index of connection i that is routed along path r and travels through link l. The
variables should fulfill the following constraints, where θ is a large inequality coefficient (θ = 105).

∑n∈V Ψn ≤ RG (1)

∑r∈pi
Dir = 1, ∀i ∈ T (2)

pirl = Dir, ∀l ∈ r,r ∈ Pi, i ∈ T (3)
Birl ≥∑k∈M Tikmirlk, ∀l ∈ r,r ∈ Pi, i ∈ T (4)

∑k∈M mirlk− pirl = 0, ∀l ∈ r,r ∈ Pi, i ∈ T (5)
ξ ≥ firl +Birl −1, ∀l ∈ r,r ∈ Pi, i ∈ T (6)
θΨn ≥ firl −∑z∈Pi\{l},sz=n firz ≥−θΨn,

n = dl ,∀l ∈ r,r ∈ Pi, i ∈ T (7)
θΨn ≥ mirlk−∑z∈Pi\{l},sz=n mirzk ≥−θΨn,

n = dl ,∀k ∈M, l ∈ r,r ∈ Pi, i ∈ T (8)

Wird =

{
Wirs(1−Ψs)+Nl , l 6= first link of r ∈ Pi

Nl , otherwise
d = dl ,s = sl ,∀l ∈ r,r ∈ Pi, i ∈ T (9)

∑k∈M mirlkRik ≥ θ(pirl −1)+Wird ,

d = dl ,∀l ∈ r,r ∈ Pi, i ∈ T (10)
pirl + p jr′l ≤ 1+ yir jr′l (11)
f jr′l +B jr′l − firl ≤ θ(1− yir jr′l +uir jr′l) (12)
firl +Birl − f jr′l ≤ θ(1−uir jr′l) (13)
(11)–(13) are valid for ∀l ∈ r∩ r′,r ∈ Pi,r′ ∈ Pj,{i, j} ∈ T, j 6= i

where constraint (1) limits the number of regenerator sites; (2) ensures single-path routing; (3) determines the
links that are used on the selected path; (4) and (5) specify the number of subcarriers used by a connection and its
modulation format in a link; (6) guarantees that ξ is larger than the maximum subcarrier index of every connection;
(7) and (8) allow the spectrum and modulation of a connection to be converted at a regenerator site; (9) determines
the distance of every transparent segment; (10) guarantees that the distance in (9) is within the approximated reach of
the assigned modulation format; and (11)–(13) guarantee non-overlapping spectrum allocation.
3.2. Proposed heuristic
The proposed heuristic involves two stages, the first being the selection of regenerator sites. The preferred routing
path for each connection is found using the balance-path-with-heavy-traffic-first algorithm in [10], which is designed
to reduce the risk of overloading a single link. For each connection, we first calculate the transmission distance from
every node on its preferred path to its destination node. Next, for each node, we sum the remaining transmission
distances of all the connections routed via that node. For example, if only connections i and j on paths {s−x−d} and
{s− x−w−d′}, respectively, traverse node x, the summed transmission distance for node x is Nxd +Nxw +Nwd′ . The
nodes are then ranked in descending order of their summed value. The nodes with the highest summed values become
the preferred regenerator sites. Lastly, RG number of regenerator sites are assigned in sequence.

In the second stage, spectrum and modulation format are assigned to each connection along every transparent
segment of the selected candidate routing path. First, connections are sorted in descending order of their bit rate. Next,
the number of subcarriers in each link is initialized to zero (then ξ = 0). Then, starting from the first connection in the
sorted list, the connections are served in a sequence. On the candidate path, the length of every transparent segment



has to be within the approximated reach of the assigned modulation format. Among many possibilities, the candidate
path and modulation format that require the lowest subcarrier index is selected for every connection. However, if a
connection cannot be routed along any of its candidate paths at any modulation format due to lack of spectrum, the
number of subcarriers is increased.
4. Performance evaluation
Numerical results are obtained for a small 6-node network (avg. link length 450 km), the 14-node Deutsche Telekom
(DT; avg. link length 414 km) network, the 14-node NSF network (avg. link length 2722 km), and the 28-node EU
network (avg. link length 1984 km) [11]. The parameters required to estimate the PLI take the values given in [7].
Connections are assigned a random bit rate (between A: 0–62.5 Gbps, B: 0–125 Gbps, and C: 0–250 Gbps) in each
simulation. The resulting bandwidths in Figs. 2a–2c are the averaged value over ten random T .

As Fig. 2a shows that the spectral efficiency of the proposed ILP (when RG = 0) is comparable to that of [7]
when the PSD G < 15 mW/THz, the approximation method provides accurate impairment estimations. Fig. 2b depicts
the results for the small 6-node and DT networks, at different traffic volumes, and against an increasing number of
regenerator sites. In the 6-node network, it is observed that the heuristic (H), on average, consumes 18–30% more
bandwidth than the ILP. In the DT network, the proposed heuristic reduces ξ by 28%, 25%, and 40% by appropriately
placing only 3, 5, and 6 regenerator sites at A, B, and C traffic volumes, respectively. The results of Fig. 2c show that
the proposed scheme offers higher spectral gains in large networks. In all networks, the spectral gains diminish when
the number of regenerator sites in the network is increased beyond a certain threshold. This trend indicates that even
with a limited number of regenerator sites, the proposed scheme can achieve spectral efficiency gains, especially in
large networks serving a high traffic volume.
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Fig. 2: ξ vs. (a) PSD G for 6-node network (RG = 0), (b) regenerator sites (G = 15 mW/THz), (c) regenerator sites for DT, NSF, and EU networks
(G = 15 mW/THz).

5. Conclusion
The proposed ILP and the heuristic increase the spectral efficiency of impairment-aware EONs by selecting appropriate
regenerator sites and by optimizing routing, modulation, and spectrum allocation. The proposed schemes increased
spectral efficiency by up to 25–40% using 3 to 6 regenerator sites at different traffic volumes and in different networks.
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