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OUTPUT FEEDBACK CONTROL OF SWITCHED
NONLINEAR SYSTEMS: A GAIN SCHEDULING APPROACH

Vojtech Veselý
∗
— Adrian Ilka

∗∗

Switched controller design for nonlinear continuous and discrete-time systems under an arbitrary switching signal using
the gain scheduling approach is addressed in this paper. The obtained controller design procedures for continuous and
discrete-time systems are in the bilinear matrix inequality form. The proposed design procedure ensures multi parameter-
dependent quadratic stability of the switched gain scheduled plant which is associative to a nonlinear plant model and
optimal performance defined by quadratic gain scheduled parameters weighting cost function. Example demonstrates the
effectiveness of the proposed approaches.

K e y w o r d s: switched controller, non-linear system, gain-scheduled control, controller design, structured controller,
Lyapunov function

1 INTRODUCTION

Switched systems consist of a set of subsystems and a
switching signal selecting a subsystem to be active during
a time interval. Switched systems have many applications
in many fields of real plant control. There are several ap-
proaches to model hybrid systems [16]. In [4] a model of
a large class of hybrid systems is given that considers dis-
crete event systems and continuous dynamics modeled by
differential or difference equation. Such models are used
to formulate a general stability analysis and controller
synthesis framework for hybrid systems. Results for mod-
eling and stability analysis of hybrid systems have been
presented in [7, 16, 17].

In this paper we follow the class of hybrid systems
known as switched systems [15]. The reader can find a
survey of the present state of hybrid systems in the ex-
cellent paper [17] and book [16]. Stability and the con-
troller design procedure are the most important issues
in the study of switched systems, specially of nonlinear
ones. Stability under arbitrary switching is guaranteed by
the existence of a common Lyapunov function for all sub-
systems [9, 14, 24, 29]. For switched linear systems, find-
ing the common Lyapunov function is relatively easy but
for nonlinear systems it is difficult. A survey of switched
nonlinear systems can be found in [2, 14, 20, 29]. Due to
the switched controller design problems for continuous
and discrete time nonlinear systems, in this note we pur-
sue the idea to use – instead of a model of a nonlinear
switched plant – a model of the switched gain scheduled
plant and to design a switched gain scheduled controller
guaranteeing closed loop stability and an optimal value
of a given quadratic novel cost function for all operating
points of the switched nonlinear system.

A number of papers deal with the design of a switched
controller for discrete-time systems [4, 16, 17]. There are
only some results in the field of switched (gain scheduled)
controller design for continuous-time systems [10, 19, 23,
25] and stabilization of switched continuous time linear
systems [3, 6], where in [19] the switching gain scheduled
control technique is used to control the flexible ball-screw
drive servo with a wide range of operating conditions. The
framework of [25] is based on the linear matrix inequal-
ities (LMI) formulation with parameter dependent Lya-
punov functions. The results of the proposed synthesis is
a gain scheduled controller that guarantees stability even
for a nonlinear plant. In [23] a switched controller is pro-
posed based on the inverse optimal theory. The obtained
controller is then modified by gain scheduling to achieve
the quality of the closed-loop system performance.

Two papers are representatives of the switched con-
troller design for linear continuous time systems [3, 6].
In [6] the authors introduce the notion of the dwell-
time Td (minimal time interval between switching) into
the switched controller design procedure. In the stabil-
ity analysis condition of switched systems the dwell-time
is included to the term eAcTd (Ac –closed-loop matrix
(11)). In such a way the proposed design procedure for
stability analysis and switching controller design for the
real switching time interval T > Td becomes conserva-
tive. The “dwell-time term” for continuous-time systems
very complicated the switched controller design proce-
dure. In [3], sufficient conditions are given for the stabil-
ity of linear systems with the dwell-time and with poly-
topic type parameter uncertainty. Lyapunov functions, in
a quadratic form for each mode, which are non-increasing
at the switching instants are assigned to each mode. Dur-
ing the dwell-time this function varies piecewise linearly
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in time after switching occurs. The proposed method
was applied to stabilization via state feedback for both
nominal and uncertain cases. Since within the dwell-time
the Lyapunov function varies piecewise linearly and the
real switching time interval T > Td , the switching con-
troller design procedure becomes rather conservative. The
switched controller design procedure for continuous-time
systems proposed in this paper does not use the approach
of the “dwell-time”, therefore there is no such drawback
as mentioned in the above references.

In this paper a design procedure is proposed for an
LMI switched gain scheduled controller for continuous
and discrete-time systems the based on a novel switched
plant model for a class of nonlinear systems. The pro-
posed design procedure is based on a special type of Lya-
punov function. The procedure can be easily extended
to the case of the robust switched gain scheduled con-
troller design. A great many references on the switched
controller design for continuous time systems focuss on
the case where switching can occur immediately (ideal
case), for a large number of switched systems the realis-
tic case is where the rate of change of the switching signal
is finite (non-ideal case). The assumption of a non-ideal
case of the switching variable will be used in this note
which gives other opportunities for the designer. Some
results about the stability of a class of uncertain linear
varying systems (transform to switched systems) can be
found in [22].

Gain scheduling control is appealing to deal with
systems subject to parametric variations, which include
linear systems with time-varying parameters or nonlin-
ear systems modeled as linear parameter varying sys-
tems [21]. In many applications, a gain scheduled con-
troller must accommodate a plant with changing dynam-
ics, where the dynamics is strongly dependent on the op-
erating conditions. Reviews of the gain scheduled plant
model can be found in [8, 13, 26]. Because of time vary-
ing gain scheduled parameters many researcher tackled
the design problem of gain scheduled controllers for lin-
ear time-varying parameters system (LPV) using the lin-
ear matrix inequalities and the Lyapunov function ap-
proach [1, 18, 21, 28, 30]. In such cases, the designed gain-
scheduled controller must be able to stabilize and guaran-
tee a reasonable performance for all operating conditions.

The remainder of the manuscript is organized as fol-
lows. In Section 2 we present the development of the gain
scheduled plant model for a class of nonlinear switched
systems and switched gain scheduled control systems con-
sidered and some preliminaries. In Section 3 we address
the output feedback PI switched gain scheduled controller
design procedure for continuous and discrete-time sys-
tems. Finally, in Section 4 the proposed design procedure
is demonstrated on a simple example.

Our notations are standard, D ∈ R
m×n denotes the

set of real m× n matrices. Im is m×m identity matrix
and 0m denotes a zero matrix. If the size can be deter-
mined from the context, we will omit the subscript. P > 0
(P ≥ 0) is a real symmetric, positive definite (semidef-
inite) matrix. σ ∈ S indicates the arbitrary switching

algorithm and σ+1 is the first next mode to mode σ for
switching system. ∗ in matrices denotes the respective
transposed term to make the matrix symmetric.

2 PROBLEM STATEMENT

AND PRELIMINARIES

2.1 Gain scheduling model

Consider a family of nonlinear systems

ż = fσ(z, v, w)

y = h(z)
(1)

where z ∈ R
n is the state, the input v ∈ R

m , the out-
put y ∈ R

l , exogenous input w ∈ R
k which captures

parametric dependence of the plant (1) on exogenous in-
put (working point, outputs, and so on). The arbitrary
switching algorithm σ ∈ S = {1, 2, . . . , N} is a piece-
wise constant, right continuous function which specifies
at each time the index of the active system [20]. As-
sume that for every σ ∈ S , fσ( ) is locally Lipschitz. A
plant (1) equilibrium point ze, ve, we is such a point that
fσ(ze, ve, we) = 0. The following definition describes a set
of equilibrium points which will be parameterized by the
scheduling variable θ ∈ R

p .

Definition 1 [26]. Functions ze, ve, we define an equi-
librium family for the plant (1) if

fσ(ze, ve, we) = 0 , σ ∈ S . (2)

Associated with this equilibrium family is the mea-
sured output family

ye = h(ze) . (3)

Let us assume that the number of equilibrium points
(working points) is equal to p , then corresponding to a
specified p equilibrium plant family there is a linearized
plant family model for each plant mode σ ∈ S p in the
following form

ẋ = Aσix+Bσiu ,

y = Cx , i = 1, 2, . . . , p, σ ∈ S = {1, 2, . . . , N}
(4)

where x = z−ze , u = v−ve , y = y−ye , (ze, ve, ye) define
the equilibrium family for plant (1). Assume, that for i -th
equilibrium point one obtain the sets x ∈ Xi , u ∈ Ui ,
y ∈ Yi , i = 1, 2, ...p . Summarizing above sets we get
x ∈ X =

⋃p

i=1 Xi , u ∈ U =
⋃p

i=1 Ui , y ∈ Y =
⋃p

i=1 Yi .

Aσi =
∂fσ

∂z
(zei, vei, wei), Bσi =

∂fσ

∂v
(ξei, vei, wei)
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From (4) for each plant mode one obtains the gain sched-
uled plant model as a solution of the following linear equa-
tions

Aσi = Aσo +

p
∑

j=1

Aσjθj , i = 1, 2, . . . p , σ = 1, 2, . . .N

(5)

where θ⊤ = [θ1 . . . θp] ∈ Ω scheduling variable is treated
as plant parameters which may be time varying and for
which we assume that they are known, and lower and
upper bounds are available for the parameters values and
rate variations. Specifically:

• Each parameter θj ranges within the given interval

θj ∈ 〈θj , θj〉 , j = 1, 2, . . . p, θ ∈ Ω . (6)

• The rate of variation θj is well defined at all times and
satisfies

θ̇j ∈ 〈θ̇j , θ̇j〉, θ̇ ∈ Ωt . (7)

To obtain the gain scheduled plant model, first Aσ0

(Bσ0) is calculated as Aσo = 1
p

∑p

i=1 Aσi and then from

(5) one can obtain Aσj substituting the lower and upper
bounds for θj . Equations (4), (5) established a relation-
ship between the nonlinear model (1) and corresponding
family of linear ones (5), [13] and [26]. Note that due to
(5) for each mode of the plant the obtained set of linear
models (4) is retrieved by one gain scheduled plant model
in the form

ẋ =
(

Aσ0 +

p
∑

j=1

Aσjθj

)

x+
(

Bσ0 +

p
∑

j=1

Bσjθj

)

u ,

y = Cx, σ ∈ S, θ ∈ Ω .

(8)

For more details how to obtain the gain scheduled plant
model, see [8, 13, 26].

2.2 Problem formulation and preliminaries

For each plant mode of the switched gain scheduled
LPV plant model the following system is considered

δx(t) =
(

Aσ0 +

p
∑

j=1

Aσjθj

)

x(t)

+
(

Bσ0 +

p
∑

j=1

Bσjθj

)

u(t)

y(t) = Cx(t), σ ∈ S

(9)

where

1) δx(t) = ẋ(t) for continuous-time system and

2) δx(t) = x(t + 1) for discrete-time system.

For each switched plant mode the output feedback gain
scheduled control law is considered in the form

u(t) =
(

Fσ0 +

p
∑

j=1

Fσjθj

)

y(t) , σ ∈ S , θ ∈ Ω (10)

where Fσk ∈ R
m×l, k = 0, 1, 2, . . . p are constant output

feedback gain matrices. For each plant mode the output
feedback gain matrices can be structured in the decen-
tralized, centralized and so on form. The closed-loop for
the switched gain scheduled system is

δx(t) = Ac(θ, α)x(t) (11)

where

Ac(θ, α) =

N
∑

σ=1

Aσ(θ)ασ , (12)

Aσ(θ) = Aσ0 +

p
∑

j=1

Aσjθj

+
(

Bσ0 +

p
∑

j=1

Bσjθj

)(

Fσ0 +

p
∑

j=1

Fσjθj

)

C ,

α⊤ = [α1, . . . , αN ] ,

N
∑

σ=1

ασ = 1 ,

N
∑

σ=1

α̇σ = 0 ,

α̇σ ∈ 〈α̇σ, α̇σ〉 ∈ Ωd , ασ ∈ Ωα, ασ ≥ 0

and αj = 1 when σj is an active plant mode, else αj = 0.
Assume α ∈ Ωα , α̇ ∈ Ωd .

To assess the system performance, we consider an orig-
inal weighted scheduled quadratic cost function which al-
lows to obtain the desired performance in the different
plant equilibrium points for

• continuous-time system

J =

∫ ∞

t=0

J(t)dt , (13)

J(t) = x(t)⊤Q(θ)x(t) + u⊤(t)Ru(t) ,

• discrete-time case

Jd =

∞
∑

t=0

Jd(t) ,

(14)

Jd(t) = x(t)⊤Q(θ)x(t) + u⊤(t)Ru(t)

where Q(θ) = Q0 +
∑p

j=1 Qjθj ≥ 0, R > 0.

Definition 2. Consider a stable closed-loop switched
system (11) with N modes. If there is a control law u(t)
(10) and a positive scalar J∗ such that the closed-loop
cost function (13) or (14) satisfies J ≤ J∗ (Jd ≤ J∗ ) for
all θ ∈ Ω, α ∈ Ωα then J∗ is said to be a guaranteed
cost and u(t) is said to be a guaranteed cost control law
for arbitrary switching system (11).
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Lemma 1 [12]. Control algorithm (10) is the guaranteed

cost control law for the switched closed-loop system (11)
if and only if there are a Lyapunov function

V (x(t), θ(t), α(t), t) , matrices Q(θ) , R and gain matri-

ces Fσk , k = 0, 1, 2, . . . p , σ ∈ S such that the following

inequality holds

Be(t) = δV
(

x(t) , θ(t) , α(t) , t
)

+J(t) < 0 (15)

where

• δV
(

x(t), θ(t), α(t), t
)

= dV (x(t),θ(t),α(t),t)

dt
for continuous-time system,

• δV
(

x(t), θ(t), α(t), t
)

= V
(

x(t+1), θ(t+1), α(t+1), t+

1)− V (x(t), θ(t), α(t), t
)

for discrete-time system.

We proceed with the notion of multi-convexity of a
scalar quadratic function [5].

Lemma 2. Consider a scalar quadratic function of θ ∈
Rp

f(θ) = a0 +

p
∑

j=1

ajθj +

p
∑

j=1

p
∑

i>j

ajiθiθj +

p
∑

j=1

ajjθ
2
j (16)

and assume that if f(θ) is multi-convex, that is

∂2f(·)

∂θ2j
= 2ajj ≥ 0 , j = 1, 2, . . . p ,

then f(θ) is negative in the hyper rectangle (6) if and

only if it takes negative values at the vertices of (6), that
is if and only if f(θ) < 0 for all vertices of the set given

by (6).

3 MAIN RESULTS

This section formulates the theoretical approach to the
switched gain scheduled controller design with control law
(10) which ensures closed-loop system multi parameter-
dependent quadratic stability and guaranteed cost for
arbitrary switched algorithm σ ∈ S for all gain scheduled

parameters θ ∈ Ω, α ∈ Ωα and θ̇ ∈ Ωt (∆θ ∈ Ωtd ),
α̇ ∈ Ωd .

3.1 Design of switched gain scheduled controller:

Continuous-time case

Assume that in Lemma 1 the Lyapunov function is in
the form

V (x(t), θ(t), α(t), t) = x(t)⊤P (θ, α)x(t) (17)

where the novel Lyapunov matrix is

P (θ, α) = P0 +

N
∑

σ=1

(

Pσ0 +

p
∑

j=1

Pσjθj

)

ασ .

For time derivative of (17) one obtains

V̇ (·) =
[

ẋ(t)⊤ x(t)⊤
]

[

0 P (θ, α)

P (θ, α) Ṗ (θ, α)

] [

ẋ(t)
x(t)

]

(18)

where

Ṗ (θ, α)=

N
∑

σ=1

(

N
∑

σ=1

Pσ0α̇σ+

p
∑

j=1

Pσj θ̇j+

p
∑

j=1

N
∑

σ=1

Pσj α̇σθj

)

ασ.

Using the equality

(

2G1ẋ+ 2G2x
)⊤(

ẋ−Ac(θ, α)
)

= 0 (19)

where G1, G2 ∈ Rn×n are auxiliary matrices and sum-
ming (18) with (19) (after some manipulations) one ob-
tains

dV (·)

dt
=

N
∑

σ=1

[

ẋ(t)⊤ x(t)⊤
]

Lσ

[

ẋ(t)⊤ x(t)⊤
]⊤

ασ (20)

where

Lσ =

[

Lσ11 Lσ12

* Lσ22

]

, (21)

Lσ11 = G⊤

1 +G1 ,

Lσ12 = −G⊤

1 Aσ +G2 + P0 + Pσ0 +

p
∑

j=1

Pσjθj ,

Lσ22 = −G⊤

2 Aσ −A⊤

σG2 +

N
∑

σ=1

Pσ0α̇σ

+

p
∑

j=1

Pσj θ̇j +

p
∑

j=1

N
∑

σ=1

Pσj α̇σθj

Note that if V̇ (·) < 0 or Lσ < 0 (20) for all σ ∈ S ,

θ ∈ Ω, θ̇ ∈ Ωt , α̇ ∈ Ωd , the closed loop gain scheduled
system is parameter-dependent quadratically stable for
an arbitrary switching algorithm.

Substituting (10) to (13), after some manipulation one
obtains

J(t) = x(t)⊤N(t, θ)x(t) (22)

where

N(t, θ) = N0 +

p
∑

j=1

Njθj +

p
∑

j=1

p
∑

k>j

Njkθjθk +

p
∑

k=1

Nkkθ
2
k,

N0 = Q0 + C⊤F⊤

σ0RFσ0C ,

Nj = Qj + C⊤
(

F⊤

σjRFσ0 + F⊤

σ0RFσj

)

C ,

Njk = C⊤
(

F⊤

σjRFσk + F⊤

σkRFσj

)

C ,

Nkk = C⊤F⊤

σkRFσkC , σ ∈ S .
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The model of σ plant modes (12) can be rewritten to the
form

Aσ(θ)=M0+

p
∑

j=1

Mjθj+

p
∑

j=1

p
∑

k>j

Mjkθjθk+

p
∑

k=1

Mkkθ
2
k (23)

where

M0 = Aσ0 +Bσ0Fσ0C ,

Mj = Aσj + (Bσ0Fσj +BσjFσ0)C ,

Mjk = (BσjFσk +BσkFσj)C ,

Mkk = BσkFσkC , σ ∈ S .

Substituting (20), (22) and (23) to Lemma 1 and due
to Lemma 2 the closed-loop switched gain scheduled
system with an arbitrarily switching algorithm is multi
parameter-dependent quadratically stable if the follow-
ing two inequalities hold

W0 +

p
∑

j=1

Wjθj +

p
∑

j=1

p
∑

k>j

Wjkθjθk +

p
∑

k=1

Wkkθ
2
k ≤ 0 ,

Wkk ≥ 0 , σ ∈ S ,

(24)

where

W0 =

[

W011 W012

∗ W011

]

,

Wj =

[

0 Wj12

∗ Wj22

]

,

Wjk =

[

0 −G⊤
1 Mjk

∗ −G⊤
2 Mjk −M⊤

jkG2 +Njk

]

,

Wkk =

[

0 −G⊤
1 Mkk

∗ −G⊤
2 Mkk −M⊤

kkG2 +Nkk

]

,

W011 = G⊤

1 +G1 ,

W012 = −G⊤

1 M0 + P0 + Pσ0 +G2 ,

W022 = −G⊤

2 M0 −M⊤

0 G2

+

N
∑

σ=1

Pσ0α̇σ +

p
∑

j=1

Pσj θ̇j +N0 ,

Wj12 = −G⊤

1 Mj + Pσj ,

Wj22 = −G⊤

2 Mj −M⊤

j G2 +

N
∑

σ=1

Pσj α̇σ +Nj .

The main results of the switched gain scheduled con-
troller design for a continuous-time system are given in
the next theorem.

Theorem 1. The closed-loop continuous time system

(11) with a switched gain scheduled controller (10)
and an arbitrarily switching control algorithm is multi

parameter-dependent quadratically stable with guaran-

teed cost for all σ ∈ S , θ ∈ Ω , θ̇ ∈ Ωt , α ∈ Ωα and

α̇ ∈ Ωd if the inequalities (24) hold.

P r o o f . The proof of theorem sufficient condition
is clear from previous considerations. Here, the proof is

repeated only in basic steps. Substituting (20), (22) and
(23) to Lemma 1 one obtains inequalities (24), which
proves the sufficient conditions of Theorem 1.

Note that the condition “if and only if” for a concrete
structure of the Lyapunov matrix in Lemma 1 reduces to

“if”.

3.2 Design of switched gain scheduled controller:

Discrete-time case

In this part of the note we assume that for discrete-
time systems the switching can occur immediately (ideal
case), therefore with respect to switching variable σ the
quadratic stability approach will be used. Because of

quadratic stability with respect to σ let us assume that
for discrete-time cases the Lyapunov function is in the
form

V
(

x(t), t, θ(t), σ(t)
)

= x(t)⊤P
(

θ(t), σ(t)
)

x(t) (25)

The first difference of (25) is

δV
(

x(t), t, θ(t), σ(t)
)

= V
(

t+ 1, θ(t+ 1), σ + 1
)

− V
(

t, θ(t), σ
)

= x(t+ 1)⊤P
(

θ(t+ 1), σ + 1
)

x(t+ 1)

− x(t)⊤P
(

θ(t), σ
)

x(t) (26)

where

P
(

θ(t), σ
)

= Pσ0 +

p
∑

j=1

Pσjθj

and σ + 1 ∈ S is the first next mode to mode σ ∈ S for
an arbitrary switching algorithm;

P
(

θ(t+ 1), σ + 1
)

= P
(

θ(t), σ + 1
)

+

p
∑

j=1

Pσ+1j∆θj(t)

where ∆θ(t) = θ(t + 1) − θ(t) ∈
〈

∆θ,∆θ
〉

∈ Ωtd . After
some manipulation for the first difference of the Lyapunov
function (25) one obtains

δV (·) =
[

x(t+1)⊤ x(t)⊤
]

Lσd

[

x(t+1)⊤ x(t)⊤
]⊤

(27)

where

Lσd =

[

Lσd11 0
0 Lσd22

]

,

Lσd11 = Pσ+10 +

p
∑

j=1

Pσ+1j

(

θj(t) + ∆θj(t)
)

,

Lσd22 = Pσ0 +

p
∑

j=1

Pσjθj(t) .
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Using the procedure given by equations. (19)–(23) for
continuous-time systems the following parameter-depen-
dent quadratic stability conditions with guaranteed cost
and arbitrarily switching control algorithm for the design
of a discrete-time switched gain scheduled controller are
obtained

V0 +

p
∑

j=1

Vjθj +

p
∑

j=1

p
∑

k>j

Vjkθjθk +

p
∑

k=1

Vkkθ
2
k < 0 ,

Vkk ≥ 0

(28)

for all σ ∈ S where

V0 =

[

V011 V012

∗ V022

]

,

Vj =

[

Vj11 Vj12

∗ Vj22

]

,

Vjk =

[

0 −G⊤
1 Mjk

∗ −G⊤
2 Mjk −M⊤

jkG2 +Njk

]

,

Vkk =

[

0 −G⊤
1 Mkk

∗ −G⊤
2 Mkk −M⊤

kkNG +Nkk

]

,

V011 = G⊤

1 +G1 + Pσ+10 +

p
∑

j=1

Pσ+1j∆θj(t) ,

V012 = −G⊤

1 M0 +G2 ,

V022 = −G⊤

2 M0 −M⊤

0 G2 +N0 + Pσ0 ,

Vj11 = Pσ+1j ,

Vj12 = −G⊤

1 Mj ,

Vj22 = −G⊤

2 Mj −M⊤

j G2 +Nj + Pσj ,

Vjk12 = −G⊤

1 Mjk ,

Vjk22 = −G⊤

2 Mjk −M⊤

jkG2 +Njk ,

Vkk12 = −G⊤

1 Mkk ,

Vkk22 = −G⊤

2 Mkk −M⊤

kkG2 +Nkk .

Theorem 2. The closed-loop discrete-time system (11)
with switched gain scheduled controller (10) and an

arbitrarily switching control algorithm is parameter-

dependent quadratically stable with guaranteed cost for

all σ ∈ S , θ ∈ Ω , ∆θ ∈ Ωtd if inequalities (28) hold for

all vertices defined by (6) and (28).

P r o o f . Proof of the theorem sufficient condition is
clear from the previous consideration. Here, the proof
is repeated only in basic steps. Substituting (22), (23)
and (27) to Lemma 1 one obtains inequalities (28), which
proves the sufficient conditions of Theorem 2.

4 NUMERICAL EXAMPLE

In this section the proposed design procedure is ap-
plied to a continuous-time system to design a switched
gain scheduled controller. The problem is to design a PI

switched gain scheduled controller for a second order non-
linear switched continuous-time system with two modes
and an arbitrary switching algorithm to guarantee the
multi parameter-dependent quadratic stability and guar-
anteed value of a given structured cost function.

Consider the switched gain scheduled system (9) with
two modes and two gain scheduled parameters. For the
first and second plant modes the gain scheduled extended
plant model [31] due to PI controller is as

First mode

A10 =





−.5 0.2 0
0.35 −0.1 0
1 0 0



 , A11 =





−0.01 −0.02 0
0.035 0.02 0
0 0 0



 ,

A12 =





−0.05 0.02 0
0.02 0.04 0
0 0 0



 ,

B⊤

10 = [ 2 1 0 ] ,

B⊤

11 = [ .2 0.5 0 ] ,

B⊤

12 = [ 0.01 0.03 0 ] ,

C =

[

1 0 0
0 0 1

]

.

Second mode

A10 =





−.7 0.5 0
0.6 −0.3 0
1 0 0



 , A11 =





0.01 −0.005 0
0.02 −0.05 0
0 0 0



 ,

A12 =





0.001 −0.03 0
0.02 −0.04 0
0 0 0



 ,

B⊤

10 = [ 3 1 0 ] ,

B⊤

11 = [ .02 0.02 0 ] ,

B⊤

12 = [ 0.02 0.05 0 ] ,

C =

[

1 0 0
0 0 1

]

.

Parameters of the cost function (13) are R = rIr ,
r = 1, Q(θ) = Q0 +Q1θ1 +Q2θ2 (in the term Q(θ) the
gain scheduled parameter θ serves to ensure the desired
performance in different plant working points) where
Qi = qiI , i = 0, 1, 2, q0 = 0.1, q1 = 0.02, q2 = 0.02,
for the Lyapunov matrix it holds 0 < P (θ, σ) < ro I ,

ro = 1000, θi ∈ 〈−1, 1〉 , θ̇i ∈ 〈−4, 4〉 , i = 1, 2 and
the rate of mode changes (18) α̇i ∈ 〈−200, 200〉 . For the
above parameters as the solution of (25) the following
gain scheduled controllers are obtained:
First plant mode gain scheduled controller (10)

F10 = −1.2426−
0.4353

s
; F11 = 0.657 +

0.1033

s
;

F12 =
(

0.6195 +
0.5741

s

)

10−6.

Second plant mode gain scheduled controller (10)

F20 = −0.8843−
0.2914

s
; F21=

(

0.4355−
0.3481

s

)

10−7;

F22 =
(

0.1460 +
0.2294

s

)

10−3. (29)
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Fig. 1. Simulation results of output and input when θ̇(t) ∈ 〈−4, 4〉 ,
α̇ ∈ 〈−200, 200〉
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Fig. 2. Development of the gain scheduled parameters (working

point changes) θ̇(t) ∈ 〈−4, 4〉 during simulation
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Fig. 3. Detail of two non-ideal switching parameters development
when α̇ ∈ 〈−200, 200〉 during simulation

Note that the gain scheduled controller is in the form

Controlleri(s) = Fi0 + Fi1θ1 + Fi2θ2 , i = 1, 2 .

The maximal eigenvalue of the closed-loop switched sys-
tem for the case of θ1 = θ2 = 0 is −0.2471. The max-
imum rate of change of value (18) is about α̇max ∈
〈−250, 250〉 . For a larger value of α̇ the gain scheduled
controller design procedure is not feasible. Dynamic be-
haviors of the closed-loop switched gain scheduled system
are given in Figs. 1, 2 and 3.

R e m a r k 1 . For decreasing the calculation loads of
the design procedure for (17) one could choose the fol-
lowing inequalities

0 < Pc < ro I, 0 < Pσj < roσjI

then in (24) substitute to W0,Wj , V0 the following in-
equalities

Pσj α̇σ ≤ Pσj α̇σ, θ̇j ≤ θ̇j , ∆θ(t) ≤ ∆θj .

R e m a r k 2 . To assess the system performance we
consider an original weighted scheduled quadratic cost

function which allows to obtain the desired (different or

the same) performance in the different plant equilibrium

points.

R e m a r k 3 . In this example due to (12) for non-

ideal switching variables it holds α1 +α2 = 1, α̇1+ α̇2 =

0. Time developments of the switching variables are given

in Fig. 3.

5 CONCLUSION

A new method for the stability analysis and design

of a switched controller for non-linear system using the

gain scheduling approach for continuous and discrete-

time systems was introduced. In this paper the novel

switched plant model for a class of nonlinear system was

proposed.

The proposed switched controller design procedure

is based on a novel plant model, a special type of the

Lyapunov function and the Lyapunov function stabil-

ity theory. For a continuous-time switched system the

gain scheduled controller design procedure ensures multi

parameter-dependent quadratic stability and guaranteed

cost for an arbitrary switching law and a finite (infinite)

rate of switching signal change. The switched controller

design procedure for continuous-time systems proposed

in this paper does not use the approach of the ”dwell-

time” which very complicated the switched controller de-

sign procedure. In this note, we introduce the assump-

tion of a non-ideal case of the switching variable (rate of

switching variable is finite) which gives other opportuni-

ties for the designer. The working plant parameters may

change very rapidly but the rate of parameters change

are bounded ( θ̇i is bounded). For discrete-time switched

systems due to the novel plant a new design procedure is

obtained which ensures parameter-dependent quadratic

stability and guaranteed cost for an arbitrary switching

law and for a given finite rate of change of the plant pa-

rameters.

To guarantee the desired system performance, in

this paper we consider an original weighted scheduled

quadratic cost function which allows to obtain the de-

sired performance in different equilibrium points of the

plant. The designed design procedure can easily be ex-

tended to the case of a robust switched gain scheduled

controller using the idea of paper [27]. The numerical

example illustrates the effectiveness of the proposed ap-

proach.
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