
Chalmers Publication Library

Density Evolution and Error Floor Analysis for Staircase and Braided Codes

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Proc. Optical Fiber Communication Conf. and Exposition (OFC)

Citation for the published paper:
Häger, C. ; Pfister, H. ; Graell i Amat, A. et al. (2016) "Density Evolution and Error Floor
Analysis for Staircase and Braided Codes". Proc. Optical Fiber Communication Conf. and
Exposition (OFC)

http://dx.doi.org/10.1364/OFC.2016.Th2A.42

Downloaded from: http://publications.lib.chalmers.se/publication/235014

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1364/OFC.2016.Th2A.42
http://publications.lib.chalmers.se/publication/235014


Density Evolution and Error Floor Analysis for
Staircase and Braided Codes
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Abstract: We analyze deterministically constructed (i.e., non-ensemble-based) codes in the
waterfall and error floor region. The analysis directly applies to several FEC classes proposed
for high-speed OTNs such as staircase and braided codes.

OCIS codes: (060.0060) Fiber optics and optical communications, (060.2330) Fiber optics communications.

1. Introduction

Several authors have proposed improvements over the forward error correction (FEC) codes for optical transport net-
works (OTNs) from the ITU-T G.975 and G.975.1 recommendations. Some of these proposals, e.g., staircase codes
(SCs) [1] and braided codes (BCs) [2], are extensions of classical product codes (PCs) and we refer to them as general-
ized PCs (GPCs). GPCs are particularly suited for high-speed applications due to their lower complexity under iterative
hard-decision decoding compared to message-passing decoding of low-density parity-check (LDPC) codes [1].

FEC design requires assessment of nontrivial trade-offs between performance, complexity, and decoding delay. Iden-
tifying these trade-offs is greatly simplified with the availability of theoretical tools that allow the prediction of the
post-FEC bit error rate (BER) performance without resorting to time-consuming Monte-Carlo simulations. In this pa-
per, we propose a deterministic GPC construction which encompasses PCs, SCs, and (block-wise) BCs as special cases.
The main contribution is a characterization of the performance under iterative decoding in the waterfall region by means
of a density evolution (DE) analysis. Our work generalizes previous work in [3,4] to a large class of GPCs. Even though
other classes of GPCs are also discussed in [4], the DE analysis in these papers is limited to PCs and their symmetric
subcodes (so-called half-PCs).

As an application, we present a case study comparing SCs and two variants of BCs. Supplemented with an error floor
analysis, we show that the symmetric subcode of a BC can outperform both SCs and conventional BCs in the waterfall
region, at a lower error floor and decoding delay.

2. Density Evolution for Deterministic GPCs

We denote a GPC by Cn(η), where n is the number of constraint nodes (CNs) in the underlying Tanner graph and η is
a binary, symmetric L×L matrix that defines the graph connectivity. Since GPCs have a natural representation in terms
of two-dimensional code arrays (see, e.g., Fig. 1), one may alternatively think about η as specifying the array shape.
We will see in the following that different choices for η recover well-known code classes.

2.1. Code Construction

To construct the Tanner graph that defines Cn(η), assume that there are L positions. Then, place d , n/L CNs at each
position and connect each CN at position i to each CN at position j through a variable node (VN) if and only if ηi, j = 1.

Example: A PC is obtained for L = 2 and η =
(

0 1
1 0

)
. The two positions correspond to “row” and “column” codes,

respectively. The code array is of size d×d, where d = n/2. Each of the d2 VNs corresponds to one bit in the array. 4
CNs at position i have degree d ∑ j 6=i ηi, j +ηi,i(d− 1), where the second term arises from the fact that we cannot

connect a CN to itself if ηi,i = 1. Recall that the CN degree specifies the length of the component code associated with
the CN. Here we assume that each CN corresponds to a t-error correcting Bose–Chaudhuri–Hocquenghem (BCH) code.

2.2. Iterative Decoding
Suppose that a codeword of Cn(η) is transmitted over a binary symmetric channel with crossover probability p. The

decoding is performed iteratively assuming ` iterations according to the following procedure. In each iteration, perform
bounded-distance decoding (BDD) of all component codes and update the bits of the associated VNs according to the
decoding outcome. For simplicity, we consider idealized BDD similar to [3,4], which works as follows. If the Hamming
weight of the error pattern is less or equal to t, the pattern is corrected. If the weight exceeds t, the component code
declares an error but leaves all associated bits unchanged.
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Fig. 1. Code arrays using the same component code with length nc = 12 and dimension kc = 10.

2.3. Density Evolution

We wish to characterize the asymptotic decoding performance in the limit n→ ∞. To that end, let Ψ≥t(λ ) , 1−
e−λ

∑
t−1
i=0

λ i

i! be the tail probability of a Poisson random variable, p = c/n for some c > 0, and assume that we compute

z(`)i = Ψ≥t+1

(
c
L

L

∑
j=1

ηi, jx
(`−1)
j

)
for i ∈ {1, · · · ,L}, where x(`)i = Ψ≥t

(
c
L

L

∑
j=1

ηi, jx
(`−1)
j

)
with x(0)i = 1. (1)

The main technical result is as follows. Let the random variable Z be the fraction of component codes that declare errors
in iteration `. Then, Z converges almost surely to 1

L ∑
L
i=1 z(`)i as n→ ∞. In other words, the code performance concen-

trates around a deterministic value computed by the recursion in (1) for sufficiently large n. This result is analogous to
the DE analysis for LDPC codes and for a formal proof we refer the reader to [5]. Observe that this result applies to the
deterministically constructed code Cn(η) and does not rely on the definition of a code ensemble (i.e., a set of codes),
which is typically required to apply DE. We remark that the analysis can be modified to account for different decoding
schedules, e.g., alternations between “rows” and “columns” or window decoders (or a combination thereof), see [5].

The above result is asymptotic in n. In practice, n is typically “large enough” and d = n/L exceeds several hundreds
of bits. We can then use (1) to predict the region where the post-FEC BER curve of Cn(η) bends into the characteristic
waterfall behavior by using BER≈ pxηxT/‖η‖2

F , where ‖η‖2
F is the number of 1s in η and x , (x(`)1 , . . . ,x(`)L ).

3. Case Study: Comparison of Staircase, Braided, and Half-Braided Codes

Consider the code arrays in Fig. 1, where (a) corresponds to a SC [1], (b) to a variant of a block-wise BC [6], and (c)
to a half-BC [4, 7]. The definition of these codes is usually easiest to understand in terms of their systematic encoding
procedure. For the SC and BC, the red array elements are filled with information bits and the blue array elements are
the parity bits obtained by systematically encoding rows and/or columns. The procedure is essentially the same for the
half-BC, however, each component code acts on an L-shape, i.e., both a partial row and column, which includes the zero
on the array diagonal. Equivalently, one can encode the BC with a zero diagonal and symmetrically placed information
bits with respect to the diagonal. Thus, the half-BC code can be viewed as a (punctured) subcode of the BC.

By considering the Tanner graph of all three codes, one may check that they can be seen as special cases of Cn(η).
In particular, the SC is recovered for ηi,i+1 = ηi+1,i = 1 for i ∈ {1, . . . ,L− 1} and zeros elsewhere. The BC has the
same η , but additionally η2i−1,2i+2 = η2i+2,2i−1 = 1 for i ∈ {1, . . . ,L/2− 1}. The half-BC has the same η as the SC,
but additionally ηi,i = 1 for i ∈ {1, . . . ,L}. The numbers in Fig. 1 indicate the positions in the construction in Sec. 2.1.

3.1. Parameters and Error Floor
We use a BCH component code with parameters (nc,kc, t) = (720,690,3), where nc and kc are the length and dimen-

sion of the code. All other parameters are listed in Table 1 and briefly discussed in the following. Encoding is performed
in batches, where one batch is indicated by the thick, red lines in Fig. 1, and B denotes the number of bits per batch.
The code rate R is the ratio between the number of information bits per batch and B. All three codes have roughly the
same rate R ≈ 0.917 (and an FEC overhead of 9.1%). The decoding is performed in a sliding-window fashion, where
each window comprises W received batches. The decoding delay (in bits) is given by D =WB and we have chosen W
such that the SC and BC have the same delay, which is roughly twice as much as for the half-BC. The SC and BC are
decoded by iterating ` times between rows and columns within each window. For the half-BC, all component codes
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Fig. 2. Results

within each window are decoded simultaneously and ` is increased to keep the same decoding complexity (note that
the number of component codes per window is reduced by half for half-BCs).

To estimate the error floor, we follow the analysis and terminology in [1, Sec. V-B]. Let smin be the size of the minimal
stall pattern, defined as the minimum number of array positions which, when all received in error, cause the decoder to
stall. Examples are shown by the crosses in Fig. 1 for t= 2. A stall pattern is said to be assigned to a batch if at least one
of its array positions belongs to the batch and no positions belong to previous batches. The error floor is approximated
by BER ≈ sminMpsmin/B, where M denotes the number of minimal stall patterns that can be assigned to a batch. For
SCs, M is derived in [1, Sec. V-B]. We use similar arguments to derive M for BCs and half-BCs listed in Table 1.

3.2. Results and Discussion

Results are shown in Fig. 2 for the SC (red), BC (blue), and half-BC (green). DE shows a slight (asymptotic) per-
formance advantage for the SC, although for the chosen parameters at finite lengths, the SC and BC perform virtually
identical. The DE results for the BC and half-BC are roughly the same (this can be seen by considering (1) and η for the
two codes). The simulated half-BC has worse performance compared to the SC and BC caused by a different scaling
behavior at finite lengths due to the reduced number of bits within the decoding window. Furthermore, the error floor
is increased from ≈ 10−20 for the SC and BC to ≈ 10−14 due to the reduction of smin. On the other hand, the half-BC
operates at only half the decoding delay. One may therefore improve the half-BC by employing a longer BCH code
with parameters (960,920,4). This leaves the code rate unchanged, but significantly reduces the error floor to ≈ 10−23

(note that smin = 15) and also improves the waterfall performance, as predicted by DE and confirmed by the simulations
(shown in brown). The delay is increased to D = 920,640 bits, which is slightly less compared to the SC and BC.

Since the error floors were beyond the reach of software simulations, the inlet figure shows additional results for a
half-BC employing a (600,580,2)-BCH code, W = 5, and `= 10 to verify the analysis based on minimal stall patterns.

4. Conclusion

We presented a DE analysis for deterministic GPCs, which applies to several code classes proposed for optical com-
munications. DE can be used for a variety of different applications, e.g., parameter tuning, optimization of decoding
schedules, or the design of new GPCs. As a case study, we compared SCs, BCs, and half-BCs. SCs and BCs perform
similarly, while half-BCs can outperform both SCs and BCs at a lower error floor and decoding delay.
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