
Safer smart contracts through type-driven
development
Using dependent and polymorphic types for safer develop-
ment of smart contracts

Master’s thesis in Computer Science

Jack Pettersson and Robert Edström

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Safer smart contracts through type-driven
development

Using dependent and polymorphic types for safer development of
smart contracts

ROBERT EDSTRÖM, JACK PETTERSSON

Department of Computer Science and Engineering
Computing Science Division

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden 2016

Safer smart contracts through type-driven development
Using dependent and polymorphic types for safer development of smart contracts
ROBERT EDSTRÖM, JACK PETTERSSON

© JACK PETTERSSON, ROBERT EDSTRÖM, 2016.

Supervisor: K.V.S. Prasad, Department of Computer Science and Engineering
Examiner: Gerardo Schneider, Department of Computer Science and Engineering

Department of Computer Science and Technology
Computing Science division
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2016

iv

Safer smart contracts through type-driven development
Using dependent and polymorphic types for safer development of smart contracts
ROBERT EDSTRÖM, JACK PETTERSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
We show how dependent and polymorphic types can make smart contract develop-
ment safer. This is demonstrated by using the functional language Idris to describe
smart contracts on the Ethereum platform. In particular, we show how one class
of common errors can be captured at compile time using dependent types and alge-
braic side effects. We also bring type annotations to the realm of smart contracts,
helping developers to circumvent another class of common errors. To demonstrate
the feasibility of our solutions, we have extended the Idris compiler with a backend
for the Ethereum Virtual Machine. While we find that the functional paradigm
might not be the most suitable for the domain, our approach solves the identified
problems and provides advantages over the languages in current use.

Keywords: smart contracts, dependent types, polymorphic types, Ethereum, blockchain,
Idris, functional programming

v

Acknowledgements
We would like to send gratitude to our supervisor K.V.S. Prasad, who has been
very supportive and helpful with setting the direction of our work. Additionally,
the vibrant Ethereum and Idris communities have both been very responsive and
helpful—in particular, the members of the #idris IRC channel. Also to Kieren
James-Lubin who helped provide the initial idea for this project, as well as Joseph
Lubin and the others at ConsenSys for bringing us to DEVCON1. Finally, the
various people who have helped us with feedback and guidance during our work.

Robert Edström and Jack Pettersson, Gothenburg, February 2016

vi

Intended audience
This report is aimed at readers with an undergraduate in computer science or similar.
In particular, familiarity with a typed functional language like Haskell, F# or a
member of the ML family will be very helpful for reading code samples. Some
familiarity with programming language implementation is expected as well. Public-
key cryptography will be briefly discussed, but fully understanding these parts is
not vital to understand our contribution.

In November 2015, representatives from both academia and the industry with an in-
terest in blockchain and consensus technology got together in London, at Ethereum’s
first annual developer’s conference, DEVCON1. We gave a short presentation on
this thesis and our project there. A recording of our talk is available online at
https://www.youtube.com/watch?v=H2uwUdzVD9I. If the reader is not familiar
with smart contracts in general and Ethereum in particular, we recommend that
our presentation is watched after reading chapter 1 and section 2.1. Otherwise, we
believe that the presentation serves well as an intuitive introduction to our work.

vii

https://www.youtube.com/watch?v=H2uwUdzVD9I

Contents

1 Introduction 1
1.1 Smart contracts . 2
1.2 Smart contract languages . 3
1.3 Aim . 3
1.4 Delimitations . 4
1.5 Report outline . 4

2 Technical background 5
2.1 The Ethereum smart contract platform 5

2.1.1 Contract structure . 7
2.1.2 Users, contracts and their accounts 7
2.1.3 Code execution and transactions 8
2.1.4 Execution costs . 8

2.2 Common errors in smart contracts . 9
2.2.1 Unexpected states . 9
2.2.2 Failure to use cryptography 10
2.2.3 Full call stack . 10

2.3 Type systems detect errors . 11
2.3.1 Dependent types . 11

2.4 The Idris programming language . 12
2.4.1 Side effects . 13

3 Smart contracts in Idris 17
3.1 Avoiding unexpected states . 17

3.1.1 Handling ether . 17
3.1.2 The execution environment 19

3.2 Using the data store . 21
3.3 Annotating for cryptography . 22
3.4 Reimplementation of rock-paper-scissors 22

4 Implementation 25
4.1 Target language . 25
4.2 Source language . 26
4.3 Code generator implementation . 27

4.3.1 Functions as macros . 28
4.3.2 Algebraic data types as lists 29

ix

Contents

4.4 Our Ethereum library . 29
4.4.1 Primitive operations . 29
4.4.2 The Ethereum effects . 30

4.5 Usage . 33
4.5.1 Wrapper functions . 33
4.5.2 Exporting functions . 35

5 Discussion 37
5.1 Theory . 37

5.1.1 Types as models . 37
5.1.2 Extending the type system . 39
5.1.3 Unified language for contract and client 39
5.1.4 Handling custom tokens . 39
5.1.5 Suitability of the functional paradigm 39

5.2 Implementation . 41
5.2.1 The efficiency and modularity of primitive operations 41
5.2.2 Incomplete code generation 42
5.2.3 Inefficient output programs 43
5.2.4 Implementing language-level commitments 43
5.2.5 Preventing call stack errors 44
5.2.6 Generating the data store declaration 44
5.2.7 Generating wrapper functions 44
5.2.8 Higher-order functions . 45

6 Conclusion 47

Bibliography 49

A Contract environment variables I

x

1
Introduction

Contracts—conditional agreements between two or more parties for doing or not do-
ing something specified—are a vital underpinning of modern finance, business and
law. As business and finance are increasingly automated, the incentives to let com-
puter programs interpret, enforce and execute contracts also increase. Naturally, it
is crucial that the interpretation of such contracts is unambiguous and deterministic.

1 function buy () {
2 if(currentTime == expiryTime) {
3 seller .give(buyer , asset)
4 buyer.give(seller , price)
5 }
6 }

Figure 1.1: Object-oriented pseudo-code en-
coding the contract “At expiryTime, the buyer
may buy the asset from the seller at the spec-
ified price”. The identifier currentTime is an
environment variable reflecting the time of exe-
cution.

It has been shown that contrac-
tual agreements are very well suited
to be expressed in formal languages
[1]. Most contractual clauses are
on the form “given x, allow/perform
y”, where x is an event or point in
time and y is an action. Also note
that both x and y may be referring
to, or be composed of, other con-
tractual clauses. Consider for ex-
ample a simple contract that grants
its holder the right to buy or sell
a particular asset at a fixed price
when the contract expires. This could easily be represented by a simple program,
as seen in fig. 1.1. The details of this program are not important, what is important
is that contracts essentially consist of mere logic, despite the extensive jargon used
in both the legal and financial fields. This observation is not new and there have
already been several efforts to design formal languages and programming libraries
intended to analyze or execute financial contracts [1]–[4].

However, all of the existing implementations suffer from the same fundamental
problem: if a contract is executable, the involved parties have to trust the executor
to give them the correct result. It would be desirable to have the code “execute
itself”, without any possibility of interference from an executor or other third parties.
It turns out that this has recently become both possible and practical, thanks to
programmable smart contract platforms.

1

1. Introduction

1.1 Smart contracts

The term “smart contract” is a bit vague, but we will take it to mean programs or
protocols that encode and enforce agreements [5]. Some examples of smart contracts
are digital rights management schemes for multimedia files and admission control
schemes in computer networking. One could also view vending machines as a primi-
tive precursor of smart contracts, enforcing the agreement that a coin can be traded
for e.g. a can of soda [6].

It should be noted that smart contracts are not merely “executable contracts”.
Contracts are traditionally external to the system they regulate and are prescriptive
rather than descriptive. They don’t define what is possible, but what is permis-
sible and the consequences of breaching the prescriptions. Conversely, smart con-
tracts define how entities may transact, and automatically execute these transactions
when asked to. The distinguishing feature is that once initiated, the participating
entities cannot reverse or stop the transaction unless allowed by this or another
smart contract; the agreement is enforced. As a consequence of this, smart con-
tracts cannot be said to be violable in the same way as traditional contracts. If a
smart contract is invoked it is automatically honored, otherwise it does not apply.
Nevertheless, a greater degree of automation should be possible if traditional con-
tracts can be complemented—or partially replaced—by smart contracts, especially
in the financial and legal fields.

The previously mentioned examples of smart contracts are very specialized. In
recent years however, programmable smart contract platforms have emerged. They
offer developers programming languages to specify arbitrary smart contracts in,
which when deployed to the respective platform are guaranteed to be executed ex-
actly as specified [7]. Since smart contracts define the possible transactions rather
than the allowed behavior, smart contracts on these platforms generally resemble
traditional computer programs. The platforms are completely agnostic to the pur-
poses of the programs they execute, hence it is possible that some of them are not
contracts in any meaningful sense. Thus, it could be argued that referring to all
programs on these platforms as “smart contracts” is a misnomer. Nevertheless, this
is the jargon of the field, and it does seem like smart contracts is the main use case
of platforms which enforce arbitrary rules. Programs on these platforms are said
to be trustless, because users needn’t trust any third party when using them; what
needs to be trusted is just the code itself [8].

Smart contract platforms enable the implementation of applications such as
transparent crowdfunding platforms without middleman fees [9], automated orga-
nizational governance tools [10] and censorship-resistant prediction markets [11].
They also seem to be fit for use in the emerging field of the Internet of things.
IBM has carried out promising experiments with using a smart contract platform
as the decision making backbone for connected devices all over the world [12], [13].
Currently, the Internet of things is based on centralized servers which devices con-
tinuously send data to. The servers aggregate data from numerous devices to decide
parts of the devices’ behavior. Disregarding the obvious drawbacks with a single
point of failure, this architecture has two major problems. First and foremost, it
will not scale to the needs anticipated, since there will soon simply be too many

2

1. Introduction

devices. Second, data generated by devices quickly becomes irrelevant; a round-trip
to the server—including server-side processing—wastes data that could have been
used to provide a better service. Instead, smart contract platforms seem to be able
to support a “device democracy”, allowing devices to collectively decide on their
behavior without relying on any servers [12].

1.2 Smart contract languages
These developments are certainly very exciting, but if smart contract platforms
should become the foundation of our economy—possibly even our technological
infrastructure—it is of utmost importance that the technologies we use to develop
smart contracts are robust. In particular, smart contract languages should be as
safe as possible: errors should be hard to introduce, easy to detect and easy to
fix. Unfortunately, this is not yet the case. All languages in active use today are
imperative, and it has been shown that they are prone to programming errors due
to unforeseen states [14].

Conversely, most of the existing formal languages for financial contracts are func-
tional in nature [2]–[4]. Many of them are also compositional, such that contracts
are created by combining smaller contracts. In general, the functional programming
paradigm is very well-suited for implementing domain specific languages as combina-
tor libraries, which accommodates such compositionality [15]. Furthermore, purely
functional languages are very well suited for testing and formal program verification
[16], a very attractive feature for critical domains such as smart contracts. We also
note that extensive type systems are generally very useful for catching errors early
in program development [17]. As such, we see huge potential in a functional smart
contract language with an extensive type system.

1.3 Aim
Our thesis is that a functional language with an extensive type system can allow
safer development of smart contracts. Specifically, we consider three classes of errors
that are common due to the characteristics of current smart contract platforms. All
of these will be explained in depth in section 2.2. If our solutions can help detect
two of these problems earlier in development or make it easier to circumvent them,
we will consider our thesis proven.

In order to demonstrate the feasibility of what we suggest, we will also provide
a proof-of-concept implementation of our solutions, targeting the popular smart
contract platform Ethereum [18]. The goal is for it to be able to compile simple
smart contracts to run on the platform.

3

1. Introduction

1.4 Delimitations
We do not intend to develop a new library or domain specific language specialized
on describing specific types of contracts. As mentioned, there already exist several
of those and providing yet another one doesn’t seem like an important contribution.
However, keeping in mind that many of the mentioned libraries are functional, we
do hope that a functional language on a smart contract platform will facilitate the
implementation of the existing ones in a trustless environment.

The focus is on safety: ease of use is not a main goal. We view this as a later
concern, while safety is more fundamental and harder to add after the initial design.
It is also outside the scope of this thesis to deliver a complete, optimized or readily
usable language implementation.

1.5 Report outline
The rest of this report is structured as follows:

Chapter 2 gives the technical background to our work. This includes Ethereum,
the smart contract platform which we use as a testing ground for our ideas. The
classes of common errors that were mentioned above are explained in greater
detail. The solutions we propose in chapter 3 make use of polymorphic types,
dependent types and the programming language Idris, all of which will be
explained.

Chapter 3 presents our solution, namely how an Idris library that we have de-
signed can be used to detect or circumvent the common errors identified in
the previous chapter.

Chapter 4 explains how we have implemented our solutions. Specifically, this in-
cludes a proof-of-concept backend for the Idris compiler which targets the
Ethereum Virtual Machine (EVM), as well as the library described in the
previous chapter.

Chapter 5 evaluates both our theoretical approach and our implementation of it.
Advantages, problems and opportunities for future work are identified.

Chapter 6 concludes.

4

2
Technical background

This chapter will explain the technologies that are relevant to this thesis. It is
split roughly into two halves, with the first covering smart contracts and Ethereum,
the smart contract platform we are targeting. This will begin with an overview of
Ethereum, followed by a more in-depth technical description. After that, problems
in the smart contract languages in current use will be explained. The second half
covers type systems and Idris, the language we will use to demonstrate our solutions
in the next chapter. This will start with a discussion on type systems in general and
dependent types in particular, illustrated with examples of Idris code. Finally, we
will give an overview of some important features of Idris.

2.1 The Ethereum smart contract platform
In short, Ethereum is a peer-to-peer network in which the participants store and ex-
ecute programs on an embedded virtual machine. Programs are executed on request
by users and may perform any number of actions as a result, such as updating its
state, executing other programs or sending value to users or programs. The virtual
machine is Turing-complete, so the programs can be arbitrary, but they are generally
similar to database transactions. Furthermore, they are often applied to the transfer
or registration of digital resources such as property titles, votes, currency, licenses,
control over “smart” autonomous devices, stocks and so on. Anyone can execute or
deploy programs to the network for a small fee. The participants in the network
continuously verify that they agree on the state of the system: in particular, they
verify that they agree on the states of the deployed programs. If anyone disagrees,
it is easy to verify their claim. Thus, this peer-to-peer network is able to establish
unique and verifiable global states according to any rules supplied by its users.

On a conceptual level, programs on Ethereum can be likened to a trusted third
party, one which consists solely of code that is distributed over a peer-to-peer net-
work. This conceptual third-party is trusted for correctness, but not confidentiality
[14]; the binary code, execution steps and stored data of all programs are com-
pletely public. The entire state of the system can be viewed by anyone [18], [19].
On a slightly more technical level, it can be viewed as a shared world computer
(albeit very slow) or a cryptographically secured database without administrators
[20]. The programs on the platform are executed on request and have a limited
running time, rather than running continuously [18], [19]. The mechanics of this
will be explained in section 2.1.3.

5

2. Technical background

1 contract NameRegistry {
2 mapping (string => string) names;
3

4 function register (string name , string value) returns boolean {
5 if(names[name] == 0) {
6 names[name] = value;
7 return true;
8 }
9 return false;

10 }
11

12 function lookup (string name) returns string {
13 return names[name];
14 }
15 }

Figure 2.1: A simple name registration system, allowing users to register and look up
names. Line 2 declares an array of strings, indexed by strings. Uninitialized indices map
to 0, as seen on line 5. The language used is Solidity1, a common smart contract language
which we will only use for illustrative purposes; it is not necessary to understand the
syntax in-depth.

To illustrate how this can be used, we present a simple smart contract in fig. 2.1.
It implements a name registration system, similar to a DNS. The implementation is
trivial, but note that this program will be executed by a peer-to-peer network that
will agree on the currently registered names and their values. Additionally, programs
on Ethereum are publicly executable, so anyone with an Internet connection would
be able to register a name. In summary: when deployed to Ethereum, this simple
program implements a name registration system that is globally available, cannot
be controlled or censored, and is essentially free for anyone to use.

We will now try to make this intuitive understanding more general and precise.
In short, Ethereum allows any entities—which may be mutually distrustful or even
malicious—to arrive at a globally accepted state according to any rules that they
previously agreed upon [18], [19]. This is achieved using a distributed algorithm and
accompanying replicated data structure that allows a peer-to-peer network to agree
on a particular value, even though some of the peers might deviate from the specified
protocol [21]–[23]. In the case of Ethereum, the value that the network agrees upon
is the current state of the system, which is updated whenever a program is added or
executed [18], [19]. For readers familiar with the digital currency Bitcoin, it might
help to mention that Ethereum essentially uses the same underlying algorithm, but
extends it with a programmable virtual machine to allow the implementation of
arbitrary smart contracts, rather than being specialized on currency.

In a more long-term perspective, smart contract platforms like Ethereum might
be able to run any kind of application. At the present moment, performance
is a limiting factor, so only applications with backend modules that have non-
computationally intensive business logic are currently being considered. As pre-
viously mentioned, this includes applications such as crowdfunding platforms, orga-
nizational governance tools and prediction markets. In general, most applications
that include transferring or registration of resources are suitable, especially those
that could exhibit a network effect from being connected directly to a global trans-
actional platform.

1http://ethereum.github.io/solidity/

6

http://ethereum.github.io/solidity/

2. Technical background

2.1.1 Contract structure

In the high-level languages currently used for Ethereum contract development, con-
tracts are structured much like modules or classes in traditional programming lan-
guages. Here, a contract consists of a list of data fields and a list of functions which
read and modify these, as in fig. 2.1. When we refer to the implementations of smart
contracts below, it is useful to keep this in mind. However, contracts are ultimately
encoded as byte code for the Ethereum Virtual Machine (EVM) that is embedded
in all clients, so their structure can be as diverse as programming languages allow.

2.1.2 Users, contracts and their accounts

Ethereum has two main entities: users and contracts that send messages between
each other. If the recipient of a message is a contract, it will execute a bit of code,
which might send new messages to other users or contracts. Each message sent by a
contract will be part of the same transaction that initiated the message. Only users
may initiate transactions; contracts are passive procedures run by receiving properly
formatted messages [18], [19]. Messages and transactions are not transmitted from
one computer to another, but are reflected solely in the system’s state [18], [19].

Because of Ethereum’s completely open and permissionless architecture, it would
not be possible to require users to go through a registration process to use it. Still,
some notion of user identities or user accounts is required for most use cases, which
is achieved using public-key cryptography [18], [19]. Public-key cryptography is a
widely used cryptographic technology that can be used for both encryption and
authentication purposes, but only the latter is relevant here. It is based on the
notion of key pairs. As the name suggests, a key pair consists of two keys: one
public—representing an identity—and one private—used to prove ownership of the
public key [24]. A public key can be thought of as a color—say a certain shade of
red—and the private key as a crayon with that color. Given a letter written in this
shade of red, it can be assumed that only a person with access to this crayon could
have written the letter. The public key can be freely shared with anyone, but the
private key has to be kept secret at all times. Since user accounts are directly tied
to key pairs, users never register accounts. Instead, a particular user account can
be used only with access to its private key [18], [19].

There are also contract accounts, each of which is controlled by the program
which constitutes the contract. Contract accounts have access to a non-shared
persistent memory, which they use to store their state [18], [19].

Each account—i.e. both users and contracts—has exactly one automatically
generated address2, which is used as its unique identifier [18], [19]. Additionally, all
accounts have an ether balance. Ether is a transferable money-like asset that is built
into the Ethereum system3 [18], [19]. While it is possible to use ether as a currency,
its purpose is to prevent certain attacks, as will be explained in section 2.1.4.

2For the curious reader, the address of a user account is a hash of its public key, while the
address of a contract account is, roughly speaking, a hash of the message that created it.

3For the readers familiar with Bitcoin, ether is to the Ethereum network as the currency bitcoin
is to the Bitcoin network.

7

2. Technical background

2.1.3 Code execution and transactions

The Ethereum state of the Ethereum system is updated through the propagation
of messages as part of transactions. Transactions can be thought of as transactions
in a database. All transactions include at least one message—as will be elaborated
on shortly—and are always initiated by a user account. This message might also
result in new messages, which will be part of the same transaction. Additionally,
transactions are atomic; if one of the executions triggered by a transaction fail, the
transaction has no effect at all [18], [19].

Each message has exactly one receiving account and may contain an arbitrary
payload [18], [19]. It is possible to include an amount of ether to transfer with any
message. Any ether received by a contract is added to its balance and is controlled
exclusively by its code, while ether received by a user is controlled by its private key
[18], [19]. A message may do the following things:

Transfer ether The simplest kind of message is to only transfer a certain amount
of ether from one account to another, but ether may be included in more
complex messages as well. It is worth reiterating that in general, Ethereum
transactions are more similar to database transactions than monetary ones.
To transfer value between users is simply one particular way to update the
state.

Contract execution If a contract receives a message, its code gets executed and
a value may be returned to the sender. If the contract was written in a high-
level language and the message’s payload properly specifies a function and
parameters, the function is executed with the supplied parameters. Informa-
tion about the current message and the originating transaction can be accessed
from within the contract code [18], [19]. A full listing of the information that
is available is given in appendix A.

Contract creation New contracts can be created both by users and existing con-
tracts [18]. The message is then sent to a special null address, with the payload
containing the byte code used to instantiate the new contract [19].

2.1.4 Execution costs

All transactions are executed by nodes participating in the network known as veri-
fiers. Since the EVM is Turing-complete, contracts may enter infinite loops, which
are impossible to detect in the general case due to the halting problem. This would
open up for attacks in which execution never finishes, rendering verifiers unable to
process subsequent transactions [18]. To prevent this, users have to pay for each
execution step they trigger, at a fixed price [19]. They do this using gas, a resource
which is bought with ether [18]. The details are not important, just note that ether
in the form of gas is necessary to execute contracts and that the amount of gas
supplied in the message limits the length of the computations it triggers.

8

2. Technical background

1 contract RPS {
2 uint nPlayers ;
3 mapping (address => uint) moves;
4

5 function addPlayer (uint move) returns (boolean success) {
6 if (nPlayers < 2 && msg.value >= 10) {
7 moves[msg. sender] = move;
8 nPlayers ++;
9 return true;

10 else {
11 return false;
12 }
13 }
14 }

Figure 2.2: A contract that erroneously encodes a simple rock-paper-scissors game played
for ether. Displayed is the function for players to join the game. Variables are automati-
cally initialized to 0. The fee for joining is 10 ether as seen in the second condition on line
6, and the moves are encoded as 0, 1 or 2. Adopted from [14].

2.2 Common errors in smart contracts

There are at least four classes of errors that are common for developers who are
trying to develop smart contracts on Ethereum [14]. We have identified three of
these as feasible to mitigate on the language level, presented below.

2.2.1 Unexpected states

Because executing contracts is expensive, smart contracts are mainly used to encode
parts of applications which have something to gain from being distributed or publicly
verifiable and enforceable, most commonly parts of backend business logic. Since
anyone with a key pair can send messages to any other accounts, developers have to
consider unexpected input when developing contracts. This combination might be
unfamiliar to software developers not used to web services and REST interfaces, as
business logic in traditional systems usually resides in software components which are
never publicly accessed from the outside. If the developer is not careful, unexpected
input can lead to unforeseen and faulty contract states.

Consider for example fig. 2.2, which encodes a simple rock-paper-scissors game
where each player bets 10 ether4. The two players join using the function on lines
5-13, but after they have entered the game, it is still possible for a third player to
call addPlayer. This will fail because of the first condition on line 6: there are
already two players in the game. However, any ether that the third player included
in the call is not returned in the else-branch, and will be locked in the contract with
no way of retrieving it. This is clearly not the developer’s intention, despite the
game logic being encoded correctly. Solving this is simple, as shown on line 5 of
fig. 2.3. Still, discovering this type of errors can be hard, especially in more complex
contracts.

4In fact, the players don’t bet 10 ether, but 10 wei, the smallest subdenomination of ether.
All in-code ether values are denoted in wei to avoid dealing with floating point numbers. This
distinction is not important for the discussion of our work, so we ignore it for the sake of simplicity.

9

2. Technical background

1 function addPlayer (uint move) returns (boolean success) {
2 if (nPlayers < 2 && msg.value >= 10) {
3 // ...
4 else {
5 throw; // exits and returns all ether to sender .
6 }
7 }

Figure 2.3: Line 5 ensures that any included ether is returned if the game is full. Adopted
from [14].

2.2.2 Failure to use cryptography
Refer again to fig. 2.2. Because everything on Ethereum is completely public, it is
possible for the second player to see the choice of the first player before they make
their move. The way to solve this is to use cryptographic commitments, as shown in
fig. 2.4. A commitment allows a user to commit to a secret value which can only be
revealed at their discretion. The revealed value is guaranteed to be the value the user
committed to, under standard cryptographic assumptions [14]. This is an adequate
solution, but forcing developers to implement the same cryptographic schemes over
and over again is both tedious and error-prone.

2.2.3 Full call stack
The call stack of the EVM is limited to a size of 1024. If a contract attempts to call
a function when the call stack is full, it will raise an exception [19]. This includes
all messages to other accounts, including sending them ether. At the moment,
however, the EVM handles exceptions by simply returning 0 whenever a call fails.
Additionally, exceptions do not abort execution of the calling contract [19]. Contract
developers are expected to verify return values in the calling function.

This opens up the door for attacks. Consider buyLicense in fig. 2.5. If it
is executed with a full stack, owner.send() will fail, leaving the owner without its
ether. Additionally, the return value is never checked to see if an exception occurred,
so the rights will be granted to the caller without compensation to the owner.

1 contract RPS {
2 mapping (address => hash256) commits ;
3 mapping (address => uint) moves;
4

5 function addPlayer (hash256 commit) returns (boolean success) {
6 // ...
7 }
8

9 function open(uint nonce , uint move) {
10 if (sha3(move , nonce , msg. sender) == commits [msg. sender]) {
11 // ...
12 moves[msg. sender] = move;
13 }
14 }
15 }

Figure 2.4: An example demonstrating how cryptographic commitments can be used to
obscure secret data. As seen on lines 6 and 11, a commitment is a hash of the secret data
and a secret nonce chosen by the sender. We also include the sender’s address to gain an
extra level of security if the nonce should be compromised. Adopted from [14].

10

2. Technical background

1 contract LicenseManager {
2 address owner;
3 address [] licensees ;
4 uint nLicensees ;
5

6 function buyLicense () {
7 if (msg.value >= 10) {
8 owner.send(msg.value);
9 licensees [nLicensees ++] = msg. sender ;

10 }
11 }
12 }

Figure 2.5: A contract handling licences to use some resource. The resource is owned
by owner, with the contract granting access to anyone who pays at least 10 ether and
forwards it to the owner.

This is easily solved by calling a dummy function stackOk in the beginning of all
externally accessible functions. It takes no arguments and returns 1 by definition; if
it returns 0, the stack is full and the calling function should abort. We don’t think
contract developers should have to keep this in mind.

2.3 Type systems detect errors
Simple type systems only distinguish between primitive types such as integers,
strings and booleans. Still, they help detect errors, since mistakenly interpreting
a value of one type as another almost certainly leads to undesired results [25]. Many
modern programming languages also support types which are parametrized on other
types, so called generic or polymorphic types. A simple example is List a, the type
of lists whose elements are of type a. This allows developers to write generic func-
tions over lists, disregarding their content [25]. For example, head : List a -> a
is a function which returns the first element of any non-empty list and causes a
runtime error for empty lists. We adopt the jargon of the functional paradigm and
will refer to these types as polymorphic rather than generic.

2.3.1 Dependent types
Some type systems also support dependent types, parametrized by values [26]. The
canonical example of a dependent type is the type Vect n a, which are vectors of
length n whose elements are of type a. Note that n is a natural number, while a is a
type. This has the effect that Vect 5 Int and Vect 4 Int are distinct types which
are incompatible with each other; a function operating exclusively on one of them
would not accept the other. To give a further intuition of how dependent types are
used, consider again the function for retrieving the first element, but this time on
vectors: head : Vect (S n) a -> a. Here, S constructs the successor of a natural
number, while n is a variable denoting any natural number. Thus, the expression
S n denotes “a natural number that is the successor of any natural number”, i.e.
any natural number except 0, which by definition is not the successor of any natural
number. This has the interesting result that head is only defined on non-empty
vectors and can never fail at runtime.

11

2. Technical background

There are two reasons why we are interested in dependent types. First, they
can detect yet another class of errors at the language level. As we just saw, it
is possible to give much more fine-grained knowledge to the type checker, making
invalid or unexpected input simply not pass type-checking. Second, there exist an
isomorphism between logical propositions and their proofs on one hand, and types
and programs on the other. That is, any type signature can be seen as a logical
proposition, which is proven by a program that implements the signature, and vice
versa [27]. This is true for all types, but the ability to include values in types, as is
provided by dependent types, allows us to state much more interesting propositions.

As an example, consider fig. 2.6, displaying a type a = b which can only be
instantiated if a and b are the same value. A value of type a = b is a proof that
a = b, which has interesting consequences. Consider the function f on line 4. The
first two arguments are integers that are bound to the names a and b, which are
then used as parameters to the type of the third argument. Just by looking at the
type signature, we can be absolutely certain that f will never be executed if the
first two arguments are not equal, because then it would be impossible to pass the
third argument.

1 data (=) : a -> a -> Type where
2 Refl : x = x
3

4 f : (a : Int) -> (b : Int) -> a = b -> c

Figure 2.6: A type parametrized on two values of type a. The sole inhabitor of the type
is Refl, which can only be constructed if the two parameters are in fact the same value x.

In chapter 3, we will demonstrate in detail how polymorphic and dependent types
can play a central role in solving or detecting the first two classes of common errors
described above. Before that, we will take a closer look at Idris, the dependently
typed functional language which we use to demonstrate our proposed solutions.

2.4 The Idris programming language
Idris is a dependently typed and purely functional programming language, still under
development [28]. As can be seen in fig. 2.7, its syntax is very similar to that of
Haskell. Specifically: functions are declared as equations; function application is
parenthesis-free; functions are curried; algebraic data types are supported, which
can be pattern matched. It is also statically typed, so type errors are caught at
compile time rather than at runtime. While Haskell employs a lazy evaluation
strategy, Idris uses eager evaluation [28]. A minor syntactic difference is that type
signatures are specified by a single colon (:), while construction of lists and vectors
use double colons (::).

1 vadd : Vect n Int -> Vect n Int -> Vect n
Int

2 vadd [] [] = []
3 vadd (x::xs) (y::ys) = x+y :: vadd xs ys

Figure 2.7: An Idris function implementing vector ad-
dition. Because the input vectors are guaranteed to be
of the same length, the base case on line 2 is sufficient.

1 V8 : Type -> Type
2 V8 t = Vect 8 t

Figure 2.8: A function
that acts as a polymorphic
type synonym for vectors
of length 8.

12

2. Technical background

One important thing to note is that types are first class citizens of the language
and can be treated just as values and functions can in Haskell [28]. A small example
demonstrating this is the function V8 displayed in fig. 2.8, which is a function com-
puting a type. The expression V8 Int will evaluate to Vect 8 Int. Because types
are first class citizens, type synonyms can be implemented as functions in this way
and are not a language primitive. As shown in the type signature of V8, types have
the type Type and can both be passed as arguments and returned.

2.4.1 Side effects
Because purely functional languages exclusively deal with functions in the mathe-
matical sense—i.e. objects which only map input to output, also known as pure
functions—a major concern is how to represent side effects. These include actions
such as mutating a global state or accessing the system’s I/O capabilities, which
is not possible for a pure function to do, but are instead described by effectful
functions. When the distinction is necessary, we will refer to effectful functions as
operations, while pure functions will be referred to simply as functions. Operations
are necessary components of many programs, including most smart contracts on
Ethereum, which is why their representation in the language is of great interest to
us. This section will explain how Idris uses and represents operations, with a focus
on the features that we make use of.

Syntax for operations

Just as Haskell, Idris offers do-notation to sequence operations together [28]. This
resembles the style of imperative languages, which is useful for functions that are
“very” effectful. However, a large class of operations only need effectful values once.
As shown in fig. 2.9, in these cases do-notation leads to verbose code, which can
obscure the functionality. Of course, one could resort to the more terse applicative-
style programming as in fig. 2.10, but not all functional programmers are used to
this style and it is arguably quite hard to read.

1 addM = do
2 a’ <- a
3 b’ <- b
4 return (a+b)

Figure 2.9: Using do-notation
to access effectful values.

1 addM = (+) <$> a <*> b

Figure 2.10: Using applicative style to ac-
cess effectful values.

1 addM = return (!a + !b)

Figure 2.11: Using !-notation to access ef-
fectful values.

Idris solves this with a bit of clever syntactic sugar called !-notation. The
expression !a implicitly binds the value of a to the expression as a whole. For
example, the expression f !a is desugared to: a >>= \a’ => f a’ 5 [29]. Thus,
the previous example could be written as in fig. 2.11, clearly showing the intended
functionality in a concise way while also maintaining purity.

5Idris uses a thick arrow => for lambda bindings, in contrast to the thin -> in Haskell.

13

2. Technical background

1 get : Eff s [STATE s]
2 put : s -> Eff () [STATE s]

Figure 2.12: The types of the funda-
mental operations for stateful compu-
tations. get retrieves the state, while
put updates it [29].

1 readPush : Eff ()
[STATE (Vect n a), STDIO]
[STATE (Vect (S n) a), STDIO]

Figure 2.13: The type of an operation that
reads a value from the standard input and adds
it to a vector state [29]. Because vectors of dif-
ferent lengths have different types, the effect has
to change as well.

Handling of effects

Idris represents operations using an algebraic representation called effects [29], ini-
tially pioneered by the Eff language [30]. Effects define which side effects can be
used, while exactly how they are achieved is a separate matter and is defined by
handlers6. Each effect can have one or more handlers, each one interpreting the ef-
fect in a certain computational context [29]. A computational context can be viewed
as a place where values can exist and computation can occur, but these may result
in other things as well. For example: the Maybe context represents computations
that may fail and the IO context represents computations that may perform I/O.
A value of type Maybe Int is not simply an integer but may also represent a failed
computation and a value of type IO Int is an integer whose value is dependent on
the I/O that was performed while computing it.

As mentioned, effects are interpreted in computational contexts. For example,
an effect to read and write files could be interpreted in the context of an I/O-library
if the files are stored on the same computer. It could also be interpreted in the
context of a library handling network communication if the files are stored on other
computers. Both of those contexts are impure, but effects themselves are always
pure. Effects and handlers separate the description of side effects from the execution
of them, allowing for easier reasoning about their results and more modular code.

Not all effects are handled in impure contexts. The only requirement is that the
type of the context is Type -> Type, so handling effects in pure contexts like Maybe
is possible [29].

Dependent algebraic effects

As a concrete example of how operations are described, consider fig. 2.12. It shows
the type signatures of the two fundamental operations of the effect that models
stateful computations, analogous to the state monad in Haskell. That the functions
are operations can be seen from the return types being on the form Eff a effs.
The first argument to Eff specifies the type of the return value; get returns the
current state and put doesn’t return anything. The second argument is a list of the
effects that the operation has access to. Here, the only available effect is STATE s,
allowing access to a shared mutable state of type s [29].

It is also possible to let an operation change the available effects. As seen in
fig. 2.13, this is done on the form Eff a ineffs outeffs, made possible because
Eff has a number of overloaded alternatives distinguished by their types. As before,

6Advanced readers might recognize this as being analogous to using free monads to describe
effectful computations, although as we will see shortly, Idris effects offers greater functionality.

14

2. Technical background

the second argument is a list of the effects that are accessible when the operation
is called, while the third argument is the list of the effects that will be accessible to
the next operation [29]. That the operation actually complies to the specification
given by the type signature is verified by the type checker. The example also shows
how multiple effects can be used by the same operation, with both STATE and STDIO
being available.

In the previous example the output effects were static, but they can also depend
on the result of the operation, as can be seen in fig. 2.14. This is the same operation
as in the previous example, but we have extended the type signature to take into
account that the reading operation may fail. Result-dependent effectful operations
have types on the form Eff a ineffs reseffs, where the third argument is a
function with the type a -> List EFFECT. The operation’s return value will be
passed to reseffs, which determines the output effects [29]. This allows for very
powerful specifications, as we will see in the next chapter.

1 readPush : Eff Bool
[STATE (Vect n a), STDIO]
(\ok => if ok then [STATE (Vect (S n) a), STDIO]

[STATE (Vect n a), STDIO])

Figure 2.14: The type of an operation that reads a value from the standard input and
adds it to a vector state, taking into account that the reading may fail [29]. Because vectors
of different lengths have different types, the effect should only change if the reading was
successful.

15

2. Technical background

16

3
Smart contracts in Idris

This chapter will show how polymorphic and dependent types can be used to allow
safer development of smart contracts for Ethereum. We will demonstrate how the
common errors of unexpected states and failure to use cryptography described in
section 2.2 can be detected or solved more easily using an Idris library that we have
defined. This library is used by developers to interact with the Ethereum system, and
can help ensure that certain properties are satisfied. It will be presented gradually,
with examples showing the intended usage.

3.1 Avoiding unexpected states

This section will introduce two effects from the Idris library we have defined. They
are used to handle ether and to access environment variables. We will use them to
incrementally increase the complexity of a running example contract that acts as a
bank. This will show how the library we have defined can be used to ensure that the
correct amount of ether is transferred and kept in all execution paths, ultimately
avoiding the unexpected states noted in section 2.2.1.

3.1.1 Handling ether
Since sent and received ether are neither function arguments in the strict sense
nor part of the function output, we manage ether using an effect. The ETH effect
shown in fig. 3.1 offers a few operations for managing ether, namely value, balance,
contractBalance, keep and send (“ETH” is the currency code for ether, hence the
name of our effect). Their functionalities are explained in their respective comments.
What is of particular interest is the parameters of the effect itself as seen on lines
1-5. These specify the amount of ether included in the call, the contract’s balance,
the amount of ether transferred during the current execution and the amount of
ether explicitly kept during the current execution. The first two are static during
a particular execution, but their values can be used to specify how the other two
should change1. The other two change only when the operations keep and send are
used, as can be seen in the type signatures of these operations. The amount of ether
transferred is increased by send, while keep increases the amount kept.

1As the reader might notice and as we will see shortly, this leads to a slightly redundant syntax
where the first two parameters are repeated. This is due to a design limitation in Idris effects. Our
library includes an alternative syntax for less redundant effect specifications, presented later.

17

3. Smart contracts in Idris

1 ETH : (value : Nat) -- Incoming ether (from call)
2 -> (balance : Nat) -- Ingoing contract balance (since call)
3 -> (trans : Nat) -- Ether sent in outgoing transactions
4 -> (kept : Nat) -- Amount of "value" explicitly kept
5 -> EFFECT
6

7 -- Incoming ether (from call).
8 value : Eff Nat [ETH value balance trans kept]
9

10 -- Balance of a given contract .
11 balance : Address -> Eff Nat [ETH value balance trans kept]
12

13 -- Ingoing contract balance for this contract (since call)
14 contractBalance : Eff Nat [ETH value balance trans kept]
15

16 -- Explicitly keep amount of incoming ether to contract balance .
17 -- Note that all incoming ether is already included in contractBalance
18 -- and that this compiles to a no -op. This function is used by the
19 -- type checker to ensure that the contract complies to the type
20 -- specification .
21 keep : (amount : Nat) -> Eff ()

[ETH value balance trans kept]
[ETH value balance trans (kept+ amount)]

22

23 -- Send amount of ether to given recipient .
24 send : (amount : Nat) -> (recipient : Address) -> Eff ()

[ETH value balance trans kept]
[ETH value balance (trans+ amount) kept]

Figure 3.1: The ether effect and its operations.

1 deposit : Eff ()
[ETH v b 0 0]
[ETH v b 0 v]

2 deposit {v} = keep v

Figure 3.2: A simple ether stor-
ing contract.

We will now have a look at a trivial ether
handling contract, displayed in fig. 3.2. It keeps
any ether it receives and does nothing else. As
can be seen on line 2, its only operation deposit
takes one parameter v, representing the amount
of ether received in the call. The braces signify
that v is an implicit argument which is inferred
from the context; it is part of the transaction but not of the function arguments.

Now, let’s have a look at the type signature of deposit on line 1. We will from
here on out use single-letter names for effect parameters, as they will always have
the same meaning and occur in the same order. The only available effect in this
example is one that handles ether, with the input effect ETH v b 0 0 signifying an
input of v ether and a contract balance of b ether. Since this is supposed to be
the entry-point, no ether should have been kept by or transferred from the contract
during the call yet, hence the last two parameters are set to 0. It is the inclusion
of v in the type signature that allows us to treat it as an implicit argument in the
implementation on line 2, a standard feature of Idris [28]. Moving on to the output
effect, ETH v b 0 v. As explained previously, v and b have to have the same values
as in the input effect. The third parameter means that 0 ether has been transferred
from the contract, and the last one that v ether has been kept by to the contract.
An operation implementing this type has to follow these requirements in order to
type check, hence the developer is required to explicitly keep the received ether. We
can already here see how the combination of dependent types and algebraic effects
can ensure that the implementation works as intended.

18

3. Smart contracts in Idris

1 ENV : (sender : Address) -- Sender of transaction (current call)
2 -> (origin : Address) -- Origin of transaction (full call chain)
3 -> EFFECT
4

5 -- Address of this contract
6 self : Eff Address [ENV sender origin]
7

8 -- Sender of transaction (current call)
9 sender : Eff Address [ENV sender origin]

10

11 -- Origin of transaction (full call chain)
12 origin : Eff Address [ENV sender origin]
13

14 -- Gas remaining for this call
15 remainingGas : Eff Nat [ENV sender origin]
16

17 -- Timestamp of the current transaction
18 timeStamp : Eff Nat [ENV sender origin]

Figure 3.3: The environment effect and some of its operations.

3.1.2 The execution environment
The previous example is rather pointless by itself, since any ether deposited is ef-
fectively stuck in a black hole. Let’s say that we wanted to add an operation to
allow a hard-coded address to withdraw an arbitrary amount of ether. For this,
we need to know the sender of the current call. We offer the effect ENV (short for
environment) to allow the developer to access details of the execution environment
such as the sender of a call, the contract’s address, the current time and so on. It is
partially displayed in fig. 3.3, with some clarifying comments. As can be seen, it is
parametrized on the sender of the current call and the origin of the transaction. Just
like the value and balance parameters to ETH, both of these are static throughout
an execution; they are only included to allow certain properties to be enforced by
the type checker, as we will see next.

The usage of ENV is demonstrated in fig. 3.4, where we use it to implement the
withdrawal operation discussed above. Let’s dissect the type signature, seen on
line 4. The argument amount : Nat is a natural number indicating the requested
amount to withdraw. This is a regular argument that the user calls the contract
with. The second, implicit, argument is an automatically constructed proof p that
the requested withdrawal amount does not exceed the contract’s balance (LTE stands
for “less than or equal” and is written in prefix form). If such a proof is not supplied
and cannot be constructed, the arguments are not type-correct, hence the operation
will not execute and any ether should be returned to the sender.

Moving on to the effects available to withdraw, ETH and ENV. Of particular
interest is the effect ENV Owner o. The first parameter, Owner, has been previously
defined on lines 1-2 and is thus required to be this particular value. In this way,

1 Owner : Address
2 Owner = 0 x00cf7667b8dd4ece1728ef7809bc844a1356aadf
3

4 withdraw : (amount : Nat) -> {auto p : LTE amount b} -> Eff ()
[ETH 0 b 0 0, ENV Owner o]
[ETH 0 b amount 0, ENV Owner o]

5 withdraw amount = send amount Owner

Figure 3.4: A withdrawal operation that checks sender address and contract balance.

19

3. Smart contracts in Idris

we specify that only this particular account is allowed to call this function. The
second parameter is not important in this particular implementation. Furthermore,
the input effect ETH 0 b 0 0 and output effect ETH 0 b amount 0 ensure that no
ether is attached to the call and that the requested amount is sent. To summarize,
we have now enforced the following properties using only the type signature:

• No ether is attached to the call.

• The requested amount does not exceed the balance.

• The requested amount has been sent when the operation is finished.

• Only a specified address is allowed to withdraw.

Given this, the implementation is incredibly simple. Since these conditions are
enforced in the type, we can safely send the requested ether to the, already known,
sender. Also note the return type: (). Similar operations would usually return a
boolean value indicating success. Here, this is not necessary since the function always
succeeds if it can be called. This is a fairly trivial example where the need to check
for edge cases in the implementation is removed, as problematized in section 2.2.1.
The same methods are applicable for more complex operations as well, as will be
seen in section 3.4.

Using dependent effects elegantly

To expand on the bank example, let’s see how we can accommodate for more than
one owner. This is something we cannot check in the signature as we did with the
case of a single owner; the verification has to be performed in the implementation.
As a consequence, the return type is changed to Bool since the function can now
fail. The implementation of this is given in fig. 3.5, with line 4 showing how the
result of the operation is used to determine the resulting effects. Using dependent
effects to differentiate on the output value, we can still let the type system ensure
that ether only gets sent out if the function succeeds.

1 Owners : List Address
2 Owners = [0 x00cf7667b8dd4ece1728ef7809bc844a1356aadf

,0 x004a7617b84d4ece1728ef7809bc844356a897ba
]

3

4 withdraw : (a : Nat) -> {auto p: LTE a b} -> Eff Bool
[ETH 0 b 0 0, ENV s o]
(\ success => if success

then [ETH 0 b a 0, ENV s o]
else [ETH 0 b 0 0, ENV s o])

5 withdraw a {s} = if s ‘elem ‘ Owners
6 then do
7 send a s
8 pureM True
9 else pureM False

Figure 3.5: A withdrawal operation that allows for different owners.

20

3. Smart contracts in Idris

1 namespace Field
2 data Field a = MkField Nat
3

4 namespace MapField
5 data Field a b = MkField Nat
6

7 STORE : EFFECT
8

9 namespace Field
10 read : Field a -> Eff a [STORE]
11 write : Field a -> a -> Eff () [STORE]
12 update : Field a -> (a -> a) -> Eff () [STORE]
13

14 namespace MapField
15 read : Field a b -> a -> Eff b [STORE]
16 write : Field a b -> a -> b -> Eff () [STORE]
17 update : Field a b -> a -> (b -> b) -> Eff () [STORE]

Figure 3.6: The store effect with its operations. Note that this effect has no parameters
and therefore doesn’t have any use for enforcing invariants in type signatures.

3.2 Using the data store

Handling ether and retrieving environment variables are not the only side effects
a contract can have. As mentioned, they also have a persistent memory, which is
accessed using the STORE effect, shown in fig. 3.6. The data store is accessed through
fields: simple memory references, parametrized by the type of the referenced value.
There are simple fields, referencing primitive values, and map fields, referencing
mappings from one primitive type to another. The values referenced by fields are
accessed using the functions read, write and update.

Extending the bank example in fig. 3.7, we use STORE to extend the functions
from the previous examples to accommodate for any account to use this contract
as a bank. To achieve this, we map addresses to their respective balances using the
field balances, defined on lines 1-2 and accessed on lines 6, 11 and 13.

1 balances : Field Address Int
2 balances = MkField 0
3

4 deposit : Eff ()
[STORE , ETH v b 0 0, ENV s o]
[STORE , ETH v b 0 v, ENV s o]

5 deposit {s} {v} = do
6 update balances s (+v)
7 keep v
8

9 withdraw : (a : Nat) -> Eff Bool
[STORE , ETH 0 b 0 0, ENV s o]
(\ success => if success

then [STORE , ETH 0 b a 0, ENV s o]
else [STORE , ETH 0 b 0 0, ENV s o])

10 withdraw a {s} =
11 if !(read balances s) >= a
12 then do
13 update balances s (\b => b - a)
14 send a s
15 pureM True
16 else pureM False

Figure 3.7: Balance is now individualized for each user calling the contract.

21

3. Smart contracts in Idris

3.3 Annotating for cryptography
We noted in section 2.2.2 how cryptographic commitments can be used to han-
dle secret information, but argued that developers should not have to implement
these. Building on standard practices in programming language research, our pro-
posed solution is to annotate the types of secret values using a polymorphic type
Commit : Type -> Type [31], [32]. An illustration of how this could be done is
shown in fig. 3.8

As mentioned, a commitment is a hash of the secret value, a nonce and possi-
bly other information. In general, developers will want to save any commitments
received by a contract to the data store. The sender can then reveal the secret
value at a later time by providing the values that were used to create the com-
mitment. Once revealed, the now public value can be accessed using the library
function open : Commit a -> Maybe a, as on line 8. If the commitment has not
been revealed previous to calling open, it will return Nothing.

1 secret : Field Int
2 secret = MkField 0
3

4 submitSecret : Commit Int -> Eff () [STORE]
5 submitSecret newSecret = write secret newSecret
6

7 getSecret : Eff Int [STORE]
8 getSecret = fromMaybe 0 (open !(read secret))

Figure 3.8: A simple contract for saving a secret value. After it has been revealed (not
shown here), it can be accessed by anyone.

3.4 Reimplementation of rock-paper-scissors
In section 2.2.1, a rock-paper-scissors game from [14] is mentioned. Below is a full
version of the game implemented in Idris using our standard library. It illustrates
how two of the identified problems can be prevented by correctly specified type
signatures. Specifically, note the type of joinGame on line 25—requiring the imple-
mentation to explicitly keep and send ether on lines 33, 34 and 37—and the use of
the Commit, which is followed by the opening of the players’ moves on line 42. Also
note that invalid moves result in a draw. We leave it as an exercise for the interested
reader to enforce this using the type system.

22

3. Smart contracts in Idris

1 import Eff ects
2 import Ethereum
3

4 playerCount : Field Int
5 playerCount = MkField 0
6

7 players : Field Int Address
8 players = MkField 1
9

10 moves : Field Int (Commit Int)
11 moves = MkField 2
12

13 winner : Int -> Int -> Int
14 winner 2 1 = 0 -- Scissors beats paper.
15 winner 1 2 = 1 -- Scissors beats paper.
16 winner 0 2 = 0 -- Rock beats scissors .
17 winner 2 0 = 1 -- Rock beats scissors .
18 winner 1 0 = 0 -- Paper beats rock.
19 winner 0 1 = 1 -- Paper beats rock.
20 winner _ _ = 2 -- Draw
21

22 init : Eff () [STORE]
23 init = write playerCount 0
24

25 joinGame : {auto p : LTE 10 v} -> Commit Int -> Eff Bool
[STORE , ETH v b 0 0, ENV s o]
(\ succ => if succ

then [STORE , ETH v b (v -10) 10, ENV s o]
else [STORE , ETH v b v 0 , ENV s o])

26 joinGame {v} {s} move = do
27 pc <- read playerCount
28 if pc < 2
29 then do
30 write players pc s
31 write moves pc move
32 write playerCount (pc +1)
33 keep 10
34 send (v -10) s
35 pureM True
36 else do -- If the game is full , return ether
37 send v s
38 pureM False
39

40 finalize : {auto p: LTE 20 b} -> Eff Int
[STORE , ETH 0 b 0 0]
(\ winner => if winner == 0

then [STORE , ETH 0 b 0 0]
else [STORE , ETH 0 b 20 0])

41 finalize = if !(read playerCount) == 2
42 then case (open !(read moves 0), open !(read moves 1)) of
43 (Just m0 , Just m1) => do
44 write playerCount 0
45 case winner m0 m1 of
46 0 => do send 20 !(read players 0)
47 pureM 1
48 1 => do send 20 !(read players 1)
49 pureM 2
50 _ => do send 10 !(read players 0)
51 send 10 !(read players 1)
52 pureM 3
53 _ => pureM 0
54 else pureM 0

Figure 3.9: Rock-paper-scissors implemented in Idris using our Ethereum library.

23

3. Smart contracts in Idris

24

4
Implementation

To show that the methods we have proposed are realistic, we have extended the
Idris compiler with a code generator targeting the EVM, as well as implemented a
library to allow necessary system interaction1. This chapter presents these and the
choices made when implementing them, along with some necessary details on the
technologies we are relying on. It is worth reiterating that the implementation is not
supposed to be readily usable in production, but merely serves as a proof-of-concept.

This chapter will start with a discussion of the target and source languages used
by our code generator, followed by an explanation of its implementation. Then, the
components of our library will be presented and explained. Finally, a few details on
how to use our implementation are explained.

4.1 Target language
When implementing a new language for the EVM, there are currently four possible
target languages for the code generator: straight to assembly instructions/bytecode
or through one of the three existing higher-level languages. Two of the higher-
level languages support assembly instructions—except jumps—in addition to their
higher-level constructs, essentially offering a superset of the functionality to the first
option [19]. Furthermore, the EVM will most likely be redesigned in the near future,
potentially including breaking changes to the assembly language. The higher-level
languages will continue working as usual [33].

This caused us to discard the going directly to assembly instructions. Hence
we are left with the following alternatives, ranging from lower to higher levels of
abstraction: LLL (short for Low-Level LISP), intended as a low-level language for
compilation [19]; Serpent, a language with Python-inspired syntax that is more low
level and minimal than its source of inspiration, but not as much so as LLL [18];
Solidity, the most widely used, maintained and feature-rich language, with syntax
similar to JavaScript [34]. The differences in language features relevant to us are
shown in fig. 4.1.

LLL has the advantages of lower runtime overhead and smaller binary output
than code written in Serpent and Solidity. Its simple syntax also makes it an ap-
propriate bridge from the Idris compiler’s intermediate representation. Finally, the
existing LLL compiler offers some optimizations as part of compilation. It is quite
clear to us that a production grade implementation should target LLL or byte code.

1These can be found at https://github.com/vindaloo-thesis/idris-se. Example con-
tracts can be found at https://github.com/vindaloo-thesis/examples.

25

https://github.com/vindaloo-thesis/idris-se
https://github.com/vindaloo-thesis/examples

4. Implementation

Data structures Contract functions Macros Opcodes Targets
LLL No No Yes Yes Bytecode

Serpent Yes Yes Yes Yes LLL
Solidity Yes Yes No No Bytecode

Figure 4.1: The three mainstream languages for smart contract development and some
of their differences. The “Opcodes” column refers to the possibility of directly invoking
assembly instructions, with the exception of jumps.

However, both of these alternatives come with three additional concerns, due to their
low-level nature. First, the only way to access the persistent memory is through di-
rect reading and writing to addresses. Second, there is no support for complex data
types such as arrays and lists. Allocating and aligning memory positions efficiently
is non-trivial, especially for complex data types, and certainly not the focus of our
work. Third, there is no concept of functions, so all programs have a single entry
point, requiring all user-defined functions to be implemented as conditional checks
[35].

On the other hand, Serpent’s compiler handles all of the above while still giving
access to assembly instructions and is easier to use. It is possible to declare persistent
variables, but it also has direct access to the persistent memory if needed, offering
some degree of flexibility. Additionally, since Serpent compiles to LLL, a Serpent
code generator should provide a reasonable reference implementation if one were to
implement a code generator targeting LLL at a later time. The disadvantages are
mainly a relatively minor increase in runtime overhead and code size [36]. As shown
in fig. 4.1, Solidity does not provide all of these advantages.

We opted for Serpent as our target language. It was deemed a good middle-
ground which will support further development, while still allowing us to avoid
spending disproportionate amounts of time on implementation issues that are out
of the scope for our research questions.

4.2 Source language
It is not only the target language that is important however, but also the source lan-
guage. One of the selling points of Idris is that its compiler has been designed from
the start to support new compiler backends. A new backend can choose which anal-
ysis, optimization and transformation steps should be performed, and then specify
its own code generator. After parsing and type checking, the Idris compiler takes
the code through up to six intermediate representations; code generators are free to
use any of these as their input [37]. The full compiler pipeline is as follows:

Parsing and type checking Transformation of the source code to an abstract
syntax tree (AST) representation that is type checked and saved as an inter-
mediary .ibc file.

Intermediary transformations The AST is transformed to a lower-level lan-
guage to be used as a basis for code generation. This is done by going through
a series of intermediate languages of decreasing complexity, detailed below.

26

4. Implementation

Optimizations are applied in some of these stages. Different backends stop at
different stages, so not all stages presented below are used in all situations.

TT This is the core type theory (hence TT) that is the foundation of Idris. It
is a minimal core language with the same semantics as Idris, but a subset
of the syntax. All types are explicit. For the readers familiar with the
internals of GHC, TT can be seen as the Idris compiler’s equivalent of
GHC’s Core.

TTcase All pattern matches have been converted to case trees.
IRcase All types, and values provably not used at runtime, have been erased.

(IR is short for “intermediate representation”.)
IRlift All lambdas have been lifted to the top level.
IRdefunc All functions are first-order and fully applied.
IRANF All applications are in applicative normal form (ANF). Here, this means

that all arguments to functions, constructors and primitive operators have
to be either variables or constants, and can therefore be trivially evalu-
ated.

Code generation After transforming the program to an appropriate intermediate
language, a code generator uses the AST to generate output code.

As Serpent supports neither functions as first-class objects nor higher-order func-
tions, IRdefunc and IRANF are the most reasonable options for the source language,
since they don’t require the runtime system to implement closures [37]. The differ-
ence between the two is not big. IRdefunc has the advantage that function arguments
are not required to be trivial, so less instructions and memory are spent evaluating
them in minuscule steps. Conversely, IRANF is extremely simple since all subexpres-
sions are either constants or have been lifted out into variables, which are easy to
map onto memory locations [37]. We chose IRANF because of its simplicity and be-
cause there was already a reference code generator using IRANF available [37], [38],
which we modified and extended to fit our purposes.

4.3 Code generator implementation
The Idris compiler is implemented in Haskell and can be used as a library by new
code generators [37]. Because of this, we opted to implement our code generator
in Haskell as well. As can be seen in fig. 4.2, we take an AST directly from the
Idris compiler after it has transformed the code to IRANF, which is used to generate
a Serpent source file. The AST is represented by a Haskell data type and our code
generator is essentially a function from this type to a string.

Figure 4.2: The pipeline we use for running Idris on the EVM. Our contribution is
highlighted.

27

4. Implementation

e ::= x (variable) | i (constant)
| ftail ~v (function) | ci ~v (constructor)
| let x = e1 in e2 (let binding) | op ~v (primitive)
| case e of ~alt (case block) | constcase e of ~calt (case block)
| error 〈string〉 (abort) | � (unused value)

v ::= x (variable)
| i (constant)

alt ::= c ~x 7→ e (constructor case)
| _ 7→ e (default case)

calt ::= i 7→ e (constant case)
| _ 7→ e (default case)

Figure 4.3: The grammar of IRANF, showing expressions (e), values (v) and case alter-
natives (alt, calt) [37].

The type of the AST is essentially a list of declarations, each specifying a list of
bound names and an expression. Expressions are specified by the grammar displayed
in fig. 4.3. Most of the derivation rules should be pretty self-explanatory, with the
exception of the two different rules for case blocks. To offer more flexibility for
code generators, cases on constructors have simply been separated from cases on
constants at the syntax level [37]. This distinction is not necessary for our target
language.

Our translation from IRANF to Serpent is fairly straightforward: let bindings
are translated to variable assignments; primitive operators are translated directly to
their Serpent counterparts; both kinds of case blocks are translated to if-elif-else
blocks. Three translations are less straight forward however: function definitions,
function applications and constructor applications.

4.3.1 Functions as macros
With the exception of functions that are exported for external use, we represent
functions using macros instead of functions. Function definitions are translated to
macro definitions and function applications are translated to macro applications.
The difference is that macros are applied at compile time, so any called functions
are inlined by the compiler [36]. There are two reasons for this. First, Serpent im-
plements calls to internal functions in the same way as calls to functions in external
contracts. This means that a called function does not have access to any of the mem-
ory or context from the calling function. Non-primitive data types are represented
internally as memory addresses, so Serpent does not directly support using them as
arguments or return values [36]. Doing so would require encoding them as primitive

28

4. Implementation

values. In the case of e.g. multi-dimensional arrays, which are used extensively in
the generated code, this is a non-trivial matter that could become very expensive.
Additionally, such function calls add an unnecessary gas overhead. Second, using
macros ensures that only functions explicitly exported by the developer can be called
externally.

However, there is a major disadvantage to this approach. Recursive macros will
explode infinitely and crash the Serpent compiler, severely reducing the set of com-
putations our language implementation is able to describe. This is an unfortunate
but necessary consequence of our time constraints on one hand, and our choices of
source and target languages on the other. We will not discuss this further at this
point, but defer it until the discussion in section 5.2.2.

4.3.2 Algebraic data types as lists
Constructor applications are translated into lists, where the first element is a tag,
an integer representing the constructor that was used, and the subsequent elements
are the constructor arguments. For example, the value Left "foo" would be repre-
sented as [0, "foo"], while Right "bar" would be represented as [1, "bar"] and
Just (Left 3.14) would be [1, [0, 3.14]]. This is possible due to the loosely
typed nature of Serpent. A necessary consequence of this representation is that con-
structor case blocks are simply translated to conditional checks on the first element
of the list, i.e. conditional checks on the value just as in constant case blocks. There
are some further details of interest in our code generator implementation, but these
relate to our library which will be discussed next, hence we defer this until then.

4.4 Our Ethereum library
Our library mainly consists of two components:

• A number of EVM-specific primitive operations. These are not Serpent-specific
but are agnostic to the target language.

• The three effects ETH, STORE and ENV, used by contract developers to interact
with the EVM. This is the component that is exposed to developers. We
also offer a simple simulation environment to run these on a local machine for
simpler testing.

This section will explain how these components are implemented and how they
interact with each other and the code generator.

4.4.1 Primitive operations
Since recently, Idris supports the definition of custom primitive operations by speci-
fying their names and type signatures as external definitions [39]. This is used when
Idris is compiled to environments which support operations other than the usual
arithmetic and boolean operators. We use this to define operations which map di-
rectly to operations that are specific for the EVM, such as retrieving an account’s

29

4. Implementation

1 -- Returns the amount of ether included in the current message
2 % extern prim__value : Nat
3

4 -- Returns the sender of the current message .
5 % extern prim__sender : Address
6

7 -- Returns the balance of the account with the supplied address .
8 % extern prim__balance : Address -> Nat
9

10 -- Sends the supplied amount of ether to the supplied address .
11 % extern prim__send : Address -> Nat -> ()
12

13 -- Reads the value of the specified field.
14 % extern prim__read : (f : Field) -> (InterpField f)

Figure 4.4: A selection of the primitive operations we have defined.

balance, sending a message to another account or retrieving the sender of the current
message or transaction. Some examples of the primitive operations we have defined
are shown in fig. 4.4.

All EVM-specific operations are implemented in this way, but contract devel-
opers will not use these primitives in contracts. Instead, effects have to be used in
order to enforce the type checking we explained in chapter 3 and maintain purity
of the language. As explained in section 4.3, these operations are simply mapped
directly to their Serpent counterparts in our code generator; a code generator tar-
geting a different language would, naturally, have to map them to the corresponding
constructs in that language.

4.4.2 The Ethereum effects
As has been discussed rather extensively by now, our library comes with three effects:
ETH, STORE and ENV. Together, these make up the interface that developers use to
access Ethereum-specific functionality. We will take a closer look at ETH; the other
two are implemented completely analogously. Its definition is displayed in fig. 4.5.
As with all Idris effects, it is defined purely syntactically. Lines 1-6 define the Ether
data type which will be used to parametrize the effect as its resource. This is itself
a parametrized type, its only constructor MkEth taking four natural numbers to
construct a value of the type Ether, where the constructor arguments are also the
type parameters. It is not necessary to define a resource type for all effects, e.g.
STORE has no parameters to keep track of.

Lines 8-17 define a data type whose constructors represent the effect’s funda-
mental operations. Their types describe if and how they modify the parameter type.
The types of the operations are specified using the overloaded convenience functions
sig. It takes the type of the fundamental operations, the return type and, option-
ally, the resource type and how it changes. On line 20, the ETH type synonym passes
both of the aforementioned types to the effect constructor MkEff, to construct an
effect which can be used in type signatures by developers. Finally, line 22 shows
how an externally usable operation is defined in terms of one of the fundamental
operations.

The semantics of the effect is not mentioned in its definition, since this is de-
pendent on the handler used to interpret it. Each of our effects has a handler which
interprets its fundamental operations as primitive operations of the EVM. Because

30

4. Implementation

1 data Ether : Nat -> Nat -> Nat -> Nat -> Type where
2 MkEth : (value : Nat)
3 -> (balance : Nat)
4 -> (trans : Nat)
5 -> (kept : Nat)
6 -> Ether value balance trans saved
7

8 data EtherRules : Eff ect where
9 Value : sig EtherRules Nat

(Ether v b t k)
10

11 ContractBalance : sig EtherRules Nat
(Ether v b t k)

12

13 Balance : Address -> sig EtherRules Nat
(Ether v b t k)

14

15 Keep : (a : Nat) -> sig EtherRules ()
(Ether v b t k)
(Ether v b t (k+a))

16

17 Send : (a : Nat) -> (r : Address) -> sig EtherRules ()
(Ether v b t k)
(Ether v b (t+a) k)

18

19 ETH : Nat -> Nat -> Nat -> Nat -> EFFECT
20 ETH v b t k = Mk Eff (Ether v b t k) EtherRules
21

22 value : Eff Nat [ETH v b t k]
23 value = call Value

Figure 4.5: The definition of our ETH effect, specifying its parameters and fundamental
operations.

1 Handler EtherRules m where
2 handle state@ (MkEth v _ _ _) Value k = k v state
3 handle state@ (MkEth _ b _ _) ContractBalance k = k b state
4 handle state (Balance a) k =

k (prim__balance a) state
5 handle (MkEth v b t s) (Send a r) k =

k (prim__send r a) (MkEth v b (t+a) s)
6 handle (MkEth v b t s) (Keep a) k = k () (MkEth v b t

(s+a))

Figure 4.6: The generic handler of our ETH effect, implementing its fundamental opera-
tions in terms of primitive operations of the EVM.

the operations are primitive, there is no need for any constraints on the computa-
tional context, which is defined to be completely generic. However, we will see why
Maybe is our context of choice in section 4.5.1.

The handler interpreting ETH on the EVM is shown in fig. 4.6. Each handler is an
implementation of the Handler interface, parametrized by the effect’s fundamental
operations (EtherRules) and the computational context (m). For our purposes,
Idris interfaces and their implementations can be thought of as Haskell type classes
and their instances. The Handler interface has one function, handle2. It takes
three arguments and returns a value in the context the effect is interpreted in. The
first argument represents the previous value of the effect’s resource. The second
is the fundamental operation that should currently be interpreted. The third is a

2For readers familiar with monads, handle can be thought of as corresponding to the bind
function.

31

4. Implementation

continuation function3, which takes the return value of the current operation and
an updated resource, and returns the interpretation of the next operation [29].

As seen on lines 2 and 3, interpreting the operations that retrieve values that are
already part of the effect’s resource amounts to pattern matching on the resource.
The requested operation is passed to the continuation, along with an unmodified
state. Because these parameters to the effect are constant during each execution,
there is no need to retrieve them using primitive operations every time; how they are
determined at the start of each execution will be discussed in section 4.5.1. Lines
4 and 5 show how operations are interpreted using primitive operations, which are
used as ordinary functions. Finally, line 6 shows how our Keep operation has no
other purpose than type checking. Its interpretation does absolutely nothing except
updating the resource.

1 Ethereum Eff (retVal : Ret Type)
2 { SENDER = s
3 ; ORIGIN = o
4 ; VALUE = v
5 ; BALANCE = b
6 ; TRANS = t
7 ; KEEP = k
8 ; ieffs => oeffs -- or just ’ieffs ’
9 }

10

11 Eff Ret Type
([ETH v b t’ k’, ENV s o, STORE] ++ ieffs)
(\ retVal => [ETH v b (t’+t) (k’+k), ENV s o, STORE] ++ oeffs)

Figure 4.7: The EthereumEff syntax extension. The expression on lines 1-9 will be
translated to the one on line 11 at compile time.

Alternative syntax for effect types

While discussing some of our example programs, we noted that the syntax for our
effect types is redundant, since several of the parameters that are useful in the
type signature are constant during each execution. As promised, fig. 4.7 presents
an alternative syntax for specifying the parameters of our Ethereum-related effects.
We have implemented this as a set of syntax extensions, a native feature of Idris
which allows developers to specify custom syntax for certain expressions [28]. Our
syntax is shown at lines 1-9 with the corresponding standard Idris syntax that this
translates to on line 11. This section explains how these syntax extensions are used.

On line 1, EthereumEff signifies that the following is an operation with access to
the Ethereum effects ETH, ENV and STORE. It will return a value of RetType, specified
by the developer. The ETH and ENV effects will be parametrized as specified on lines
2-8. All parameters except TRANS and KEEP have to be specified by either names
or values. If a parameter is given a previously unbound name, it is treated as an
implicit function argument. If it is given a previously bound name or a value, the
parameter has to equal this. Multiple parameters may share the same name, in
which case they have to be equal. The parameters TRANS and KEEP may be given
names or values in this way as well, but can also be specified by more complex
expressions. These expressions may depend on any value in scope, such as names

3The continuation function can be thought of as the second argument of the bind operator.

32

4. Implementation

bound to other parameters and the return value retVal. Of course, any expressions,
values and bound names used to specify parameters have to be of the correct types:
Address for the first two and Nat for the last four.

Either the ENV parameters or the ETH parameters may be omitted if the informa-
tion they provide is not necessary in the type signature. However, their operations
will still be available in the implementation as long as the return type is specified
using EthereumEff. ieffs and oeffs are entirely optional and specify two lists
of any other effects that the operation supports. The first list, ieffs is the input
effects, while oeffs is the output effects. Just as with TRANS and KEEP, dependent
effects may be specified simply by including retVal in the expression for the output
effects. If the other available effects will remain constant before and after the current
operation, the arrow and the list of output effects may be omitted.

As an example, fig. 4.8 shows how this syntax can be used to specify the type
signature as the withdraw operation from fig. 3.5. Here, the parameters to ENV have
been omitted since they are not used in the type signature, but its operations are still
available in the implementation. No additional effects are required, so ieffs and
oeffs have also been omitted. The contract’s balance, b, is used in the implicit proof
together with the requested amount. The return value has been named success,
and is used in the expression determining the total amount of ether that should be
sent at the end of execution.

1 withdraw : (amount : Nat) -> {auto p: LTE amount b}
-> Ethereum Eff (success : Bool)

{ VALUE = 0
; BALANCE = b
; TRANS = if success then a else 0
; KEEP = 0
}

Figure 4.8: The type of the withdrawal operation from fig. 3.5, specified using the
EthereumEff syntax extension.

4.5 Usage
When discussing our implementation so far, we have omitted two important details:
how type signatures are enforced, and how the mapping between functions in Idris
and functions in other contract languages is specified. This section first explains how
type signatures are enforced using wrapper functions. The current implementation
requires developers to implement these manually, but they should be possible to
generate automatically as will be discussed in section 5.2.7. How Idris’ foreign
function interface is used to specify the mapping between different languages, and
how this is used by developers, will also be explained.

4.5.1 Wrapper functions
We have not yet presented any way to ensure that the properties encoded in the
type signatures of contract operations are fact satisfied at runtime. Our language
will have to interface with other languages and we cannot assume that users and
contracts only send type correct data. For example, what would happen if someone

33

4. Implementation

1 runWithdraw : Nat -> Maybe ()
2 runWithdraw amount = case lte amount prim__selfbalance of
3 Yes p => if prim__value == 0
4 then if prim__sender == Owner
5 then runInit

[MkEth 0 prim__selfbalance 0 0
,MkEnv prim__self Owner prim__origin]
(withdraw amount {p})

6 else Nothing
7 else Nothing
8 No _ => Nothing

Figure 4.9: A typical wrapper function of a constrained operation. It verifies that
the effect parameters have the specified values and that any necessary proofs can be
constructed.

other than Owner tried to execute withdraw in fig. 3.4, or if a required proof cannot
be automatically constructed?

When we discussed these properties in section 3.1.2, we established the desired
behavior: the operation should not be executed, and any ether should be returned
to the sender. However, functions containing these kinds of constraints cannot be
included in a contract’s external interface, because the types involved have no reason-
able counterparts in other languages. This is solved by defining a wrapper function
for each of these functions. Figure 4.9 presents an example wrapper function, which
exposes the withdraw operation from fig. 3.5.

As can be seen, the wrapper takes the same argument, amount, and tries to
construct a proof that this is less than the contract’s balance using the function
lte : (a : Nat) -> (b : Nat) -> Dec (LTE a b) on line 2. The Dec type is
used to represent decidable properties, with the constructor Yes taking a proof of
the property and the constructor No taking a proof of the negation. If an affirmative
proof is constructed, it is then verified that the included ether is 0 (line 3) and that
the sender is equal to Owner (line 4). If any of these steps fail, Nothing is returned,
which will result in the execution halting and any ether being returned to the sender.
How this is achieved will be explained shortly.

Otherwise, the desired operation is run using the standard function runInit on
line 5, which executes an operation in the current context, i.e. Maybe. This function
takes two arguments. The first is a list of the resources to be passed to the effects.
The second argument is the operation to execute, withdraw. Note that it is passed
not only its explicit argument amount, but also the proof that this amount is less
than the contract’s balance. Since the operation is interpreted in the Maybe context,
the return value will be wrapped in the Just constructor.

Because the Maybe type is not used by any other contract languages, it has
to be removed in order for contracts written in Idris to be able to interface with
other contracts. Recall from section 4.3.2 that algebraic data types are translated
to Serpent lists, where the head and tail correspond to the constructor and its
arguments. Our code generator adds a conditional clause to all externally accessible
functions which inspects the head. If it is 0 (i.e. Nothing), any included ether is
returned to the sender and the function throws an exception. If it is 1 (i.e. Just),
the tail of the list is returned. In this particular case, this would simply be (),
which is unique in that it is treated by the code generator as “no return value”, even
though it is a value in Idris.

34

4. Implementation

4.5.2 Exporting functions
When compiling an Idris program to an executable (as opposed to a library), it will
have the main function as its single entry point [28]. From a developer’s perspective
however, a contract should be able to expose one or more functions that can be
called externally. This could have been an issue, because the Idris compiler will
remove functions that are unreachable from main and try to inline any functions
it uses, rendering them unreachable from the outside. Luckily, Idris has a feature
called exports, essentially used to specify the functions that should be exported by
the generated code [37]. All functions that should be accessible from outside of the
contract, i.e. wrapper functions, thus have to be exported using this feature.

In order to ensure that exported functions can be handled by the code generator,
the developer has to supply a foreign function interface (FFI). It specifies the types
that are supported by the target language and how functions and types are named
in it. We supply an FFI to Serpent because we use it as our target language, but the
same interface should also be usable for all other languages currently implemented
on the EVM because of their similarities. Because of this, we have named our
interface FFI_Eth, in order to hide implementation details of our code generator
from developers. From their view, they are exporting functions for use in Ethereum,
not in Serpent.

Thanks to a number of choices in the design of the Idris compiler, defining an
FFI is remarkably simple [37]. The entire definition of our interface is shown in
fig. 4.10. It consists of a description of the types that can be exposed in contract
functions, shown on lines 2-12. This predicate is passed to the MkFFI constructor
on line 15, along with two types that specify how function names and types are
identified in the target language. The EVM languages use simple text strings for
both. This defines our FFI, which is used whenever functions are to be exported
for external use. It could also be used to allow contract developers to interface with
functions of other contracts, but this is not yet implemented.

1 -- Supported foreign types
2 data Eth Types : Type -> Type where
3 -- Primitive types
4 EthInt_io : Eth Types Int
5 Eth Nat _io : Eth Types Nat
6 EthBool_io : Eth Types Bool
7 EthChar_io : Eth Types Char
8 EthString_io : Eth Types String
9

10 -- Other types
11 EthUnit_io : Eth Types ()
12 EthMaybe_io : Eth Types (Maybe a)
13

14 FFI_Eth : FFI
15 FFI_Eth = MkFFI Eth Types String String

Figure 4.10: Our Ethereum FFI, defining supported Ethereum types and specifying how
functions and parameters are named. The types () and Maybe that lack counterparts in
other contract languages are exported because they represent a lack of return value and
possibility of exception, as explained in section 4.5.1.

35

4. Implementation

1 runDeposit : Maybe ()
2

3 runWithdraw : Nat -> Maybe ()
4

5 my_exports : FFI_Export FFI_Eth "" []
6 my_exports = Fun runDeposit " deposit " $
7 Fun runWithdraw " withdraw " $
8 End

Figure 4.11: A typical export definition. It exports the wrapper runWithdraw from
fig. 4.9 with the name withdraw, together with a similar wrapper for the deposit function.

As an example of how functions are exported, fig. 4.11 shows an export definition
for the previous examples. The wrapper functions runDeposit and runWithdraw
are exported and assigned the external names deposit and withdraw, respectively.
All top-level values of type FFI_Export are handled internally by the Idris compiler,
which treats any functions they reference as entry points to the program and avoids
inlining them [37]. Our code generator identifies these and generates the appropriate
function definitions. To specify the target environment, our FFI is used as the first
parameter to the type FFI_Export. The other two parameters are not important
here and can simply be the empty string and the empty list as in this example4.

4The interested reader can learn the purposes of these parameters in [37].

36

5
Discussion

There are several things to be said about both our implementation and our un-
derlying theories. We have identified both advantages and disadvantages of our
theoretical approaches, but ultimately find that they fulfill their purpose of allowing
safer development of smart contracts. We think that our implementation serves its
purpose as a proof-of-concept, even though we didn’t have the time to implement
everything we suggested. However, some implementation choices were not optimal.
There are many opportunities for future work in the field, ranging from fundamental
research questions to extending our implementation with useful functionality.

This chapter is divided into two parts, one for the theoretical aspects of our
work and one for the implementation we provide. There is no section dedicated
to presenting possible future work, instead we mention these opportunities while
discussing the issues they relate to.

5.1 Theory
In this section, we summarize what we believe is the main contribution of our work,
namely the use of an extensive type system to model smart contracts. We explain
why a system for managing side effects similar to the one found in Idris is cru-
cial to realizing this approach. Possible ways to extend this method are briefly
discussed. We also explain why the functional paradigm and its theoretical under-
pinnings might not be the most suitable framework for modeling smart contracts,
and suggest possible alternatives to explore and evaluate.

5.1.1 Types as models
Building on examples of a simple bank-like contract, we have shown how Idris’
type system coupled with our library for the Ethereum platform allows for safer
development of smart contracts. It offers developers a rich framework in which to
describe the intended behavior of their contracts, which catches a class of common
implementation errors at compile time. In particular, we have shown how to enforce
ether flow and put detailed constraints on both function input and environment
variables. To see our approach applied to a larger example, section 3.4 shows a
complete Idris implementation of the rock-paper-scissors game from section 2.2.1.

We believe that this way of specifying certain aspects of smart contracts’ behav-
ior in the type signatures of their functions is the main contribution of this thesis.
By encoding critical properties in types, the compiler can give static guarantees

37

5. Discussion

that these are satisfied in all execution paths, without need for testing or formal
verification. We have shown that some of the common errors previously identified
are in fact possible to capture in this way, rendering them compilation errors instead
of unexpected behavior to be discovered during usage. For programs as critical as
smart contracts, this is a very important advantage.

The importance of Idris’ effect system to realize this approach cannot be under-
stated. In order for type signatures to be able to encode the relatively fine-grained
behavior we want to constrain, a dependent type system is not sufficient by itself.
Such a system has to be coupled with a way to give types to side effects that allows
their behavior to be constrained by data, in particular the function arguments, the
state of the effect itself and even the function’s return value. Conversely, for our
solutions to work, effects need to be combined with a dependent type system to
capture all properties of interest; the combination of the two is what makes Idris
crucial to our work. In order to see why Idris’ way of describing side effects is crucial,
we’ll try to reimplement the example from fig. 3.4, but this time in Haskell. Since
Haskell does not have anything resembling the effect syntax of Idris, we will assume
a monadic return type.

1 owner : Address
2 owner = 0 x00cf7667b8dd4ece1728ef7809bc844a1356aadf
3

4 withdraw : Int -> EtherT Env ()
5 withdraw amount = do
6 s <- sender
7 b <- balance
8 if s == owner && b >= amount
9 then send amount owner

10 else do
11 v <- value
12 send v s

Figure 5.1: Haskell implementation of fig. 3.4.
The closest we get is shown in fig. 5.1. Since Haskell lacks dependent types,

there is no way to use the types to express that only owner is allowed to call the
contract and that the requested amount has to be smaller than the balance. Instead,
these properties have to be enforced using the conditional on line 8. Furthermore,
since the types don’t encode the amount of ether that should be saved and kept, the
sending on line 9 could be omitted without any error being raised. Finally, because
the properties are enforced using a conditional instead of the type signature, an
else branch has to be implemented that returns any ether to the sender, in order to
maintain the same functionality.

Note that there exist proposals for solutions that would make these proper-
ties expressible in Haskell types as well [40]–[42]. However, these either require
currently unimplemented extensions to Haskell’s core library and compiler [41] or
careful crafting of types and libraries which results in code that is more demand-
ing of the developer and incur extra runtime overhead [42]. Finally, Idris’ built in
support for algebraic dependent effects makes for a much more concise and readable
syntax than could be achieved even with these workarounds [28].

Furthermore, using type annotations to make the use of commitments—and
potentially other common constructions—easier does not capture errors per se, but
makes implementation of certain common patterns both clearer and less error-prone.

38

5. Discussion

5.1.2 Extending the type system
An interesting future direction would be to analyze real-life smart contracts written
in our language, in order to identify additional common errors or patterns and in-
vestigate the possibility of eliminating or supporting these using an extensive type
system. For example, using type annotations similarly to how we use them to rep-
resent commitments might be useful to verify the integrity of authenticated values,
perhaps also for some other basic cryptographic operations. Since commitments is
so far the only commonly used pattern we have recognized where this is relevant,
we focused exclusively on how to represent those at the language level.

5.1.3 Unified language for contract and client
As was noted in section 4.5.1, there is no guarantee that the input a contract re-
ceives is type correct. This seems like a waste of information, when such extensive
details are encoded in the type signatures and thus potentially could be enforced
automatically.

For the cases when a contract is used as a component by a larger system, this
can be alleviated by the use of a unified programming language which compiles to
one set of contracts and one set of applications. The type checker would then be
able to verify the interactions between them. Of course, all other accounts would
still be able to message the contract with incorrect input, so the data will still have
to be verified contract-side at runtime. Even so, this should make development of
the system as a whole both safer and smoother.

5.1.4 Handling custom tokens
Ether is not the only important token on Ethereum. In fact, the recommendation
is that ether should be kept for its purpose of paying for computations through gas,
while contracts can define tokens of their own that are specialized for other niches
[18]. At the moment, our type system can only handle ether. It is not obvious how
one would extend this to work for other tokens, since they are not handled directly
by EVM-instructions and there is not yet any agreed-upon standard interface for
tokens.

If tokens were standardized, it should be possible to extend the language to
use this standard interface to handle other tokens. There also exists a proposal by
Ethereum’s main researcher to add an abstraction to the protocol that would allow
any token conforming to some standard to be handled similarly to ether [43]. If this
proposal is implemented, it should be easy for our type system to handle any such
token.

5.1.5 Suitability of the functional paradigm
When writing smart contracts in our Idris implementation, most of the critical
functionality has to exist in effectful rather than pure functions. This is because
pure functions have no notion of communication, but Ethereum’s execution model
is based entirely on messages that are sent between accounts, which it has in common

39

5. Discussion

with all smart contract platforms we are aware of. Furthermore, pure functions don’t
directly encode program state, which is another important aspect of smart contract
platforms.

As mentioned in section 1.2, one of the motivations for offering a functional smart
contract language is that pure functions are very well suited for formal verification
and testing. However, that most of the critical functionality have to be implemented
in effectful functions largely renders this motivation irrelevant. Granted, there are
static analysis methods for languages that directly support side effects as well [44],
[45], so this observation does not necessarily mean that our contracts are impossi-
ble to verify. However, the advantages our language offers with respect to formal
verification are less clear than we would have hoped for.

Formal verification aside, that the core language is unable to directly encode
fundamental properties of the domain also suggests that the functional paradigm
might not be the most suitable to use in practical development. We do think that
it offers advantages over the imperative paradigm that is currently prevailing. For
example, safer implementations can be achieved by explicitly isolating side effects
in an enforceable way [46], [47]. To use higher-order functions to process data
structures is also generally less error prone than manual looping, thanks to their
lack of explicit traversal. That said, we think that further improvements can be
made.

Investigating other paradigms

We believe that the problems we have discovered with the functional paradigm all
hint in the direction of a language based on a process calculus. These models are
designed to model concurrent and distributed systems, and view message passing as
the fundamental operation of computation [48]. This directly mirrors the domain.
Many of the process calculi are also suitable for formal verification and describe
computations in a compositional manner [48], [49], aligning with what we observed
would be beneficial in section 1.2.

Granted, most of the process calculi only describe message passing and have no
direct support for a mutable state, which is also crucial in this domain. However,
this can in fact be represented in a very clean way, without any need to step outside
the core model. In the process calculi, a program’s state is defined by the messages
that the program has previously received. Again, this mirrors how states are actually
updated on smart contract platforms.

Regardless of which model we believe is suitable, evaluating different models of
computation—e.g. the process calculi—with respect to the domain makes for very
interesting future work. So does crafting a high-level language based on a model that
is deemed suitable. Since we do find our method of encoding program properties
using dependent types useful, it would definitely be interesting and potentially ben-
eficial to include dependent types in this new language. Furthermore, the process
calculi have enjoyed investigations into behavioral type systems, allowing the types
of processes to encode quite detailed properties of their behaviors [50]. These type
systems should also be evaluated with respect to the domain and may be found to
complement or subsume a dependent type system.

40

5. Discussion

5.2 Implementation
This section discusses the advantages and shortcomings of our current implemen-
tation, as well as potential future directions. In particular, we will explain how
our choice to implement side effects as primitive operations contributes significantly
to both the modularity of our implementation and efficiency of the output code.
We also point out consequences of—and alternatives to—our choices of source and
target languages for the code generator.

5.2.1 The efficiency and modularity of primitive operations
An alternative to defining external primitive operations for side effects would have
been to use the FFI to define a computational context which offered the same
operations [37]. Essentially, this would amount to an implementation similar to
the fragment shown in fig. 5.2. It implements an alternative I/O context, SIO, that
communicates through our Ethereum FFI—which would now become more coupled
to Serpent, hence the name change. The balance operation is defined as a call
through this interface to a Serpent function with the name getBalance, with the
type Address -> SIO Int explicitly acknowledging that it would require interaction
with Serpent. Given a library of similar operations in the SIO context, these could
be used by the handlers to interpret our effects. It could be argued that this way
of implementing side effects is cleaner than defining primitive operations, since it
explicitly marks the operations as impure. Our initial implementation used this
approach, but we found three major drawbacks that made us revise this choice.

First, many of the operations we needed to implement were not accessed by a
simple existing function in Serpent. In the case in question, there is no Serpent
function named getBalance. The balance of a particular account is represented as
a property of its address, like so: address.balance. It is only possible to specify
function names and arguments when calling external functions through the FFI.
Therefore, this approach would require some mapping from the imaginary functions
to the desired language features, either by the code generator—as is done in our
current implementation, but with some specific function names instead of primitive
operations—or by a Serpent runtime library. What we are accessing are not merely
functions in the target language, but fundamental operations of the domain.

Secondly, implementing side effects by defining handlers in terms of SIO opera-
tions leads to an extra level of calls compared to defining them in terms of primitive
operations. This extra level is visible in the generated code, leading to effectful
parts of contracts to suffer an unnecessary increase in code size. Even if optimal
performance was out of our scope, we still consider reduced code size a good thing.

1 SIO : Type -> Type
2 SIO = IO ’ FFI_Eth
3

4 balance : Address -> SIO Int
5 balance a = foreign FFI_Eth " getBalance " (Address -> SIO Int) a

Figure 5.2: Fragment of a discarded implementation of side effects, using our Serpent
FFI to construct an I/O context specific to Serpent.

41

5. Discussion

Finally, it adds unnecessary tighter coupling to Serpent as a target language. If
an implementation were to target another language, such as LLL, a new context and
all of its associated operations would have to be defined. Additionally, new handlers
would have to be defined for all the effects, even though the operations they should
be interpreted as are completely analogous.

Given these arguments, we consider our revised choice of implementing side ef-
fects as primitive operations an important advantage of our implementation. Not
only are they in fact primitive in this domain and more efficient, but this choice ren-
ders all parts of our library agnostic to the language targeted by the code generator,
thus easily reusable for future investigations into the field.

5.2.2 Incomplete code generation
As noted in section 4.3.1, there is a major problem with our current implementation,
which translates functions to Serpent macros. Since these are inlined by the Serpent
preprocessor, recursive functions result in the code size exploding until the Serpent
compiler crashes. This would be a big problem for any purely functional language,
which need recursion to be able to execute the same instructions repeatedly, but it
is actually even worse for us.

When the Idris compiler takes the program through the intermediate represen-
tations, functions that are not fully applied are deferred to an eval/apply-recursion
at the end of the execution [37]. All effectful functions consisting of more than
one of the effect’s fundamental operations uses a partially applied function, causing
recursion in the resulting code. This renders programs which include such effectful
functions uncompilable. Our code generator currently omits the eval/apply section
of the generated code, allowing us to run some very simple programs in which no
operations are sequenced after each other.

We did not have the time to solve this, but do see some possible solutions:

• Targeting EVM assembly instead of Serpent. This would allow for jumps,
enabling the implementation of internal function calls with maintained context,
which eliminates the need for translating functions to macros.

• Rewrite the recursive eval/apply functions to a while loop.

• Implementing a way to encode complex types as primitive types, to be able to
send them as arguments.

• Choosing a source language with higher-order capabilities. This should also
result in smaller code size, but would require an alternative implementation
of partial application and higher-order functions.

An attempt was also made to patch the Serpent compiler to only expand each
macro to a maximum level of rewrites. While this would allow us to run a larger
subset of contracts, it is just a hack that does not solve the underlying problem and
results in large, repeating output code. A code generator realistic for production
use would have to be rewritten from scratch, with revised choices of input language
or output language.

42

5. Discussion

5.2.3 Inefficient output programs
In hindsight, our choice to use IRANF as the source language for our code generator
was probably not optimal. Due to its extremely simple nature, programs become
very large and there’s a lot of redundant operations in the resulting code. The
resulting code size is very important, in part because every instruction has a price
in gas, but also because there’s an upper limit on the total amount of gas that
can be spent in the entire network during a given time interval1. Creating a new
contract involves storing its byte code and paying gas for that storage [19]. Due
to the gas limit, only extremely simple Idris contracts can be deployed to the live
Ethereum network. More complex contracts written in Idris can currently only be
run in a testing network with a higher gas limit. Additionally, the increase in code
size makes the resulting code harder to understand and debug.

Choosing one of the higher-level intermediate languages that were initially disre-
garded in section 4.2 could potentially lead to less redundancy in the generated code.
However, because of their higher-order nature this would also require implementa-
tion of an evaluation model instead of the currently used eval/apply implementation
given by IRANF. This was deemed out of scope. The only remaining option would
then have been to use IRdefunc as source language. This is still a very simple language
whose programs are larger and slightly more verbose than desired, but it doesn’t
have the requirement that all function arguments should be either variables or con-
stants. In IRANF, all expressions passed to a function are first assigned to temporary
local variables, which are then used as arguments. This results in many unnecessary
variable allocations and assignments. Using IRdefunc , where this is not the case,
would therefore lead to both a lower runtime overhead and more minimal code.

Even though our choice was not optimal, we also want to point out that the
size of the resulting code is to a large extent due to the unoptimized output of the
Idris compiler. We have been in contact with the creator and main contributor of
Idris, who said that there are several obvious optimization steps that will be added
to the compiler. Additionally, mature lower-level compilers like the GNU Compiler
Collection takes care of these optimizations for the existing Idris backend, but the
optimizers for Serpent and LLL are not (yet) as efficient. Should optimizations be
implemented in any one of these three compilers that we are utilizing, our code size
should be reduced as well.

5.2.4 Implementing language-level commitments

1 data Commit a = MkCommit String
2 | MkValue a
3

4 open : Commit a -> Maybe a
5 open (MkValue a) = Just a
6 open _ = Nothing

Figure 5.3: Our preliminary definitions
of the Commit type and the open function.

Due to time constraints, our work on
language-level commitments is purely
theoretical at this point. Our library in-
cludes definitions of the Commit type and
the open function, shown in fig. 5.3, sim-
ply so that example contracts that use
committed values can be type-checked.

1The limit is dynamically and continuously set by the participants in the network, through
voting. Additionally, the lengths of the time intervals in which it applies vary probabilistically.
For readers familiar with blockchain technology, this is a per-block limit.

43

5. Discussion

However, there is no support for this in the code generator: functionality for re-
vealing commitments is missing. We see no technical limitations that would make
our ideas hard to implement. Commitments will be stored in the data store, until
they are revealed and replaced by the committed value.

5.2.5 Preventing call stack errors
Due to time constraints, we have not mitigated the issues that can arise from a full
call stack that were explained in section 2.2.3. Our solution to this would be to
modify the code generator to add a dummy function to every contract, and have all
other functions include an initial call to this. This should be trivial.

5.2.6 Generating the data store declaration
The fields in the data store are specified using values of the types Field.Field
and MapField.Field, specifying simple fields and mappings, respectively. Each
constructor takes a natural number as an argument, which is used to generate the
address the data is stored at. For a map field, the address is constructed from a
combination of this number and the key for each value.

As has been shown in example contracts using the STORE effect (figs. 3.7 and 3.8),
our current implementation requires the developer to supply this argument manually
for each field. Besides verbosity, this has the risk of accidentally mapping two
different fields to the same memory location if a careless developer maps them to the
same number. We deem this acceptable due to our implementation merely serving
as a proof-of-concept. It should be fairly trivial to have a preprocessor generate
these, in order to only require field declarations to specify names and types.

5.2.7 Generating wrapper functions
Due to time constraints when implementing our proof-of-concept compiler, the wrap-
per functions discussed in section 4.5.1 need to be implemented manually by the
developer. This is not desirable, since it essentially requires the developer to specify
constraints twice: once in the type signatures and once in the wrappers. Addition-
ally, it allows for errors in the implementations of wrappers, reducing the safety of
our language.

The goal is for a wrapper to be generated automatically for each exported func-
tion. Implementing a preprocessor that can generate this based on an export list
seems fairly straight forward. The steps involved are as follows:

1. Identify any bound parameters in the type signature. Verify these using con-
ditionals.

2. Identify any proofs in the type signature. Try to generate these and pass them
as parameters.

3. If the exported function is effectful, run it using runInit, using primitive
operations to specify the parameters.

44

5. Discussion

5.2.8 Higher-order functions
Higher-order functions is arguably one of the most important features of high-level
functional languages. Defining a standard interface to allow contracts to send func-
tions as parameters to calls would therefore be a huge contribution to the field and
our language. However, to find, test and evaluate different possible representations
and determining a final interface is a huge undertaking in itself, which is why we
haven’t explored this further.

45

5. Discussion

46

6
Conclusion

We have shown how an advanced type system can be used to allow for safer de-
velopment of smart contracts. In particular, we use dependent effects extensively
and show how they can encode very detailed properties of smart contract behavior,
which reduces both the risk of errors and the need for testing. Additionally, we
have implemented a proof-of-concept compiler and library to demonstrate that our
theories are practically realizable. This software is not ready for production use due
to the large size of the resulting code and incomplete implementation, but testing
has shown that our theories are correct in principle. What is missing is a matter of
implementation. In these matters we consider our thesis proven, even though there
is still much work to be done.

However, it is not clear whether a functional smart contract language is as
beneficial as we initially envisioned, as noted in section 5.1.5. Admittedly, the
problems we have identified are dependent on Ethereum’s execution model, namely
that the system is based on accounts that send each other messages. Ethereum does
have this in common with all smart contract platforms that we are aware of, but
the field is still maturing and this may change. If it does, the functional paradigm
should be re-evaluated; for now, we conclude that further research is needed to find
suitable paradigms for smart contract languages. We suggest that the process calculi
are evaluated. They seem to encode the domain well, while most of them also lend
themselves to formal verification and compositional program implementations.

47

6. Conclusion

48

Bibliography

[1] T. Hvitved, “A survey of formal languages for contracts”, in Formal
Languages and Analysis of Contract-Oriented Software, 2010, pp. 29–32.
Available at: http://www.diku.dk/hjemmesider/ansatte/hvitved/
publications/hvitved10flacosb.pdf.

[2] S. Peyton-Jones, J.-M. Eber, and J. Seward, “Composing contracts: An
adventure in financial engineering”, English, in FME 2001: Formal Methods
for Increasing Software Productivity, ser. Lecture Notes in Computer Science,
J.-N. Oliveira and P. Zave, Eds., vol. 2021, Springer Berlin Heidelberg, 2001,
pp. 435–435, isbn: 978-3-540-41791-0. doi: 10.1007/3-540-45251-6_24.
Available at: http://dx.doi.org/10.1007/3-540-45251-6_24.

[3] N. Szabo, A Formal Language for Analyzing Contracts, 2002. Available at:
http://szabo.best.vwh.net/contractlanguage.html (visited on
2015-09-18).

[4] P. Bahr, J. Berthold, and M. Elsman, “Certified symbolic management of
financial multi-party contracts”, in Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP 2015,
Vancouver, BC, Canada: ACM, 2015, pp. 315–327, isbn: 978-1-4503-3669-7.
doi: 10.1145/2784731.2784747. Available at:
http://doi.acm.org/10.1145/2784731.2784747.

[5] N. Szabo, Smart contracts, 1994. Available at:
http://szabo.best.vwh.net/smart.contracts.html (visited on
2016-02-08).

[6] ——, “Formalizing and securing relationships on public networks”, First
Monday, vol. 2, no. 9, 1997, issn: 13960466. Available at:
http://firstmonday.org/ojs/index.php/fm/article/view/548 (visited
on 2016-02-08).

[7] M. Swan, Blockchain: Blueprint for a New Economy. O’Reilly Media, Jan.
2015, ch. 2 – 4, isbn: 978-1-4919-2047-3.

[8] T. Swanson, Great chain of numbers: A guide to smart contracts, smart
property and trustless asset management, 2014.

[9] F. Vogelsteller. (2015). Crowdfunding example contract in Solidity, Available
at: https://github.com/chriseth/cpp-ethereum/wiki/Crowdfunding-
example-contract-in-Solidity (visited on 2015-08-21).

49

http://www.diku.dk/hjemmesider/ansatte/hvitved/publications/hvitved10flacosb.pdf
http://www.diku.dk/hjemmesider/ansatte/hvitved/publications/hvitved10flacosb.pdf
http://dx.doi.org/10.1007/3-540-45251-6_24
http://dx.doi.org/10.1007/3-540-45251-6_24
http://szabo.best.vwh.net/contractlanguage.html
http://dx.doi.org/10.1145/2784731.2784747
http://doi.acm.org/10.1145/2784731.2784747
http://szabo.best.vwh.net/smart.contracts.html
http://firstmonday.org/ojs/index.php/fm/article/view/548
https://github.com/chriseth/cpp-ethereum/wiki/Crowdfunding-example-contract-in-Solidity
https://github.com/chriseth/cpp-ethereum/wiki/Crowdfunding-example-contract-in-Solidity

Bibliography

[10] N. Dodson. (2015). Boardroom: A next generation decentralized governance
apparatus, Available at:
http://boardroom.to/BoardRoom_WhitePaper.pdf (visited on 2015-08-21).

[11] Forecast Foundation. (2015). Augur prediction market, Available at:
http://www.augur.net/ (visited on 2015-08-21).

[12] V. Pureswaran and P. Brody. (2015). Device democracy: Saving the future of
the Internet of Things, IBM Institute for Business Value, Available at:
http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/
GBE03620USEN.PDF (visited on 2015-12-17).

[13] H. Diedrich, “IBM MTN project”, Presentation, Ethereum Devcon1, 2015,
Available at: https://www.youtube.com/watch?v=_kTajbcAd9E (visited on
2016-01-13).

[14] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step by step
towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab”, 2015. Available at: http://ia.cr/2015/460 (visited on
2015-09-25).

[15] P. Barrientos and P. Martinez Lopez, “Developing DSLs using combinators.
a design pattern.”, in International Multiconference on Computer Science
and Information Technology, Oct. 2009, pp. 635–642. doi:
10.1109/IMCSIT.2009.5352773.

[16] B. O’Sullivan, D. Stewart, and J. Goerzen, Real World Haskell. O’Reilly
Media, 2008, ch. 11. Available at:
http://book.realworldhaskell.org/read/testing-and-quality-
assurance.html (visited on 2016-02-08).

[17] L. Cardelli, “Type systems”, in The Computer Science and Engineering
Handbook, A. B. Tucker, Ed. CRC Press, 2004.

[18] V. Buterin, “Ethereum: A Next-Generation Smart Contract and
Decentralized Application Platform”, White Paper, 2013. Available at:
https://github.com/ethereum/wiki/wiki/White-Paper (visited on
2015-08-03).

[19] G. Wood, Ethereum: A secure decentralised generalised transaction ledger,
2014. Available at: http://gavwood.com/Paper.pdf (visited on 2015-09-24).

[20] ——, “Ethereum for dummies”, Presentation, Ethereum Devcon1, 2015,
Available at: https://www.youtube.com/watch?v=U_LK0t_qaPo (visited on
2016-02-08).

[21] A. Miller and J. LaViola, “Anonymous byzantine consensus from
moderately-hard puzzles: A model for bitcoin”, 2014.

[22] V. Zamfir, “Challenges in public economic consensus”, Presentation,
Ethereum Devcon1, 2015, Available at:
https://www.youtube.com/watch?v=txJ4gXBCiYo (visited on 2016-02-08).

[23] ——, “Reformalizing consensus”, Draft, 2016.

50

http://boardroom.to/BoardRoom_WhitePaper.pdf
http://www.augur.net/
http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/GBE03620USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/GBE03620USEN.PDF
https://www.youtube.com/watch?v=_kTajbcAd9E
http://ia.cr/2015/460
http://dx.doi.org/10.1109/IMCSIT.2009.5352773
http://book.realworldhaskell.org/read/testing-and-quality-assurance.html
http://book.realworldhaskell.org/read/testing-and-quality-assurance.html
https://github.com/ethereum/wiki/wiki/White-Paper
http://gavwood.com/Paper.pdf
https://www.youtube.com/watch?v=U_LK0t_qaPo
https://www.youtube.com/watch?v=txJ4gXBCiYo

Bibliography

[24] W. Diffie and M. Hellman, “New directions in cryptography”, IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976,
issn: 0018-9448. doi: 10.1109/TIT.1976.1055638.

[25] L. Cardelli and P. Wegner, “On understanding types, data abstraction, and
polymorphism”, ACM Comput. Surv., vol. 17, no. 4, pp. 471–523, 1985, issn:
0360-0300. doi: 10.1145/6041.6042.

[26] P. Martin-Löf, “Constructive mathematics and computer programming”, in
Proceedings Of a Discussion Meeting of the Royal Society of London on
Mathematical Logic and Programming Languages, London, United Kingdom:
Prentice-Hall, Inc., 1985, pp. 167–184, isbn: 0-13-561465-1. Available at:
http://dl.acm.org/citation.cfm?id=3721.3731.

[27] W. A. Howard, “The formulae-as-types notion of construction”, 1980.
[28] E. Brady, “Idris, a general-purpose dependently typed programming

language: Design and implementation”, Journal of Functional Programming,
vol. 23, pp. 552–593, 05 Sep. 2013, issn: 1469-7653. doi:
10.1017/S095679681300018X. Available at:
https://eb.host.cs.st-andrews.ac.uk/drafts/impldtp.pdf (visited on
2016-02-13).

[29] The effects tutorial, The Idris community, 2015. Available at:
http://docs.idris-lang.org/en/latest/effects/index.html (visited
on 2015-10-26).

[30] A. Bauer and M. Pretnar, “Programming with algebraic effects and
handlers”, Journal of Logical and Algebraic Methods in Programming, vol.
84, no. 1, pp. 108–123, 2015, issn: 2352-2208. doi:
http://dx.doi.org/10.1016/j.jlamp.2014.02.001. Available at:
http://math.andrej.com/wp-content/uploads/2012/03/eff.pdf.

[31] A. Sabelfeld and A. C. Myers, “Language-based information-flow security”,
IEEE journal on selected areas in communications, vol. 21, no. 1, p. 2003,
2003.

[32] A. Miller, M. Hicks, J. Katz, and E. Shi, “Authenticated data structures,
generically”, in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’14, San Diego,
California, USA: ACM, 2014, pp. 411–423, isbn: 978-1-4503-2544-8. doi:
10.1145/2535838.2535851. Available at:
http://doi.acm.org/10.1145/2535838.2535851.

[33] V. Buterin. (2014). The latest EVM: ‘‘Ethereum is a trust-free closure
system”, Available at: https://blog.ethereum.org/2014/03/20/the-
latest-evm-ethereum-is-a-trust-free-closure-system/ (visited on
2016-02-13).

[34] C. Reitwiessner, Solidity Documentation, 2015. Available at:
http://solidity.readthedocs.org/en/latest/ (visited on 2016-02-08).

51

http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1145/6041.6042
http://dl.acm.org/citation.cfm?id=3721.3731
http://dx.doi.org/10.1017/S095679681300018X
https://eb.host.cs.st-andrews.ac.uk/drafts/impldtp.pdf
http://docs.idris-lang.org/en/latest/effects/index.html
http://dx.doi.org/http://dx.doi.org/10.1016/j.jlamp.2014.02.001
http://math.andrej.com/wp-content/uploads/2012/03/eff.pdf
http://dx.doi.org/10.1145/2535838.2535851
http://doi.acm.org/10.1145/2535838.2535851
https://blog.ethereum.org/2014/03/20/the-latest-evm-ethereum-is-a-trust-free-closure-system/
https://blog.ethereum.org/2014/03/20/the-latest-evm-ethereum-is-a-trust-free-closure-system/
http://solidity.readthedocs.org/en/latest/

Bibliography

[35] G. Wood, LLL PoC 6, 2014. Available at:
https://github.com/chriseth/cpp-ethereum/wiki/LLL-PoC-6 (visited
on 2016-02-13).

[36] Serpent, 2015. Available at:
https://github.com/ethereum/wiki/wiki/Serpent (visited on
2016-02-13).

[37] E. Brady, “Cross-platform compilers for functional languages”, Under
consideration for Trends in Functional Programming, 2015. Available at:
https://eb.host.cs.st-andrews.ac.uk/drafts/compile-idris.pdf
(visited on 2015-12-18).

[38] ——, Idris to PHP back end. Available at:
https://github.com/edwinb/idris-php (visited on 2016-02-08).

[39] Idris 0.9.18 release notes, 2015. Available at:
http://www.idris-lang.org/idris-0-9-18-released/ (visited on
2016-02-14).

[40] V. Buterin. (). Dependent types in Haskell programming, Available at:
https://wiki.haskell.org/Dependent_type#Dependent_types_in_
Haskell_programming (visited on 2016-02-26).

[41] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and
J. P. Magalhães, “Giving haskell a promotion”, in Proceedings of the 8th
ACM SIGPLAN workshop on Types in language design and implementation,
ACM, 2012, pp. 53–66.

[42] S. Lindley and C. McBride, “Hasochism: The pleasure and pain of
dependently typed haskell programming”, ACM SIGPLAN Notices, vol. 48,
no. 12, pp. 81–92, 2014.

[43] V. Buterin, EIP 101, 2015. Available at:
https://github.com/ethereum/EIPs/issues/28 (visited on 2015-12-01).

[44] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs”, Software, IEEE, vol. 25, no. 5,
pp. 22–29, 2008.

[45] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production software”, in
Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, ACM, 2007, pp. 1–8.

[46] J. G. Riecke, “Delimiting the scope of effects”, in Proceedings of the
conference on Functional programming languages and computer architecture,
ACM, 1993, pp. 146–155.

[47] J. G. Riecke and R. Viswanathan, “Isolating side effects in sequential
languages”, in Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’95, San Francisco,
California, USA: ACM, 1995, pp. 1–12, isbn: 0-89791-692-1. doi:
10.1145/199448.199450. Available at:
http://doi.acm.org/10.1145/199448.199450.

52

https://github.com/chriseth/cpp-ethereum/wiki/LLL-PoC-6
https://github.com/ethereum/wiki/wiki/Serpent
https://eb.host.cs.st-andrews.ac.uk/drafts/compile-idris.pdf
https://github.com/edwinb/idris-php
http://www.idris-lang.org/idris-0-9-18-released/
https://wiki.haskell.org/Dependent_type#Dependent_types_in_Haskell_programming
https://wiki.haskell.org/Dependent_type#Dependent_types_in_Haskell_programming
https://github.com/ethereum/EIPs/issues/28
http://dx.doi.org/10.1145/199448.199450
http://doi.acm.org/10.1145/199448.199450

Bibliography

[48] J. Baeten, “A brief history of process algebra”, Theoretical Computer
Science, vol. 335, no. 2–3, pp. 131–146, 2005, Process Algebra, issn:
0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2004.07.036.
Available at: http:
//www.sciencedirect.com/science/article/pii/S0304397505000307.

[49] L. Caires and H. T. Vieira, “SLMC: a tool for model checking concurrent
systems against dynamical spatial logic specifications”, in Tools and
Algorithms for the Construction and Analysis of Systems. Springer Berlin
Heidelberg, 2012, pp. 485–491.

[50] A. Igarashi and N. Kobayashi, “A generic type system for the pi-calculus”,
Theoretical Computer Science, vol. 311, no. 1–3, pp. 121–163, 2004, issn:
0304-3975. doi: http://dx.doi.org/10.1016/S0304-3975(03)00325-6.
Available at: http:
//www.sciencedirect.com/science/article/pii/S0304397503003256.

[51] The Ethereum foundation, Solidity tutorials, 2015. Available at:
https://ethereumbuilders.gitbooks.io/guide/content/en/solidity_
tutorials.html (visited on 2015-12-01).

53

http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2004.07.036
http://www.sciencedirect.com/science/article/pii/S0304397505000307
http://www.sciencedirect.com/science/article/pii/S0304397505000307
http://dx.doi.org/http://dx.doi.org/10.1016/S0304-3975(03)00325-6
http://www.sciencedirect.com/science/article/pii/S0304397503003256
http://www.sciencedirect.com/science/article/pii/S0304397503003256
https://ethereumbuilders.gitbooks.io/guide/content/en/solidity_tutorials.html
https://ethereumbuilders.gitbooks.io/guide/content/en/solidity_tutorials.html

Bibliography

54

A
Contract environment variables

Table A.1 shows the environment variables available during contract execution.
Variable names differ by language; the ones shown below are from Solidity.

Name Data type Description
this address The current contracts address
<address>.balance uint Ether balance of a given address
block.coinbase address Current block miner’s address
block.difficulty uint Current block difficulty
block.gaslimit uint Current block gaslimit
block.number uint Current block number
block.timestamp uint Current block timestamp
<block>.blockhash bytearray Hash of a given block
msg.data bytearray Complete calldata
msg.gas uint Remaining gas
msg.sender address Sender of current message (current call)
msg.value uint Ether amount sent with current message
tx.gasprice uint Gas price of current transaction
tx.origin address Sender of current transaction (full call chain)

Table A.1: Environment variables available during contract execution. Adapted from
[51].

I

	Introduction
	Smart contracts
	Smart contract languages
	Aim
	Delimitations
	Report outline

	Technical background
	The Ethereum smart contract platform
	Contract structure
	Users, contracts and their accounts
	Code execution and transactions
	Execution costs

	Common errors in smart contracts
	Unexpected states
	Failure to use cryptography
	Full call stack

	Type systems detect errors
	Dependent types

	The Idris programming language
	Side effects

	Smart contracts in Idris
	Avoiding unexpected states
	Handling ether
	The execution environment

	Using the data store
	Annotating for cryptography
	Reimplementation of rock-paper-scissors

	Implementation
	Target language
	Source language
	Code generator implementation
	Functions as macros
	Algebraic data types as lists

	Our Ethereum library
	Primitive operations
	The Ethereum effects

	Usage
	Wrapper functions
	Exporting functions

	Discussion
	Theory
	Types as models
	Extending the type system
	Unified language for contract and client
	Handling custom tokens
	Suitability of the functional paradigm

	Implementation
	The efficiency and modularity of primitive operations
	Incomplete code generation
	Inefficient output programs
	Implementing language-level commitments
	Preventing call stack errors
	Generating the data store declaration
	Generating wrapper functions
	Higher-order functions

	Conclusion
	Bibliography
	Contract environment variables

