

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

IoT Communication Protocols in
Healthcare

Master’s thesis in Computer Science

ANDREAS SVANSTRÖM

ii

IoT Communication Protocols in
Healthcare

ANDREAS SVANSTRÖM

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
GOTHENBURG, SWEDEN 2016

iii

IoT Communication Protocols in Healthcare
ANDREAS SVANSTRÖM

© ANDREAS SVANSTRÖM, 2016

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 – 772 1000

Gothenburg, Sweden 2016

iv

IoT Communication Protocols in Healthcare
ANDREAS SVANSTRÖM
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
This report is the result of a master’s thesis with the goal of investigating which are the
most commonly used Internet of Things protocols in healthcare and creating a working
prototype for integration of at least one of them.

The investigation made it clear that the only serious attempt at standardising
communication amongst medical devices in the IoT realm is the ISO/IEEE 11073
protocols family. Thus the integration is made to support this protocol family.

The definition, creation and testing of the integration are described in this report.
Through the integration, Bluetooth enabled personal health devices using the ISO/IEEE
11073-20601 messaging protocol can communicate with web services, using the Open
Data protocol.

The integration consists of an Android application functioning as a gateway for the
personal health devices and an example web service that can receive measurements
from pulse oximeters and store them in a database. The gateway application is built
using an MVC pattern, to make it easy to modify and extend, and it relies on the Antidote
library to decode the ISO/IEEE 11073-20601 messages. Because the web service uses
the Open Data protocol, which includes an easy-to-use querying interface, it is easy to
use it for further integration.

The system definition focuses on healthcare use and is trying to be as complete as
possible for a project of this size, whereas the implemented gateway and web service
software serve as a proof-of-concept. They show the possibility to integrate IoT pulse
oximeters with a web service using an open protocol. This makes the documentation, in
the form of scenarios, user stories and requirements, a good basis for developing a full-
fledged integration, supporting all device specialisations, and the proof-of-concept a
good base for this full integration.

Keywords: IoT, Internet of Things, Healthcare, Bluetooth, Communication, Connected
Health, Pulse oximetry, OData, Open Data, ISO 11073, IEEE 11073, CEN 11073

Acknowledgements
This report is the result of a master’s thesis work at the department of Computer Science
and Engineering at Chalmers University of Technology performed in cooperation with
Ascom Wireless Solutions in Gothenburg.

I would like to thank my advisors at Ascom, Mats Andreasen and Jan Bentzer, for their
support and for giving me new points of view on the subject. I would also like to thank
my supervisor at Chalmers, K.V.S. Prasad, for his support and constructive feedback.

v

Contents

Abstract .. iv

Acknowledgements ... iv

1. Introduction .. 1

1.1 Motivation ... 1

1.2 Objectives .. 1

1.3 Method ... 1

1.4 Skipping tags .. 2

2. Background ... 3

2.1 Ascom Wireless Solutions .. 3

2.2 Internet of Things .. 3

2.3 Setting the scope .. 3

2.4 The ISO/IEEE 11073 standards family ... 5

2.5 The Open Data protocol .. 6

2.6 Bluetooth ... 9

2.7 Ascom Unite .. 10

3. Design ... 11

3.1 Scenarios overview .. 12

3.2 Detailed scenarios and user stories ... 13

3.3 Requirements ... 22

3.4 Platform choice .. 24

4. Implementation .. 25

4.1 Development environments ... 25

4.2 Gateway application design .. 26

4.3 Web service design... 40

5. Testing .. 42

5.1 Testing the project.. 42

5.2 Checking a general device for compatibility .. 43

6. Results .. 44

6.1 Preconditions ... 44

6.2 Findings .. 44

6.3 Results ... 45

7. Conclusion and future work .. 47

7.1 Conclusion ... 47

vi

7.2 Future work .. 47

8. Nomenclature .. 51

9. References .. 53

9.1 Reports and articles ... 53

9.2 Standard specifications .. 53

9.3 Books ... 54

9.4 Interviews .. 54

9.5 Other sources ... 54

10. Appendixes .. 57

10.1 GitHub repository .. 57

10.2 Gateway/Concentrator unit reasoning and definition document 58

10.3 Test plan .. 61

10.4 Risk analysis ... 64

10.5 Early system sketches .. 67

1

1. Introduction

1.1 Motivation
Enabling the use of small, Internet of Things-enabled health sensors in healthcare would
give several benefits for everyone involved. The patient would benefit from not having
to be tied-up to big stationary sensors and thereby be more mobile and feel more
comfortable. Patients may also be able to return home at an earlier stage, still being
remotely monitored, which could heighten the perceived quality of life for the patient.
The hospital would benefit from lower costs, both because these small devices are
relatively cheap and also because hospitalisation is expensive, for example the average
cost of an excess bed day in the British healthcare system in 2012-2013 was £273
(Department of Health, 2013).

The first attempt to standardise a communication protocol for such devices is the CEN
ISO/IEEE 11073 standards family that was announced by ISO an IEEE in 2010 (Seo, Kim,
Lee, & Kim, 2014). Reading the standard documents and articles regarding the standards
gives a picture of a mature messaging protocol, but there also seems to be a gap in
integrations including the full chain from personal health device to hospital information
system or electronic health record, a gap which this thesis aims to fill.

1.2 Objectives
The aim of this thesis is to investigate the market of Internet of Things-enabled medical
devices and find which communication protocols are common or seem promising. From
there on, the objective is to create a working prototype of an integration of such a
protocol.

1.3 Method
The method for achieving the objectives of this thesis can be divided into four different
phases, namely the information phase, the design phase, the implementation and testing
phase and the report phase.

During the information phase, information is first gathered by literature studies and
market searches for available devices, this information will then be analysed to decide
upon a protocol to use for the integration prototype.

The design phase consists of designing and defining the prototype in terms of scenarios,
user stories, and acceptance criteria. The acceptance criteria will be compiled into
requirements, from which a test plan will be written. Different ways to realise the
prototype will be evaluated and a preferred one will be chosen.

In the implementation and testing phase the prototype will be developed and also
tested, to see that it passes the tests written during the design phase, and thereby lives
up to the requirements, which will be an indication that the prototype is actually what
was intended during the design phase.

2

Lastly the report phase consists of reporting about the findings of the information phase,
the decisions of the design phase and the results of the implementation and testing
phase.

1.4 Skipping tags
Some chapters go much into detail and are not necessary to read for getting an overview
of the project, but are intended for those readers interested in specific details. Such
chapters are tagged with a tag looking like this:

[This chapter can be skipped on a first reading]

They regard the tagged chapter including any subchapters, meaning that if chapter X is
tagged it includes all chapters X.*, or if chapter X.Y is tagged it includes all chapters X.Y.*
but not for example X.X or X.Z.*. Those chapters are mainly slight modifications of
documents written as part of the development process during the design phase.

3

2. Background

2.1 Ascom Wireless Solutions
Ascom Wireless Solutions is a company which develops on-site wireless
communications solutions, its customers are located all over the world. Product types
include purpose-built handsets, wireless voice and message transmission systems and
customised alarm and positioning applications. Customers can be found in areas such as
hospitals, elderly care, industry, retail sector, secure establishments and hotels (Ascom,
2015).

2.2 Internet of Things
The Internet of Things, often abbreviated IoT, is the notion of so called “things” being
interconnected via the Internet, enabling them to exchange information. The function of
IoT is thus to reduce the gap between real world objects and their virtual
representations in information systems (Weber & Weber, 2010).

These things can be any type of object able to generate or consume information (Weber
& Weber, 2010), an example is cars that can register slippery road parts and traffic jams
and inform other cars or local authorities about these situations (Volvo Car Group,
2015). There are also examples of networks of sensors and actuators working together
through a smart middleware or server software, controlling for example temperature or
lighting (Castellani, et al., 2010).

In a forecast made by Cisco in 2013, they state that 8.7 billion devices were connected to
the Internet in 2012 and that the number had exceeded 10 billion in 2013 already. They
expect that the number of connected devices in 2020 will be 50 billion, and that 20
billion of those will get connected during the last three years of the period (Cisco, 2013).
A more recent forecast by Ericsson expects 26 billion devices to be connected to the
Internet in 2020 (Ericsson, 2015), though back in 2012 they also had a vision of 50
billion connected devices in 2020 (Höller & Arkko, 2012). In either way it seems like the
amount of Internet connections are increasing at a high pace and that connecting things
is a big part of this increase.

In the realm of healthcare, IoT devices are expected to change the overall way that
healthcare works, by decentralising care. Chronic disease patients are expected to be
remotely monitored by small sensor devices, making it possible to detect bad conditions
before they get really bad and thereby avoid hospitalisation in many cases. Also doctoral
consultations are anticipated to partly take place remotely in the future, and together
these two changes to healthcare are expected to lower the costs of healthcare with more
than 20% in the United States (Roman, et al., 2015).

2.3 Setting the scope
As the scope of the project proposal included searching the market for common and/or
promising communication protocol standards, the first thing that was done was
collecting information about available, commonly used and future communication
protocols used by IoT health devices. The information gathered was used for setting the
scope of the proof-of-concept project part.

4

The method used for finding out about possible existing protocols was a combination of
database searches in different scientific databases provided by the Chalmers library,
mostly Scopus because of its size and the fact that it offers literature from different
fields, including e.g. technology and medicine, with google searches for existing
connected medical or health devices, both on the consumer and corporate markets.
Keywords used at the beginning included “IoT”, “Internet of Things”, “healthcare”,
“health”, “connected” and “medicine”. As more information was gathered, more specific
keywords, such as “personal health device”, “PHD”, “Continua” and “IEEE 11073”, came
up.

While reading articles and looking at data sheets for different existing products, it
became clear that proprietary protocols are very common, and sometimes even
different models of the same type of device from the same manufacturer use different
protocols for communication (Day, 2011).

What also came out of the information gathering was the fact that there is a message
exchange protocol standard for communication between health devices intended for
personal use, so called Personal Health Devices, or PHDs. This standard was announced
in 2010 by IEEE and ISO, and is called ISO/IEEE 11073-20601 (Seo, Kim, Lee, & Kim,
2014). The standard only defines the message data structure and is transport-
independent (The Institute of Electrical and Electronics Engineers, Inc., 2014). On top of
the exchange protocol are device specialisations, i.e. descriptions of message structure
for data originating from different types of PHD agents, such as blood pressure monitors,
pedometers or weighing scales (The Institute of Electrical and Electronics Engineers,
Inc., 2014).

Except being accepted by ISO, the 11073-20601 standard, and its specialisations, by
IEEE has also been accepted by CEN (European Committee for Standardization) (CEN,
2016) and the Bluetooth Special Interest Group has chosen the ISO/IEEE 11073
standards family as the protocols to use when developing a Bluetooth device using their
Health Device Profile (Bluetooth SIG, 2016).

When searching for devices using the ISO/IEEE 11073 protocol family for
communication, a logo saying “Continua Certified” accompanied most of those products.
Further investigation showed that Continua is an international non-profit industry
group composed of 122 member companies, working for plug-and-play compatibility for
personal connected health devices (Personal Connected Health Alliance, 2015). One
requirement for getting a product certified is that it complies with the ISO/IEEE 11073
protocol family, and the Continua web page includes a list of certified products
(http://www.continuaalliance.org/products/product-showcase). When checking this
list, it’s easy to state that most certified products (in the end of 2015 that is) are
manager software programs for Microsoft Windows, i.e. programs intended for
receiving data from health agents (sensors). There are however certified agent products
as well, of multiple device types (e.g. blood pressure monitors, pulse oximeters and
thermometers).

Considering that the ISO/IEEE 11073 protocol family seems to be an active set of
standards and the only serious attempt on standardising communication between
personal health devices, as well as it being backed by a large amount of companies,

http://www.continuaalliance.org/products/product-showcase

5

including several leading companies in the healthcare industry, in the form of the
Continua Alliance, it seems to be a good choice for a protocol standard to use in the
proof-of concept. The fact that there already are products using this protocol on the
market also speaks for choosing it for the proof-of-concept, as this makes the product
testable.

Different solutions were discussed, and in the end it was decided that the proof-of-
concept shall be an Android application functioning as a gateway between devices
talking ISO/IEEE 11073-20601 over Bluetooth transport and the Ascom Unite
messaging system. This decision was partially changed in the end of the development
phase, after the realisation that the data generated is pure health data, and not alarms,
which usually is the case when using Ascom Unite in healthcare. The receiving end was
then changed into a standalone web service talking the Open Data protocol. This web
service was written in C#/.NET, to enable easy integration into Ascom Unite later on, if
that would be wanted.

2.4 The ISO/IEEE 11073 standards family
The ISO/IEEE 11073 standards family consists of a plethora of standards, including
different transport profiles, nomenclatures, an overview and application profiles for
example. Most of them are not of interest for completing this project however. The ones
relevant for realising this project is the previously mentioned exchange protocol
(ISO/IEEE 11073-20601) and the different device specialisations (ISO/IEEE 11073-
104xx), more specifically the pulse oximeter specialisation, namely ISO/IEEE 11073-
10404, as a device of this type was the only one used for testing the proof-of-concept
implementation.

In the ISO/IEEE 11073-20601 standard, two types of devices are defined, namely
managers and agents. An agent device is typically a sensor unit, e.g. a blood pressure
monitor, a glucose meter or a pulse oximeter and generally it communicates only with a
single manager at any arbitrary point in time. A manager device is a unit which typically
receives data from agents and can communicate simultaneously with multiple agent
devices at the same time (The Institute of Electrical and Electronics Engineers, Inc.,
2014). Thus the gateway application created in this project is an ISO/IEEE 11073-20601
manager.

A connection between an agent and a manager is typically initiated by the agent when it
has new data to send to the manager, though there are exceptions from this pattern, for
example when the agent has a persistent metric store (often abbreviated PM-store). To
read the stored data, the manager will send a get message to the agent (The Institute of
Electrical and Electronics Engineers, Inc., 2014).

When it comes to security, the ISO/IEEE 11073-20601 standard fully relies on other
layers to secure the communication, e.g. securing the transport channel (The Institute of
Electrical and Electronics Engineers, Inc., 2014).

A neat feature of this standard is that if the manager doesn't already know the device
configuration that the agent wants to use, it can request that the both enter the
“Configuring state”, in which the agent will send a “Configuration event report”,
containing a description of all objects included in the agent’s device configuration as

6

well as an identification number for the configuration (The Institute of Electrical and
Electronics Engineers, Inc., 2014). Thus a correctly implemented manager is future
compatible as long as it is updated when the ISO/IEEE 11073-20601 protocol is.

2.4.1 Available transport protocols

As mentioned before, the ISO/IEEE 11073-20601 protocol is transport independent,
though there are some well-defined ways of doing the transport, such as the three
transport profiles defined by IEEE: cable connected (ISO/IEEE 11073-30200), infrared
(ISO/IEEE 11073-30300) and cabled Ethernet (ISO/IEEE 11073-30400). Also there is
the Bluetooth Health Device Profile, which is used by Bluetooth enabled PHDs, and the
ZigBee Health Care profile for ZigBee enabled PHDs.

There are already PHDs on the market communicating ISO/IEEE 11073 over USB,
Bluetooth and ZigBee (Personal Connected Health Alliance, 2015), where USB
connection is cabled and Bluetooth and ZigBee are known for being low-power wireless
communication protocols. Wi-Fi connections are usually not the first choice for IoT
implementations, as Wi-Fi chips traditionally have been expensive and not very low-
power, and they also have a longer connection setup time than the competition, though
this might change in future (Mathias, 2015). The Antidote library, an ISO/IEEE 11073-
20601 implementation, which will be described more later on in the report, also
includes a plug-in for communicating ISO/IEEE 11073-20601 over TCP/IP (Livio, et al.,
2012).

The upcoming IEEE 802.11ah standard, expected to be finished in March 2016, will
address several of the aforementioned disadvantages for Wi-Fi, e.g. by introducing sub 1
GHz channels, narrower channel bandwidths and longer sleep intervals (Larmo, 2015).
Thus Wi-Fi enabled PHDs may turn up on the market during the coming years.

2.5 The Open Data protocol
The Open Data protocol, often abbreviated OData, is an open protocol that allows
creating and consuming queryable APIs following the REST principles. It is standardised
by OASIS and queries can be made in a database like manner (OData, 2015).

The choice to use OData for the receiving backend was made because it is easy to work
with, commonly used and easy to integrate in other applications as there are OData
libraries available for major platforms and languages like .NET, Java, C++ and JavaScript
(OData, 2015). Major spreadsheet software like Microsoft Excel and LibreOffice Calc are
also able to handle OData queries, thereby making the data directly usable by anyone
knowing how to use regular office suite programs.

For example if one would like to look at all pulse oximetry measurements saved in the
web service’s database, with a heart rate value between 39-45 bpm exclusive, and sort
them by patient, one would simply make a GET request to the web service, looking like
this:

7

Which very much resembles how an SQL query for the same information would look
like:

Running this query in a browser results in a textual representation of a JSON object list
with the corresponding rows from the database, for the actual query above, the
beginning of it would look like this:

Figure 1 Part of return from querying the OData interface of the web service

Running the same query in Microsoft Excel’s PowerQuery tool gives the following result:

8

Figure 2 Running a query against the OData interface of the web service in Excel

Lastly, if one would like to do something with the newly imported data, one could for
example count occurrences of different blood oxygen saturation levels to get an idea of
what the most common blood oxygen saturation level was for the measurement set,
when the pulse was between 40 and 44.

9

Figure 3 Frequency chart for blood oxygen saturation levels from a query against the web service's OData interface in
Excel

This might not bring much direct value to this project, but it leaves openings for the
future, for example enabling easy data set generation for big data and machine learning
projects.

Please note that most of the data that was returned from the query used in the examples
above had been pseudo-randomly generated by a feature in the gateway application,
intended for generating data to test the gateway – web service connection. This means that
the data seen in the figures does not represent real medical information.

2.6 Bluetooth
Bluetooth is a wireless data exchange technology created in 1994 as an alternative to
data cables. The name is an English translation of the last name of the 10th century
Viking king Harald Blåtand, who is famous for having united warring factions in what
today are parts of Norway, Sweden and Denmark. This is a metaphor for Bluetooth
technology being an open standard, enabling disparate products and industries to
connect and collaborate (Bluetooth SIG, 2016).

Bluetooth devices are divided into three different power classes, depending on their
maximum output power level at the antenna connector, the three maximum output
power levels are 1, 2.5 and 100 mW (Bluetooth SIG, 2007), with corresponding
transmission ranges of about 1, 10 and 100 metres (Bluetooth SIG, 2011).

To avoid interference and fading, Bluetooth transceivers use frequency hopping
(Bluetooth SIG, 2007). Bluetooth has 79 different channels to hop between, up to a
maximum of 1600 hops/s in connection state, and the hopping sequence is pseudo-

10

randomly generated with part of the device addresses as random seed (Bluetooth SIG,
2007).

For two Bluetooth devices to be able to communicate with each other, they first need to
pair with each other (Bluetooth SIG, 2016). When two devices pair, they exchange
cryptographic information in order to enable encrypted communication, making
eavesdropping attacks harder. There are four different association models that can be
used when pairing, three of them includes authentication through a six digit number,
accepted or entered, to protect against man-in-the-middle attacks (Bluetooth SIG, 2007).

Since version 4.0 of Bluetooth, there is also another standard called Bluetooth LE (Low
Energy) or Bluetooth Smart, developed for IoT applications specifically (Bluetooth SIG,
2016). This new standard does not have the same characteristics as described above,
and it is also not covered in this report because the classic Bluetooth standard was the
one used by the devices in this project.

2.7 Ascom Unite
Ascom Unite is a messaging system developed by Ascom, it consists of three main parts:
Connect, Core and Axess. Connect is a collector name for all in-data interfaces, and in
healthcare this corresponds to interfaces that receive alarms from patient monitors,
patient alarm buttons etc. Core is a message broker that handles all the incoming
messages, e.g. prioritises alarms and decides to whom a message should be sent. Axess is
a collector name for all out-data interfaces that deliver messages to their recipients, such
interfaces could send messages to e.g. cell phones, pagers or email addresses (Bentzer,
2016).

The proof-of-concept developed as part of this project doesn’t make use of Unite in any
way, but was intended to during the design phase, hence Unite and Unite Connect are
referenced in chapter 3. Design.

11

3. Design

A reader who wants to get a good idea of the process but doesn’t want to get all the
details can read the overview and one of the detailed scenarios together with its user
stories and acceptance criteria and skim through the requirements. A reader who isn’t
interested in the details at all can skip everything after the overview.

This chapter mainly consists of documentation written in order to define the proof-of-
concept before it was implemented. At a first glance this documentation can seem
informal or maybe even incomplete, but it was a thought-through decision to write this
way, and it does include everything needed to understand how the application should
work. The two biggest benefits coming from this way of writing is the short start-time
and the easiness to understand the documentation. This way of writing is also a form of
a simplified version of the method used at Ascom.

It is proposed in the book User Stories Applied that this kind of documentation is both
more effective and efficient than traditional lengthy requirements documentation (Cohn,
2004). Also in the book Managing Software Requirements, it is suggested that many
crucial software system requirements can be written in plain language, making them
understandable for “ordinary” people, in the same way as blueprints for houses are
drawn in a way that the house buyer can understand what they will get (Leffingwell &
Widrig, 2000).

The documentation aims to describe a more developed product than the proof-of-
concept, not necessarily a finished product, but one that has more functionality than the
proof-of-concept.

When designing this software, a brainstorming session on where and when it could be
used was held. This resulted in four scenarios, and a brainstorming session for what
could be reasonable user stories for those scenarios was held as well. The input hence
builds on own experiences, stories from friends who work in healthcare as well as
market knowledge from the advisors at Ascom.

For each user story a number of acceptance criteria has been written, these have later
on been reviewed and discussed, regarding their completeness and reasonableness.

Lastly all acceptance criteria have been compiled into more formal requirements, and all
together this documentation describes how the software is intended to work.

As mentioned in the background chapter, a decision was made to switch the receiving
backend part from Ascom’s messaging system Unite to a simple web service, but the text
in this chapter still refers to the receiving end as Unite, because that better reflects the
intentions that were current during the design phase of the project. Likewise the not yet
implemented collector unit is still documented, because it still is a part of thought-of
functionality.

12

3.1 Scenarios overview

Figure 4 System setup overview

When defining the functionality of the integration, four different main scenarios were
thought of mainly. There were more scenarios in the process, but to keep it simple, these
four scenarios were chosen since they catch all the functionality discussed.

The first scenario is that a hospital wants to send a recovering patient to their home, for
the benefit of both parts; the patient will feel more convenient getting home earlier and
the hospital will get more space and resources for other patients.

The second scenario is using the gateway in a hospital ward together with cheap and
small off the shelf health sensor devices, partly to cut costs for the hospitals and partly
to make hospitalisation more convenient for patients by using smaller devices and
thereby reduce the patients’ immobilisation.

The third scenario is that a caretaker in home care gets a sensor device or some sensor
devices, to measure medical data in-between visits from the district nurse. This could
add accuracy to diagnoses by generating data that otherwise wouldn’t be available, or in
another case letting a caretaker stay at home while being monitored instead of being
hospitalised, thereby making the situation for the caretaker more convenient and at the
same time reducing costs for the hospital.

The fourth and last scenario is a district nurse in home care, who brings a set of easy-to-
carry sensor devices, to be able to easily take measurements that directly get recorded
into an electronic health record system.

13

In all four scenarios ease of use will be of importance, so that nurses easily can configure
the generic gateway device and don’t have to waste their time on non-healthcare
activities. It’s also important that it’s easy for nurses, or in scenario one and three
caretakers, to start and stop measuring sessions.

For scenario three it’s also important that the gateway device has the capability to store
data in-between visits.

For all scenarios the possibility to use the device with a battery and also being able to
use it while charging is important; the battery is important for mobility and the
possibility to use it while charging is important because otherwise bothersome waiting
times will occur and the devices might not be able to be used when they should.

The possible solution depicted in Figure 4 is a full system solution, which depicts the
capabilities needed for all four scenarios. It consists of a gateway/concentrator unit that
is able to communicate with off-the-shelf personal health devices that make use of the
standard ISO/IEEE 11073 protocol over a Bluetooth link and make the data identifiable,
in a way that the recorded data is associated with the right caretaker/patient when
entering Unite. This unit could either be connected to Unite directly, via the Internet or a
local network for example (depending on whether it’s used on- or off-site), or it could
work as an offline unit that just collects and stores data. This data would then be
collected via some kind of short-range communication to a collector unit. The collector
unit could then be used to transfer the data to a Unite system, or possibly directly into a
medical records system.

As the system will handle sensitive personal data, security and compliance with
personal data handling laws will be crucial for a deployed system.

3.2 Detailed scenarios and user stories
[This chapter can be skipped on a first reading]

In this subchapter a system setup overview and a use case diagram for each scenario
will be shown together with its related user stories and acceptance criteria

14

3.2.1 Scenario A: permission from hospital

Figure 5 System setup for the permission from hospital scenario

The system setup in the above picture consists of a patient in their home, wearing a
PHD, which communicates with a gateway unit either placed close enough to the patient
or worn by the patient (e.g. in a pocket). The gateway unit communicates with the Unite
system at the hospital via the Internet.

Story A1
As a nurse at a hospital I want to be able to send recovering patients home while still
monitoring them so that there can be available spots for new patients, the patients
can come home sooner and to be able to monitor patients during their whole
recovery periods.

Acceptance criteria for story A1

Functional acceptance criteria for story A1
A1.1. Gateway unit shall be able to communicate with sensor units
A1.2. Gateway unit shall be able to send monitoring (sensor) data over the Internet to

the hospital in real-time

A1.3. Gateway unit shall notify the patient if a sensor unit falls off or stops transferring

data

A1.4. Server shall be able to receive all data sent by the gateway unit

A1.5. Server shall have the data presentable to nurses in real-time

A1.6. Server shall generate a notification in case of sensor data out of accepted ranges

or not received sensor data at defined data reception times

Non-functional acceptance criteria for story A1
A1.7. Gateway unit shall be easy to configure

Story A2
As a patient sent on permission I want to have an easy to use and accurate
monitoring system that is reliable and doesn’t cause me too many inconveniences so
that I can feel safe being at home while recovering and can deal with my everyday
life without too much extra hassle.

15

Acceptance criteria for story A2

Functional acceptance criteria for story A2
A2.1. Gateway unit shall collect all sensor data sent by the sensor units

A2.2. Gateway unit shall be able to send recorded data in real-time over the Internet to

the hospital

A2.3. Gateway unit shall notify the patient and the hospital if it is unable to collect or

transmit data

Non-functional acceptance criteria for story A2
A2.4. Gateway unit shall be easy to use for the patient

A2.5. Sensor units and gateway unit shall not make the patient too immobile

Figure 6 Use case diagram for the permission scenario

16

3.2.2 Scenario B: home care visit (using continuous measurements and data dumping)

Figure 7 System setup for the home care visit (using continuous measurements and data dumping) scenario

The system setup for this scenario consists of a caretaker in their home, wearing a PHD
that communicates via Bluetooth to a concentrator unit that records medical data. When
the district nurse come visiting, they bring the collector unit to collect the recorded data,
which in turn will either send the data to the care centre directly via the Internet or
when the district nurse gets back there, via e.g. a local network or Bluetooth.

Story B1
As a nurse working with home care I want to be able to monitor caretakers in-
between my visits so that I can give them more accurate diagnoses.

Acceptance criteria for story B1

Functional acceptance criteria for story B1
B1.1. Gateway unit shall be able to store recorded sensor data between two visits

B1.2. Gateway unit shall be able to communicate with sensor units

Non-functional acceptance criteria for story B1
B1.3. Gateway unit shall be easy and fast to configure

17

Story B2
As a caretaker in home care getting to use monitoring equipment in-between the
nurse’s visits I want to know that I have started up all the devices correctly so that I
can feel re-assured that the nurse will get my medical data next time they’re visiting
me.

Acceptance criteria for story B2

Functional acceptance criteria for story B2
B2.1. Gateway unit should remind caretaker of measuring sessions, in case they

haven’t been started within a given time period after the scheduled time

Non-functional acceptance criteria for story B2
B2.2. Gateway unit shall be easy to use

B2.3. Gateway unit should, in an easily comprehensible way, show that everything is

up and running

B2.4. Gateway unit shall tell the caretaker in an easy-to-understand language what is
wrong / how to fix it if something doesn’t work.

Story B3
As a nurse working with home care I want to be able to easily get measurement data
from a caretaker who has been using monitoring devices since my last visit so that I
don’t have to waste patient time on device configuration

Acceptance criteria for story B3

Functional acceptance criteria for story B3
B3.1. Gateway unit shall transfer saved measurement data to collector unit in an

automated or mostly automated fashion

B3.2. Gateway unit shall give a notification that all data has been transferred

B3.3. Collector unit shall give a notification that valid data has been received

B3.4. Collector unit shall give a notification that data has been stored into the medical

record for the right caretaker

Story B4
As a nurse in home care I want to carry around as few appliances as possible so that I
don’t have to have my hands full while walking up to someone’s doorstep in the
dark.

Acceptance criteria for story B4

Functional acceptance criteria for story B4
B4.1. Collector unit shall be part of an already existing device, e.g. Myco or work phone

18

Figure 8 Use case diagram for the home care visit (using continuous measurements and data dumping) scenario

3.2.3 Scenario C: monitoring in a ward

Figure 9 System setup for the monitoring in a ward scenario

This scenario’s system setup consists of a patient at a hospital, wearing a PHD and a
gateway unit, the PHD communicates with the gateway unit via Bluetooth and the
gateway unit in turn communicates with Unite via the Hospital’s local network.

Story C1
As a nurse at a hospital I want to be able to start medical monitoring of a patient
easily and quickly so that I don’t have to waste patient time on issues not directly
connected to care and don’t have to break my workflow.

19

Acceptance criteria for story C1

Functional acceptance criteria for story C1
C1.1. Gateway unit shall be able to communicate with sensor units

C1.2. Gateway unit should give feedback on its working state (i.e. tell if everything is

up and running or what’s not and how to fix it)

C1.3. Gateway unit shall be able to send sensor data to the hospital’s server in real-

time

C1.4. Server shall be able to receive all data sent by the gateway unit

C1.5. Server shall process whatever data that has to be processed upon receiving it

C1.6. Server shall generate a notification in case of sensor data out of accepted ranges

or data reception failure

Non-functional acceptance criteria for story C1
C1.7. Gateway unit shall be easy to configure

C1.8. Gateway unit shall be easy to use

Story C2
As a patient getting to use new small PHD technology I want to be mobile so that I
can go to e.g. the toilet or the kiosk without help (provided I’m allowed to do this)

Acceptance criteria for story C2

Functional acceptance criteria for story C2
C2.1. Gateway unit shall be usable without any cords attached for at least an hour

C2.2. Gateway unit shall be able to continue transmitting without user interaction

when changing access points

Non-functional acceptance criteria for story C2
C2.3. Gateway unit shall be mobile

20

Figure 10 Use case diagram for the monitoring in a ward scenario

21

3.2.4 Scenario D: home care visit (point measurement)

Figure 11 System setup for the home care visit (point measurement) scenario

This last example setup is the smallest one and consists only of a PHD and a
concentrator communicating via Bluetooth. In this scenario the district nurse brings the
equipment with them when visiting a caretaker they want to measure some kind of
medical data for. It is possible that the concentrator will be connected on the other end
as well, but that functionality is already covered by other scenarios.

Story D1
As a nurse in home care I want to be able to easily perform various medical check-
ups when I visit my caretakers so that I can get information quicker and don’t have
to send caretakers to a care centre.

Acceptance criteria for story D1

Functional acceptance criteria for story D1
D1.1. Gateway unit shall be able to communicate with sensor units

D1.2. Gateway unit shall make a clear notification if the communication with the

sensor(s) doesn’t work

D1.3. Gateway unit shall make a clear notification if the sensor unit doesn’t send any

real data (e.g. if the sensor isn’t attached properly)

D1.4. Gateway unit shall show a notification if the measurements are out of pre-

defined accepted boundaries

D1.5. Gateway unit shall make a clear notification that data has been stored into the

medical record for the right caretaker

Non-functional acceptance criteria for story D1
D1.6. Gateway unit shall be easy to use

D1.7. Gateway unit shall be able to either construct good medical record data or be

able to send data that can be used by a unit later on in the chain to construct good

medical record data

Story D2
As a nurse in home care I want to carry around as few appliances as possible so that I
don’t have to have my hands full while walking up to someone’s doorstep in the
dark.

Acceptance criteria for story D2

Functional acceptance criteria for story D2
D2.1. Gateway unit shall be part of an already existing device, e.g. Myco or work phone.

22

Figure 12 Use case diagram for the home care visit (point measurement) scenario

3.3 Requirements
[This chapter can be skipped on a first reading]

This subchapter lists the identified requirements for the gateway (and collector)
Android application created as the major part of the proof-of-concept in this project. The
requirements are divided into functional and non-functional requirements, and each
requirement states from which acceptance criterion/criteria it originates.

Functional requirements
R001. Gateway unit shall be able to communicate with sensor units

origin: A1.1, B1.2, C1.1, D1.1

R002. Gateway unit shall be able to send recorded monitoring (sensor) data over the

Internet to the hospital in real-time

origin: A1.2, A2.2, C1.3

R003. Gateway unit shall notify the patient if a sensor unit falls off or stops transferring

data

origin: A1.3, D1.3

R004. Server shall be able to receive all data sent by the gateway unit

origin: A1.4, C1.4

R005. Server shall have the data presentable to nurses in real-time

origin: A1.5

R006. Server shall generate a notification in case of sensor data out of accepted ranges,

not received sensor data at defined data reception times or data reception failure

origin: A1.6, C1.6

R007. Gateway unit shall collect all sensor data sent by the sensor units

origin: A2.1

R008. Gateway unit shall notify the patient and the hospital if it is unable to collect or

transmit data

origin: A2.3, D1.2

23

R009. Gateway unit shall be able to store recorded data

origin: B1.1

R010. Gateway unit should remind caretaker of measuring sessions, in case they

haven’t been started within a given time period after the scheduled time

origin: B2.1

R011. Gateway unit shall transfer saved measurement data to collector unit in an

automated or mostly automated fashion

origin: B3.1

R012. Gateway unit shall indicate when all data has been transferred to collector unit

origin: B3.2

R013. Collector unit shall give a notification that valid data has been received

origin: B3.3

R014. Gateway/Collector unit shall give a notification when data has been stored into

the medical record, for the right caretaker

origin: B3.4, D1.5

R015. Collector unit shall be part of an already existing device, e.g. Myco or work phone

origin: B4.1, D2.1

R016. Gateway unit should give feedback on its working state

origin: C1.2

R017. Server shall process patients’ medical data, upon receiving it

origin: C1.5

R018. Gateway unit shall be usable without any cords attached for at least an hour

origin: C2.1

R019. Gateway unit shall be able to continue transmitting sensor data without user

interaction when switching between access points

origin: C2.2

R020. Gateway unit shall show a notification if the measurements are out of accepted

ranges

origin: D1.4

Non-functional requirements
N001. Gateway unit shall be easy and fast to configure

origin: A1.7, B1.3, B2.2, C1.7

N002. Gateway unit shall be intuitive and easy to use

origin: A2.4, C1.8, D1.6

N003. Sensor units and gateway unit shall not make the patient too immobile

origin: A2.5

N004. Gateway unit should, in an easily comprehensible way, show that everything is

up and running

origin: B2.3

N005. Gateway unit shall tell the caretaker in an easy-to-understand language what is

wrong / how to fix it, if something doesn’t work

origin: B2.4

N006. Gateway unit shall be portable

origin: C2.3

N007. Gateway unit shall be able to either construct good medical record data, or be

able to send data that can be used by a unit later on in the chain to construct good

medical record data

origin: D1.7

24

3.4 Platform choice
In the beginning of the design phase, different hardware and software platforms were
considered before finally settling upon smartphone Android/Java. The two other main
contestants in hardware were single-board computers and standalone smartwatches,
but the smartphone platform was chosen because it was deemed to be the easiest
platform for testing, as they are already packaged with everything needed and there
were small examples written for Android, using a library called Antidote. For further
reasoning about the different platforms, see appendix 10.2 Gateway/Concentrator unit
reasoning and definition document.

After settling upon the smartphone platform for hardware, a software platform was to
be chosen, and the three main contestants were Android/Java, iOS/Objective-C and
Windows phone/.NET. The iOS platform was ruled out quickly because of it being too
closed, not letting the developer access Bluetooth as necessary (Snyder, 2015).
Comparing the two remaining platforms, Android is much more wide-spread and offers
many more devices to choose from, so the only benefit of choosing Windows phone
would be that the full project could have been developed on the .NET platform, and as
this benefit wasn’t seen as very important, Android was chosen in the end.

There was also a thought on using the Xamarin platform to enable the use of the
.NET/C# and developing for all three aforementioned platforms at the same time. It
seemed competent enough when reading through its own documentation, but looking
around at different developers’ forums at the time gave a picture of a too immature
product (lacking features, regular crashes, files disappearing, native functionality binds
that either don’t exist or are outdated, the need of a Mac to build apps for iOS, outdated
tutorials etc.). Also the pricing for using it with Visual Studio integration starts at $999
(Xamarin Inc., 2016), which made the decision simpler.

25

4. Implementation

This chapter discusses the actual software design implemented in the proof-of-concept,
meaning this is a picture of what really is implemented. It starts out with a subchapter
about the IDEs and tools used to develop the proof-of-concept.

4.1 Development environments

4.1.1 Android Studio

The official IDE for developing Android applications is called Android Studio and is an
IDE based on IntelliJ IDEA. On top of the standard functionality in IDEA it has a few extra
features such as ADB integration for easy testing on emulators or real Android devices,
code templates for common Android features and a set of lint tools (Android Open
Source project, 2016).

Figure 13 Android Studio having the Gateway application project open

4.1.2 Android NDK

The Android Native Development Kit is a set of tools that enables implementing parts of
an application in native-code languages, e.g. C and C++. Its recommended uses are CPU-
intensive applications, physics simulation and signal processing (Android Open Source
project, 2016).

Android NDK is used in this project to compile the Antidote library, which is written in
C.

4.1.3 Visual Studio

Visual Studio is an IDE from Microsoft, it supports many platforms and programming
languages and has a powerful text-editor with code completion and real-time lint
functionality. In this project it was used for developing the web service.

26

4.2 Gateway application design

Figure 14 Class diagram showing the flow between Activity (View) classes in the Gateway application

This subchapter is dedicated to explaining how the application that realises the gateway
part of the system is designed. Firstly, the application is an Android application written
in Java, using a third-party library called Antidote for handling the ISO/IEEE 11073
protocol. Antidote is written in C and compiles directly with the Android NDK (although
the names of the methods exposed to Java have to be changed to match the package
names of the project in question) on recent Linux distributions.

The application is built in accordance with the MVC pattern, which often is the case with
Android applications, because of Android’s architecture. Looking at the UML class
diagram above, all classes’ names end with “Activity” and are hence subclasses of
Activity and therefore belong to the View part of the pattern.

Using an MVC pattern makes the code reusable and easily extendable, which are two
desired properties for a proof-of-concept project. As the model is already there, one
could also think the other way: it would be easy to add new views and controllers, e.g.
for visualising measurement data that is stored at some sort of backend server with
which the application can communicate.

4.2.1 Basic application flow

This subchapter describes the basic flow of the gateway application when using it for
receiving a measurement. If the reader doesn’t want to go into detail and just get an
overview of how the application works, they can read this subchapter and skip the
coming four subchapters. This is the main flow:

27

 starts and presents the user with a list of paired medical devices

to choose from.

 The user chooses which device they want to receive measurements from.

 The right view, according to the type of the chosen device, is started, the only

supported one in the proof-of-concept is the .

 The started view starts up , which in turn uses to

start up Antidote’s service, as well as starts up

.

 registers the application as a manager

medical device, thus making the unit communicate via Bluetooth that it is a

medical device capable of speaking ISO/IEEE 11073. It starts up its private

 class, which listens for incoming Bluetooth connections from

medical device agents that speak ISO/IEEE 11073.

 An agent initiates communication with the application, all received messages are

handled by the private class.

 The class (or in a full product another responsible

view class) gets notified of the incoming connection and notifies the user by

showing a progress bar and printing that it’s receiving a measurement.

 When the measurement is received, the class is used to parse

the incoming data and a object is instantiated and

thereafter presented in the and a task is started to

upload the measurement to the web service.

 notifies the user on whether the upload was

successful or not, if it failed, the measurement is written to the application’s

database with the .

 As the class is a subclass of , it is used by

the class to get references to the database object.

Also, to get full detail on how the application is implemented, the reader can check out
the full source code of the project from the GitHub link in appendix 10.1 GitHub
repository.

4.2.2 View
[This chapter can be skipped on a first reading]

The arrows used in the diagram in Figure 14 are for depicting program flow, i.e. when
the application is started, the user is presented with the view of . This

 presents the user with a list of paired medical devices to choose from as well
as a button to start using the chosen device. When the button is clicked, a method is
called which determines the device type of the chosen device and starts the
corresponding class, as of now only pulse oximeters are supported, meaning
a pulse oximeter would yield the start of , and any other type
of medical device would yield a message telling the user that the specific device type is
not yet supported.

A screenshot of the view is depicted in Figure 15, and as can be seen it also features a
floating button with an envelope as well as a menu. Clicking the floating button switches

28

the view to that of . Figure 16 shows
with its menu open.

Figure 15 MainActivity view

29

Figure 16 MainActivity with its menu open

Choosing Settings in the menu switches to the view, choosing Seed
Database switches to and choosing License switches to

.

30

 simply tells the user that the application uses the Antidote library,
copyright information about it and that it is licensed under the GNU lesser general public
license, and offers to show this license by clicking a button. Clicking this button switches
to , which shows the GNU LGPL license (version 2.1) in its entirety.
Presenting this license information to the user is a requirement for using a library or
software part licensed under GNU LGPL (Free Software Foundation, 1999).

Figure 17 SettingsActivity, notification about the settings having been saved

31

Figure 17 shows the view of , in which the user can set the patient
identification string to be used for measurements, the web service URL and whether the
flow of the application shall be automatic or manual.

Figure 18 PulseOximeterActivity, a measurement was just uploaded to the web service

32

Figure 18 shows the view of after it has received a
measurement from a pulse oximeter. As can be seen, a representation of the
measurement is shown, and in the bottom there’s a floating button with an envelope.
This floating button is to be used together with manual program flow, during which it
initiates a task for uploading the shown measurement to the web service. When running
the application with automatic program flow, this task is initiated upon full reception of
a measurement instead. After the task is finished a message is shown, telling the user
whether the upload was successful or not.

Figure 19 PulseOximetryListActivity, uploading locally stored measurements

33

In Figure 19 the view of can be seen. The purpose of
this view is to show measurements that couldn’t be uploaded to the web service for
some reason, and thus are stored in the application’s local database. Due to this nature it
features a menu choice to try uploading all locally stored measurements, afterwards
removing all successfully uploaded measurements.

Figure 20 SeedDatabaseActivity, just created 50 random measurement objects

34

The last class, , is depicted in Figure 20. It was
added solely for testing purposes, and allows the user to insert an arbitrary amount of
pseudo random measurement data into the application’s local database. This can be a
useful feature for testing the upload functionality with big amounts of data, as it would
take a considerable amount of time to enter hundreds of measurements into the
database using a PHD.

4.2.3 Controller
[This chapter can be skipped on a first reading]

Figure 21 Overview of the controller classes

The controller classes of the gateway application could be divided into three groups,
more or less: PHD communication classes (,

, , and JNIBridge), gateway logic classes
(AntidoteHelper) and web service communication classes (

and
).

The PHD communication classes are responsible for Bluetooth communication with
personal health devices and decoding ISO/IEEE 11073-20601 data streams into
ISO/IEEE 11073-20601 xml in the form of .

35

 is started by the method in , it
then initialises , which handles the actual
Bluetooth communication. Its private class is used for
communication with , and its private class lets the
Bluetooth communication live in its own thread, thus separating it from the .

 is the bridge between the Java world and the native world, where the
Antidote library resides, because of it being compiled with the Android NDK.

 calls functions exposed by to do the actual ISO/IEEE 11073
decoding, and likewise Antidote calls functions in that forwards
communication to , which in turn sends these messages on to

, from where they are finally sent to the personal
health device, with which the gateway is communicating.

The class is a typical helper class with many static methods used by
the rest of the application, for example methods for turning xml in format into
xml objects, reading and writing from/to the application’s database and
converting time stamps between different formats.

The web service communication classes handle the http communication with the web
service. Both classes in this category are subclasses of , which is the
recommended way to handle network connections when developing Android
applications, because of the unpredictable delays that network operations can involve
(Android Open Source project, 2016). This way these delays don’t influence the user
interface.

The takes one or more

 objects (using the Java … pattern for parameters), tries
to upload them one by one to the given in the settings and returns if all
uploads succeeded. This value is used to know whether or not to remove local
database copies of the measurements. Only having one value to represent how
multiple uploads went is not very precise, but using the … pattern for input is required
when extending the class, and to compensate for this, the other class in this
category, , was created.

 does take one or more
 objects as input parameters, just like the previous ,

though it only checks for the first one in case there are multiple objects given. This way
the local copies of uploaded measurements can be deleted when there were both failing
and working uploads performed, and this task doesn’t have to be run when all
measurements were successfully uploaded.

36

4.2.4 Model
[This chapter can be skipped on a first reading]

Figure 22 Overview of the model classes

Figure 22 depicts the model classes of the gateway application, as can be seen this is by
far the smallest part of the MVC pattern. The model is neither fat nor anaemic, but rather
somewhere in-between.

It is not entirely clear whether the should belong to the model or the
controller, its name even implies that it handles something, and hence should be part of
the controller. The actual methods implemented in are responsible
for creating and updating the tables in the application’s database, meaning they set up
the database model. In this setting the is only used by the internal
system, which calls or when appropriate. Each time a

 object is instantiated by the application, it is to enable fetching of
database objects for reading from or writing to the database, meaning that also here it is
used more as a model class than a controller class.

The class is a singleton class, simply because there really shouldn’t be
multiple instances of the application’s settings. It allows setting the identification string
for the patient to take measurements for, setting the url of the backend to
upload measurements to and also setting a value on whether the program flow
of the application should be automatic or manual. When the class is
instantiated, it reads the settings from the settings table in the application’s database, to
make the application’s settings persistent, and every time a setting is changed, this
change is also written to the database.

Lastly there is the class, which is intended to represent a
measurement taken with a pulse oximeter following the ISO/IEEE 11073-10404 device
specialisation standard. Using one of the standard device configurations for PHD pulse
oximeters implies measuring blood oxygen saturation in percent and heart rate in beats
per minute, both of them with the datatype (The Institute
of Electrical and Electronics Engineers, Inc., 2009), which is a two byte numerical
datatype (The Institute of Electrical and Electronics Engineers, Inc., 2014). In this
implementation the units are both represented by , to support extended
configurations and the values are both represented by the datatype, which
actually is a 32-bit datatype, but also the smallest floating point primitive datatype in

37

Java (Oracle, 2015). Also the xml returned by Antidote, representing
measurements, use the type for blood oxygen saturation and heart rate values.
The timestamp in the ISO/IEEE 11073-20601 standard has 1/100 second precision (The
Institute of Electrical and Electronics Engineers, Inc., 2014), in the

 class it is represented by the class.
The patient identifier is not a part of the ISO/IEEE 11073 standards family, but is added
in this implementation to enable measurements for multiple patients, it is represented
by the datatype.

 has constructors using individual values, with or without
timestamp, and in the latter case it sets the current time as timestamp, a constructor
taking a as paramater as well as a static method converting an xml

 object into a . Lastly it has an empty
constructor, which creates a pseudo random measurement object, and is used together
with the seed database functionality described in 4.2.2 View. The generated
measurement objects will have a timestamp between 2005-01-01T00:00:00 – [previous
year]-12-31T23:59:59 inclusive, a heart rate between 40 – 69 bpm inclusive, a blood
oxygen saturation between 90 – 99 % inclusive and a hexadecimal number between 0 –
270F inclusive as patient identifier. Both numerical values will be generated as integers,
because the pulse oximeter used to test the application only presents integer level
accuracy.

4.2.5 Application flow design
[This chapter can be skipped on a first reading]

To visualise the idea of the application flow, two IDEF0 diagrams were made, one that
sees the gateway device as a black box and a second that separates the gateway into
different function boxes.

38

Figure 23 Overview IDEF0 diagram of Gateway functionality

39

Figure 24 Detailed IDEF0 diagram of Gateway functionality

40

The Configure action in the first diagram is realised through the
and classes, as described in 4.2.2 View and 4.2.4 Model. The Initiate
measuring action is performed by the agent (i.e. the PHD), as this is how the ISO/IEEE
11073 protocol is designed (The Institute of Electrical and Electronics Engineers, Inc.,
2014), and the application is listening for this, as described above, using the classes

, , ,
 and . The received data is then

handled by and , the measurement is identified
with the patient returned from the object and stored into the database which

returns a reference to.

Going into detail on the second diagram, the Bluetooth data is received by the

and the . The data is sent via message
passing to , which uses to let Antidote decode the data into
xml , which in turn are sent by message passing to .
From there ’s method is used to convert the strings into xml

objects, which are then used to create objects
with the method in . These objects are then
stored to the application’s database when calls the method

in , if the program flow is set to
manual. Otherwise these objects are uploaded to the web service using

, and if this fails they are stored in the
database in the same way as when running the application with manual program flow.

If the application is run with manual program flow, the upload described in the end of
the previous paragraph is performed upon user initiation (as can be seen in the
diagram), with the difference that on success, the measurement will be removed from
the database, using the method in

.

4.3 Web service design
This report doesn’t go as much into detail on the web service implementation as on the
gateway application. Mainly because the biggest focus of the project was on the gateway
application, but also because implementing the web service was very straightforward
and the fact that it mostly consists of automatically generated classes. The full source
code of both the web service and the gateway application is available on GitHub, and a
link can be found in appendix 10.1 GitHub repository.

Just like the gateway application, the web service was developed using an MVC pattern,
though it was implemented in .NET/C# instead of Android/Java, because it is intended
to run on Microsoft Windows.

To realise the web service’s OData interface, a library called Entity Data Model (EDM),
written by Microsoft, is used. When using this library, OData GET request methods are
generated automatically, and defining a method called , which takes a

object as parameter automatically converts POST
requests into objects as long as all constructor
parameters are set in the request.

41

To handle the database communication, Microsoft’s ORM Entity Framework is used

42

5. Testing

5.1 Testing the project
In the end of the design phase of the project a test plan was written, using the
acceptance criteria of the user stories in the “Permission from hospital” scenario as
input. The criteria were all valued as either needed or not needed, depending on
whether they were part of base functionality or not. Thereafter three tests were written
that together tests all needed acceptance criteria. An example, the first test, is shown
here:

Tests criteria:

A1.1Gateway unit shall be able to communicate with sensor units

Course of action:
 The tester starts the gateway unit

 The tester starts the PHD

 The tester initiates measurement

Success criteria:
 Gateway unit receives a correct measurement from the PHD

The full test plan is available in appendix 10.3 Test plan, and when replacing all
instances of Ascom Unite (Connect) with the web service, all tests pass, meaning the
proof-of-concept is a success to some extent.

During the end of the design phase a risk and consequence analysis was conducted as
well, and this analysis contains so called fall-back points that define how many percent
of the full product design each part represent, thus giving a way to measure how much
of the project was actually finished, programmatically speaking.

To summarise these fall-back points, 94% of functionality was achieved, 100% of
robustness and 82.5% of usability. The lacking functionality is the possibility to
configure PHDs from the gateway application, and the reason that this feature wasn’t
added is that it was discovered quite late during the project that the Antidote library
didn’t support choice of configuration, instead it just accepts the first configuration
suggested by the PHD. Had it been discovered at an earlier point, it would have been
possible to extend the Antidote library with this functionality, but as it was discovered in
the end of the implementation phase, it was simply deemed non-vital for the proof-of-
concept.

What lacks in usability is the possibility to configure PHDs through the user interface,
which, given that there’s no possibility to configure them at all through the application,
isn’t possible, and also the user interface lacks an activity log. The activity log was meant
to be a collection of all notifications that showed up on the device, with filtering
possibilities, so that a user could check this list, had they missed a notification. This
function was never implemented, because during implementation and testing, there
were never any thoughts that this functionality was missing, which probably is because

43

it’s always clear if a measurement has been successfully uploaded or not, because of the
listing of locally saved measurements.

When extending the proof-of-concept to something closer to a real product, it would
probably be a good idea to implement an activity log though, especially to file errors
when accessing the local database, as those would not be so easy to detect otherwise.
This would also imply saving the log as a file rather than in the database, as saving it in
the database wouldn’t show database errors if the database was corrupt or in any other
way inaccessible. Though on the other hand, an error message in the activity log view
telling the user about the database not being accessible could probably make up for this.

To see the full risk and consequence analysis with all fall-back points, go to appendix
10.4 Risk analysis.

5.2 Checking a general device for compatibility
As health device manufacturers generally don’t mention what protocol their products
use to communicate and considering the fact that the Bluetooth SIG has chosen the
ISO/IEEE 11073 protocol family for their health device profile (Bluetooth SIG, 2016), a
blood pressure monitor from Withings was obtained to investigate if it did actually use
ISO/IEEE 11073. The device in question is medically approved by the FDA in the USA
and complies with European medical device regulations (Withings, 2016).

The device didn’t use the Bluetooth health device profile. It identified itself as a headset
(specifically major class 1024, AUDIO_VIDEO, and device class 1028,
AUDIO_VIDEO_WEARABLE_HEADSET) and wanted to send its measurements to a
specific application developed by Withings. To further investigate the communication
between the blood pressure monitor and the smartphone, Bluetooth HCI snoop logging
was enabled in the smartphone’s Developer options and the logs were later examined in
WireShark. The investigation showed that the actual data transfer between the devices
was performed using the Bluetooth Serial Port Profile, which is meant to be used as a
replacement for traditional serial cable connections (Bluetooth SIG, 2012). The
messages sent were encoded in some not human readable format, and because
investigating the protocol further wouldn’t have given any direct value to the proof-of-
concept, the investigation was put on ice.

When contacting Withings Support and asking about the protocol used, they referred to
their public API for fetching medical data from their own web service (Withings, 2015).
However it would be problematic not to access the device correctly, both because it
would be a very bad solution to start another application and then fetch data from a web
service to then present it and upload it to another web service, and also because it’s not
possible to give any guarantees about data handling when the measurements pass
through a third party.

44

6. Results

6.1 Preconditions
The preconditions for this project were quite open, as the scope of the thesis description
from Ascom was to explore how future products can implement communication
protocols needed to retrieve data from connected IoT devices in healthcare, and the
required results were an investigation regarding the most commonly used IoT protocols
in healthcare and at least one working prototype (Ascom, 2015).

A general project plan was included with the thesis description, consisting of:

 Information gathering – define the problem area and read up on used

technologies

 Analyse – analyse gathered data on Ascom specific needs and requirements

 Evaluation – evaluate different ways of solving the problem and select a

preferred solution

 Design – create a test application prototype

 Validate – test the application

 Report – present the findings to Ascom Wireless Solutions

It boiled down to a more specific workflow plan, which also includes a time plan, which
can be seen in Figure 25.

Figure 25 Original project time plan, showing the intended number of weeks to be spent on each part of the project.

The original time plan was actually kept to, to a large extent, though prototyping and
testing and re-prototyping more or less merged together.

6.2 Findings
There are many different proprietary IoT protocols used by medical devices, sometimes
even the same vendor uses different proprietary protocols for their different products
(Day, 2011). There is however an attempt to standardise PHD communication, in the

2

2

2

8

8

17

0 5 10 15 20 25

Information gathering

Information analysis

Requirements formulation

Prototyping

Testing and re-prototyping

Report writing

Workflow plan

Duration

45

form of the IEEE 11073 standards family (The Institute of Electrical and Electronics
Engineers, Inc., 2014).
There has been projects suggesting solutions to how PHDs can be connected to the
Internet, for example by letting PHDs communicate ISO/IEEE 11073 over CoAP on
wireless network connections or letting them use IPv6 over Bluetooth LE (Martins,
Santos, Perkuisch, & Almeida, 2014).

There has also been projects which have created adapters for health sensors using
proprietary protocols to ISO/IEEE 11073, such as a USB connected weighing scale (Seo,
Kim, Lee, & Kim, 2014) and even the Nintendo Wii Balance Board (Park, Lim, Jung, &
Park, 2010).

A master’s thesis has been written with a similar focus, though it didn’t have the focus
on general device compatibility, but rather two different proprietary systems. It focuses
mainly on creating a reliable way of communicating over UDP and creating a good user
interface in the receiving web service, but was also thought to have hospital integration
and two-way communication. Also it didn’t actually implement sensor connections, but
only simulates data, and here this thesis fills a large gap (de Gouveia, 2013).

There are many started open source projects with the object of creating an ISO/IEEE
11073 library, but none seem to be finished, though Antidote features enough
functionality to create working implementations.

6.3 Results

Figure 26 The gateway application receiving a measurement from a pulse oximeter

This thesis project has resulted in a working prototype for personal health device
integrations, consisting of an Android application and a .NET web service. The Android
application can receive measurement data from pulse oximeters using the ISO/IEEE
11073-20601 protocol over Bluetooth, tag measurements with a patient identifier,
transfer measurements to the web service and store measurements in a local SQLite

46

database in case of lacking connectivity with the web service. The web service is a REST
interface using the OData protocol, able to store measurements in an MSSQL database
and fetch stored measurements according to OData queries.

The picture seen in the beginning of this subchapter, Figure 26, shows the gateway
application running on a low-end Android phone, receiving a measurement from a pulse
oximeter. To get a better picture of what the application looks like, see chapter 4.2.2
View for screenshots. To get an idea on how output from the web service can look and
be used, see chapter 2.5 The Open Data protocol.

Both the findings and the results act as valuable input for Ascom in their future work.

47

7. Conclusion and future work

7.1 Conclusion
It is fully possible to create an integration of personal health devices using the ISO/IEEE
11073 protocol family and a web service and a plausible way of doing this is to use a
gateway device as an adapter to connect the two end parts.

Also the ISO/IEEE 11073 protocol family seems to be the future standard for personal
health devices, though this is not totally clear, as there still are many more manager
devices than agent devices certified by Continua, six years after the announcement of the
ISO/IEEE 11073-20601 protocol (Personal Connected Health Alliance, 2015). Though
there isn’t any need to get a product certified by Continua just because it uses the
ISO/IEEE 11073 protocol, and an investigation should be done on how common it is to
get such products certified by Continua, or rather how common it is not to, in order to be
able to say more about the extent to which ISO/IEEE 11073 is used in available medical
sensor devices.

7.2 Future work
When thinking of possible future work, it’s a good idea to start out with what would
need to be done to turn the proof-of-concept created with this thesis into a real product.
Then there’s of course a more scientific point of view, namely, what else than the
intended product could be developed from this proof-of-concept, and what additions
could be made for it to generate data useful for other research.

7.2.1 Creating a full integration

To create a full integration with either a messaging system or an electronic health
record system, a link between the backend and this other system would have to be
created. It would probably not be so much work finishing this, but still some
considerations would have to be made, for example if this last part of the integration
should read from the web service’s database or send the received measurement objects
on to the next system directly. As the integration in this proof-of-concept uses the Open
Data standard for sending messages, it would also be possible to recreate the backend
from scratch quite fast on almost any platform, for example if one doesn’t use a
Windows/.NET environment.

What is more important when creating a full product is that it would most certainly be
deemed a medical device and would therefore have to comply with patient data
handling laws as well as personal data handling laws. Furthermore it would have to be
approved by the appropriate authorities for the intended market(s).

Another issue could be licensing, for example if a company would like to release an
integration under their own proprietary license. This is possible to do when using the
Antidote library, as it is licensed under the GNU Lesser General Public License, which
allows other works to use the library without licensing this new work under any specific
license, though it depends on how the new work is distributed. For the work to be
considered a “work that uses the Library”, it has to link dynamically to the library and be
distributed separately. If the work is linking statically to the library or is distributed as a
single executable package, it’s considered a “work based on the Library” (Free Software

48

Foundation, 1999). It is of course possible to distribute the gateway part of the
integration as two applications on e.g. Google Play, which is the case with some other
applications already, but it creates hassle for the user and is certainly not something to
wish for.

The other option would be to implement another ISO/IEEE 11073 library, which might
not be a bad idea as it for example could be implemented in the same language as the
rest of the application and thereby make coupling and debugging easier. The developers
of Antidote claim that portability was their most important goal when developing the
library, hence the usage of C and its standard library (Livio, et al., 2012). There is
however a problem with the portability, since the C POSIX library is the one seen as the
C standard library in Antidote and headers specific to this superset of the ANSI C
standard library (such as strings.h) are used. This implies quite much work for getting
core Antidote to just compile on Microsoft Windows, which still happens to be a quite
common operating system with about 80% of the desktop OS market (StatCounter
GlobalStats, 2015).

For a real product to be successful on today’s market, it would probably have to
implement support for more protocols than only ISO/IEEE 11073 since there still
doesn’t seem to be very many agent devices on the market using this standard. If using
Antidote, there is a plugin system, and so plugins could be written for more protocols.
This is a good design pattern since it is modular and thereby enables re-usage of code,
hence it would be a good idea for a new ISO/IEEE 11073 protocol implementation to
also support plugins.

When defining the software design for a new implementation, it would be a good idea to
rewrite the user stories from real interviews, as those of now are mainly based on
qualified guesses. Some things, such as ease-of-use and high automation, are obviously
going to end up in the final definition, but other less general statements (from a software
engineering point of view) are not necessarily going to be as guessed.

7.2.2 Security

The proof-of-concept has focused on security to a certain extent, but it sure is not good
enough for a real product. For example the communication between the gateway and the
backend should use https, which there is a branch for in the repository, but it isn’t
tested, since testing was only done on an internal IP network without DNS and TLS
needs DNS addresses to verify authenticity. Without verified authenticity an exception is
thrown and no connection is set up.

Another security issue is authentication of the gateway devices or their users; as it is
now, the backend is wide open for reading and writing for anyone. A way to do this
could be user authentication with certificates. The gateway application could have an
encrypted key-value store for storing the certificates and in the case of an Android
device with a fingerprint reader use fingerprints as keys. This would be a really easy to
use type of authentication, but further research would have to investigate whether it is
secure enough. Otherwise more traditional user authentication with usernames and
passwords could of course be used.

49

As of now, patient identification uses a string datatype, the thought here is to keep the
implementation open for future choices about how to tie measurement data to specific
persons. What type of identifier to actually use in a real product implementation is
subject of future research, but to comply with patient data handling laws and data
handling laws, as well as to protect the privacy of the patients for moral and security
reasons, it would be a good idea not to use anything directly identifying a specific
person. For example, the US patient data handling law HIPAA lists name, address, birth
data and social security number as identifiers. It also states that health information
without such identifiers is not considered to be Protected Health Information (U.S.
Department of Health & Human Services, 2013). It is a good idea to try avoid handling
PHI, as this comes with several requirements (U.S. Department of Health & Human
Services, 2013).

One possibility to get around this would be to simply use the database id from the
hospital’s internal patient database, which would probably be an integer and not tell
anyone without access to that database anything about whom the measurement data
belongs to. If using a database id as in the suggested solution above, one would have to
think about security when transferring this id to the gateway application, i.e. how to
transfer it.

One way to get the id to the gateway would be to have an interface in the backend that
would return this database id when requested with a real patient identifier. This would
however introduce a few attack vectors. For example, if an attacker were able to
eavesdrop on the communication, they could tie the transferred database IDs to real
persons and by that identify health information that they get hold of. Another possible
attack would be if an attacker got hold of an authorised nurse’s authentication details,
then they could query the backend to make a list of identifiers with their database IDs.
Also exposing a part of the internal database to the Internet might, with the help of
security flaws, expose the full database to the Internet.

Another way of getting IDs into the gateway would be to use schedules and/or
positioning (mostly useful for home care, but indoor positioning systems are in the
making). As there can be delays to schedules and as positioning services are not always
offering the level of preciseness needed or wanted, there would have to be some way of
verifying, and if needed correcting, the identity inserted when collecting measurement
data. When using schedules, this could be realised by showing which schedule position
the gateway application thinks is the current one, and letting the application’s user press
it, get the schedule presented to them and choose the right one. If one would only use
positioning, a map would probably be the best way to verify and correct for whom the
data is measured, as using addresses would insert identifiers into the application.

The database ID could also be stored in a tag which the patient in question wears, e.g. as
a bracelet. The tag could for example consist of a barcode or an NFC tag. Most modern
Android devices have both a camera good enough for reading bar codes of different
formats as well as an NFC transceiver. Using NFC tags or QR codes would enable the use
of advanced cryptography with extra random data, as QR codes can hold almost 3 kB of
data (Denso Wave Inc., 2015) and the slowest NFC data rate would transfer a little more
than 3 kB in a quarter of a second (NFC Forum, 2013). There wouldn’t necessarily be
any need for encrypting information contained in a barcode worn by the patient, as they

50

themselves can control to whom they show it, but encrypting data on an NFC tag is
probably a good idea, since there is a possibility of eavesdropping on NFC
communication, possibly on distances of about 1 metre when using a regular NFC tag,
which sends in passive mode (Haselsteiner & Breitfuß, 2006).

7.2.3 Notifications

The design documentation mentions a number of notifications that should be presented
on both ends of the integration. Those telling about the program flow in the gateway
application are already implemented, but other ones, such as notifications when there
are gaps in the measurement series, are not yet implemented. Such gaps can of course
occur for natural reasons, for example if the patient had to go to the toilet or got delayed
with something else. In any case, if there is a schedule for when measurements should
be taken, the gateway device should notify its holder when a certain time has passed
after a predicted measurement hasn’t been received. If the measurements are of vital
importance for the patient’s life or health status, notifications should also be given from
the backend to the responsible nurse at the hospital, so that they can contact the patient
in question and ask about the delay reason.

Notifications about sensor conditions should also be implemented, and the ISO/IEEE
11073 protocol already includes sensor status codes, making it a question of reading
and handling those codes. They include for example the sensor being disconnected,
malfunctioning, displaced or off (The Institute of Electrical and Electronics Engineers,
Inc., 2009). Possibly instructional images can be added to these notifications.

7.2.4 Uses in other fields of science

A system of this type would gather a lot of medical data, which could be used for
research in the field of medicine, specifically big data and machine learning
implementations, but also generally. To make the data match this purpose, one could
generate public databases with measurement data bundled with age group, gender and
other available health data that can’t serve as a patient identifier.

Further investigation should also be done to see if there actually are any benefits in
using a system like this. For example, does it save administration time for nurses, so that
more time can be spent with patients? Does it heighten the perceived quality of life or
quality of care for patients who can use PHDs instead of large stationary devices? Would
cheaper and more mobile measuring devices increase the number of measurements
taken or the number of patients getting measurements taken? If so, would the increased
data result in more accurate or earlier diagnoses, or would it cause a data flood which
doesn’t come with any real benefit? Would massive amounts of measurement data
analysed as proposed in the previous paragraph result in the possibility to predict
upcoming states for certain measurement patterns, and would that be usable together
with PHDs sent home with patients for longer-term monitoring?

51

8. Nomenclature

Android Debug Bridge (ADB) –A command line tool for communication with Android
devices and Android emulator instances.

Agent – An agent in the ISO/IEEE 11073 protocol family is a device that measures
medical data in some way. The agent is responsible for setting up connections to a
manager when it has new medical data recorded, which it not yet has shared.

Android Native Development Kit (NDK) – A software suite for compiling C/C++ code
into native machine code for the different platforms on which Android runs.

Android Software Development Kit (SDK) – A set of software for developing Android
software, including e.g. a handset emulator, libraries, a debugger and sample code.

Collector unit – A unit that can collect data from a concentrator and transfer it to a
hospital information system.

Concentrator – See gateway unit.

Constrained Application Protocol (CoAP) – An application layer protocol which is
easily translatable to HTTP, but has much smaller overhead and is used over UDP
instead of TCP, thus making it lightweight enough for IoT devices (things).

Gateway unit – A unit that acts as a gateway for (multiple) generic personal health
devices, enabling them to communicate with hospital information systems.

Integrated Development Environment (IDE) – A computer program or program suite
for making programming easier, it usually contains at least a text editor a compiler and a
debugger. Well-known examples include Microsoft Visual Studio, Eclipse and NetBeans.

Manager – A manager in the ISO/IEEE 11073 protocol family is a device capable of
receiving data from agents.

Model View Controller (MVC) – A software design pattern where the code is divided in
different classes depending on whether the code has mostly to do with the Model (data
model, more or less pure information), the View (the interface that the user sees) or the
Controller (code that manipulates, or controls, the model and to some extent the flow of
the program, and hence the view).

Myco – An Android smart phone developed by Ascom, designed to be used by nurses at
a hospital.

Near Field Communication (NFC) – Wireless transfer protocols for short range
(typically up to 10 centimetres) radio data communication. Has support for so called
tags, which are passive data stores, powered by the electromagnetic field that is the RF
signals from the reader device.

52

Object-Relational Mapping (ORM) – A technique in object-oriented programming for
conversion between incompatible type systems, can for instance be used to make a
database seem like a regular collection type.

Personal Health Device (PHD) – A small medical or fitness sensor device, designed to
be worn. It is often a consumer product, but could also be intended for medical use.

Protected Health Information (PHI) – Health information of any kind bundled with an
identifier for either the person regarded by the information or any of that person’s
relatives, according to the HIPAA patient data handling law.

Quick Response (QR) code – A two-dimensional bar code, can be used to contain e.g.
hyperlinks, contact information or just plain text.

Server – A unit that receives collected data from personal health devices, it could for
example be a hospital information system or a patient records system.

Uniform Resource Locator (URL) – What usually (informally) is referred to as “web
address”, it generally consists of a scheme followed by “://” followed by a host followed
by a path, e.g. http://chalmers.se/.

Unite – A messaging system protocol developed by Ascom, features for instance
message priority.

53

9. References

9.1 Reports and articles

Castellani, A. P., Bui, N., Casari, P., Rossi, M., Shelby, Z., & Zorzi, M. (2010). Architecture

and Protocols for the Internet of Things: A Case Study. Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2010 8th IEEE International
Conference on (pp. 678-683). Mannheim: IEEE.

Day, B. (2011, January 12). Standards for Medical Device Interoperability and Integration.
Retrieved January 13, 2016, from Patient Safety & Quality Healthcare:
http://psqh.com/standards-for-medical-device-interoperability-and-integration

de Gouveia, F. (2013). Transmission and presentation of medical sensor-data. Aveiro:
Universidade de Aveiro.

Department of Health. (2013). Reference costs 2012-13. London: Department of Health.
Haselsteiner, E., & Breitfuß, K. (2006). Security in Near Field Communication (NFC).

Workshop on RFID Security 2006. Graz: IAIK, TU Graz.
Martins, A. F., Santos, D. F., Perkuisch, A., & Almeida, H. O. (2014). IEEE 11073 and

Connected Health: Preparing Personal Health Devices for the Internet. Consumer
Electronics (ICCE), 2014 IEEE International Conference on, (pp. 274-275). Las
Vegas.

Park, C., Lim, J.-H., Jung, H.-Y., & Park, S. (2010). ISO/IEEE 11073 PHD Standardization of
Weighting Scale Using Nintendo's Wii Balance Board™ for Healthcare Services.
Consumer Electronics (ICCE), 2010 Digest of Technical Papers International
Conference on, (pp. 195-196). Las Vegas.

Roman, D. H., Conlee, K. D., Abbott, I., Jones, R. P., Noble, A., Rich, N., . . . Costa, D. (2015,
June 29). The Digital Revolution comes to US Healthcare. Equity Research,
Internet of Things, Vol. 5, pp. 1-54.

Seo, D. S., Kim, S. S., Lee, Y. H., & Kim, J. M. (2014). Implementation of Personal Health
Device Communication Protocol Applying ISO/IEEE 11073-20601. International
Journal of Distributed Sensor Networks, 2014(1), 176-179.

Weber, R. H., & Weber, R. (2010). Internet of Things - Legal Perspectives. Berlin: Springer-
Verlag GmbH.

9.2 Standard specifications

Bluetooth SIG. (2007, July 26). Bluetooth Specification Version 2.1 [vol 2] + EDR - Radio

Specification. Retrieved February 4, 2016, from Bluetooth Technology Website:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=2413
63&_ga=1.121150856.1431713180.1441200829

Bluetooth SIG. (2007, July 26). Bluetooth Specification Version 2.1 + EDR [vol 1] -
Architecture. Retrieved February 4, 2016, from Bluetooth Technology Website:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=2413
63

Bluetooth SIG. (2007, July 26). Bluetooth Specification Version 2.1 + EDR [vol 2] -
Baseband Specification. Retrieved February 4, 2016, from Bluetooth Technology
Website:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=2413
63

54

Bluetooth SIG. (2012, July 24). Bluetooth Specification - Serial Port Profile. Retrieved
from
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=2608
66&vId=290097&_ga=1.149442998.1431713180.1441200829

Bluetooth SIG. (2016). Health Device Profile. Retrieved January 14, 2016, from Bluetooth
Technology Website: https://www.bluetooth.com/specifications/assigned-
numbers/health-device-profile

CEN. (2016). CEN - Advanced search - Publications and Work in Progress. Retrieved
January 14, 2016, from CEN - European Committee for Standardization:
http://standards.cen.eu/dyn/www/f?p=204:105:0:::::

Denso Wave Inc. (2015). Information capacity and versions of the QR Code | QRcode.com |
DENSO WAVE. Retrieved December 21, 2015, from QRcode.com | DENSO WAVE:
http://www.qrcode.com/en/about/version.html

The Institute of Electrical and Electronics Engineers, Inc. (2009). IEEE Std 11073-
10404™-2008, Health informatics—Personal health device communication—Part
10404: Device specialization—Pulse oximeter. New York: The Institute of
Electrical and Electronics Engineers, Inc.

The Institute of Electrical and Electronics Engineers, Inc. (2014). IEEE Std 11073-
20601™-2014, Health informatics—Personal health device communication, Part
20601: Application profile—Optimized Exchange Protocol. New York: The Institute
of Electrical and Electronics Engineers, Inc.

9.3 Books

Cohn, M. (2004). User Stories Applied. Boston: Pearson Education, Inc.
Leffingwell, D., & Widrig, D. (2000). Managing Software Requirements. Upper Saddle

River: Addison Wesley Longman, Inc.

9.4 Interviews

Bentzer, J. (2016, February 3). Follow-up meeting. (A. Svanström, Interviewer)
Snyder, M. (2015, September 23). E-mail correspondence about WristOx development

kit. (A. Svanström, Interviewer)
Withings, W. (2015, September 22-29). Conversation about Withings Bluetooth-enabled

devices. (A. Svanström, Interviewer)

9.5 Other sources

Android Open Source project. (2016). Android NDK. Retrieved January 15, 2016, from

Android Developers: http://developer.android.com/tools/sdk/ndk/index.html
Android Open Source project. (2016). Android Studio Overview. Retrieved January 15,

2016, from Android Developers:
http://developer.android.com/tools/studio/index.html

Android Open Source project. (2016). Connecting to the Network. Retrieved January 20,
2016, from Android Developers:
http://developer.android.com/training/basics/network-ops/connecting.html

55

Ascom. (2015). Master Thesis Proposal - IoT Communication Protocols in Healthcare.
Retrieved March 19, 2015, from Ascom Sweden: https://delta.hr-
manager.net/ApplicationInit.aspx?cid=1011&departmentId=8589&ProjectId=66
922&MediaId=5

Bluetooth SIG. (2011, March 6). Bluetooth Basics. Retrieved February 4, 2016, from
Bluetooth Technology Website:
https://web.archive.org/web/20110306131542/http://www.bluetooth.com/Pa
ges/Basics.aspx

Bluetooth SIG. (2016). Bluetooth. Retrieved February 3, 2016, from Bluetooth
Technology Website: https://www.bluetooth.com/what-is-bluetooth-
technology/bluetooth

Bluetooth SIG. (2016). Bluetooth Technology Basics. Retrieved February 4, 2016, from
Bluetooth Technology Website: https://www.bluetooth.com/what-is-bluetooth-
technology/bluetooth-technology-basics

Bluetooth SIG. (2016). Low Energy. Retrieved February 4, 2016, from Bluetooth
Technology Website: https://www.bluetooth.com/what-is-bluetooth-
technology/bluetooth-technology-basics/low-energy

Cisco. (2013, July 29). Connections Counter: The Internet of Everything in Motion.
Retrieved February 3, 2016, from the network - Cisco's Technology News Site:
http://newsroom.cisco.com/feature-
content?type=webcontent&articleId=1208342

Ericsson (Director). (2015). Ericsson launch: Accelerating IoT [Motion Picture].
Retrieved February 3, 2016, from
https://www.youtube.com/watch?v=FyfKxzLbmHc

Free Software Foundation. (1999, February). GNU Lesser General Public License v2.1 -
GNU Project - Free Software Foundation. Retrieved December 18, 2015, from GNU
Project - Free Software Foundation: http://www.gnu.org/licenses/lgpl-2.1.html

Höller, J., & Arkko, J. (2012, June 14). Internet of Things Propels the Networked Society.
Retrieved February 3, 2016, from Ericsson Research Blog:
http://www.ericsson.com/research-blog/internet-of-things/internet-things-
propels-networked-society/

Larmo, A. (2015, July 14). Wi-Fi for the Internet of Things. Retrieved February 3, 2016,
from Ericsson Research Blog: http://www.ericsson.com/research-blog/internet-
of-things/wi-fi-for-the-internet-of-things/

Livio, A., Martins, A., Bezerra, D., Pfützenreuter, E., Silva, F., Martins, J., . . . Almeida, H.
(2012, March 21). Antidote: Program Guide. Retrieved December 18, 2015, from
Signove OSS wiki:
http://oss.signove.com/images/c/c7/AntidoteProgramGuide.pdf

Mathias, C. (2015, January 2). Wi-Fi® and the Internet of Things: (Much) more than you
think. Retrieved January 25, 2016, from Wi-Fi Alliance: http://www.wi-
fi.org/beacon/craig-mathias/wi-fi-and-the-internet-of-things-much-more-than-
you-think

NFC Forum. (2013, December 17). What are the data transmission rates? - NFC Forum.
Retrieved December 21, 2015, from NFC Forum: http://nfc-
forum.org/resources/what-are-the-data-transmission-rates/

OData. (2015). Libraries. Retrieved January 14, 2016, from OData - the Best Way to
REST: http://www.odata.org/libraries/

OData. (2015). OData - the Best Way to REST. Retrieved January 14, 2016, from OData -
the Best Way to REST: http://www.odata.org/

56

Oracle. (2015). Primitive Data Types. Retrieved January 21, 2016, from The Java™
Tutorials:
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Personal Connected Health Alliance. (2015). About Continua. Retrieved January 13,
2016, from Continua: http://www.continuaalliance.org/about-continua

Personal Connected Health Alliance. (2015). Certified Product Showcase. Retrieved
January 22, 2016, from Continua:
http://www.continuaalliance.org/products/product-showcase

StatCounter GlobalStats. (2015, December). Top 7 Desktop OSs on Dec 2015 | StatCounter
GlobalStats. Retrieved December 18, 2015, from StatCounter GlobalStats:
http://gs.statcounter.com/#desktop-os-ww-monthly-201512-201512-bar

U.S. Department of Health & Human Services. (2013, January). Summary of the HIPAA
Privacy Rule | HHS.gov. Retrieved December 21, 2015, from HHS.gov:
http://www.hhs.gov/hipaa/for-professionals/privacy/laws-
regulations/index.html

Withings. (2016). Withings Wireless Blood pressure Monitor. Retrieved January 21, 2016,
from Withings: https://www.withings.com/uk/en/products/blood-pressure-
monitor?

Volvo Car Group. (2015, March 2). Volvo Cars’ connected car program delivers pioneering
vision of safety and convenience. Retrieved January 13, 2016, from Volvo Cars:
https://www.media.volvocars.com/global/en-
gb/media/pressreleases/159478/volvo-cars-connected-car-program-delivers-
pioneering-vision-of-safety-and-convenience

Xamarin Inc. (2016). Simple and transparent pricing. Retrieved January 21, 2016, from
Store - Xamarin: https://store.xamarin.com/

57

10. Appendixes

10.1 GitHub repository
The GitHub repository containing the full source code for this project can be found at
https://github.com/daemondeas/phdIntegration

https://github.com/daemondeas/phdIntegration

58

10.2 Gateway/Concentrator unit reasoning and definition document

The gateway/concentrator unit

A very vital part of the system upon which the thesis “IoT Protocols in Healthcare” is
based, is the gateway unit or concentrator unit. It has these two names because
depending on the scenario in which it is used, it acts more like one than the other, but it
should still be possible to use the same device for both functionalities.

Gateway functionality
When this device works as a gateway, it will relay data from Personal Health Devices
(PHDs) to a Unite messaging system over the Internet, thus working as an ISO/IEEE
11073/Bluetooth -> Unite/IP gateway. This could be done in various ways.

One way to do this is to have the gateway unit function only as a gateway, i.e. to just
relay the ISO/IEEE 11073 encoded data to the Unite Connect server, and let the Connect
server translate it into Unite messages.

Another way is to let the gateway unit be a bit “smarter” and let it handle the translation
and relay the data via for example the Unite REST API.

Concentrator functionality
When functioning as a concentrator the device will concentrate data from multiple PHDs
into medical data for one patient. For a future implementation it might be interesting to
use a single device to concentrate data for multiple patients, but as far as this proof-of-
concept goes, it is deemed out of scope.

System design
As stated above, there are different possibilities on how to design the
gateway/concentrator unit, however, that doesn’t only hold for the software but also for
the hardware.

Hardware design
As the unit in question is intended to be portable it cannot be too large in terms of
volume and mass, perhaps with the exception of a possible future concentrator for
multiple patients (such a device would most likely be stationary in anyway). However
there are still multiple available options when considering a small, powerful enough
device to handle the above described gateway and concentrator tasks. To summarise, we
know that at least the following requirements must hold for the hardware in question.

 Low mass (max 200g should be a good aim)

 Small volume (either possible to put in a pocket or to wear on the body)

 Bluetooth

 Wi-Fi or mobile data connection

 Possible to run both on battery and external power

As of today there are quite many available products on the market that conform to those
requirements, e.g. smartphones, single-board computers with a battery pack and
standalone smartwatches.

59

Using a single-board computer, like for example the raspberry pi, gives huge flexibility
when it comes to the choice of platform. Considering the raspberry pi, there are lots of
Linux and BSD distributions as well as Windows 10 available as operating systems to
use for it, making it possible to choose virtually any framework or programming
language for implementing the gateway/concentrator software. Another possibility
when using a single-board computer would of course be to write a small operating
system designated for just the tasks in question. On the other hand, the single-board
computers are often just a single board and the development process would also have to
include casing and integration with some kind of battery pack. Although this product
packaging would be outside the scope of this thesis project, it’s still worth taking into
consideration in case parts of the project will actually be used for a future product.

In the case of smartphones, there is an advantage in that the market is full of devices
pre-packaged with all necessary hardware and a high-capacity battery. Another
advantage is that the person using the gateway/concentrator might already have a
smartphone that could run the software, and would thus not need any extra device for
obtaining this functionality. A downside is lack of flexibility; today there are two major
platforms, Android which uses Java (and C/C++) and iOS which uses Objective C or Swift.
There is also the Windows phone platform, with a couple of percent market share, using
the .NET framework, and a few others all below one percent market share. There is
actually also a framework called Xamarin, with which it is possible to create applications
for Android, iOS and Windows phone with mostly the same C# code, however when
reading discussions about it on different developer forums, it doesn’t seem to be
production ready yet.

Lastly when looking at standalone smart watches, there are a few different with very
varying operating systems, but for example those which runs full Android could use the
exact same application as that for an Android smartphone based system. The watches
have a clear advantage in terms of being mobile and easy to wear, but due to their small
size they also have quite small batteries in comparison to their power consumption.

Software design
When it comes to the software design, one question is whether the ISO/IEEE 11073
decoding should be performed at the gateway unit or at the Connect unit, but whichever
decision is made here, a decoding module will be needed. To make the software as
portable and reusable as possible it is good to use a modular design, and therefore the
different parts of the software system will be described per module.

Bluetooth module
This software module will handle the Bluetooth part of the communication, it should at
least have these functions/methods (or equivalent depending on
framework/programming language):

 void write(byte[] message) – transmits the data of message to the connected Bluetooth
device

 void read() – receives messages from the connected Bluetooth device and sends them via

message passing to the control module

 bool connect(BluetoothDevice device) – tries to connect to device and returns success
status

60

 void disconnect() – disconnects from connected device

Control module
Contains the main logic of the Gateway, i.e. what to do with received data, controlling of
connected devices etc. It should contain at least the following functions/methods:

 void handleReceivedMessage(Message msg) – decides what to do with msg, depending
on its type and contents

 void initiate() – initiates connections to all configured PHDs and to any configured
Connect server

 void addDevice(BluetoothDevice device) – adds device to the list of PHDs to connect to
at initiation

 void removeDevice(BluetoothDevice device) – removes device from the list of PHDs to
connect to

 bool configureConnect(IPNumber nr) – configures nr to be the IP address of the Unite
Connect server to connect to, returns whether connection was possible

 void unConfigureConnect() – clears Connect server address

 PatientData add(PatientData pd1, PatientData pd2) – returns the combination of all
medical data in pd1 and pd2, when a value is to be found in both of them (e.g. when

combining data from a blood pressure monitor and a pulse oximeter, there could be

duplicate pulse values) the one from pd2 is used

IP module
This part of the system handles communication over IP networks, in other words it is
the part that connects to Connect. It should feature at least the following
functions/methods:

 void setAddress(IPNumber nr) – sets nr to be the IP address of the server

 IPNumber getAddress() – returns the current server address

 bool send(PatientData pd) – sends pd to the configured server and returns whether
transmission was successful

 void read() – receives messages from the server and sends them via message passing to
the control module

Decoding module
This module will handle decoding of ISO/IEEE 11073 messages into something useful. It
is proposed to use the Antidote library as this module, as it is already used in several
Continua certified manager software and is also available under the GNU lesser general
public license, meaning it is allowed to be used as is in commercial products. Whatever
choice is made upon which module to use for decoding, it must at least contain the
following function/method:

 PatientData decode(ISO/IEEE11073Data md) – returns the decoded values of md

61

10.3 Test plan

Test plan

The purpose of this document is to identify a way to check that the system developed in
the context of the thesis “IoT Communication Protocols in Healthcare” is really a proof-
of-concept for a solution of the problem described in the thesis proposal and in the
system description.

As the system is described by four scenarios with associated user stories and acceptance
criteria, this plan will be based upon one of those scenarios, namely the “permission
from hospital” scenario. It is essentially, in terms of system setup, the same scenario as
the “monitoring in a ward” scenario, with the sole difference that the Internet is used in
place of a local network. The only system part not included in this scenario is the
collector unit, which is not really needed to prove the concept of integrating small health
devices into Unite, but more of a special case with an extra unit along the line of
transmission.

Test setup
The setup for these tests will be equivalent to the system setup shown for the
“permission from hospital” scenario in the system description document.

The tester will wear the PHD instead of a patient, and the tester will also initiate
measurement.

The Gateway unit shall be paired with the PHD and configured to communicate with the
Connect server.

The Connect server shall be configured to receive data from the Gateway unit.

Figure 27 Picture of test system setup

62

Decisions about what to test
This plan goes through all acceptance criteria in the scenario “permission from hospital”
and decides if the criterion is needed for the proof-of-concept or not, and if it is, it
describes a way to test if the criterion holds.

Criteria
A1.1 Gateway unit shall be able to communicate with sensor units – needed

A1.2/A2.2 Gateway unit shall be able to send monitoring (sensor) data over the
Internet to the hospital in real-time – needed

A1.3 Gateway unit shall notify the patient if a sensor unit falls off or stops
transferring data – not needed

A1.4 Server shall be able to receive all data sent by the gateway unit – needed

A1.5 Server shall have the data presentable to nurses in real-time – not needed

A1.6 Server shall generate a notification in case of sensor data out of accepted
ranges or not received sensor data at defined data reception times – not needed

A1.7 Gateway unit shall be easy to configure – not needed

A2.1 Gateway unit shall collect all sensor data sent by the sensor units – needed

A2.3 Gateway unit shall notify the patient and the hospital if it is unable to collect
or transmit data – not needed

A2.4 Gateway unit shall be easy to use for the patient – not needed

A2.5 Sensor units and gateway unit shall not make the patient too immobile – not
needed

Tests

T1. Sensor unit communication
Tests criteria:

 A1.1 Gateway unit shall be able to communicate with sensor units

Course of action:

 The tester starts the gateway unit

 The tester starts the PHD

 The tester initiates measurement

Success criteria:

 Gateway unit receives a correct measurement from the PHD

63

T2. Relaying data over the Internet
Tests criteria:

 A1.1 Gateway unit shall be able to communicate with sensor units

 A1.2 Gateway unit shall be able to send monitoring (sensor) data over the Internet to the
hospital in real-time

Course of action:

 The tester starts the Unite server

 The tester starts the gateway unit

 The tester starts the PHD

 The tester initiates the Unite connection

 The tester initiates measurement

Success criteria:

 Gateway unit receives a correct measurement from the PHD

 Unite server receives a correct measurement from the gateway unit

 It is possible to find the measurement in the Unite system at most three seconds after it

has been received by the gateway unit

T3. Continuous measurement
Tests criteria:

 A1.1 Gateway unit shall be able to communicate with sensor units

 A1.2 Gateway unit shall be able to send monitoring (sensor) data over the Internet to the

hospital in real-time

 A1.4 Server shall be able to receive all data sent by the gateway unit

 A2.1 Gateway unit shall collect all sensor data sent by the sensor units

Course of action:

 The tester starts the Unite server

 The tester starts the gateway unit

 The tester starts the PHD

 The tester initiates the Unite connection

 The tester initiates measurement

 The tester lets measurement run for a minute
o If it is a type of test where point measurements are performed (e.g. blood

pressure), the tester instead performs three measurements

 The tester ends the measurement session

Success criteria:

 Gateway unit receives all measurements transmitted by the PHD

 Unite server receives all measurements that the gateway receives

 It is possible to find all measurement data in the Unite system at most three seconds

after the last measurement was received by the gateway unit

64

10.4 Risk analysis

Risk and consequence analysis

This document is intended to identify larger risks associated with the project, analyse
their possible consequences and give an idea on how to tackle them, should they occur.

Project risks
A time plan unit is not finished on time

Consequences:

 Deliverables needed for the next unit in the time plan might not be finished, thereby
delaying also that unit

 The extra time needed to finish the unit will almost inevitably take working time from

units later in the plan

 In the end the project might not be finished on time

Measures:

 Keep track of the time plan while working

 Should a unit seem to take longer time than planned:
o Work extra hours

o Prioritise what’s left and do what’s necessary first

o Prioritise and remove what’s not so important from this or coming units

 Let the time plan be a “living document”, i.e. modify it if new revelations make it seem

that some unit will take longer or shorter time

Technical risks
Communication with PHD(s) is impossible to implement

Consequences:

 At least one of the deliverables about PHD communication will not be delivered

 The name of the project will be misleading as no integration will be done

Measures:

 Generate data to be able to continue with the rest of the project

Communication with Unite is not possible to make secure

Consequences:

 Implementation cannot be used in a real product

Measures:

 Don’t send sensitive data over open networks

 Continue with the rest of the project

65

Communication with Unite is not possible to implement

Consequences:

 At least one of the deliverables about Unite communication will not be delivered

 The name of the project will be misleading as no integration will be done

Measures:

 Write a detailed report about why it doesn’t work

Android will have stability issues (e.g. killing the service(s) that handle(s)
communication)

Consequences:

 Implementation cannot be used in a real product

Measures:

 Try getting it as stable as possible

 State that Android is not a suitable platform for integration of PHDs

 Think of what could be a better platform for PHD integration

Data will often be corrupted

Consequences:

 Data will be unusable

Measures:

 Also send checksums and allow retransmission requests

Communication links will be unstable (i.e. connection is dropped often)

Consequences:

 Data might be missed

 System might “go down”

Measures:

 Re-connect automatically

 Check if it’s possible to make connections more stable

 Save data until transmission is confirmed

66

Fall-back points
The fall-back points are indicators for measuring how big percentage of a project part is
finished, should the part not be fully completed.

Functionality goals
 PHD communication 40%

o Bluetooth connects 10%

o PHD communicates with Antidote 30%

o Antidote receives measurements 45%

o Possibility to configure PHDs 15%

 Data handling 20%
o Turning measurement data into measurement objects 15%

o Storing of measurements in a local database 40%

o Extracting wanted information from database 45%

 Unite communication 40%
o Connecting to Connect module 20%

o Converting measurement into Unite message 80%

Robustness goals
 Application doesn’t freeze during testing or usage 20%

o Doesn’t freeze at all → 100%

o Freezes for a short time, but continues to work afterwards → 50%

o Freezes for a long time, without data loss → 5%

 Application doesn’t crash during testing or usage 40%

o Doesn’t crash at all → 100%

o Doesn’t lose any data when crashing → 30%

 Application always receives incoming connections 40%

o X/100 connections are received X%

Usability goals
 Configuration possible through UI 50%

o Configuration of PHDs 15%

o Local configuration (what/when to measure etc.) 45%

o Configuration of Unite connection 40%

 UI notifies the user of what is happening 40%
o PHD connection notification 15%

o New measurement notification 30%

o Problem notification 10%

 There is a problem notification 50%

 Good description of the problem 50%

o Unite connection notification 15%

o Receiving messages from Unite (e.g. “registered data for Patient X into medical

records system”) 30%

 UI keeps an activity log 10%

o Log contains all notifications 50%

o Possibility to set filters for what the UI shows from the log file 50%

67

10.5 Early system sketches
This appendix features two early sketches of how the system could look, they were
drawn about 1.5 weeks into the project when the idea of a gateway had just arisen.

Figure 28 A sketch of an integration over the Internet

This first sketch shows the idea of the same software running on multiple devices, here
an Android smartphone a Raspberry Pi single board computer and a pc laptop. The idea
was to show a flexible system where IoT medical devices using Bluetooth could connect
to a server over the Internet through various types of connection. The server could
possibly raise alarms in case of critical measurements,

As the actual gateway application implemented is written in Java, it should be easy to
make it run on a single board computer or a pc laptop, as long as they have Bluetooth
connectivity. The biggest part would be to adapt the application to the respective
operating systems’ Bluetooth stacks.

68

Figure 29 A sketch of an on-site integration over a local network

The second sketch shows two different devices running the same gateway software,
connected to an Ascom Unite Connect server on a local network. It is a complement to
the first sketch in the way that it shows hospital or care centre usage, rather than
remote usage with Internet connections. The essential part is that the software should
be written so that it works in both cases.

