
A Deterministic Construction and Density Evolution
Analysis for Generalized Product Codes

Christian Häger†, Henry D. Pfister‡, Alexandre Graell i Amat†, Fredrik Brännström†, and Erik Agrell†
†Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden
‡Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
{christian.haeger, alexandre.graell, fredrik.brannstrom, agrell}@chalmers.se, henry.pfister@duke.edu

Abstract—Generalized product codes (GPCs) are extensions of
product codes (PCs) where code symbols are protected by two
component codes but not necessarily arranged in a rectangular
array. In this tutorial paper, we review a deterministic construc-
tion for GPCs that has been previously proposed by the authors
together with an accompanying density evolution (DE) analysis.
The DE analysis characterizes the asymptotic performance of
the resulting GPCs under iterative bounded-distance decoding
of the component codes over the binary erasure channel. As an
application, we discuss the analysis and design of three different
classes of GPCs: spatially-coupled PCs, symmetric GPCs, and
GPCs based on component code mixtures.

I. INTRODUCTION

Several authors have proposed modifications of the classical
product code (PC) construction by Elias [1], typically by con-
sidering non-rectangular code arrays. These modifications can
be regarded as generalized low-density parity-check (GLDPC)
codes [2]. In particular, they are GLDPC codes where the un-
derlying Tanner graph consists exclusively of degree-2 variable
nodes (VNs) (i.e., each bit is protected by two component
codes). We refer to such codes as generalized PCs (GPCs).

In practice, the component codes of a GPC are typically
Bose–Chaudhuri–Hocquenghem or Reed–Solomon codes,
which can be efficiently decoded via algebraic bounded-
distance decoding (BDD). The overall GPC can then be
suboptimally decoded using iterative hard-decision decoding,
i.e., by iteratively performing BDD of all component codes.
This makes GPCs particularly suited for high-speed applica-
tions due to their significantly reduced decoding complexity
compared to “soft” message-passing decoding of low-density
parity-check (LDPC) codes [3]. For example, GPCs have been
investigated by many authors as practical solutions for high-
speed fiber-optical communications [3]–[7].

A standard tool to analyze the performance of iteratively
decoded codes is density evolution (DE) [8], [9], which is
based on an ensemble argument. That is, rather than analyzing
a particular code directly, one considers a set of codes defined
via suitable randomized edge connections in the Tanner graph.
While this approach can be applied to GPCs, many classes of
GPCs have a very regular Tanner graph structure. Therefore,
the performance of such codes is not necessarily well pre-
dicted by using an ensemble analysis. In general, it would be

This work was partially funded by the Swedish Research Council under
grant #2011-5961.

desirable to make precise statements about the performance
of sequences of deterministic codes without resorting to an
ensemble argument.

In this tutorial paper, we discuss some recent results about
the performance of deterministically constructed GPCs over
the binary erasure channel (BEC) presented in [10]–[12]. We
start in Section II by reviewing the deterministic construction
for GPCs proposed in [10]. The resulting GPCs are defined by
Tanner graphs that consist of a fixed arrangement of (degree-
2) VNs and constraint nodes (CNs). In Section III, it is shown
that the asymptotic performance of these GPCs is rigorously
characterized by a recursive DE equation. Finally, in Section
IV, we present a high-level overview of different results
presented in [10]–[12]. In particular, we discuss the analysis
and design of spatially-coupled PCs, symmetric GPCs, and
GPCs based on component code mixtures.

Notation. We use boldface to denote column vectors and
matrices (e.g., x and A). The symbols 0m and 1m denote the
all-zero and all-one vectors of length m, respectively, where
the subscript may be omitted. The tail-probability of a Poisson
random variable is defined as Ψ≥t(x) , 1 −

∑t−1
i=0

xi

i! e
−x.

We use boldface to denote the element-wise application of a
scalar-valued function to a vector. For example, if x is a vector,
then Ψ≥t(x) applies the function to each element. For vectors
x = (x1, . . . , xm)ᵀ and y = (y1, . . . , ym)ᵀ, we use x � y if
xi ≥ yi for all i. We also define [m] , {1, 2, . . . ,m}. Lastly,
the indicator function is denoted by 1 { · }.

II. A DETERMINISTIC CONSTRUCTION FOR GENERALIZED
PRODUCT CODES

A. Motivation

Recall that a PC is defined as the set of n× n arrays such
that every row and every column is a codeword in some binary
linear component code B of length n. The corresponding
Tanner graph has a fixed deterministic structure that resembles
a complete bipartite graph: There exists two types of CNs (n
CNs corresponding to “row codes” and n CNs corresponding
to “column codes”) and each CN of one type is connected to
all CNs of the other type through a VN. This gives rise to
exactly n2 VNs, where each VN corresponds to one element
in the array. An illustration is shown for example in [2, Fig. 3].

Consider now the code arrays shown in Fig. 1. We will
discuss these arrays (and the resulting GPCs) in more detail
in the next section. For now, we note that one can almost apply

d

d

2

4

6

1 3 5

(a) staircase code

1

3

5

7

2 4 6 8

d

d

(b) block-wise braided code

Fig. 1. Code arrays for C12(η), where in (a) γ = 1/2 and in (b) γ = 1/3.
Numbers indicate the position indices in the code construction.

the exact definition of a PC to these arrays. In particular, fill
the array with bits such that every row and every column is
a codeword in some component code. The underlying Tanner
graph that results from this definition is again easily seen to
be very structured. We essentially seek a general and flexible
way to directly construct the Tanner graphs corresponding to
the GPCs defined by these arrays.

B. Code Construction

We denote a GPC by Cn(η), where n is proportional to
the number of CNs in the underlying Tanner graph and η
is a binary, symmetric L × L matrix that defines the graph
connectivity. Due to the natural representation of GPCs in
terms of two-dimensional code arrays, one may alternatively
think about η as specifying the array shape. We will see in
the following that different choices for η recover well-known
code classes.

Let γ > 0 be some fixed and arbitrary constant such that
d , γn is an integer. To construct the Tanner graph that defines
Cn(η), assume that there are L classes of CNs, here called
“positions”. Then, place d CNs at each position and connect
each CN at position i to each CN at position j through a VN
if and only if ηi,j = 1.

Example 1. A PC is obtained for L = 2 and η = (0 1
1 0). The

two positions correspond to “row codes” and “column codes”.
If we choose γ = 1, then the code array is of size n×n. 4

Example 2. For L ≥ 2, the matrix η describing a staircase
code [3] has entries ηi,i+1 = ηi+1,i = 1 for i ∈ [L − 1] and
zeros elsewhere. For example, for L = 6, we have

η =


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

 . (1)

The corresponding code array is exactly the one shown in
Fig. 1(a), where n = 12 and γ = 1/2. 4
Example 3. For even L ≥ 4, the matrix η for a particular
instance of a block-wise braided code [13] has entries ηi,i+1 =

ηi+1,i = 1 for i ∈ [L − 1], η2i−1,2i+2 = η2i+2,2i−1 = 1 for
i ∈ [L/2− 1], and zeros elsewhere. For example, we have

η =



0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0


(2)

for L = 8. The corresponding code array is the one shown in
Fig. 1(b), where n = 12 and γ = 1/3. 4

For a fixed n, the constant γ scales the number of CNs in
the graph. This is inconsequential for the asymptotic analysis
(where we assume that n → ∞) and γ manifests itself in
the DE equations merely as a scaling parameter. The scaling
parameter γ in the previous two examples is chosen such that
the component codes have length n in both cases, except at
the array boundaries, see Fig. 1.

From the code construction, it follows that the total number
of VNs (i.e., the length of the code Cn(η)) is given by

m =

(
d

2

) L∑
i=1

ηi,i + d2
∑

1≤i<j≤L
ηi,j . (3)

By construction, all of these VNs have degree two. Moreover,
the total number of CNs is dL. In general, CNs at position
i have degree d

∑
j 6=i ηi,j + ηi,i(d − 1), where the second

term arises from the fact that we cannot connect a CN to
itself if ηi,i = 1. The CN degree specifies the length of the
component code associated with the CN. We assume in the
following that each CN corresponds to a t-erasure correcting
component code. This assumption is relaxed in Section IV-C.

III. DENSITY EVOLUTION ANALYSIS

A. Iterative Decoding

Suppose that a codeword of Cn(η) is transmitted over the
BEC with erasure probability p. The decoding is performed
iteratively assuming ` iterations of BDD for the component
codes associated with all CNs. This means that in each
iteration, if the weight of an erasure pattern associated with a
CN is less than or equal to t, the pattern is corrected. If the
weight exceeds t, we say that the component code declares a
decoding failure in that iteration.

The decoding can be represented by applying the following
peeling procedure to the so-called residual graph [4], [14]. The
residual graph is obtained by deleting known VNs and their
adjacent edges. Furthermore, erased VNs are collapsed into
edges between CNs. In each iteration, determine all vertices
that have degree at most t and remove them, together with
all adjacent edges. The decoding is successful if the resulting
graph is empty after (at most) ` iterations.

B. Density Evolution

We wish to characterize the decoding performance in the
limit as n → ∞. The first important observation is that with
the assumptions given so far (in particular the finite erasure-
correcting capability of the component codes), this problem is
ill-posed for a fixed erasure probability p. The reason is that
for n→∞, with high probability there will be a large number
of erasures associated with each component code. Even if we
choose p very small, eventually, the number of erasures will
exceed the (assumed) finite erasure-correcting capability of
each component code. In other words, for any fixed p and
n→∞, the decoding will fail with high probability.

In order to allow for a meaningful analysis, the natural
choice is to let the erasure probability decay slowly as p = c/n
for some c > 0. Since now p → 0 as n → ∞, one may
(falsely) conclude that the decoding will always be successful
in the limit. As we will see, however, the answer depends
crucially on the choice of c, which may thus be interpreted as
the effective channel quality in this regime. Its operational
meaning (assuming an appropriate choice for γ, see [10,
Sec. VI-A]) is given in terms of the expected number of initial
erasures per component code.

Now, assume that we compute

z(`) = Ψ≥t+1(cBx(`−1)),with x(`) = Ψ≥t(cBx
(`−1)), (4)

where x(0) = 1L and B , γη. The main technical result
is that the fraction of component codes that declare decoding
failures in iteration ` converges almost surely to 1

L

∑L
i=1 z

(`)
i

as n→∞. In other words, the code performance concentrates
around a deterministic value computed by the recursion (4)
for sufficiently large n. This result is analogous to the DE
analysis for LDPC codes [9, Th. 2]. The proof exploits the
above peeling representation of the decoding and is based
on a convergence result for so-called inhomogeneous random
graphs in [15], see [10] for details.

For notational convenience, we define h(x) , Ψ≥t(cx), so
that the recursion in (4) can be succinctly written as

x(`) = h(Bx(`−1)). (5)

Furthermore, the decoding threshold is defined in terms of the
effective channel quality as

c̄ , sup{c ≥ 0 |x(∞) = 0L}. (6)

Remark 1. For component codes with fixed erasure-correcting
capabilities, one can show that the code rate of Cn(η) ap-
proaches 1 as n → ∞. The studied setup is sometimes also
referred to as the high-rate regime or high-rate scaling limit
[16]. It turns out that the regime that can be analyzed is also
the regime that is relevant in practice: It is at high rates where
GPCs are competitive in terms of performance and complexity
compared to other code families, e.g., LDPC codes [3]–[5].

IV. APPLICATIONS

In this section, we discuss the analysis and design of three
different classes of GPCs: spatially-coupled PCs, symmetric

GPCs, and GPCs based on component code mixtures. This
section is based on results presented in [10]–[12], [17].

A. Spatially-Coupled Product Codes

Of particular interest are cases where the matrix η has a
band-diagonal “convolutional-like” structure. The associated
GPC can then be classified as a spatially-coupled PC. For ex-
ample, the GPCs discussed in Examples 2 and 3, i.e., staircase
and braided codes, are particular instances of spatially-coupled
PCs. The matrix B is referred to as an averaging matrix in this
case. Spatially-coupled codes have attracted a lot of attention
in the literature due to their outstanding performance under
iterative decoding [18], [19].

Spatially-coupled PCs have been previously analyzed using
ensemble-based methods in [6], [16]. In [12], we compare
the obtained DE recursion in (5) for deterministic spatially-
coupled PCs to the DE recursion for the spatially-coupled PC
ensemble in [16]. Without going into the details, the ensemble
performance is described by the recursion (see [16, eq. (9)]
and [12, Sec. III])

x(`) = h(B̃x(`−1)), (7)

where x(0) = 1L, B̃ , AᵀA, and A is an L − w + 1 × L
matrix with entries Ai,j = w−1

1 {1 ≤ j − i+ 1 ≤ w} for i ∈
[L − w + 1] and j ∈ [L]. The parameter w is referred to as
the coupling width. For example, for L = 6, the matrix B̃ for
w = 2 and w = 3 is given by

1

4


1 1 0 0 0 0
1 2 1 0 0 0
0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 1

 ,
1

9


1 1 1 0 0 0
1 2 2 1 0 0
1 2 3 2 1 0
0 1 2 3 2 1
0 0 1 2 2 1
0 0 0 1 1 1

 , (8)

respectively. The ensemble DE recursion (7) has evidently the
same form as (5). The difference lies in the averaging due to
the matrix B̃. This is illustrated in the following example.
Example 4. For the braided codes in Example 3, one can
simplify (5) by exploiting the inherent symmetry in the code
construction which implies x(`)

i = x
(`)
i+1 for odd i and any `. It

is then sufficient to retain odd (or even) positions in (5). With
this simplification, the effective averaging matrix is given by

B′ =
1

3


1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

 (9)

for L = 12. The matrix B′ may be used to replace B in
(5). Moreover, B′ differs from both matrices B̃ in (8). In
general, the effective averaging matrices for the randomized
and deterministic constructions are not the same. 4

It is shown in [12] that there exists a different but related
family of (deterministic) braided codes that has the same ef-
fective averaging matrix as the spatially-coupled PC ensemble,

0

0

0

0

0

0c1

c2 c3

c4 c5 c6

c7 c8 c9 c10

∗ ∗

∗

∗

∗

∗

∗

∗

∗

∗

(a) 5× 5 array

b

b

b b

bb

b

b b

b
b

b

b b

b

b

b

b b

b

b

b

b b

b

c1

c8 c5

c3

c7

c2

c10

c4 c9 c6

(b) Tanner graph

Fig. 2. Illustrations for an HPC with n = 5. In the array, “*” means “equal
to the transposed element”. The highlighted array elements illustrate one
particular code constraint, which is also highlighted in the Tanner graph.

i.e., we have B′ = B̃. This implies that the resulting DE
recursions are identical and certain ensemble-properties proved
in [16] (in particular lower bounds on the decoding threshold)
also apply to certain deterministically constructed spatially-
coupled PCs.

B. Symmetric Generalized Product Codes

All examples for Cn(η) discussed so far share the property
that the corresponding matrix η does not contain any ones on
the diagonal, i.e., ηi,i = 0 for all i ∈ [L]. In this section, we
discuss the implications of choosing ηi,i = 1. In other words,
we discuss the implications of connecting CNs to other CNs
at the same position in the deterministic GPC construction.

The simplest case is obtained when there is only one
position (i.e., L = 1) and we have η = 1 with γ = 1. The
resulting Tanner graph can be described as a “complete Tanner
graph”: There exist n CNs in total and each CNs is connected
to all other CNs through a VN. All CNs have degree n − 1
and the total number of VNs, i.e., the length of the resulting
code Cn(η), is given by m =

(
n
2

)
. Tanner already used such

a construction as one of the first examples in [2, Fig. 6].
While the graph structure appears to be appealing due to

its simplicity, it is not immediately clear if Cn(η) has a
corresponding interpretation in terms of a code array. Such an
interpretation was later provided by Justesen in [4, Sec. III-B].
In particular, assume that we start with a conventional (square)
PC based on a component code with length n. Then, form a
subcode of this PC by retaining only symmetric codeword
arrays (i.e., arrays that are equal to their transpose) with a
zero diagonal. After puncturing the diagonal and the upper (or
lower) triangular part of the array, one obtains a code of length
m =

(
n
2

)
. Justesen termed the resulting codes half-product

codes (HPCs), emphasizing the fact that they have roughly
half the length of the PCs from which they are derived.

Example 5. Figs. 2(a) and (b) show the code array and Tanner
graph of an HPC for n = 5 and m = 10. The highlighted array
elements show the code symbols participating in the second
row constraint, which, due to the enforced symmetry, is also
the second column constraint. Effectively, each component
code acts on an L-shape in the array, i.e., both a partial row
and column, which includes one diagonal element. The degree
of each CN is n−1 = 4, due to the zeros on the diagonal. 4

The definition of an HPC as a (punctured) symmetric
subcode of a conventional PC extends without much difficulty
to other GPCs. This leads to the class of symmetric GPCs
which can be seen as a subclass of GPCs [17]. In general,
symmetric GPCs use symmetry to reduce the block length of
a GPC while employing the same component code [17].
Example 6. Consider again the code array in Fig. 1(b) corre-
sponding to the braided code in Example 3. Similar to an HPC,
we can form a half-braided code by enforcing the additional
constraint that the array should be equal to its transpose and
the array diagonal is zero (see [11, Fig. 1] for an illustration).
After puncturing, we find that this GPC is defined by a matrix
η where ηi,j = 1 if and only if |i − j| < 3. For example, if
we start with a braided code where L = 12, then the matrix η
for the corresponding half-braided code is given by η = 3B′,
where B′ is given in (9). 4

An interesting question is how symmetric PCs perform
when compared to their nonsymmetric counterparts. Partial
answers to this question are given in [17] and [11]. For
example, it is shown in [17] that, depending on the parameters,
HPCs can have a larger normalized minimum distance than the
PC from which they are derived. For the half-braided codes
discussed in Example 5, a comparison with staircase codes and
regular braided codes can be found in [11]. The comparison
is based on the derived DE equations and supplemented with
an error floor analysis. It is shown that half-braided codes can
outperform both staircase codes and regular braided codes in
the waterfall region, at a lower error floor and decoding delay.
In general, symmetric PCs appear to be interesting candidates
for further theoretical investigation and also implementation
in practical communication systems.

C. Component Code Mixtures
In the construction of Cn(η), it is assumed that each CN

corresponds to a t-erasure correcting component code. More
generally, one may wish to assign different erasure-correcting
capabilities to the component codes associated with the CNs.
One example is given by a PC where the row and column
codes can correct a different number of erasures. If the erasure-
correcting capabilities also vary across the row (or column)
codes, one obtains a so-called irregular PC [20], [21].

In order to formalize this concept in the context of the deter-
ministic GPC construction, assume that τ = (τ1, . . . , τtmax)

ᵀ

is a probability vector (i.e., 1ᵀτ = 1 and τ � 0). We let
τt be the fraction of CNs at each position that can correct
t erasures, where tmax is the maximum erasure-correcting
capability. We further define the average erasure-correcting
capability as t̄ ,

∑tmax
t=1 tτt. The assignment of the erasure-

correcting capabilities to the component codes can be done
in different ways. For example, we can do the assignment
deterministically if τtd is an integer for all t, or independently
at random according to the distribution τ . In both cases,
τ manifests itself in the DE equation (5) by changing the
function h to h(x) =

∑tmax
t=1 τtΨ≥t(cx), see [10] for details.

The resulting GPCs now depend on τ and this change is
reflected in our notation by writing Cn(η, τ). For a fixed η, we

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

10.5 11.0 11.5 12.0 12.5 13.0 13.5

c

n c
B

E
R

*

*

*

*

*

*

*

*

*
*

*
* * * * * *

bC

bC

bC

bC

bC

bC
bC

bC bC bC bC bC

bC

bC

bC

bC

bC
bC bC bC bC bC

*

*

*

*

*

*

*
*

* * * * *

regular
irregular

DE
n = 1000*

n = 3000bC

Fig. 3. Simulation results (dashed) for regular and optimized irregular HPCs
for two values of n and ` = 100. DE results (solid) are shown for ` = 100.

are interested in finding “good” distributions τ , in the sense
that they lead to large decoding thresholds for Cn(η, τ).
Example 7. For L = 1, η = 1, and γ = 1, we refer to
the resulting code Cn(η, τ) as an irregular HPC. This case
is considered in detail in [10]. It is shown that the perfor-
mance of HPCs can be improved by employing component
codes with different strengths. Using an approach based on
linear programming and fixing the average erasure-correcting
capability to be t̄ = 7, we obtain the optimized distribution

τ4 = 0.495, τ9 = 0.029, τ10 = 0.476. (10)

The decoding threshold is given by c̄ ≈ 12.88 compared to
c̄ ≈ 11.34 for a regular HPC with τ7 = 1. Fig. 3 shows
simulation results for n = 1000 and n = 3000 together with
the DE prediction, where we used ` = 100. The performance
gain predicted by DE is similar to what is achieved for finite
lengths. Note that the figure shows a scaled bit error rate (BER)
plotted against the effective channel quality c in order to better
illustrate the convergence of the simulation results towards the
asymptotic DE curve for increasing n, see [10, Sec. II-D] and
[10, Sec. VII-E] for details. 4
Example 8. For spatially-coupled PCs, one may use the
approach described in [19] to study iterative decoding thresh-
olds. In particular, the decoding thresholds for the braided
code family mentioned in the last paragraph of Section IV-A
coincides with the so-called potential threshold defined in [19],
provided that the coupling width is sufficiently large. This
result is useful since it is typically easier to characterize the
potential threshold (both numerically and theoretically) than
the actual decoding threshold. Now, assume that we employ
different component codes according to τ . In this case, the
potential threshold depends on τ . In [12, Th. 2], it is proved
that for a fixed t̄ ∈ {2, 3, . . . }, the potential threshold is
maximized by a regular distribution where τt̄ = 1. From this,
we can conclude that employing component code mixtures
for spatially-coupled PCs is not beneficial from an asymptotic
point of view. 4

V. CONCLUSION

A deterministic construction of GPCs is reviewed along with
a DE analysis for code sequences. As an application, these
results are used to design and analyze spatially-coupled PCs,
symmetric GPCs, and GPCs with component code mixtures.

REFERENCES

[1] P. Elias, “Error-free coding,” IRE Trans. Inf. Theory, vol. 4, no. 4, pp.
29–37, Apr. 1954.

[2] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[3] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge,
“Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30,
no. 1, pp. 110–117, Jan. 2012.

[4] J. Justesen, “Performance of product codes and related structures with
iterated decoding,” IEEE Trans. Commun., vol. 59, no. 2, pp. 407–415,
Feb. 2011.

[5] Y.-Y. Jian, H. D. Pfister, K. R. Narayanan, R. Rao, and R. Mazahreh,
“Iterative hard-decision decoding of braided BCH codes for high-speed
optical communication,” in Proc. IEEE Glob. Communication Conf.
(GLOBECOM), Atlanta, GA, 2014.

[6] L. M. Zhang and F. R. Kschischang, “Staircase codes with 6% to 33%
overhead,” J. Lightw. Technol., vol. 32, no. 10, pp. 1999–2002, May
2014.

[7] C. Häger, A. Graell i Amat, H. D. Pfister, A. Alvarado, F. Brännström,
and E. Agrell, “On parameter optimization for staircase codes,” in Proc.
Optical Fiber Communication Conf. (OFC), Los Angeles, CA, 2015.

[8] M. G. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of
random processes via and-or tree evaluation,” in Proc. 9th Annual ACM-
SIAM Symp. Discrete Algorithms, San Franscisco, CA, 1998.

[9] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, Feb. 2001.

[10] C. Häger, H. D. Pfister, A. Graell i Amat, and F. Brännström, “Density
evolution for deterministic generalized product codes on the binary
erasure channel,” submitted to IEEE Trans. Inf. Theory, 2015. [Online].
Available: http://arxiv.org/pdf/1512.00433.pdf

[11] ——, “Density evolution and error floor analysis of staircase and braided
codes,” in Proc. Optical Fiber Communication Conf. (OFC), Anaheim,
CA, 2016.

[12] ——, “Deterministic and ensemble-based spatially-coupled product
codes,” 2016. [Online]. Available: http://arxiv.org/pdf/1512.09180.pdf

[13] A. J. Feltström, D. Truhachev, M. Lentmaier, and K. S. Zigangirov,
“Braided block codes,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp.
2640–2658, Jul. 2009.

[14] J. Justesen and T. Høholdt, “Analysis of iterated hard decision decoding
of product codes with Reed-Solomon component codes,” in Proc. IEEE
Information Theory Workshop (ITW), Tahoe City, CA, 2007.

[15] B. Bollobás, S. Janson, and O. Riordan, “The phase transition in
inhomogeneous random graphs,” Random Structures and Algorithms,
vol. 31, no. 1, pp. 3–122, Aug. 2007.

[16] Y.-Y. Jian, H. D. Pfister, and K. R. Narayanan, “Approaching capacity
at high rates with iterative hard-decision decoding,” in Proc. IEEE Int.
Symp. Information Theory (ISIT), Cambridge, MA, 2012.

[17] H. D. Pfister, S. K. Emmadi, and K. Narayanan, “Symmetric product
codes,” in Proc. Information Theory and Applications Workshop (ITA),
San Diego, CA, 2015.

[18] S. Kudekar, T. Richardson, and R. Urbanke, “Threshold saturation via
spatial coupling: Why convolutional LDPC ensembles perform so well
over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–834,
Feb. 2011.

[19] A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof
of Maxwell saturation for coupled scalar recursions,” IEEE Trans. Inf.
Theory, vol. 60, no. 11, pp. 6943–6965, Nov. 2014.

[20] S. Hirasawa, M. Kasahara, Y. Sugiyama, and T. Namekawa, “Modified
product codes,” IEEE Trans. Inf. Theory, vol. 30, no. 2, pp. 299–306,
Mar. 1984.

[21] M. Alipour, O. Etesami, G. Maatouk, and A. Shokrollahi, “Irregular
product codes,” in Proc. IEEE Information Theory Workshop (ITW),
Lausanne, Switzerland, 2012.

