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ABSTRACT

System identification is a powerful technique to build a model from measurement data by using

methods from different fields such as stochastic inference, optimization and linear algebra. It

consists of three steps: collecting data, constructing a mathematical model and estimating its

parameters. The available data often do not contain enough information or contain too much noise

to enable an estimation of all uncertain model parameters with a good-enough precision. These are

examples of challenges in the field of system identification. To construct a mathematical model,

one should decide upon a model structure and then estimate its associated parameters. This model

structure could be built with clear physical interpretation of its parameters like a parameterized

finite element model, or be built just to fit to test data like general state-space or modal model. Each

such model class has its own identification challenges. For the former, the complexity of finite

element models can create an obstacle because of their time-consuming simulation. Furthermore,

if a linear model does not represent the data with reasonable accuracy, nonlinear models need to

be engaged and their modeling and parameterization impose even bigger challenges. For the latter,

selecting a proper model order is a challenge and the physical relevance of identified states is an

important issue. Deciding upon the physical relevance of states is presently a highly judgmental

task and to instead do a classification based on physical relevance in an automated fashion is

a formidable challenge. In-depth studies of such modeling and computational challenges are

presented here and proper tools are suggested. They specifically target problems encountered in

identification of large-scale linear and nonlinear structures. An experimental design strategy is

proposed to increase the information content of test data for linear structures. By combining some

new correlation metrics with a bootstrap data resampling technique, an automated procedure is

developed that gives a proper model order that represent test data. The procedure’s focus is on the

physical relevance of identified states and on uncertainty quantification of parameter estimates. A

method for stochastic parameter calibration of linear finite element models is developed by using

a damping equalization method. Bootstrapping is used also here to estimate the uncertainty on

the model parameters and response predictions. For identification of nonlinear systems a method

is developed in which the information content of the data is increased by incorporating multiple

harmonics of the response spectra. The parameter uncertainty is here estimated by employing

a cross-validation technique. A fast higher-order time-integration method is developed which

combines the well-known pseudo-force method with exponential time-integration methods. High-

order-hold interpolation schemes are derived to increase the methods stability. As an alternative, to

speed up the computations for large-scale linear models, a surrogate model for frequency response

functions is developed based on sparse Polynomial Chaos Expansion.

Keywords: System identification, Uncertainty quantification, Bootstrapping, Polynomial chaos

expansion, Surrogate modeling, Exponential integration, Finite element model
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Part I
Extended Summary

1 Motivation and background
Modeling and simulation (M&S) play important roles in the analysis, design and optimization
of engineering systems. It targets deriving models which are accurate enough for their intended
purpose that can be used to predict the systems’ behavior under different conditions.

In general there are two distinctively different ways of arriving at models for engineering
systems: by black-box or by white-box modeling. Black-box models are determined from flexible
model structures that are made to match measured data as well as possible. Common such models
for dynamic systems are state-space, ARX, ARMAX and modal models. White-box models are
the result of diligent and extensive physical modeling from first principles. The resulting model
could for example be given as a system of partial differential equations (PDEs). In order to obtain
its time responses by simulation, the PDEs are most often spatially discretized by using the finite
element method (FEM). This yields a system of ordinary differential equations (ODE) in time by
which the simulation can be carried out by using time-integration methods.

In a case when the model’s response is compared with test results, it is often found that
the nominal model does not give the required accuracy to predict the structural response to an
excitation. That is mainly due to (i) modeling errors which are the result of model simplification,
discretization, etc., (ii) parameter errors which refer to inaccurate setting of model parameters and
(iii) measurement inaccuracies which can be due to the effect of noise and measurement errors.

A procedure to deal with various sources of uncertainties and other deficiencies during the
development of a valid mathematical model is shown in Figure 1.1. Different aspects of this
procedure are treated in this thesis. Model verification, as the first step of the procedure, is dealing
with modeling errors. These errors could be introduced at two stages. The first stage is when the
mathematical model is approximated by a numerical model. This could introduce errors such as
discretization errors and convergence errors in iterative computational schemes. The second stage
is when the numerical model is implementing in the computer program. This could introduce
errors as the consequence of programming mistakes or algorithm inconsistencies. The procedure
engaged to eliminate the errors at the first and second stages are called calculation verification
and code verification, respectively.

To tackle errors of type (ii) and (iii), a hybrid category of modeling should be employed
which is called grey-box modeling. This is a parameterized white-box model with unknown or
uncertain parameter setting which requires to be adjusted for increasing the model fit to test data.
The associated parameterization should ideally be performed based on good physical insight.

Estimation of parameters in black-box and grey-box models is the focus of the field of system
identification. The uncertainty of the estimated parameters as a consequence of measurement
noise and errors can also be estimated in the process. This uncertainty estimation can be viewed
as an overlap between system identification and uncertainty quantification. When experimental
data are available, these uncertainty estimations can be done by employing statistical inference
methods, linear algebra and optimization algorithms. Figure 1.2 shows a flowchart of system
identification methods. In brief, after collecting data from a system, a suitable model set should
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Figure 1.2: System identification procedure [74, 49].

be selected and then, using a proper identification algorithm, its associated parameters could be
estimated.

The model is either chosen to represent a linear or nonlinear view on reality. Linear models are
dominating the representation of the global structural dynamics behavior of complex mechanical
systems. This is due to the fact that linear models are computationally efficient and have simple
input-output relationships which most often offer good enough insight into the systems’ dynamics.
However, many dynamic systems behave somewhat nonlinear during their normal operations
and all structures show nonlinear characteristics when subjected to extreme loading conditions.
If significant nonlinear characteristics are found from testing of the system, a linear model
may be judged being insufficient to represent the structural behavior and a nonlinear model
has to be engaged. This frequently occurs for mechanical systems that include various sources
of nonlinearity such as joints with gap and dry friction and structural parts subjected to large
deformations. The validity of a model is crucial for most applications. It might be found that a
linear model is not good enough (and thus falsified) for the intended use and nonlinear effects
need to be brought into the modeling. Today’s demand for high fidelity models often calls for
modeling of these nonlinear effects properly. This motivates that much effort is spent on nonlinear
system identification in industry and academia [43, 81]. Another possible validation finding is
that a linear model structure is good enough, but the model parameters need to be calibrated.
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As shown in Figure 1.1, the final step of developing a mathematical model is to estimate the
uncertainty on the model’s response prediction. This is an aspect of the uncertainty quantification
which is often called uncertainty propagation. In general, this procedure requires a lot of model
evaluations which means a heavy computational burden for large-scale dynamic system. This
motivates the necessity of fast simulation methods.

2 Research challenges in system identification
The inverse nature of system identification imposes several challenges. These include selecting a
proper model structure and describing its uncertain parameters appropriately. These also include
the parameters identifiability issue which concerns whether the parameters can be estimated with
small uncertainty or not. Identification obstacles can be handled before conducting tests to make
the test informative with respect to the most influential parameters. This can be done by finding
the most effective locations of sensors and actuators and finding the best type of measurement
conditions which results in the estimation of the parameters with minimum level of uncertainty.

Furthermore, most identification algorithms are based on minimizing a deviation metric that
describes the difference between the measure data and the model’s response. This is called a cost
function. In order to have fast convergence in such minimization, these methods often use the
information of the gradient and Hessian of the cost function. Since the cost functions might be
quite irregular and can contain several local minima, the minimizers may get stuck into these local
minima but to which one, depends on start condition of the minimization algorithm [72, 62, 27].
This is another major challenge in such identification methods.

For black-box system identification, several methods have been developed to construct a
mathematical model with little user interaction [51, 58, 75]. One central problem here is to select
the complexity of the model. This is an art that is more-or-less left to the user to decide upon. If the
model shows linear time invariant (LTI) behavior, this reduces to selecting a proper model order.
In the context of system identification, there exists an extensive literature for order estimation of
linear dynamical models, e.g. the Singular Value Criterion (SVC) [7] and the Akaike Information
Criterion (AIC) [3]. These criteria mostly target the prediction capability of the model. However,
in the context of structural dynamics, in addition to that, the physical relevance of the parameters
is another important factor which should be considered. Since distinguishing between physical
and noise states is a highly judgmental task, user expertise plays a significant role in it. One major
challenge is to automate this procedure.

For nonlinear system identification more parameters are normally required to substantially
increase the model’s capability of representing the real structural behavior as compared to a
corresponding linear model. Therefore, a set of candidate parameterized properties that affect the
nonlinear behavior have to be added. The selection of such candidates is a challenging task which
must be done based on insight into the physics which governs the behavior of the system at hand.

In addition, the trend towards working with more detailed models of large-scale engineering
systems is continuing but long simulation time is one of the major complexity limiting factors. This
is specially valid for nonlinear systems. Although the computational power of modern computers
grows very fast, the increasing model complexity, more precise description of model properties
and more detailed representation of the system geometry result in considerable execution time and
memory usage for the computer simulations. Therefore, efficient simulation tools are practical
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necessities. The situation become more challenging when it comes to system identification process
because it normally involves a large number of model evaluations.

3 Research aim and scope
Given input and output test data of a dynamic system, the overall goal of this work is to develop a
fast and robust framework to identify a model that give a similar input to output relation. These
objectives for the black-box and grey-box system identification are treated in this thesis.

3.1 Black-box system identification
In black-box system identification, a model structure should be selected and then, as the iden-
tification part, its parameters are estimated from the available test data. The major objective of
black-box identification here is to develop a fast and robust framework for the identification of a
proper mathematical model from one single noisy measurement dataset. Moreover, the framework
should give confidence interval for the estimated parameters. Here, the framework is called fast
because it avoids high-dimensional optimization in the overall procedure and is called robust
since it is rigorous, independent of threshold values, rules-of-thumb and user interaction. It is thus
autonomous and its sensitivity to measurement noise is small. If a modal model is selected as the
model structure, this task will be referred to as an automated modal parameter estimation. If on
the other hand, a state-space model structure is selected, this addresses the proper model order
selection by focusing on the physical relevance of the associated parameters, see Paper C. These
were topics of several other recent works [76, 39]. However, most of the presented methods were
not fast, i.e. their algorithm included high-dimensional optimization algorithms [63, 76, 77], or
robust, they are not fully automatic and need user decisions.

3.2 Grey-box system identification
A grey-box model has a known structure but with unknown parameter setting. Giving good
estimation of these settings when test data is available is the focus of grey-box system identifi-
cation efforts. To get it fast for large-scale dynamic structures, the method requires fast forward
simulations and to get it robust, the method should work well in presence of realistic levels of
measurement noise [16].

In a variety of application fields grey-box models that give plausible representation of reality
have been built up over decades of studies. They are often large, detailed and complex and thus
time consuming for simulation. Since identification often involves many repeated simulations,
fast simulation of those is a key. To this end two different strategies can be devised: (i) Speed up
the simulation by using fast time-integration method like the one presented in Paper F. (ii) Speed
up the simulation by the use of approximants, for instance by using surrogate models, like the one
described in Paper E.

The models used usually contains many uncertain parameters and test data are rarely rich
enough to allow reliable identification of all these parameters. Moreover, the test data collected
from the associated system is also usually contaminated with measurement noise. Consequently
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a robust identification procedure is a necessity. This can be achieved by (i) analyzing the
identifiability of the parameters and evaluating the information content of the data employed for
estimation of the parameters, see Paper G, or (ii) using the given noise information in the cost
function, see Paper D.

4 Research methodology
To perform a system identification, a set of the model’s responses should be selected to compare
with the corresponding test data. These responses could be represented as time, frequency or
modal domain data. To analyze the behavior of a linear dynamic system, the frequency response
function (FRF) is important because it provides information over a given frequency range of
interest with a clear physical interpretation. This is the main reason for the focus on the FRF in
different areas of research such as model updating [32, 87], vibration control [15, 53] and system
identification [13, 85]. The research presented here also focus on FRF data.

The FRF is often measured through vibration testing and can be used for identification of
black-box or grey-box dynamic models. For this purpose, a parameterized model is required. In
black-box system identification, the parameters are viewed as vehicles for adjusting the fit to the
data and does not reflect any physical interpretation in the system [49]. These parameters depend
on the selected model structure and its complexity. The choice of an appropriate model structure
is thus a very basic and important choice when performing black-box system identification.
Examples of such model structures for dynamic systems are state-space and modal models. Both
these are used in this thesis. The modal model is the most common model in the community of
structural dynamics and its associated parameters includes modal frequency, modal damping and
modal vectors. The state-space models are selected due to the following reasons: (i) they can
represent multi-input, multi-output (MIMO) systems equally convenient as single-input single-
output (SISO) systems and (ii) they can easily be expanded to include more complex physical
behavior, e.g. nonlinear models. The parameters of a state-space model are the elements of some
canonical form of its associated matrices. It should be emphasized that for LTI systems, the modal
models and state-space models are interchangeable with a unique mapping.

The required complexity of the selected model is a crucial aspect. It needs to be determined if
the test data can be represented by a linear model or whether more advanced models are required.
The determination of model complexity is one of the challenges in most identification algorithms.
Much work has been addressed this issue in the context of both control theory and structural
dynamics. This is elaborated upon in Section 4.1.

In grey-box system identification, the models typically reflect the underlying physics or
mechanistic understanding of the system. Parameterized finite element models are examples of
such models. Their parameters usually have physical interpretation such as:

• parameters describing the geometry of the system, like cross-section area and length of structural
members

• parameters describing the material constitutive law, like Young’s moduli, Poison’s ratio and
yield stress.

• parameters describing the loading of the systems, like applied pressure and enfourced ground
motion
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To estimate the best setting of these parameters, a proper estimation method should be selected.
Well-known estimation methods are the maximum likelihood estimation (MLE), the maximum a
posterior (MAP) and the state-space subspace-based (S4) estimation methods [49, 59].

Given uncertainties in the test data, the parameters’ uncertainties can be estimated by statistical
methods. This gives an overlap between system identification and uncertainty quantification (UQ).
In general, there are two major types of uncertainty quantification which can be inferred from
the following citation borrowed from [73] about the definition and reasoning behind the UQ:
“Quantification of Uncertainty is driven by the identification, characterization, and quantification
of the uncertainties that appear in the code predictions of “Best Estimate” calculations. The thrust
of Best Estimate plus Uncertainty (BE+U) is that prediction is probabilistic precisely because of
our inability to complete V&V [Verification and Validation] in some definitive sense and because
of uncertainties intrinsic to complex modeling activities”. This means that one should estimate
the uncertainty bound of the parameters at the Best Estimate, as the first type of UQ, and then
propagate the estimated parameters through the model to establish credible bounds on model’s
prediction on an intended application in a regime of interest [64], as the second type of UQ.

The first type is referred to as inverse uncertainty quantification and its target is to estimate the
covariance matrix of the parameters. This can be done using the inverse of the Fisher information
matrix (FIM) to provide the Cramér-Rao lower bound [41] on the estimated parameters, or
by performing cross-validation checking, e.g. by k-fold or leave-one-out sampling methods.
Bootstrapping is an alternative method that could be used for this purpose. This will be discussed
in more detail in Section 4.2.1.

The second type is uncertainty propagation. Techniques for uncertainty propagation can
generally be classified as intrusive or non-intrusive [47]. In the intrusive approaches the governing
equations of the mathematical models are modified such that one explicit function relates the
stochastic properties of the system responses to the system’s parameters. The perturbation method,
the Karhunen-Loeve expansion and intrusive polynomial chaos expansion are some tools used
for this purpose. In contrast, non-intrusive approaches use already existing deterministic codes
to estimate uncertainty by evaluation at sample points given by parameters’ assumed probability
distribution functions (PDFs). The Monte Carlo methods and non-intrusive polynomial chaos
expansion are examples of these methods.

Besides that, the uncertainty propagation can be categorized based on its target [70] as:

• Second moment methods, these methods mostly focus on the central part of the system responses
PDF i.e. mean and standard deviation of the system response. Examples of such methods are
perturbation methods and quadrature methods. These methods are limited to studies of the first
two statistical moments of the response.

• Reliability methods, these methods mostly focus on the tail of the system response PDF to
evaluate the probability that the response exceeds a prescribed threshold. First-order reliabil-
ity methodFORM, Second-order reliability methodSORM, importance sampling and subset
simulation are examples of such methods [70, 5].

• Whole PDF, these methods are interested in the entire system response PDF. Monte Carlo
Simulation (MCS) is the basic tool for this purpose. Another approach is based on spectral
methods [82, 26].
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Both system identification and uncertainty quantification include a lot of model evaluations. If
a large-scale or nonlinear structure is of interest, the forward simulation will require extensive
computational resources the computational efficiency of the used methods become an inevitable
ingredient. This will be discussed deeper in Section 4.2.2.

4.1 On black-box system identification

Over the last few decades, a lot of effort has been put to develop efficient algorithms for identifi-
cation of the modal parameters using time or frequency domain [39, 40]. A central problem in
most of these algorithms is to determine a good estimate of a proper model order. In addition, the
physical relevance of the individual modes of the identified model is of importance. Therefore, the
common practice is to identify a model with an order higher than needed to ensure that all physical
modes present in the considered frequency band are captured [77, 78]. However, this inevitably
results in the appearance of the so-called noise modes in the identified model, i.e. modes which
are present in the model due to measurement noise or computational imprecision but have no
relevance to the physics of the tested system. Various tools have been developed in the literature
to detect and eliminate such noise modes from a model. The most widespread tool is undoubtedly
the so-called stabilization diagram [29, 30].

In recent years, many attempts have been made to automate the interpretation of stabilization
diagram, or the modal parameter estimation procedure in general [55, 61]. Owing to the fact
that analyzing the stabilization diagram reduces to finding the modes with similar properties, the
majority of automation strategies borrow methods from statistical machine learning [34], such as
Support Vector Machine (SVM) [30] and clustering algorithms [63, 78, 76].

However, most of these methods are not robust in the sense that they require user-defined
parameters or thresholds. To the authors knowledge, the only exceptions are the algorithms
proposed by Vanlanduit et al. [76], Reynder et al. [63], and Verboven et al. [78, 77]. Nevertheless,
their methods are not fast. This means that they involve high-dimensional optimization proce-
dures, either for their estimation [76, 77] or clustering algorithm [63], which deteriorates their
performance both in terms of the computational efficiency and convergence.

Paper C presents an algorithm for fast and robust modal parameter estimation in which the only
required optimization is performed in a three-dimensional space. To this end, for the estimation, a
S4-based identification method is employed and for the clustering, a correlation-based strategy is
used.

The S4 identification algorithm is selected for the estimation because (i) there is no need
for an explicit model parametrization (ii) the elegance and computational efficiency of the
algorithm which is due to avoiding high-dimensional optimizations. This method relies on QR
and singular value decompositions which are well-understood techniques from numerical linear
algebra. However, although this identification algorithm has been proved to be theoretically
consistent [51], in presence of noise and under certain conditions it loses the consistency which
leads to bias in the estimated parameters. Several approaches have been developed in the literature
to solve this issue. For more discussion see Paper A.

The correlation-based clustering is selected due to its non-iterative nature. One major challenge
to tackle is the spatial aliasing phenomenon. It occurs when few sensors are engaged in the
experimental determination of modal vectors and results in high correlation values between
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two modal vectors that correspond to different resonance frequencies. Another challenge is the
nonunique eigenvectors of coalescent modes which becomes a crucial issue in correlation analysis
as well as in automated modal parameter estimation algorithm. In Paper B two correlation metrics
are described which can treat these issues simultaneously. They are further used in Paper C for
an automated modal parameter estimation.

4.2 On grey-box system identification
The grey-box system identification described here combines a parameterized FE model of a
structure with test data to identify its unknown parameters. Therefore, it requires a fast simulation
method for FE analysis as well as a proper identification method. The fast simulation is especially
important when a large-scale and/or nonlinear system is considered.

4.2.1 Robust system identification
Frequency response data are commonly used for the FE model calibration. This is due to the fact
that the information can be collected in wide frequency range and the calibration problem becomes
overdetermined due to the availability of FRF data from MIMO experiments [25] that provide a
rich dataset. One specific problem here is that the system’s frequency response is strongly affected
by damping and the damping is notoriously difficult to model using first principles. The damping is
thus most often described as modal damping in calibration exercises. However, it is then important
that the correct modes from the model and the test data get matched together. This task, called
mode pairing, is very tedious and delicate. Recently a new method, called damping equalization,
has been proposed to avoid the mode pairing for deterministic parameter estimation [1]. The
damping equalization is achieved by imposing the same modal damping on all experimentally
found system modes and making proper adjustment of the test data. That technique is used here.

Spectral input and output data can also be used for nonlinear system identification. For
a nonlinear system, the stationary frequency response (if such exists) is multi-harmonic and
load dependent. The reason is that when a nonlinear system excited by a loading with one
single frequency components, it reacts such that its response contains different harmonics of that
frequency [81, 56, 2]. Therefore, the multi-harmonic FRF should be considered. This is done in
Paper G.

Since test data are often corrupted by measurement noise, the point estimation of the parameters
can be affected and are often subject to bias and variance. The statistics for the estimated
parameters is thus of great interest [31, 67]. To this end, the statistical problem can be formulated
in two distinct ways based on either the Bayesian or the Frequentist paradigm. The Bayesian
approach views probability as a measure of relative plausibility of different possibilities conditional
on available information [8]. In contrast, the Frequentist approach assigns a probability measure
to an inferred value of a parameter setting through the notion of repetition [19]. The Maximum
Likelihood Estimator (MLE) is a frequently used estimator in the Frequentist literature. It gives
the parameter setting by maximizing the associated likelihood function [59]. If the model’s
parameters are identifiable [49], the distribution of the MLE can be asymptotically approximated
by a Gaussian distribution whose covariance matrix is the inverse of the FIM given by the
negative Hessian of the logorithm of the likelihood function [49]. This can be also carried out by
performing cross-validation methods, e.g. by using k-fold or leave-one-out sampling methods.
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Bootstrapping is an alternative approach to quantify the uncertainty in the model parameters. The
idea behind bootstrapping is to generate several datasets by repeated random sample the observed
data and then, perform repeated parameter estimations for each individual bootstrap dataset [34,
20]. Bootstrapping results in a number of samples from the model parameters distribution which
can be used to quantify the degree of confidence in the parameter estimates.

To evaluate the uncertainty of the model response prediction, it is of special interest to
propagate the estimated model parameter’s uncertainty through forward simulation [50, 54]. For
this purpose the most straightforward approach is to use the assumed asymptotic distribution
(Gaussian) for the parameter’s uncertainty and then, directly use samples of the distribution.
Bootstrapping is a well-known approach to assess the credibility of the model predictions. In
particular, this method is of interest when the goal is to quantify the prediction error and its
variability for model responses for which there exist no measured data [18]. To this end, several
bootstrap rules rule have been developed which basically keep track of how well a model evaluated
at an individual sample from the distribution of the parameter estimates predicts the response
of interest at data points that are not included in the associated bootstrap dataset [18]. One
such methods is the 0.632 bootstrap. For discussion on the available method and the proposed
methodology of using bootstrapping method for uncertainty quantification of linear structures see
Paper D and for using cross-validation technique for a nonlinear structure see Paper G.

4.2.2 Fast forward simulation

To identify a model for a large-scale dynamic system, long overall simulation time is normally
one of the major obstacles. It occurs due to two reasons: (i) each forward simulation in itself is
time-consuming and (ii) a lot of evaluations are required by simulations due to iterative nature
of identification. In the literature, model reduction [44, 60], efficient time-integration [84, 6, 48]
and parallel simulation methods [71, 86] are different strategies that address the first issue. In this
context, an efficient time-integration method has been developed for nonlinear structures to reduce
simulation time.

There are three important aspects in simulating a nonlinear structure. The first is that suffi-
ciently accurate predictions/simulations of the nonlinear structure’s response should be obtained.
Then, the efficiency of the simulation required to be such that one may obtain results fast enough
for convenience. Last but not least, is the issue of numerical stability of the simulation method,
e.g. see Paper F.

One well-established method that considers the effect of structural system nonlinearity is the
pseudo-force method [33]. In this method, the nonlinear effects are considered as being external
forces. Felippa and Park [21] used this method to treat the nonlinearity in structural dynamics. Lin
et al. [46] presented an iterative pseudo-force method for second-order systems to accommodate
non-proportional damping in structures. As higher order ODEs can always be recast into first order
form, suitable numerical integration schemes like different Runge-Kutta methods can be used
to find system responses. Although these integration methods are well-established, a significant
effort is still being expended for nonlinear systems to find methods that integrate the nonlinear
equations efficiently and accurately. Exponential time integration methods belongs to a class of
methods that attempt to solve a first-order ODE system by use of a semi-analytic approach [14, 23,
35]. These methods are thus fast. This motivates researchers to reintroduce these methods in some
areas for fast and accurate simulation of large scale circuits [79, 90], and for nonlinear [89] or

10



stiff systems [52]. Since these methods use the exact analytic solutions for certain type of stimuli,
the local truncation error that is introduced by most other numerical methods is not a problem.
Hence for the free decay initial-value problem of a physically stable linear system it is A-stable
and accurate, independently of the chosen length of time-step. The approximations are introduced
to the ODE solutions when transient response under general loading conditions is of interest. In
such cases, exponential integration with time-stepping schemes based on hold interpolation of the
loading can be done with different hold orders. The zero-order hold, the first-order hold and the
triangular hold schemes are well established. To increase the stability and accuracy of the results,
higher-order hold and, in particular, the second-order hold have been introduced [88, 17]. For
more discussions on the available methods and the proposed methodology see Paper F.

Stochastic model reduction [4] and surrogate modeling [22] are two methods employed to
replace a computationally expensive model with an approximant that can reproduce the essential
features faster. Of interest here are surrogate models. In analogy with the methods of uncertainty
propagation, they can be created intrusively or non-intrusively. Perturbation method [66] is an
example of intrusive approach. This is a classical method for uncertainty propagation purpose but
it is only accurate when the parameters has small coefficients of variation (COV), say COV<5%.
An alternative method is the intrusive polynomial chaos expansion methods [26]. It was first
introduced for Gaussian input random variables [80], and then extended to the other types of
random variables leading to generalized polynomial chaos methods [83, 68].

The non-intrusive methods can be categorized as being either regression methods [11, 9] or
projection methods [28, 45]. Kriging [24, 38] and non-intrusive PCE [10] or combinations thereof
[42, 65] are examples of non-intrusive approaches. The major drawback of the PCE methods, both
intrusive and non-intrusive, is the large number of unknown coefficients that need to be computed
in problems with large parameter spaces. This is referred to as the curse of dimensionality [69].
Sparse [12], adaptive [11] and adaptive sparse [10] polynomial chaos expansions have been
developed to dramatically reduce the computational cost for this type of problems.

Very few recent papers address the direct implementation of PCE to represent frequency
responses of systems [57, 36, 37]. They have indicated that PCE does not converge at the peaks
even with very high-order PCE for FRFs of very trivial cases. For deeper discussion on this topic
and a proposed methodology to alleviate this problem see Paper E.

5 Thesis contribution
The significant parts of the thesis contributes to the black-box and grey-box system identification
of large-scale linear/nonlinear dynamic systems. They are summarized at the following.

5.1 Automated modal parameter estimation

The major contribution here is the development and validation of a automated modal parameter
estimation algorithm such that the following apply: (i) it involves a system identification algorithm
which allows for fast and robust identification of MIMO systems of a given order, (ii) it avoids
high-dimensional optimization, (iii) it provides uncertainty bounds on the estimated modal
parameters and (iv) it needs no user-specified parameters or thresholds.
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The keys to success of this method are recently developed correlation metrics which help to im-
prove the performance of the engaged correlation-based clustering algorithms. This improvement
is done by augmenting the eigenvalue information with the eigenvector into a correlation analysis,
like the one often performed by use of the Modal Assurance Criteria (MAC). This correlation is
called Modal Observability Correlation (MOC) and is presented in Paper B. It can treat the spatial
aliasing phenomenon. Moreover, the major problem of nonunique eigenvector of the coalescent
eigenvalues are addressed by projecting these eigenvector to a subspace with fixed and orthogonal
basis. This subspace can be obtained by applying QR-factorization to the spatial information of
the loading.

To do the identification, a S4 identification algorithm is employed. Another contribution in
this part is an experimental design to make the S4 identification algorithm more consistent and
reduce the bias in the estimated parameters. This is described in Paper A.

5.2 Fast simulation methods for large-scale systems
One contribution here is the development of a surrogate model for the FRF of a linear system
by using the sparse PCE, see Paper E. To this end, there are two major difficulties which are
addressed in this work. (i) The shift of eigenfrequencies due to parameters variation, (ii) the
non-smooth behavior of the FRFs. The method of stochastic frequency transformation has been
developed in which those problems are addressed. To make the method work for systems with a
large parameter space, a sparse and adaptive PCE has been used.

The next contribution is the development a predictor-corrector exponential time-integration
method to simulate nonlinear structures fast and accurate. This conditionally stable method is
based on the well-known concept of pseudo-force for nonlinear simulation adapted for exponential
time-integration methods. To increase the domain of stability, a second-order hold interpolation
has been developed. It was shown that it contributes positively to accuracy and efficiency. The
method is applied to a complex nonlinear structure, see Paper F for more discussions. Some
successful attempts have been made to extend the concept for parallel simulation method in [86].

5.3 Grey-box system identification
The first contribution of this part is the development of a new framework for identification and
uncertainty quantification of a linear model as proposed in Paper D. This method consists of
three steps of which the first is to replace the measured data with an identified state-space model
using the algorithm proposed in Paper C. The dedicated frequency sampling strategy proposed
in Paper A is used as an experimental design for state-space model identification with less bias.
In the next step, the grey-box model is calibrated against this state-space model. The method
is free from mode matching which is necessary for most other algorithms [1]. This damping
equalization in conjunction with a logarithmic cost function results in good parameter estimates.
These estimates are used to start the next step, the uncertainty quantification. To do the uncertainty
quantification the bootstrapping technique is used to estimate the uncertainty in the parameters as
well as uncertainty in the model response prediction.

The accuracy of the parameters are improved by employing two strategies. (i) Analysis of the
identifiability of the parameters. The parameters are said to be identifiable if they can be estimated
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with small uncertainties. This uncertainty analysis is done by evaluating the inverse of the FIM
[49]. (ii) A strategy that incorporates the measurement noise information in the cost function.
This is done by weighting the deviation metric at each discrete frequency using the signal-to-noise
ratio of the measured frequency responses. It contributes to the reduction of bias in the estimated
parameters.

The next contribution here is to develop a framework for nonlinear system identification by the
use of multi-harmonic FRFs as described in Paper G. The information content of the FRF data
is increased by including the sub-harmonics and super-harmonics to the fundamental harmonic
FRF. This information is used for the calibration process together with the identifiability analysis
of the parameters to improve the accuracy of the parameter estimates. To decrease the risk that
minimizer gets stuck into local minima of the cost function, the calibration optimization process
is started from several points of the parameter space. These starting points are obtained by the
Latin-hypercube sampling. A k-fold cross-validation is used to estimate the uncertainty of the
parameters.

6 Summary of the appended papers
• Paper A: Experiment Design for Improved Frequency Domain Subspace System Identification

of Continuous-time Systems

A widely used approach for identification of LTI and MIMO systems from continuous-time fre-
quency response data is to solve it in discrete-time domain using a subspace based identification
algorithm which incorporates a bilinear transformation. However, the bilinear transformation
nonlinearly maps the distribution of discrete frequencies from continuous-time domain to
discrete-time domain which may make identification algorithm to be ill-conditioned. In this
paper we propose a solution to get around this problem by designing a dedicated frequency
sampling strategy. Promising results are obtained when the algorithm is applied to synthetic
data from a 6DOF mass-spring model with low modal controllability.

• Paper B: The Modal Observability Correlation as a Modal Correlation Metric

The historical development of the MAC originated from the need of a correlation metric for
comparing experimental modal vectors estimated from measured data to eigenvectors that have
been determined from finite element calculation. For systems with well separated eigenvalues
with many system degrees-of-freedom (DOF) represented in the eigenvectors it is normally
easy to distinguish eigenvectors associated to different eigenvalues by low MAC correlation
numbers. However, for eigenvectors with a sparse DOF sampling it may be hard to distinguish
between vectors by MAC correlation numbers. To reduce the problem of distinguishing
between eigensolutions, this paper advocates the use of a new correlation metric based on the
observability matrix of the a modally decoupled state-space realization.

• Paper C: Automated Modal Parameter Estimation Using Correlation Analysis and Bootstrap
Sampling

The estimation of modal parameters from a set of noisy measured data is a highly judgmental
task, with user expertise playing a significant role in distinguishing between estimated physical
and noise modes. Various methods have been developed to automate this procedure. The
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common approach is to identify models with different orders and cluster similar modes together.
Most methods based on this approach suffer from high-dimensional optimization in either
the estimation or clustering step. To overcome this problem, this study presents a novel
algorithm for autonomous modal parameter estimation in which the only required optimization
is performed in a three-dimensional space. To this end, an S4 identification method is employed
for the estimation and a non-iterative correlation-based method is used for the clustering. This
clustering is at the heart of the paper. The keys to success are correlation metrics that are able to
treat problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes
simultaneously. The algorithm commences by the identification of an excessively high-order
model from measured frequency response functions. The high number of modes of this model
provide bases for two subspaces: one for likely physical modes of the tested system and one
for its complement. By employing the bootstrap technique, several datasets are generated
from the same basic test dataset and for each of them a model is identified to form a set of
models. By correlation analysis with the subspaces, the highly correlated modes of these models
which appear repeatedly are clustered together and the noise modes are removed. A fuzzy
c-means clustering procedure performed on a three-dimensional feature space assigns a degree
of physicalness to each cluster in a final procedure step. Case studies indicate that the algorithm
successfully clusters the similar modes and quantify the extent to which each cluster is physical.

• Paper D: Stochastic Finite Element Model Calibration Based on Frequency Responses and
Bootstrap Sampling

A new stochastic finite element model calibration framework for estimation of the uncertainty
in model parameters and predictions from the measured frequency responses is proposed in this
paper. It combines the principles of bootstrapping with the technique of FE model calibration
with damping equalization. The challenge for the calibration problem is to find an initial
estimate of the parameters that is reasonably close to the global minimum of the deviation
between model predictions and measurement data. The idea of model calibration with damping
equalization is to formulate the calibration metric as the deviation between the logarithm of
the frequency responses of FE model and a test data model found from measurement. In that
test data model, the same level of modal damping is imposed on all modes. This formulation
gives a smooth metric with a large radius of convergence to the global minimum. In this study,
practical suggestions are made to improve the performance of this calibration procedure when
dealing with noisy measurements. A dedicated frequency sampling strategy is suggested for
measurement of frequency responses in order to improve the estimate of a test data model.
The deviation metric at each discrete frequency is weighted using the signal-to-noise ratio
of the measured frequency responses. For uncertainty quantification, the experimental data
is resampled using the bootstrapping approach and repeated calibration produce uncertainty
bounds on the model parameters and predictions.

• Paper E: Sparse Polynomial Chaos Expansions of Frequency Response Functions Using
Stochastic Frequency Transformation

FRFs are important for assessing the behavior of stochastic linear dynamic systems. For
large systems, their evaluations are time-consuming even for a single simulation. Therefore,
uncertainty quantification by crude Monte-Carlo (MC) simulation is not feasible for such
systems. In this paper, a surrogate model by using non-intrusive adaptive sparse PCE is
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proposed. In this approach, a stochastic frequency-transformation is developed to maximize
the similarity between the FRFs before applying PCE. This allows using low-order PCE for
each frequency. A principal component analysis is employed to reduce the number of random
outputs. The proposed approach is applied to two case studies: a simple 2-DOF system and a
6-DOF system with 16 random inputs. The accuracy assessment of the results indicates that the
proposed approach can predict the FRF with reasonable accuracy. Besides, it is shown that the
first two moments of the FRFs obtained by the PCE converge to the reference results faster than
MC methods.

• Paper F: An Efficient Exponential Predictor-Corrector Time Integration Method for Structures
with Local Nonlinearity

Simulating the nonlinear behavior of complex systems requires significant computational effort.
Despite the rapid progress in computing technology, the demand is still strong for more efficient
simulation methods in diverse structural dynamics fields such as nonlinear system identification
and nonlinear system reliability. In addition to efficiency, algorithmic stability and accuracy
must be addressed in the development of new simulation procedures. In this paper, we propose
an efficient and accurate method to treat localized nonlinearities in a structure. The method
is conditionally stable. The system equations are separated into a state-invariant linear part,
and a state-dependent nonlinear part that is considered to be external pseudo-forces that act on
the linear system. The response of the system is obtained by fixed point iterations in which
the pseudo-forces are updated until convergence. Although the method works well with one
time-step ahead prediction, the effect of multiple time-step ahead prediction is also investigated
and shown to increase algorithm efficiency. Since the method is based on linear state-space
model form similarity transformations and model reduction can be easily exploited. To perform
the numerical integration, time-stepping schemes like the exponential first-order hold method
can be used to take advantage of their efficiency and accuracy. To increase the accuracy and
stability of the method, a second-order hold equivalent is derived and implemented. The
efficiency, stability and accuracy of the method are demonstrated by numerical examples.

• Paper G: Informative Data for Model Calibration of Locally Nonlinear Structures based on
Multi-Harmonic Frequency Responses

In industry, linear FE-models commonly serve to represent the global structural behavior.
However, available test data may show evidence of significant nonlinear dynamics. In such a
case, an baseline linear model may be judged insufficient to represent the structure. The causes
of the nonlinear characteristics may be local in nature, and the remaining part of the structure be
satisfactorily represented by linear descriptions. Although a baseline linear model can then serve
as a good foundation, the parameters needed to substantially increase the model’s capability of
representing the real structure are most likely not included in that model. Therefore, a set of
candidate parameters to control the nonlinear effects has to be added. The selection of the model
parameters and data for calibration form a coupled problem. An over-parameterized model for
calibration results in unreliable estimates. The test should be designed such that test data could
be chosen so that the expected variances of the estimated values of the chosen parameters are
made small. The multi-harmonic steady-state responses due to periodic excitation are shown
to contain valuable information for the calibration process of models from structures with
local nonlinearities. In the paper, synthetic test data from a model that represents a nonlinear
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benchmark structure are used to verify the method. The model calibration and the k-fold
cross-validation are based on the Levenberg-Marquardt and the Gauss-Newton minimizers,
respectively. To increase the possibility of finding a global minimum, candidates for minimizer
starting points are found by the Latin hypercube sampling method. The points with the smallest
deviation, i.e. the lowest value of the objective function, is selected as a starting point for the
calibration and cross-validation. The calibration result shows good agreement with the true
parameter setting, and the k-fold cross validation result shows that the variance of the estimated
parameters are reduced when including multi-harmonic nonlinear frequency response functions.

7 Concluding remarks and future work
The various accomplishments of this dissertation can be classified into two broad categories: (i)
black-box system identification and (ii) grey-box system identification.

In black-box system identification, the objective is here to develop a framework for automated
modal parameter estimation from noisy FRF data such that it can provide statistical information
for the estimated parameters without the need for high dimensional optimization. For this
purpose, first, two correlation metrics have been developed to treat spatial aliasing and non-
unique eigenvectors of coalescent modes in modal correlation. Using these correlation metrics, a
framework has been developed in which bootstrapping for sampling test data plays a significant
role. A subspace-based linear algebra plays another significant role in both the estimation of
modal parameters and clustering the modes with physical and noise mode behaviors.

In grey-box system identification, the major goal is to identify a large-scale nonlinear dynamic
system when the test data is contaminated with measurement noise. The common approach is
to first identify the underlying linear system. Then, remaining deviations between the test result
and the model response can be considered as nonlinearities for which models should be identified.
Based on this, a framework for stochastic calibration of linear models using FRF data is provided.
Besides estimating the parameters and their associated uncertainties, the uncertainty on the model
response prediction is estimated. For robustness, the given noise information is used to weight the
cost function to reduce the effect of high noise-to-signal ratio. In addition, identifiability analysis
of the parameters performed before the estimation process, contributes to the robustness of the
method.

A nonlinear identification method has been proposed based on frequency response. In this
method, the information content of the data with respect to the parameters was increased by
including side harmonics of the FRF and excluding non-informative part of the measured data.
The identifiability of model parameters with respect to the available data was analyzed by using the
Cramér-Rao lower bound and the calibrated model was validated using a k-fold cross validation
procedure.

Long simulation time could be a hinder for the use of these methods for large-scale systems.
To resolve this issue, a surrogate model for the FRF of linear systems by using the PCE is
developed. The major challenge of using the PCE for non-smooth system responses is treated.
Sparse and adaptive methods are used to avoid the curse of dimensionality problem encountered by
models with large-parameter space. Together with these, a method for fast simulation of nonlinear
structures is developed. This can be considered as a combination of the pseudo-force method and
the exponential time-integration method to enjoy the benefit of both methods by being accurate
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and efficient. It is given in one-time-step-ahead and multiple-time-step-ahead forms. The method
is conditionally stable. To expand the region of stability, three different schemes of second-order
hold interpolation were derived and investigated.

In this thesis, it is assumed that the model is verified and is without any modeling errors.
One interesting extension of the current work is thus to take such modeling errors into account.
Moreover, the selection of a proper model is an important aspect of the system identification. This
is suggested as an option for future investigation.
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