
Chalmers Publication Library

Diagnosability Verification Using Compositional Branching Bisimulation

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Citation for the published paper:
Noori Hosseini, M. ; Lennartson, B. (2016) "Diagnosability Verification Using
Compositional Branching Bisimulation".

Downloaded from: http://publications.lib.chalmers.se/publication/234619

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/234619


Diagnosability Verification Using
Compositional Branching Bisimulation

Mona Noori-Hosseini, Bengt Lennartson

Abstract— This paper presents an efficient diagnosability
verification technique, based on a general abstraction approach.
More specifically, branching bisimulation including state labels
with explicit divergence (BBSD) is defined. This bisimulation
preserves the temporal logic property that verifies diagnos-
ability. Based on a proposed BBSD algorithm, compositional
abstraction for modular diagnosability verification is shown
to offer a significant state space reduction in comparison to
state-of-the-art techniques. This is illustrated by verifying non-
diagnosability analytically for a set of synchronized compo-
nents, where the abstracted solution is independent of the
number of components and the number of observable events.

I. INTRODUCTION

Failure is the execution of a behavior that violates the
nominal behaviors specification. The task of identifying
deviations from desired behavior is called failure diagnosis
and the ability to deduce previously occurred failures within
a bounded number of observations is called diagnosability
[1]. A system is diagnosable if each failure can be identified
through a number of events in partial observations.

There are two approaches, namely, language specification
[2], and failure events [3], to show the faulty behavior in dis-
crete event systems. In the language specification approach, a
specification represents the non-faulty behavior of the system
and every deviation from that specification leads to a failure.
In the failure event approach, the failures are shown in
the same model using events. For both approaches, there
are polynomial diagnosability algorithms. However, although
polynomial time algorithms exist, the state space increases
exponentially when modular systems are composed. Thus, it
is often too complex to analyze systems of industrial size.

To tackle the computational complexity, abstraction-based
diagnosability verification algorithms have been recently
used for both automata and Petri net models [2], [4], includ-
ing techniques for modular systems. In [2], the computational
effort for diagnosability verification methods is reduced by
determining sufficient conditions, such that diagnosability
of the original system follows from diagnosability of an
abstracted model. Moreover, it is shown that if the abstracted
system is not diagnosable, then the original system is not
diagnosable, if all observable events remain after abstrac-
tion. This requirement implies that in general only limited
abstractions can be expected for non-diagnosable systems.

The aforementioned abstraction techniques used language
specifications. In some other works, event-based abstraction
techniques are exploited, which are behaviorally equivalent

M. Noori-Hosseini and B. Lennartson are with Faculty of Automatic
control, Automation and Mechatronics, Chalmers University of Technology,
SE-412 96, Gothenburg, Sweden.

to the original model. One of the most well known equiv-
alences is weak bisimulation [6]. Another slightly more
restricted one is branching bisimulation (BB), [7]. Unlike
weak bisimulation, BB preserves the branching structure of
processes, in the sense that it preserves computations together
with the potentials in all intermediate states that are passed
through, even if silent moves are involved.

BB is an abstraction for labeled transition systems (LTSs)
where transitions are labeled by events, also called actions in
model checking [6]. LTSs correspond to ordinary automata
in the discrete event community. A similar abstraction on
systems with state labels, Kripke structures (KSs), is called
stuttering bisimulation (SB) [8], [9]. Both BB and SB have
the important property that the temporal eventually operator
(E) is preserved, which is not the case for weak bisimulation.
Even more, the complete temporal logic CTL* [6], except
for the next operator X, called CTL*-X, is preserved for BB
and SB [9].

For diagnosability verification based on a modular formu-
lation, the resulting transition models are a combination of
the two previously mentioned models, which include both
state and event labels. We simply denote such systems as
transition systems (TSs), and a bisimulation corresponding
to BB and SB has also been formulated in [11], called visible
bisimulation. However, their TS model involves a crucial
restriction that a silent event also means that corresponding
source and target state labels must be equal. For diagnos-
ability verification that assumption is not always satisfied.
Thus, in this paper no such restrictions are introduced and
a corresponding bisimulation is defined, called branching
bisimulation including state labels and explicit divergence
(BBSD). Explicit divergence means that silent loops are not
removed in the BBSD abstraction. This naming emphasizes
the close relation between BB and BBSD. A simple state
reduction algorithm is also introduced based on a general-
ization of the distributed BB reduction algorithm in [18].

In the proposed diagnosability algorithm, relevant failure
information is handled by introducing specific state labels.
Exploiting BBSD, a compositional event-based abstraction
technique is then applied, while preserving state label in-
formation and silent loops. This means that local events are
abstracted by BBSD, where the synchronization of compo-
nents step by step generates more and more local events. This
type of abstraction can be traced back to [10], but applied
to local events it was more recently proposed in [21]. Note
that when all components are synchronized all events are
local, and for the resulting abstracted model a CTL based
model checking is performed to identify if there are any



uncertain loops corresponding to a non-diagnosable system.
The relation between diagnosability verification and temporal
logic was proposed in [15].

A preliminary version of this work was presented as a
work in progress paper in [12], without any proofs and
algorithmic aspects on BBSD. The contribution of this paper
is that BBSD is strictly defined, including a simple reduction
algorithm, and then applied to compositional abstraction-
based diagnosability verification. Compared to previous
works on abstraction for diagnosability, our approach gives
more efficient abstractions. One reason is that observable
events can also be abstracted, still showing equivalence
between the abstracted and the original system concerning
diagnosability. Furthermore, unlike earlier language-based
approaches, where all transitions with the same event must
be considered for abstraction, transitions with the same event
are here abstracted individually, once again resulting in
more efficient abstractions. Finally, observe that the proposed
compositional approach can be applied to any verification
problem that can be formulated as a CTL*-X expression on a
system, composed of a number of synchronized components.

The whole verification concept is illustrated by a nontrivial
example, including an arbitrary number of synchronized
components. An analytical solution is obtained based on the
proposed verification procedure, independent of the number
of components and the number of observable events.

After some preliminaries, diagnosability for discrete event
systems is presented in Section III. This is followed by ab-
straction based on BBSD in Section IV, applied to composi-
tional abstraction and diagnosability verification in Section V.

II. PRELIMINARIES

The event observation projection is a mapping from the
original event set Σ to an observable event set Σo ⊆ Σ,
i.e., P : Σ → Σo ∪ {ε}, which can be extended to Σ∗

that is the set of all event traces generated from Σ. Here, ε
shows unobservable events, so that we have s ∈ Σ∗, σ ∈ Σ:
P (sσ) = P (s)P (σ), with P (ε) = ε and P (σ) = ε for all
σ ∈ Σu, where Σu is the unobservable events set. Moreover,
Σ = Σo∪̇Σu, and Σo = Σs∪̇Σ`, where Σs is the set of
shared events that are involved in more than one component,
and Σ` is the set of local events that only belong to one
component. Σu = Σf ∪̇Σn, where Σf and Σn are failure
and non-failure unobservable events, respectively. For our
compositional BBSD, the Kripke structure, transition system
and synchronization are now defined.

Definition 1 (Kripke Structure): [9] Let Λ be a set of
state labels. A Kripke Structure (KS) is a triple K =〈
Q,T,Q0,Λ, L

〉
, where Q is a set of states, T ⊆ Q × Q

is the transition relation, Q0 denotes the set of initial states,
and L : Q → 2Λ represents the state labeling. An element
(q, p) ∈ T , usually written as q → p, is called a transition.

�
Based on the KS, we extend automata to include state labels
in G.

Definition 2 (Transition System): A transition system
(TS) is a tuple G =

〈
Q,Σ, T,Q0,Λ, L

〉
, where Σ is a set

of events, T ⊆ Q × Σ × Q is a transition relation and
(q, σ, p) ∈ T , which is also denoted by q

σ→p. �
Before the synchronous composition of two TSs is defined,
the silent event τ is introduced. When local events are
hidden, their event label is replaced by τ . A Kripke structure
can therefore be considered as a TS where all event labels
are equal τ . In the following synchronous composition, τ
events are handled in the same way as local events, although
silent τ events can be expected in both G1 and G2 that are
now synchronized.

Definition 3 (Synchronous Composition): Let Gi = 〈Qi,
Σi, Ti, Q

0
i ,Λi, Li〉 for i = 1, 2 be two TSs. The synchronous

composition of G1 and G2 is defined as G1 ‖ G2 =〈
Q1 ×Q2,Σ1 ∪ Σ2, T,Q

0
1 ×Q0

2,Λ1 ∪ Λ2, L
〉

where

(q1, q2)
σ→(p1, p2) : σ ∈ (Σ1 ∩ Σ2) \ {τ}, q1

σ→1p1, q2
σ→2p2,

(q1, q2)
σ→(p1, q2) : σ ∈ (Σ1\Σ2) ∪ {τ}, q1

σ→1p1,

(q1, q2)
σ→(q1, p2) : σ ∈ (Σ2\Σ1) ∪ {τ}, q2

σ→2p2,

and L : Q1 ×Q2 → 2Λ1∪Λ2 . �

III. DIAGNOSABILITY OF DISCRETE EVENT SYSTEMS

In this section, the notion of diagnosability is defined,
along with a polynomial algorithm for diagnosability veri-
fication of modular systems.

Definition 4 (Failure Assignment Function): A failure
assignment function is a mapping from Σ to state failure
labels N or F , i.e., ψ : Σ → {F,N}. It means that if σ /∈
Σf , it is projected to N , otherwise it is projected to F . All
reachable states after an F -labeled state, keep it as their label.

�
Note that, the diagnosability of a system does not imply that
failures belonging to the same class can be distinguished. It
means that if one or more transitions in a specific failure
class are executed, after a finite number of observations we
are able to establish that at least one transition of that class
has executed. For the sake of simplicity, here one failure
class is considered. Let the set of all traces generated by G
be denoted by L(G), also assume failures are permanent.
Formally, diagnosability is then defined as follows.

Definition 5 (Diagnosability): With respect to P and ψ, a
system G is diagnosable if

(∃ni ∈ N)(∀s ∈ L(G), ψ(sf ) = F )

(∀m = st ∈ L(G), ‖t‖ ≥ ni)⇒
(∀w ∈ L(G), P (w) = P (m))(∃r ∈ pr({w}), ψ(rf ) = F )

Here, sf and rf are the last events in traces s and r,
respectively, and pr({w}) is the set of all prefixes of w.

�

A. Diagnosability Verification Algorithm

For diagnosability verification in a modular system, as-
sume that the system model G consists of n compo-
nents G1, . . . , Gn synchronized according to Def. 3. Thus
G =‖i∈In Gi, where In = {1, . . . , n}. All unobservable



events Σui in the individual components are assumed to be
local. Also, faults are not distinguished by components.

The algorithm introduced in [14], verifies the diagnos-
ability of G and is described in the following. According
to Definition 4, augment the states of each Gi with failure
labels from the set Λi = {N,F}, where the resulting TSs
are denoted by GFi . Then construct the corresponding non-
failure models GNi , where all failure states labeled by {F}
in GFi are removed. All unobservable events in Σui in GNi
are also relabelled such that they are local in relation to GFi
but also to all other components. Then, verify the existence
of uncertain cycles, i.e., loops over states with state label
{N,F} in the verifier

Gv = GN ‖ GF (1)

where GN =‖i∈In GNi and GF =‖i∈In GFi . Such loops
can be expressed by temporal logic, which will be explained
below. If the model contains at least one uncertain cycle,
it is not diagnosable. Also note that due to associative and
commutative properties [13], the verifier can be rewritten as

Gv = (‖i∈In GNi ) ‖ (‖i∈In GFi ) =‖i∈In (GNi ‖ GFi ) (2)

This reformulation is important, since each pair GNi ‖ GFi
may have a number of local events. The modular BBSD
abstraction proposed in this paper may then generate a
significant state space reduction, before synchronization with
additional components is performed. This is further explained
in Section V.

Also observe that after every synchronization in (2), the
union between the state labels according to Def. 3, only
results in the following two state labels

{N} and {N,F}

independent of the number of synchronizations. These sets
are from now simply denoted by N and NF , respectively.

The complexity of the method in [14] is O(n2
q(nt−nf )),

where nq and nt are the number of states and transitions
respectively, and nf is the number of failure transitions in G.
It is claimed that this verifier has lower complexity than all
other methods found in the literature. In this paper, we verify
the diagnosability of (1) more efficiently applying BBSD
technique. In [14] the coreachability of GF is also performed
before synchronization with GN . Coreachability sometimes
reduces the state space, but it is not applicable in our modular
version. Thus, the coreachability procedure is not included
in this paper, and in the final example it does not influence
the result, since all states in GF are then coreachable.

If all components in a modular structure are diagnosable,
the total system is also diagnosable. Therefore, we assume
that at least one component is non-diagnosable when the
diagnosability of synchronized components is evaluated.

B. Temporal Logic

In [15] it is pointed out that the existence of uncertain
cycles in a verifier can be formulated as a model checking
problem, where a temporal logic expression is verified [16].

In our case, the system G is non-diagnosable if the following
CTL expression, cf. [17]

EFEG (NF ) (3)

is satisfied for the verifier Gv in (1), where NF is the failure
state label in Gv . This implies that at least one path in Gv
will eventually permanently have the state label NF . Thus,
this path will continue forever in an uncertain cycle. Note
that, the negation of (3), i.e., AGAF (N), does not hold for
diagnosability verification of Gv in (1), due to the inclusion
of empty set in the definition of A. In other words, using
A quantifier, CTL can not distinguish between two similar
(terminating and non-terminating) behaviors. However, the
main goal in diagnosability verification is to ensure there is
no non-terminating uncertain behavior.

IV. BISIMILAR ABSTRACTIONS

In this section a state reduction method for transition
systems including both event and state labels is presented. It
is based on BB, where first crucial event label information
such as failure events is introduced as state labels, cf. GFi
in (2). Local events, both observable and unobservable,
including failure events, are then replaced by silent τ events.
As many as possible of the corresponding τ transitions are
then removed, still preserving relevant state label information
and alternative choices. The latter is important to able to
trace individual branches also after the state and transition
reduction. The states in the reduced system consists of blocks
of states from the original system. These blocks partition
the original state space, and an algorithm that computes the
largest possible blocks of states is one of the main results of
this section. But first the relevant bisimulations are presented.

A. Branching Bisimulation Including State Labels

The notion of BB [5] is now generalized by adding state
labels. A repeated number of silent τ events

τ∗→ is also
denoted by the arrow �.

Definition 6 (BB including state labels): Let G = 〈Q,
Σ, T,Q0,Λ, L〉 be a finite TS. A relation R ⊆ Q × Q is
a branching bisimulation including state labels (≈) if it is
symmetric and satisfies the following conditions for all states
q′, q ∈ Q. As depicted in Fig. 1(a), if q′Rq, q′

σ→ p′, L(q′) =
L(q), L(qi) = L(q) for 0 6 i 6 n, and L(p′) = L(p), then
there exist states qn, p such that q�qn

σ→ p, q′Rqi for 0 6
i 6 n, and p′Rp. Furthermore, if σ = τ and L(p′) = L(q′),
then also p′Rq. �

Note that, if σ = τ and L(q′) 6= L(p′), as is depicted
in Fig. 1(b), it implies SB. If σ 6= τ and L(q′) = L(p′),
the result is BB, as shown in Fig. 1(c). Moreover, if σ 6= τ
and L(q′) 6= L(p′), it implies the combination of SB and
BB, here called BB including state labels and illustrated in
Fig. 1(d). Indeed, this combination is also included in visible
bisimulation [11], but with the restriction that a τ transition
q
τ→ p implies L(p) = L(q). For diagnosability verification,

it is crucial to allow L(p) 6= L(q) when the silent event is
the first failure event, in which case L(q) = {N}, while



q′

p′

qn

q

p

σ σ

(a)

U

V

U

U

V

τ τ

(b)

U

U

U

U

U

σ σ

(c)

U

V

U

U

V

σ σ

(d)

Fig. 1 BB including state labels. The first figure shows the state
names, but in the rest of the figures they are replaced by state
labels. 1(a) shows a path in both G′ and G, cf. Def. 6, 1(b) shows
an SB (σ = τ and L(q′) 6= L(p′)), 1(c) shows a BB (σ 6= τ and
L(q′) = L(p′)), and 1(d) shows the combined notion of SB and
BB (σ 6= τ and L(q′) 6= L(p′)).

L(p) = {F}. The TS and corresponding bisimulation BBSD
introduced in this paper include this important behavior.

In the verification of diagnosability, the existence of loops
over uncertain states is checked. However, silent loops dis-
appear in BB, and we need to keep these loops through the
abstraction. Thus, we define another version of BB including
state labels that also preserves silent loops. This definition
follows directly from Def. 6 and the results in [5], [9].

Definition 7 (BBSD): Let G = (Q,Σ, T,Q0, Λ, L) be a
finite TS. A relation R ⊆ Q×Q is a branching bisimulation
including state labels with explicit divergence (BBSD) (≈d),
if it is symmetric, a BB including state labels according to
Def. 6, and in addition satisfies the following conditions for
all states q′, q ∈ Q. If there is an infinite sequence of states
(qi)i∈Ω, Ω = {i|i ≥ 0} such that q = q0, qi

τ→ qi+1, L(qi) =
L(q) and q′Rqi for all i ∈ Ω, then there exists a state p′

such that q′
τ→ p′ and p′Rqi for all i ∈ Ω. �

Remark 1 (Implementation of BBSD): In order to pre-
serve divergence according to Def. 7, algorithmically every
silent loop is handled by adding a dummy state to the model,
with a separate unique state label. There are also ingoing
transitions from states belonging to silent loop, to the dummy
state. All added transitions to the dummy state are labeled
with τ . Then, Algorithm 1 in Table IV-B is applied. In the
end, the dummy states and their corresponding transitions
are removed and τ selfloops are added to all states that were
connected to the dummy state. See Example 7.148 in [6] for
more details. �

B. Generation of BBSD Partition

Now, assume that G includes some silent τ events, and
G′ is the BBSD abstracted version of G, where as many
τ transitions as possible have been removed. The BBSD
relation between G′ and G is denoted by G′ ≈d G. In the
abstracted model G′, the states are partitioned into blocks
of states, where the states in each block satisfy the BBSD
relation R in Def. 7. For BBSD to be an equivalence relation
it is required to obtain the largest possible blocks, called the
coarsest partitioning of the states in G. These notions are
now formally defined.

Definition 8 (Partition): A partition πk of a set Q is the
family of pairwise disjoint subsets πk = {Bi|i ∈ Inq

}, where
each Bi is nonempty. Thus, Q =

⋃̇
i∈Inq

Bi and Bi∩Bj = ∅
for all i, j ∈ Inq

such that i 6= j. A subset Bi ∈ πk is called
a block. �
A partial ordering between different partitions is also intro-
duced, by considering refinement as the order relation.

Definition 9 (Refinement): Consider two partitions πk and
πk+1 of a set Q. The partition πk+1 is then a refinement of
πk, if for every block Bk+1 ∈ πk+1 there is a block Bk ∈ πk
such that Bk+1 ⊆ Bk. The partition πk+1 then refines πk,
denoted by πk+1 � πk, and πk+1 is said to be finer than πk,
while πk is said to be coarser than πk+1 (smaller blocks in
πk+1 than πk). �

For a TS G according to Def. 2 with state space Q, we
are searching for an abstracted system G′ with a partition π
of the set Q such that the BBSD relation is satisfied. Given
such a partition, each state q ∈ Q belongs to a block π(q).
This gives the prerequisites to formally define the abstracted
TS G′.

Proposition 2 (Abstracted Transition System): Let G =
〈Q,Σ, T, Q0,Λ, L〉 and assume that a partition π satisfies
the BBSD relation in Def. 7. Then G′ ≈d G, and G′ =
〈Qπ,Σ, Tπ, Q0

π,Λ, L〉 where

Qπ = {π(q)|q ∈ Q},

Tπ(q) = {(π(q), σ, π(p)) | σ ∈ Σ ∧ (4)

(∃qn : q � qn
σ→ p) ∧ (π(q) 6= π(p) ∨ σ 6= τ)}.

Q0
π = {π(q0)|q0 ∈ Q0}.

�

We observe that every silent loop, introduced in Def. 7,
and treated as in Remark 1, is preserved by Equation
(4) which defines the set of block transition relations Tπ
according to Def. 6. The partition π, where the states in
each block satisfy the BBSD relation, is from now called the
BBSD partition. To compute π, first consider the partition
π0, where all states with the same state label are grouped
into one block. Since states with different state labels do not
satisfy the BBSD relation, we conclude that the requested
BBSD partition π � π0, i.e. π is equal or finer than π0.
Assuming that π � π0 means that the state label conditions
for BBSD are automatically satisfied. π is described as

π(q) = {p ∈ Q | Tπ(q) = Tπ(p)}, (5)

The definition of π(q) in (5) expresses the obvious demand
on a block state that the transitions to other blocks must be
the same for all individual states in the same block. If that
condition is not satisfied, the corresponding block needs to
be divided. This is done in a recursive way where, based
on the current partition πk, the actual block transitions in
Tπk

are determined by (4), and an updated partition πk+1 is
computed based on (5). This recursion with initial partition
π0, determined by the state labels, is iterated until a fix point
πk+1 = πk is reached. This procedure is summarized in
Algorithm 1 in Table IV-B.



Before it is shown that this algorithm generates the coars-
est BBSD partition, an example illustrates how Algorithm 1
works. First, the algorithm requires a special handling of
block states π(q) with no outgoing transitions. Then, the
corresponding transition relation is denoted by (π(q), τ,⊥).

1G

2 3

4 5

τ

τ

a

a

(a)

1G′

2

3, 5

4

τ a

τ a

(b)

Fig. 2 Original model G and abstracted model G′ in Example 1.

Example 1: In the automaton G in Fig. 2(a), the state
labels for all states except state 4 are assumed to be equal,
which results in the initial partition π0 = {π1

0 , π
2
0}, where

π1
0 = {1, 2, 3, 5} and π2

0 = {4}. This generates the following
initial block transitions Tπ0(1) = {(π1

0 , a, π
1
0), (π1

0 , τ, π
2
0)},

Tπ0(2) = {(π1
0 , a, π

1
0)}, Tπ0(3) = Tπ0(5) = {(π1

0 , τ,⊥)}
and Tπ0

(4) = {(π2
0 , a, π

1
0)}.

Since Tπ0(3) = Tπ0(5) the new block states are π1
1 =

{1}, π2
1 = {2}, π3

1 = {3, 5}, and π4
1 = {4}, and the

new block transition relations become Tπ1
(1) = {(π1

1 ,
τ, π2

1), (π1
1 , τ, π

4
1)}, Tπ1

(2) = {(π2
1 , a,π

3
1)}, Tπ1

(3) =
Tπ1

(5) = {(π3
1 , τ,⊥)} and Tπ1

(4) = {(π4
1 , a, π

3
1)}. Based

on these transition relations, the new partition π2 = π1 =
{{1}, {2}, {3, 5}, {4}}, and the resulting abstracted model
G′ is shown in Fig. 2(b) �

The proposed algorithm has similarities with the signa-
ture algorithm by Blom and Orzan [18] for abstractions
based on BB. Their signatures Sπk

correspond to the block
transition relations in Tπk

, when the source blocks in Tπk

are neglected. For BBSD the source block is however cru-
cial. When for instance the source block is neglected in
Tπ1(2) = {(π2

1 , a, π
3
1)} and Tπ1(4) = {(π4

1 , a, π
3
1)} we

obtain the equal signatures Sπ1(2) = Sπ1(4) = {(a, π3
1)}.

Thus, the signature algorithm generates the partition π =
{{1}, {2, 4}, {3, 5}}, which means that also the states 2
and 4 are merged, which is wrong, because they have even

TABLE I Algorithm that computes the coarsest BBSD partition
π based on (4) and (5).

Algorithm 1 Coarsest BBSD partition
1: input Q, Σ, T , π0
2: π := π0
3: repeat
4: π′ := π
5: for q ∈ Q
6: Tπ(q) := {(π(q), σ, π(p)) | σ ∈ Σ ∧

(∃qn : q � qn
σ→ p) ∧ (π(q) 6= π(p) ∨ σ 6= τ)}

7: endfor
8: for q ∈ Q
9: π(q) := {p ∈ Q | Tπ(q) = Tπ(p)}

10: endfor
11: until π = π′

12: return π

different state labels. The signature algorithm is correct when
the initial partition π0 = Q, which is the case for BB.

However, the complexity of the signature algorithm and
Algorithm 1 is the same, with a worst case complexity of
O(n2

qnt) in time and O(nqnt) in space, where nq and nt
are the number of states and transitions, respectively. These
algorithms are also easy to implement in a distributed version
and the typical complexity is rather O(log(nq)(nq + nt))
in time and O(nq + nt) in space. This is the same typical
complexity as the most well known BB and SB algorithm
by Groote and Vaandrager [19], which can also be adapted
to BBSD, but is significantly more complex to understand
and implement. As mentioned earlier, the coarsest BBSD
partition is requested. The following theorem also shows that
Algorithm 1 generates this result.

Theorem 3 (Coarsest BBSD partition): Algorithm 1
computes the coarsest BBSD partition π for the abstracted
TS in Def. 2.

Proof: First we remind that π � π0, where π0 is the initial
partition for which all states with the same state label are
grouped into one block. We will now prove that πk+1 � πk,
which means that we need to show that any block πk+1(q) ∈
πk+1 does not include elements from any other block than
πk(q) ∈ πk, since refinement means that πk+1(q) ⊆ πk(q)
for all states q ∈ Q.

Therefore, consider two arbitrary states q1, q2 ∈
Q and corresponding block transitions Tπk

(qi) =
{(πk(qi), σi, πk(pi))}, for i = 1, 2. If πk(q1) 6= πk(q2),
then Tπk

(q1) 6= Tπk
(q2) and, according to (5), πk+1(q1) 6=

πk+1(q2). Thus, in the next iteration no state will be included
in πk+1(q) from any other block than πk(q), and therefore
πk+1(q) ⊆ πk(q). This implies that πk+1 � πk, and Tarski’s
famous fixed point theorem [20] says that this monotonic
behavior results in the coarsest fixed point π, when the
iteration starts with a π0 that is not finer than the fixed
point π. �

V. COMPOSITIONAL ABSTRACTION

The BBSD abstraction will now be applied to modular
TSs G =‖i∈In Gi to reduce the state space before temporal
logic properties are verified.

A. General Compositional Approach

In ordinary modular abstraction, each component is ab-
stracted once, and all abstracted components are synchro-
nized. However, compositional abstraction means that after
each synchronization of two abstracted components, the
abstraction is repeated on the result. This implies normally a
significant further state-space reduction. In the compositional
algorithm of [21], the modular system G =‖i∈In Gi is
abstracted in this way. Each Gi is replaced by an abstracted
version G′i. Synchronous composition is computed step by
step, and the choice of the next TS for the synchronization is
made by some suitable heuristics such as maximal number of
shared events between Gi and Gj . From now on, we assume
that the components are given in an order G1, G2, . . . that



should be abstracted. Moreover, each intermediate result is
abstracted again.

When abstracting a TS Gi, in an attempt to substitute it by
G′i, there will typically be some events used in Gi which do
not appear in any other component Gj , j 6= i. They are called
local events (Σ`i ), and are replaced by τ . Some events belong
to a few components, which after synchronization become
local events compared to the rest of components, although
they were not local from the beginning. In each iteration,
more events become local which leads to more abstraction
in comparison to merely abstracting all components once in
the beginning.

Eventually, the procedure leads to a single TS G′, the
abstract description of the original system. Once G′ is found,
the final step is to use G′ instead of the original system
for verification of temporal logic expressions. Before this
concept is applied to diagnosability verification, it is first
shown that abstractions can be made before synchronization,
which is the main tool to reduce computational complexity
in a compositional approach.

B. Synchronization

The important fact that BBSD is preserved by synchro-
nization is shown in the following proposition. Note that τ
events, which are considered as local events, are interleaved
in the synchronization.

Proposition 4 (BBSD Synchronization): Let Gi = (Qi,
Σi, Ti, Q

0
i ,Λi, Li), i = 1, 2 be two TSs and G′i = (Q′i,

Σ′i, T
′
i , Q

′0
i ,Λi, L

′
i), i = 1, 2 be their abstractions. Let Ri ⊆

Q′i×Qi be a BBSD for (G′i, Gi), i = 1, 2. Then the relation

R = {(〈q′1, q′2〉 , 〈q1, q2〉)|(q′1R1q1) ∧ (q′2R2q2)}

is a BBSD for (G′1 ‖G′2, G1 ‖G2), i.e., G1 ≈d G′1 and
G2 ≈d G′2, implies that G1‖G2 ≈d G′1‖G′2.

Proof: According to Def. 3, an event is either shared
or local (including silent τ event) in the first or second
component. Due to symmetry it is enough to consider a local
event in the first component.
• Shared event σ ∈ (Σ1 ∩Σ2) \ {τ}: Since Gi is BBSD,

there is a path qi � qi,ni

σ→i pi in Gi including ni
silent τ transitions before σ, and a transition q′i

σ→
′
ip
′
i in

G′i, where q′iRiqi,j , Li(qi,j) = Li(qi) for j ∈ Nni

and qi = qi,0. Furthermore, p′iRipi, and Li(p
′
i) =

Li(pi). Then, synchronization of G1 and G2 implies
that there is a path (q1, q2) � (q1,n1

, q2,n2
)
σ→(p1, p2)

in G1 ‖ G2, including n1 + n2 silent τ transitions
before σ, and a transition (q′1, q

′
2)

σ→(p′1, p
′
2) in G′1‖G′2,

where (q′1, q
′
2)R(q1,j , q2,`), L(q1,j , q2,`) = L(q1, q2) for

(j, `) ∈ Nn1
×Nn2

and (q1, q2) = (q1,0, q2,0). Further-
more, (p′1, p

′
2)R(p1, p2), and L(p′1, p

′
2) = L(p1, p2).

• Local event σ ∈ (Σ1\Σ2) ∪ {τ}: First, if σ = τ , G2 is
assumed to stay in its current state. Since G1 is BBSD,
there is a path q1 � q1,n1

σ→1 p1 in G1 including n1

silent τ transitions before σ, and a transition q′1
σ→
′
1p
′
1

in G′1, where q′1R1q1,j , L1(q1,j) = L1(q1) for j ∈
Nn1 and q1 = q1,0, p′1R1p1, and L1(p′1) = L1(p1).

Furthermore, if σ = τ and L1(p′1) = L1(q′1), then
also p′1Rq1. Synchronization of G1 and G2 then implies
that there is a path (q1, q2) � (q1,n1 , q2)

σ→(p1, q2) in
G1 ‖ G2, including n1 silent τ transitions before σ,
and a transition (q′1, q

′
2)

σ→(p′1, q
′
2) in G′1 ‖G′2, where

(q′1, q
′
2)R(q1,j , q2), L(q1,j , q2) = L(q1, q2) for j ∈ Nn1

and q1 = q1,0, (p′1, q
′
2)R(p1, q2), and L(p′1, q

′
2) =

L(p1, q2). Furthermore, if σ = τ and L(p′1) = L(q′1),
then also L(p′1, q

′
2) = L(q1, q2).

To summarize, for both cases the synchronized system is
BBSD, i.e. G1‖G2 ≈d G′1 ‖ G′2 . �

C. Diagnosability Verification by Compositional BBSD Ab-
straction

The proposed compositional abstraction approach based
on TSs with both state and event labels is now applied to
verification of diagnosability. Consider the verifier in (2)
that will be abstracted by repeatedly applying the BBSD
partitioning in Algorithm 1. iff the CTL expression (3) is
satisfied for the abstracted one G′v , the original system G is
diagnosable.

The abstracted verifier is generated by the following
recursive formula, where the hiding of local events by silent
τ events is considered as an initial step of the abstraction
operator (the prime operator).

Giv = Gi−1
v

′ ‖
(
GNi
′ ‖ GFi

′ )′
(6)

where the initial value is G1
v = GN1

′ ‖ GF1
′, and the final

verifier for n components is Gv
′ = Gnv

′ The following
example illustrates the proposed verification method.

Example 2: Consider the system in Fig. 3, where nb = n.
Hence an increased number of components n also means that
the number of observable but local events nb − 1 increases.
Note that the events a and d are shared by all components,
while the events ci−1, ci are shared with the closest neighbor,
except for c0 and cn that are local in the first and the last
components, and thus abstracted. All b events {b0i , . . . , b

nb
i }

are local but observable, while the failure event fi and ui are
both local and unobservable. Note that all b events are local
with respect to other automata but they are shared between
GNi and GFi in each automaton, thus they are not abstracted
yet in Fig. 3(b) and Fig. 3(c).

Table 1 shows the number of states nq and transitions nt
for the non-abstracted verifier Gv , and the abstracted verifier
G′v for n = 2, 3, 4. Different partial results of our algorithm
are shown in Fig. 3. Note that local events in each step are
replaced by τ , before each BBSD abstraction. As it is shown,

TABLE II Comparison of the verifier Gv [14] and its abstracted
version G′

v for the model depicted in Fig. 3(a).

Gv from [14] G′v
n nb nq nt nq nt

2 2 64 166 2 3
3 3 298 1180 2 3
4 4 1364 7346 2 3



Gi

a b0i bi−2
i ci−1

ci

bi+1
i

b
nb
i

fi, ui

d

(a)

NGN
i
′

N N N N

NNNNN

a b0i bi−2
i

ci−1

cibi+1
i

b
nb
i

d

(b)

NGF
i
′

N N N N

NNNNNN

F F F F F

FFFFF

a b0i bi−2
i

ci−1

cibi+1
i

b
nb
i

τ

τ

d

d a b0i

bi−2
i

ci−1cibi+1
i

b
nb
i

(c)

NG(1,i)′
v N N

N NF

NF NF

NFN

a ci−1

ci

τ

τ

d

a

ci−1

ci

d

(d)

NG′v NF

τ

τ
τ

(e)

Fig. 3 The components Gi and partial results in the computation
of the verifier G′

v in Example 2. Note that, in 3(a), i > 1 and
i < nb for the upper and lower traces, respectively.

the system is not diagnosable, due to a loop over a state
including the uncertain NF label. �

This example, although not completely realistic, was for-
mulated to illustrate the different parts and properties of the
algorithm. Note that local observable events are abstracted
as well as events that are only shared by some components.
Here we remind that existing abstraction techniques have
limitations concerning both these aspects.

As a final result, the correctness of the proposed diagnos-
ability approach is formulated in a theorem, saying that a
model is diagnosable iff a corresponding BBSD abstraction
satisfies the CTL expression in (3).

Theorem 5 (Diagnosability and ≈d): The composed

model G=‖i∈In Gi is non-diagnosable, iff the abstracted
verifier G′v generated by (6) satisfies the CTL expression
EFEG (NF ).

Proof: According to [14], [15], G is non-diagnosable iff
the verifier Gv = GN ‖ GF satisfies the CTL expression
EFEG (NF ). Based on the reformulation of (2) and the
generation of the BBSD abstraction G′v according to (6), we
observe that Gv ≈d G′v , since the synchronization according
to Proposition 4 preserves the BBSD abstraction. Moreover,
since BBSD preserves CTL*-X properties, the expression in
(3) is satisfied for Gv iff it is satisfied also for G′v . �

VI. CONCLUSIONS

An efficient diagnosability verification technique has been
formulated in this paper, based on a general abstraction
approach. A modified and more general bisimilarity called
BBSD has been introduced, including an efficient abstraction
algorithm. Since BBSD preserves CTL*-X expressions and
diagnosability can be expressed as a CTL formula, this
abstraction is used in a compositional framework, which
is shown to give significant state space reduction for diag-
nosability verification. The proposed method is general and
can be used to verify any CTL*-X expression for a set of
synchronized components, especially if the coupling between
many components only include a few number of shared
global events. An analytical example illustrates this behavior.
Future work involves evaluation of industrial problems with
high complexity.

REFERENCES

[1] M. Sampath and R. Sengupta and S. Lafortune and K. Sinnamohideen
and D. Teneketzis, Diagnosability of discrete-event systems, IEEE
Trans. Autom. Control, vol. 40, 1995, pp. 1555-1575.

[2] K. W. Schmidt, Abstraction-based failure diagnosis for discrete event
systems, Systems & Control Letters, vol. 59, 2010, pp. 42-47.

[3] S. Jiang and Z. Huang and V. Chandra and R. Kumar, A polynomial
algorithm for testing diagnosability of discrete-event systems, IEEE
Trans. Autom. Control, vol. 46, 2001, pp. 1318-1321.

[4] M.P. Cabasino and A. Giua and C. Seatzu, Diagnosability of discrete-
event systems using labeled Petri nets, IEEE Trans. Autom. Sci. Eng.,
vol. 1, 2014, pp. 144-153.

[5] R.J.Van Glabbeek and B. Luttik and N. Trcka, Branching bisimilarity
with explicit divergence, Fundam Inform, vol. 93, 2009, pp. 371-392.

[6] C. Baier and J. P. Katoen, Principles of model checking, Kluwer,
Cambridge, MA; 2008.

[7] R.J.Van Glabbeek and W.P. Weijland, Branching time and abstraction
in bisimulation semantics, J. of the ACM, vol. 43, 1996, pp. 555-600.

[8] M.C. Browne and E.M. Clarke and O. Grumberg, Characterizing finite
Kripke structures in propositional temporal logic, J. Theor. Comput.
Sci., vol. 59, 1988, pp. 115-131.

[9] R. De Nicola and F. Vaandrager, Three logics for branching bisimu-
lation, J. of the ACM, vol. 42, 1995, pp. 458-487.

[10] S. Graf and B. Steffen and G. Luttgen, Compositional Minimization
of Finite State Systems Using Interface Specifications, Formal Aspects
of Computing, vol. 8, 1996, pp. 607-616.

[11] R. Gerth and R. Kuiper and D. Peled and W. Penczek, A partial order
approach to branching time logic model checking, J. of the ACM, vol.
150, 1999, pp. 132-152.

[12] M. Noori-Hosseini and B. Lennartson, "Verification of diagnosability
based on compositional branching bisimulation", in 19th Conference
on ETFA, Barcelona, Spain, 2014.

[13] C.G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, Kluwer Academic Publishers, Norwell, MA; 1999.

[14] M.V. Moreira and T.C. Jesus and J.C. Basilio, Polynomial time
verification of decentralized diagnosability of discrete event systems,
IEEE Trans. Autom. Control, vol. 56, 2011, pp. 1679-1684.



[15] Z. Huang and S. Bhattacharyya and R. Kumar and S. Jiang and V.
Chandra, Diagnosis of discrete-event systems in rules-based model
using first-order linear temporal logic, Asian J. Control, 2008, pp. 1-
9.

[16] M. Huth and M. Ryan, Logic in computer science, modelling and
reasoning about systems, Cambridge University Press; 2009.

[17] M. Noori-Hosseini, Diagnosis of discrete event systems, Master’s
thesis, Signals and systems Dep., Chalmers University of Technology,
Gothenburg, Sweden; 2011.

[18] S. Blom and S. Orzan, Distributed branching bisimulation reduction
of state spaces, Electron Notes Theor Comput Sci, vol. 89, 2003, pp.
99-113.

[19] J.F. Groote and F.W. Vaandrager, An efficient algorithm for branching
bisimulation and stuttering equivalence, 40th Int’l Coll. Automata,
Languages, and Programming, vol. 443, 1990, pp. 626-638.

[20] A. Tarski, A lattice-theoretical fixpoint theorem and its applications,
Pacific J. Math, vol. 5, 1955, pp. 285-309.

[21] H. Flordal and R. Malik, Compositional verification in supervisory
control, SIAM J. Control Optim, vol. 48, 2009, pp. 1914-1936.


