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Abstract

In the field of sociophysics, various concepts and techniques taken from statisti-

cal physics are used to model and investigate some social and political behavior

of a large group of humans: their social network is given by a simple graph and

neighboring individuals meet and interact in pairs or small groups. Although

most of the established models feature rather simple microscopic interaction

rules, the macroscopic long-time behavior of the collective often eludes an ana-

lytical treatment due to the complexity, which stems from the interaction of the

large system as a whole.

An important class of models in the area of opinion dynamics is the one

based on the principle of bounded confidence: Individuals hold and share opin-

ions with others in random encounters. Their mutual influence will lead to up-

dated opinions approaching a compromise, but only if the distance of opinions

was not too large in the first place. A much-studied representative of this class

is the model, which was introduced by Deffuant et al. in 2000: Neighboring in-

dividuals meet pairwise and symmetrically move towards the average of the two

involved opinions if their difference does not exceed a given threshold.

In the first paper of this thesis, we study the Deffuant model with real-valued

opinions on integer lattices, using geometric and probabilistic tools as well as

concepts from statistical physics. These prove to be very effective in the analysis

of the model on the integer lattice in dimension 1, i.e. the two-sidedly infinite

path Z, and is adapted to give at least partial results for the lattice in higher

dimensions as well as infinite percolation clusters. In papers 2 and 3, we stay

on Z but consider a generalization of the model to higher-dimensional opinion

spaces, namely vectors and absolutely continuous probability measures, as well

as to more general metrics than the Euclidean, used to measure the distance

between two opinions.

The last appended paper deals with “water transport on graphs”, a new com-

binatorial optimization problem related to the possible range of opinions for a

fixed individual given an initial opinion configuration. We show that on finite
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graphs, the problem is NP-hard in general and prove a dichotomy that is partly

responsible for the fact that our methods used in the analysis of the Deffuant

model are less effective on the integer lattice Zd, d ≥ 2: If the initial values are

i.i.d. and bounded, the supremum of values at a fixed vertex – achievable with

help of pairwise interactions as in the Deffuant model – depends non-trivially

on the initial configuration both for finite graphs and Z, while it a.s. equals the

essential supremum of the marginal distribution on higher-dimensional lattices.

Keywords: Deffuant model, bounded confidence, opinion dynamics, sociophysics, con-

sensus formation, general opinion space, percolation, pumpless water transport.
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1
Introduction

Two friends, Jakob and Johan, meet by coincidence at Brunnsparken in central

Gothenburg. They haven’t seen each other in a long time, so they sit down in a

café and have a chat. Since both of them are interested in new technologies, they

soon start talking about the changes that the city planners intend to implement

before Gothenburg’s 400th anniversary in 2021. At some point, the question

comes up how many of the busses will be running on renewable energies only

by then. While Jakob is convinced that about 30 percent of the busses will be

independent of fossil fuels, Johan is more pessimistic. His guess is that the frac-

tion of local busses running on clean energy might be one tenth in 5 years from

now. He points out that such changes are expensive and take time, especially in

the public sector. Jakob argues that the pilot project ElectriCity in fact shows

the city’s effort towards such a change and that economic considerations could

actually become a driving force away from fossil fuels in near future. During

the exchange, they consider each other’s arguments as well-founded and valid.

If confronted with the same question after their conversation, Jakob might

have adapted his guess down to one fourth, Johan his instead up to 15 per-

1



2 INTRODUCTION

cent. Had Johan instead met an excessively optimistic Jakob claiming that all

of Gothenburg’s busses will be electric by 2021, both of them would have rated

the view of the other as unrealistic, his arguments as not worth considering and

hence left the café without updating their guesses.

This everyday phenomenon called selective exposure – people in general try

to avoid new pieces of information likely to challenge their decisions and be-

liefs all too much – gained substantial attention in the field of psychology when

Festinger [21] provided a solid theoretical framework in his book entitled “A

Theory of Cognitive Dissonance”, which was published in 1958. Following his

pioneering work, a considerable number of experiments were conducted in or-

der to describe, understand and explain this defensive behavior, that occasionally

gets in the way when people actually try to form a knowledgeable opinion and

in many cases accounts for the persistence of faulty beliefs. An extensive syn-

opsis of these studies together with a thorough discussion of the area of conflict

between curious open-mindedness and protective stubbornness in the process of

information selection can be found in [34].

In an extremely simplified version, these competing principles are imple-

mented in models for opinion formation based on bounded confidence (which

will be reviewed in Section 4): On the one hand, people in general tend to assim-

ilate, i.e. to adapt their points of view towards the opinion of others if confronted

with their valid arguments. This process, on the other hand, only takes place if

there is a certain trust in the position of one’s discussion partner; if it is too far

off our own standpoint, we are not willing to debate and re-evaluate our beliefs.

The idea to study opinion formation processes in a group of people using

models with extremely simplified interaction rules is anything but new. The first

attempts, however, were mere reinterpretations of mathematical models, used

in statistical physics to describe interactions of elementary particles, and did not

feature aspects of reflective behavior such as bounded confidence. Already in the

1930s, the theoretical physicist Ettore Majorana, a student of the famous Enrico

Fermi, wrote an article titled “The value of statistical laws in physics and social

sciences” [47]. It was originally supposed to be published in a sociology journal,

hence to present the beneficial use of methods and ideas from statistics in physics

to scholars of a different discipline and in this way to establish a connection

between the two fields. This essay, however, was carelessly discarded and kept

in a drawer until Majorana mysteriously disappeared on a boat trip from Palermo



3

to Napels in 1938.

The manuscript was found by his brother and finally published in 1942,

thanks to the efforts of Giovanni Gentile Jr., a former co-author and friend of

Majorana. Despite its novel ideas, the fact that the paper was written in Ital-

ian and published posthumously limited its impact considerably. In fact, there

was no translation into English until Mantegna [48] presented the article in the

journal “Quantitative Finance” as recently as in 2005. Due to the fact that this

last publication of Majorana received very little attention and therefore did not

cause any notable further research efforts, it was not until the 1970s that the-

oretical physicists once more got interested in phenomena from social science

and finally put Majorana’s suggestion into practice: to see opinion dynamics in

large groups as interacting particle systems and then exploit the fact that these

are amenable to a rigorous mathematical modelling and an analysis based on

statistical laws.

As a first step, statistical models – originally designed to describe the dy-

namic development of an ensemble of interacting particle spins on atomic level

– were used to model the opinion formation in a social group of individuals mu-

tually influencing each other. One of the major aims was to reinterpret known

phenomena from physics, such as phase transitions or ordered and disordered

states, in the new sociological context and by that to relate purely mathematical

aspects of the model’s dynamics to common social phenomena in group behav-

ior.

During the last two decades more and more physicists and mathematicians

started similar attempts to understand the opinion dynamics in a large group

of individuals by using simplistic interaction models and to analyze them by

applying qualitative and quantitative methods from statistical physics. The fact

that new social phenomena which arose with the advancement of the internet,

like e-mail correspondences for example, feature large groups of individuals,

simple interactions and allow for a computational treatment of the corresponding

large datasets contributed substantially to this evolution.
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Can elementary magnets go on strike?

– A historical account

2.1 Statistical mechanics and the Ising model

Taking into consideration that the research area of opinion dynamics is rooted

in the discipline of physics, the story really began in the second half of the 19th

century, when James Clerk Maxwell, Ludwig Boltzmann and Josiah Willard

Gibbs elaborated the ideas of Daniel Bernoulli to describe the kinetic dynamics

in gases statistically and in this way launched the branch of statistical mechanics.

Their pioneering idea was not to focus on each single particle and its individual

movements, but to characterize the whole system with a set of parameters and

their distributions among the possible states of the system, the so-called statisti-
cal ensemble.

The starting point of opinion dynamics based on statistical physics, a field

that later became labelled as sociophysics, was however not the branch of ther-

5



6 A HISTORICAL ACCOUNT

modynamics but the closely related field dealing with ferromagnetism. Just like

water changing its state of matter depending on the temperature, ferromagnetic

material undergoes a phase transition in the sense that macroscopic properties

of the matter are changed. Well above a certain critical temperature, the fer-

romagnetic material is unmagnetic on a macroscopic scale (if not exposed to

a strong external magnetic field); well below this temperature however, a phe-

nomenon that is called spontaneous magnetization occurs: the microscopic mag-

netic dipole moments, originating from atomic spins, start to align and turn the

material into a magnet – even in the absence of an external field.

Already in 1907, Pierre Weiss [66] tried to explain this behavior, building

on earlier work by Pierre Curie. He used an approach that became known as

mean field theory: In a large statistical system, the effects of all other particles

on one fixed particle is replaced by their statistical average. This approximation

turns a many-body problem with interactions, which in general is very difficult

to solve exactly, into a one-body problem with external field. Clearly, this is a

rather crude simplification as the fluctuating interaction of the considered parti-

cle with the rest of the system is approximated by a time-independent effective

field. Nevertheless, it made the spin problem tractable and allowed Weiss to

draw conclusions explaining the two different phases of ferromagnetic material.

The mean field theory approximation is however only qualitatively accurate and

fails to give satisfactory answers to questions about the behavior near the phase

transition. For temperatures near the critical one, the actual local magnetic fields

are rapidly varying in time and consequently turn their statistical average into a

quite poor representation of their effect.

A slightly different approach to explain ferromagnetic behavior was the fol-

lowing theoretical model that physicist Wilhelm Lenz invented in 1920 and pro-

posed to his student Ernst Ising for further studies two years later: A collec-

tion of n atoms is arranged to form a regular atomic lattice. Their elementary

magnetic dipoles, often simply called spins, can be either in the state “up” or

“down”, represented by the numerical values +1 and −1 respectively. All spins

taken together form what is called a spin configuration σ ∈ {−1,+1}n. If we

assume that neighboring spins interact with a certain coupling strength J and

that the material is exposed to an external magnetic field h, the configuration σ
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is attributed a total energy given by the Hamiltonian function

H(σ) = −J
∑
〈i,j〉

σiσj − μh
∑
i

σi, (2.1)

where the first sum is taken over all pairs 〈i, j〉 of nearest neighbors in the atomic

lattice and μ denotes the magnetic moment. While the minus sign of the second

term is mere convention (as the magnetic moment actually is antiparallel to the

spin), J > 0 corresponds to a ferromagnetic interaction. Thus, in the ferromag-

netic case, the energy of the configuration decreases with both the number of

nearest neighbor pairs having spins pointing into the same direction and spins

aligned in accordance with the external field.

Following a basic physical principle, the system will act in a way to mini-

mize the free energy, which makes states of low energy more probable in thermal

equilibrium. This is captured by the so-called Gibbs measure attributing proba-

bility

P(σ) =
1

Zβ
e−βH(σ) (2.2)

to a fixed spin configuration σ, with the partition function Zβ =
∑

σ e
−βH(σ)

being the appropriate normalizing constant. The model parameter β, called the

inverse temperature, is given by β = 1
kB T , where kB denotes a (positive) phys-

ical constant, the so-called Boltzmann constant, and T is the temperature (in

degree Kelvin). If we consider the case with no external field (i.e. h = 0), it is in-

tuitively obvious from (2.2) that for high temperature all possible configurations

nearly have the same probability, while for low temperature configurations with

high energy (i.e. many opposing nearest neighbor pairs) are almost excluded.

For a finite system, this transition happens smoothly and a phase transition

in the sharp (mathematical) sense can only be observed in the case of infinitely

many particles, commonly known as thermodynamic limit. On the infinite d-

dimensional grid Zd, we can consider the spatial average of spins which is called

magnetization of the material and defined by

〈σ 〉 = lim
n→∞

1

|Λn|
∑
i∈Λn

σi, (2.3)

where Λn = {−n, . . . , n}d. With this notion in hand, we can distinguish be-

tween a paramagnetic, disordered phase in which the magnetization is almost

surely 0 and a ferromagnetic, ordered phase in which non-zero magnetization

has positive probability.
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In his PhD thesis, Ising [37] analyzed the one-dimensional case and found

that the correlation of spin values decays exponentially with the distance of two

sites, which implies that the magnetization equals 0. He erroneously concluded

that the model does not feature any phase transition even in higher dimensions.

This claim was proven wrong by Rudolf Peierls [54] about one decade later.

He investigated the two-dimensional zero-field Ising model (i.e. on the square-

lattice Z2 with h = 0) and proved that it has a non-zero magnetization at suf-

ficiently low temperatures. As the model without external field must have zero

magnetization at sufficiently high temperatures, he was the first to show that

a model from statistical mechanics exhibits a phase transition. A few years

later, Lars Onsager [53] computed the critical temperature for the zero-field Ising

model on the square-lattice rigorously and found it to be

Tc =
2 J

kB · ln(1 +
√
2)

.

The Ising model on the square-lattice still is one of the simplest mathematical

models that does feature the phenomenon of a phase transition.

To simulate a configuration of the Ising model on a finite graph with given

external parameters (T and h), the standard approach is to use the Monte Carlo

method based on the well-known algorithm by Metropolis–Hastings. In this

rejection sampling algorithm, applied to the Ising model, one starts with a ran-

dom configuration and then performs single spin updates according to the fol-

lowing rule: Pick a site uniformly at random and flip its spin with probability

min{e−βΔH , 1}, where ΔH is the invoked change of the total energy. In the

ferromagnetic regime without external field, flipping the spin at a chosen site

might be rejected only if the majority of its neighbors agrees with the current

spin as this implies ΔH > 0. Evidently, a low temperature will considerably

favor flips decreasing the energy over flips increasing it and therefore drive the

system towards more ordered states with growing patches of aligned spins.

A different way to incorporate the microscopic evolution in a ferromagnet

at a fixed temperature with help of the Ising model is the so-called Glauber
dynamics. In this algorithm, to flip the randomly chosen spin has probability

1
1+eβ ΔH . In contrast to the Metropolis–Hastings algorithm, here even transitions

to lower energy states might be rejected, but the tendency to order remains as

updates towards lower energy have probability larger than 1
2 , towards higher

energy less than 1
2 .
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In a long chain of atoms, these alignments at low temperature do take place

as well, but for any temperature above absolute zero, thermal fluctuations will

consistently break the aligned parts of the chain and in this way prevent a global

alignment of the system. This is the reason why the model on Z does not achieve

a global magnetization even for low temperatures. A quite comprehensive ex-

positon of the early years of statistical physics including a more detailed dis-

cussion of mean field theory and the Ising model from a slightly more physical

point of view can be found in [38].

2.2 Sociophysics

Even though the proposal by Majorana to start treating social phenomena by us-

ing statistical models of reduced complexity and to focus on how microscopic

interaction rules entail macroscopic properties of the system, that can be com-

pared to global observables, went more or less unheard by the social sciences,

the striking similarity between interacting elementary magnets and simplified

processes of group behavior led physicists about 30 years later to finally estab-

lish this connection.

In a colloquium in 1969, physicist Wolfgang Weidlich suggested to com-

pare the interactions within a group of individuals holding opposing attitudes

towards a given yes-no question with ferromagnetism, more precisely the dy-

namics of the Metropolis–Hastings algorithm applied to the Ising model. Two

years later, he published this idea in the article ‘The statistical description of
polarization phenomena in society’ [64] in which he elaborated how the math-

ematical model intended to describe and explain ferromagnetism with help of

statistical mechanics can be put into a sociological context: In the sociological

reinterpretation, the interaction strength J corresponds to the willingness of an

individual to adopt the attitude of the majority among its neighbors and the tem-

perature as a model parameter for the social pressure exerted on each individual

(low temperature corresponding to high social pressure). An external magnetic

field (i.e. h �= 0) is understood to shape some preference of one attitude over

the other, shared by all individuals. Weidlich derived the stationary distributions

for different values of h and J and even included a section in which a possible

comparison between model and real data is discussed. Furthermore, he already

suggested natural extensions of this initial link between social dynamics and sta-
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tistical physics: More than two possible attitudes could be considered, h and J

could be replaced by sets of parameters {hi} and {Jij} (i.e. chosen to be de-

pending on the individuals and nearest-neighbor pairs respectively) and letting

the transition probability to flip the spin at a given site depend not only on the

current configuration of its neighbors, but also on its own history could introduce

a sense of tradition or stubbornness.

In 1982, Galam et al. [27] used the Ising model on Kn, the complete graph

on n vertices, to describe the collective behavior in a plant where dissatisfied

workers might start a strike. Using a mean field theory approach, they rediscov-

ered the phase transition described in the foregoing section and interpreted the

regime of high temperature as an individual phase (mutual influences are very

limited) and low temperature as a collective one (the group behaves coherently),

separated by a critical phase in which small changes in the system can lead to

drastic changes in the group. In contrast to the physical application of the Ising

model, where a collection of atoms is forming a regular lattice, it is reasonable

to consider the underlying interaction network among workers in a small plant

to be all-to-all, meaning that every worker can actually influence all his fellow

workers.

Following these seminal papers, an increasing number of related models

were introduced, motivated and analyzed – in the past two decades predom-

inantly with the help of computer simulation. The principle interaction rules

diverged slowly but surely from particle physics and today the area of socio-

physics comprises an abundance of models for opinion dynamics in groups. The

most noted among these will be reviewed in the following chapters.

Just as in any cross-disciplinary application, the question has to be adressed

whether these interacting particle systems are suitable to model human group be-

havior or not. Interestingly enough, already Weidlich [64] and Galam et al. [27]

tried to survey the advantages as well as limitations of and possible objections

against applying a simplified model from statistical mechanics in a sociological

context. Apparently, there are glaring differences between the two fields of ap-

plication. Possibly most important is the contrasting complexity of the elemen-

tary components: In physics, the systems consist of relatively simple objects,

usually atoms and molecules, the behavior of which is relatively well under-

stood; hence the complex evolution of the collective arises from the interaction

patterns. In social science, however, the collective consists of a large number of
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human beings and the behavior of each single individual is already the outcome

of a complex interplay between physiology and psychology of which only very

little is understood. Especially the fact that in all common models for opinion

dynamics the individuals are presupposed to behave adaptively (i.e. reacting to

external influences) and not strategically (i.e. following a certain plan they have

in mind) seems to be an unrealistic assumption. Apart from that, one has to

admit that humans differ a great deal from one another in many aspects while

it is rather safe to consider atoms of the same kind as perfectly identical. It is

doubtful whether the few parameters needed to capture the state of a physical

system are sufficient to describe the properties of a collection of human beings.

In a nutshell, the reduction of humans to identical and simplistic elements in

a large system is a quite controversial issue and critics might come to the con-

clusion that reducing the complexity on microscopic level to such an extent that

the system makes a treatment using tools from statistical physics possible with-

out changing the essential macroscopic phenomenology is a hopeless task. One

could even take this one step further and claim that researchers were tempted

by the substantial progress in the study of collective phenomena in the field

of physics to apply these models in other contexts, such as social behavior in

groups, and established this connection at any sacrifice.

Nevertheless, one cannot deny the fact that there are certain phenomena in

the dynamics of group behavior (both animal and human), that show striking

structural similarities to ferromagnetism and suggest a meaningful relation be-

tween the two. Just like the spins in an ensemble of atoms, the individuals might

be in a chaotic state at first – meaning that no large scale structure exists – but

then gradually align and finally undergo a transition from disorder to order in

the sense that the system exhibits large scale regularities, which in the physi-

cal context correspond to a state of low energy. In their article “A theory of

social imitation”, Callen and Shapero [7] name the collective movement in a

school of fish or a flock of birds, the synchronous flashing of fireflies as well as

temporary fashion styles as prominent examples: Without any leader, the group

becomes increasingly homogeneous through local interaction and alignment un-

til a consistent collective is formed – similarly to spontaneous magnetization of

ferromagnetic matter not exposed to an external field.

For prey, being a part of a homogeneous group provides a certain degree of

safety against predator attacks. In the context of social interactions and opinion
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formation in groups, the drive towards order is due to the tendency of interacting

individuals to become more alike, an effect called social influence. This effect is

often intensified by the known psychological phenomena of selective attention
and pleasure of recognition: Our brain is geared towards filtering out relevant in-

formation, giving an advantage to things we can relate to. The idea of a selective

internal filter was originally proposed by Broadbent [5] in 1958 and later refined

and elaborated with help of various experiments investigating human habits and

capabilities of handling information input (see also [20]). The pleasure of recog-

nition (which incidentally is an important aspect in the composition of musical

and literary work, see [57]) as well as the phenomenon of selective exposure,

mentioned in the introduction, are closely intertwined with the inclination of

people in general to meet and interact with others that resemble themselves in

various aspects and share central attitudes, a behavior referred to as homophily.

This term was introduced by Lazarsfeld and Merton [42], who considered two

forms of homophily: value homophily, based on shared values and beliefs, as

well as status homophily, based on a similar cultural background. The form that

is most relevant in the context of opinion dynamics, induced homophily, which

is based on similarity emerging from regular contact and mutual influence, was

added and studied later (see for instance [50]). In this form it is most obvious

how homophily can lead to a self-enhancing process and play a central role in

the homogenization of a social group.

If we stick to the metaphor, ordered low energy states in statistical mechan-

ics correspond to consensus or uniformity in the context of opinion dynamics

and disordered states of higher energy in turn to fragmentation or disagreement.

One of the main questions in social dynamics is – similarly to the situation in

statistical physics – under which circumstances the microscopic interactions will

lead to such a transition, since if there were no interactions, in both contexts het-

erogeneity would prevail.

Apart from this rather heuristic relation, there are other important arguments

that alleviate the problem of reducing humans to elementary particles: In statis-

tical physics most of the qualitative properties of a larger-scale system do not

depend on the microscopic details of the dynamics but instead on global prop-

erties like symmetries, dimensionality or conservation laws. Diverse models

exhibit essentially similar phenomena (e.g. phase transitions) despite their dif-

ferent rules and patterns, making these features in some sense model-invariant, a
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concept called universality. In this respect it is at least justifiable that modelling

a few of the most important properties of single individuals will capture the es-

sential driving forces of the evolution and thereby give meaningful results when

it comes to qualitative features of the model’s large scale behavior. In addition to

that, just as many other complex systems, the opinion formation in a large group

of humans is of statistical nature, i.e. a large number of comparable microscopic

elements compose a macroscopic object, which has properties that are formed

by the collective but the contribution of any individual particle is negligible. A

statistical approach therefore seems to be quite reasonable. In fact, this argument

was brought up already by Majorana [47] in the 1930s.

The lack of analytical means that could be applied to the common models for

social dynamics as well as the increasing computational power resulted in nu-

merous simulation-based analyses beginning in the 1990s. On the one hand they

surely complement the analytical study of such models based on tools from sta-

tistical physics, on the other hand simulation-approaches are limited to a rather

small number of individuals. Even if it seems to be sufficient for an examina-

tion of the opinion formation in social groups, as mentioned before, the concept

of order-disorder phase transitions is rigorously defined only in the limit of a

system with infinitely many particles. A number of individuals that is not suffi-

ciently large might therefore cause finite size effects that invalidate conclusions

drawn from a comparison with analog systems in physics, in which the number

of interacting particles is commonly by far larger than in a social group. In this

respect it is of vital importance to be able to figure out which macroscopic fea-

tures are robust with respect to changes in the number of interacting individuals

by analyzing the used model for different orders of magnitude of the system’s

size.





3
Opinion dynamics

Since there are many situations in everyday life where it is necessary for a group

of people to form a point of view with majority appeal in order to make a shared

decision (especially in a democratic framework, as discussed in [4]), it has al-

ways been a major focus of social science to understand the opinion formation

process in a larger group of socially interacting individuals (for a broader intro-

duction of the concept of ‘public opinion’ and an overview of some early efforts

of social scientists in this area of research, see [14]). Inspired by statistical me-

chanics, in particular Weidlich’s sociological reinterpretation of the Ising model

for ferromagnetism, various models for opinion dynamics arose in the sequel.

In this chapter, we will shortly introduce a number of models used in the

field of opinion dynamics that are either based on or very similar to interacting

particle systems from statistical physics. First, we will list commonly used net-

work structures and opinion spaces, then describe the characteristic interaction

rules of the most common models. Before we engage in this review, it should

be mentioned that not all of the models which appeared in the early years of

opinion dynamics were inspired by statistical mechanics.

15
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In 1974, for instance, DeGroot [17] presented a different approach to de-

scribe the dynamics of an opinion formation process, reminiscent of a finite

Markov chain. In his model, n individuals update their opinions in rounds and

compose their new ones as a weighted average of all current opinions:

ηt+1(i) =

n∑
j=1

pij ηt(j), (3.1)

where ηt(i) is the opinion of individual i after round t and pij is the weight it

attributes to the opinion of individual j. In the definition of the model, DeGroot

does however not specify (deliberately) which convex set the initial opinions

belong to; could be real numbers, vectors or probability distributions. He con-

siders the weights, which form a row-stochastic matrix P = (pij)i,j , to be time-

independent. This allows to transfer standard results about the asymptotics of

time-homogeneous finite Markov chains to the model: A consensus is reached

(starting from a general set of initial opinions), in the sense that all opinions

converge to a common limit, if and only if the matrix P , taken as one-step tran-

sition matrix, corresponds to a Markov chain in which all recurrent states belong

to the same aperiodic communication class. Then the unique stationary distri-

bution gives the weights according to which the common limiting opinion is

composed.

Note that the iterated matrix products that represent the array of opinions

at later times are multiplications from the left (as apposed to multiplications

from the right in the case of a Markov chain). A stochastic process of this kind

is commonly known as repeated averaging. A few years later, Chatterjee and

Senata [11] addressed the more general case in which the weights depend on

time. They establish sufficient conditions on the sequence of weight matrices

for the opinions to converge to a common limit.

3.1 Underlying social network structures

No matter if we consider the model of DeGroot based on repeated averaging

or interacting particle systems based on models from statistical mechanics, the

following is apparently true for opinion dynamics in general: When it comes to

the question whether the individual opinions will converge to a common limit

or not, it is a very important aspect, between which of the individuals there is
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a potential for mutual influence – in other words the topology of the interaction

network. We think of the individuals as nodes that form a social network (given

by a simple graph) in which a connection between two individuals that enables

them to influence each other is represented by an edge.

Under the assumption that the interaction is all-to-all, often termed com-
plete mixing, the mean field approximation becomes particularly useful. In most

cases it makes an analytical treatment possible in the sense that solving the cor-

responding differential equations will give insights about the long-term behav-

ior. However, already in today’s globalized companies this assumption is hardly

realistic – not to mention the extremely sparse networks of e-mail correspon-

dences and the like. For this reason, all of the models we are about to review

were mainly considered on much sparser networks than the complete graph.

Finite graphs

Clearly, all simulation-based analyses are confined to opinion dynamics on finite

social networks. A particularly simple example is that of a finite square lattice:

It features two dimensions (which as we know from the Ising model can make

a crucial difference to dimension 1) and still has comparably few edges. The

necessary compromise between the efforts to keep both computation time and

boundary effects to a minimum, led to samples comprising a number of indi-

viduals roughly ranging from n = 102 to n = 2002. In some simulations (e.g.

in [2], [22] and [49]), the boundary conditions were taken to be periodic in order

to remediate their negative impact on the homogeneity of the network. In [16],

where both a complete graph and a finite square lattice were used to represent the

underlying social network, the authors accentuated the fact that a grid features

many short cycles (measured against the relatively small number of edges) just

like real social networks do. In respect of its striking regularity it might however

be questioned if this makes a square lattice an appropriate candidate to model

social relations.

More sophisticated choices for the interaction network that have been stud-

ied, among others, are realizations of random graph models such as the three

introduced by Erdős–Rényi, Barabási–Albert and Watts–Strogatz: The so-called

Erdős–Rényi graph, often simply denoted by G(n, p), is a random graph on n

nodes, in which each of the
(
n
2

)
possible edges is independently chosen to be

present with probability p. If the size of this network is varied, it might be suit-
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able to choose p = c
N−1 in order to keep the average degree constant (at the

chosen value c).

The Barabási–Albert model is one of the most popular algorithms for gen-

erating random scale-free networks, i.e. graphs with a degree distribution that

follows a power law (at least in the tail)

N(d) ∼ d−γ ,

where N(d) is the fraction of nodes with degree d and γ a parameter typically

valued in the range [2, 3].

The model is based on a principle called preferential attachment: The net-

work is built incrementally from a core of m fully connected individuals by

adding new nodes one by one, each choosing m older nodes to connect to with

a probability proportional to their degree. Scale-free networks proved to be re-

alistic models for e-mail networks or friendship graphs, both popular objects of

study in the branch of social network analysis.

Figure 3.1: A typical Barabási–Albert network, for m = 1, of comparatively
small size (n = 70).

Lastly, the algorithm proposed by Watts and Strogatz generates a simple

random graph that has two main features found in real social networks: local,

strongly connected clusters and short average path lengths. Graphs of this kind

are called small-world networks. The algorithm features three parameters (the

number of nodes n, the mean degree 2m as well as the rewire probability β) and

proceeds as follows: Given the set of nodes Zn = {0, . . . , n − 1} placed on a

circle, first, a directed ring lattice is constructed by including an arrow from each
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node i to its m immediate successors, i.e.

�E = {(i, j); i, j ∈ Zn, 1 ≤ j − i (mod n) ≤ m}.
Then, all of these directed edges are processed in lexicographical order and re-

placed by undirected ones: With probability 1 − β, the arrow (i, j) simply gets

transformed into the edge 〈i, j〉. With probability β, however, it gets rewired

and instead the edge 〈i, k〉 is included, where k is picked uniformly at random

from the elements of Zn \ {i, j}, that are currently not linked to i (neither by an

arrow nor by an undirected edge).

In this way, for β positive but small, a few of the local connections get re-

placed by long-range relations and a small-world network is formed. For ex-

treme choices of β, this is not the case: β = 0 corresponds to the regular ring

lattice with degree 2m and for β = 1, the algorithm returns a graph with average

degree 2m in which all edges were placed randomly, see Figure 3.2.

β = 0 β = 0.2 β = 1

Figure 3.2: Output of the Watts–Strogatz algorithm for n = 15, m = 2 and
different values of β.

The same idea can of course be applied to square lattices etc. as well.

It should be mentioned that there have been various efforts to implement

opinion dynamics on adaptive random networks. Gil and Zanette [29], for ex-

ample, proposed a model in which the social network is given by the complete

graph initially, but whenever two agents meet and fail to agree on one opinion,

the link in between them is deleted with a certain probability. This procedure

leads to a gradual thinning of the network until only homogeneous opinion clus-

ters remain.

Although certainly more realistic, the coevolution of opinions and relations

adds substantially to the complexity of the problem. A different approach to
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implement homophily is the one of bounded confidence: While the network

stays unchanged, neighboring agents only interact if their opinions are reason-

ably close. Models of this kind are reviewed in Section 4.1.

Infinite graphs

In a probabilistic analysis of opinion formation processes, as opposed to studies

that are simulation-based, considering infinite networks becomes feasible and in

fact, it often makes both the arguments and results more elegant: Tools like the

law of large numbers or ergodicity might be applied and turn phenomena that

occur with high probability on finite networks into almost sure events. Apart

from that, infinite systems can serve as idealized approximations to finite but

very large systems.

Major parts of this thesis deal with opinion dynamics on the, in a way, sim-

plest infinite network: the two-sidedly infinite path. To be more precise, we

consider the graph with vertex set Z and edge set E = {〈v, v + 1〉; v ∈ Z}, see

Figure 3.3 below for an illustration.

−3 −2 −1 0 1 2 3

Figure 3.3: A section of the two-sidedly infinite path Z.

Since it marks a natural next step, we also looked at its higher-dimensional

equivalent: the d-dimensional lattice, i.e. the graph G = (V,E) with V = Zd

and E = {〈u, v〉; u, v ∈ V, ‖u− v‖2 = 1}, where d ≥ 2 and ‖ . ‖2 denotes the

Euclidean norm.

Additionally, we investigated opinion dynamics on the infinite cluster of su-

percritical i.i.d. bond percolation on the lattice Zd, d ≥ 2, a standard represen-

tative for the class of infinite random graphs. The concept of i.i.d. bond perco-

lation is in effect nothing else but the formal procedure to get the Erdős–Rényi

graph from the complete graph Kn as described above – applied to more general

graphs, in our case the integer lattice: For every edge, we decide independently

if it is kept (with probability p) or removed (with probability 1− p). A maximal

set of vertices linked by kept edges is called a cluster. For a more extensive

introduction of the model, we refer to the book by Grimmett [31].

Broadbent and Hammersley [6] introduced this model in 1957 and proved
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that for all d ≥ 2, there exists a critical probability pc (depending on and mono-

tonically decreasing with d) that marks a phase transition in the following sense:

For p < pc there will almost surely be only finite clusters, while for p < pc a.s.

a unique infinite cluster exists.
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Figure 3.4: A segment of i.i.d. bond percolation on the square lattice, with
parameter p = 0.4 to the left and p = 0.6 to the right.

In 1980, Kesten [39] proved that pc = 1
2 for the square lattice, completing

an earlier result by Harris [33], who established pc ≤ 1
2 by showing that there

is a.s. no infinite cluster for bond percolation on the square grid with parameter

p = 1
2 .

3.2 Opinion spaces

Just as DeGroot noted in the penultimate section of [17], when it comes to the

mathematical modeling of opinions there are no rigid limits: They could be

represented by numbers, vectors or even probability distributions. One only has

to make sure that the opinion space is geared towards the interaction rule of the

model, i.e. that it is closed with respect to all possible opinion updates.

Adopted from the Ising model, the first attempts to study opinion dynamics

based on statistical mechanics featured {+1,−1}-valued opinions. As long as

the evolution of attitudes towards a single yes-no question is to be modelled, this

might seem sufficient, but already allowing an agent to be in the state ‘irresolute’

makes it necessary to include more than two opinion values i.e. to depart from

binary variables. As counterpart to discrete-valued opinions, normally used to

represent choices, over time there appeared models featuring opinion variables,

continuously distributed on [0, 1] or even the whole set of non-negative real num-
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bers. Besides the fact that in many situations, e.g. estimating a certain unknown,

a continuous opinion space is more natural, it simplifies to implement compro-

mising behavior of interacting agents holding different opinions: The restriction

to discrete opinions sometimes forces imitating behavior (one agent takes on the

exact opinon of another).

Actually, there is a rather crucial downside to interaction rules of this kind:

During the updates, the aggregate value of opinions changes, which violates the

idea of (mass) conservation found in many physical systems. Surely, this is not

a natural property in a social science setting, where mutual influences in general

are asymmetric. However, as mentioned before, global properties of interacting

particle systems (like conservation laws) play an important role, not least in the

mathematical analysis. As a consequence, updates based on imitation – which

are simple taken by themselves but render it impossible to adopt arguments using

the principle of mass conservation – potentially make a model more involved

from a technical point of view. This is one reason why considering continuous

opinions can be quite different; the fact that a concept like ‘majority opinion’

does not have an equivalent in the continuous setting is another.

Accompanying the advances in the field of opinion dynamics, a growing

interest in the natural extension to vector-valued opinions arose. In 1997, Axel-

rod [1] was one of the first to publish an article focussed on higher-dimensional

opinions as opposed to earlier publications considering opinions to be scalar

variables. He coined the notion of cultural dynamics interpreting the opinion

vector as ‘culture’ of an individual, comprising “the set of individual attributes

that are subject to social influence”. In his original model, the mindset of an

agent comprises 5 features which can take on any one of 10 traits. In short,

the opinion space is given by {0, 1, . . . , 9}5. Due to the reasons named above,

it didn’t take long until variants with continuous higher-dimensional opinion

spaces emerged.

The border between cultural and scalar opinion dynamics is not sharp and

many similarities exist. However, there are models featuring multidimensional

opinions that do not have counterparts with scalar opinions and are therefore

qualitatively different. In addition to that, as soon as the distance between two

opinions matters (as is the case for bounded confidence models, see Section

4.1), the geometry comes into play. Regardless of the fact that there are many

more standard metrics to choose from in higher dimensions, there is one very
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important difference even in Euclidean geometry: Consider a set A, its convex

hull A and a point x /∈ A. In dimension d ≥ 2, the distance of x to A is in

general strictly less than the distance to the set A itself, see Figure 3.5 for an

illustration. This is not true for d = 1 and makes compromising in some sense

more powerful in higher dimensions when it comes to bridging gaps in between

different opinions.

x

A

x

A

Figure 3.5: Forming convex combinations can crucially reduce gaps – yet only
in dimension d ≥ 2.

There have in fact been very few attempts to represent opinions by prob-

ability distributions, although this can be seen as a very natural way of mod-

elling indetermination. In 2008, Martins [49] proposed a model in which the

individuals are given two choices and internally hold a distribution embodying

their preference. When they interact, they only tell each other which of the two

options they would prefer and then update their probabilities according to the

information received. From a mathematical point of view, a distribution on a fi-

nite probability space is nothing but a vector from the simplex of corresponding

dimension, hence the opinion space still finite-dimensional. In this thesis, even

infinite-dimensional opinion spaces, more precisely a model in which opinions

are given by absolutely continuous distributions on [0, 1], will be considered.

3.3 Interaction rules

In what follows, we are going to list some of the standard models used in socio-

physics. All of them share similar ideas and they were studied with the common

aim to define opinion states of the whole population (e.g. consensus or disagree-

ment) and to determine if and how the range of the model’s parameters splits

up into different regimes, according to the long-time behavior of the model: In

most of the cases, the dynamics tends to reduce the variability compared to the

initial opinion values, a trend that can lead to a state of consensus in the long
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run, depending on the model specifications.

This subsection is dedicated to models that are still very close to those used

in statistical mechanics, while in the next chapter we will review models that

include rational behavior which might not have a counterpart in elementary

physics. For further references and a more detailed discussion of the listed mod-

els, we refer the reader to the comprehensive survey article ‘Statistical physics
of social dynamics’ [9] by Castellano, Fortunato and Loreto.

(a) Voter model
Shortly after Weidlich’s sociological reinterpretation of the Ising model, in

1973, this interacting particle system was introduced by Clifford and Sud-

bury [12] as a model for two spatially competing species and later named for

its natural interpretation in the context of opinion dynamics among voters.

Its definition is very simple: Each individual holds an opinion given by a

{−1,+1}-valued variable. At every time step, one individual is selected at

random and will then adopt the opinion of another agent, picked uniformly

among its neighbors.

On regular lattices the evolution of this model is to some extent similar to

the Ising model – in one dimension, that is on the two-sidedly infinite path

Z, it actually corresponds exactly to the limiting case of the Ising model

with zero temperature. Based on well known results about random walks on

grids, Clifford and Sudbury were able to conclude that on the integer lattice

in dimension d ∈ {1, 2} any fixed finite subset of agents will a.s. finally

agree (on one of the two opinions), while this does not hold for d ≥ 3. This

behavior comes from the fact that a simple random walk on the lattice is

recurrent (i.e. will a.s. return to its starting point) in dimension 1 and 2, but

transient (i.e. the event that there is no return to the starting point has non-

zero probability) in dimension 3 and higher. A more exhaustive analysis

including ergodic theorems and a complete description of all invariant mea-

sures was done by Holley and Liggett [36] in 1975. Later, the voter model

was studied on various other social networks and qualitatively different be-

havior was found also on small-world networks for instance (see [10]).

Variants of the model include the multitype voter model (introduced by

Spitzer [59]), in which more than two opinion values are possible, as well

as the constrained voter model (introduced by Vazquez et al. [63]) which

is defined as follows: Each agent is in one of three states (‘left’, ‘right’ or
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‘center’) and interactions as described above can only occur involving at

least one centrist (as the extremists, ‘left’ and ‘right’, are assumed to ignore

each other). This behavior is a discrete analog of the so-called bounded
confidence principle (see Chapter 4).

(b) Majority rule model
A finite collection of n individuals is considered, a fraction p+ of which

initially holds opinion +1, all others the opinion −1. The interaction rule is

reminiscent of the one in the voter model, however agents do not necessarily

meet in pairs: At each iteration a random group of individuals is chosen, and

all group members then adopt the majority opinion inside the group. In the

simplest version, the size of the chosen groups is a fixed odd number. But

there are various variants with random size and different ways to resolve a

tie in a group consisting of an even number of individuals. The model was

introduced by Galam [26] and proposed to describe public debates.

Another model based on the majority rule is the so-called majority-vote
model. Just like in the Ising model, spins are updated one at a time. At

each step, the spin to be updated takes on the value of the majority of its

neighbors with probability 1 − q, the minority value with probability q and

is chosen uniformly from {−1,+1} if there is a tie. For q = 0 this cor-

responds to the Metropolis–Hastings kinetics for the zero-field Ising model

at zero temperature (except for the fact that given a tie, the Metropolis–

Hastings algorithm will perform a flip with probability 1), for q = 1
2 to

the Glauber dynamics at infinite temperature. The majority-vote model was

introduced by Liggett [44], however slightly different from what became

standard as he considered an individual to be part of its own neigborhood.

Based on simulations, de Oliveira [18] showed that the model, considered

on the square lattice, exhibits an order-disorder phase transition when q is

increased. More recent studies verified this property also for small-world

networks [8] and the Erdős–Rényi graph [55].

(c) Hierarchical majority rule model
A structurally different model based on the majority rule was proposed by

Galam [25]: A group of n = rk individuals (r, k ∈ N) equipped with iden-

tically distributed {−1,+1}-valued opinions is considered, but no social

network is specified. Let p0 denote the probability for the opinion to be +1.
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Instead of forming a consensus by interacting, they iteratively elect group-

representatives: In the first round, all individuals are randomly divided into

groups of size r. In every group a representative is chosen among the mem-

bers sharing the majority opinion of the group – uniformly among all mem-

bers if r is even and there is a tie. This procedure is then iterated among

the elected representatives until a single leader is chosen in the kth round. If

pi denotes the probability that a representative on hierarchical level i holds

opinion +1, the recursion is given by

pi+1 =

r∑
l= r+1

2

(
r

l

)
pli (1− pi)

r−l if r is odd and

pi+1 =
1

2

(
r
r
2

)
p

r
2
i (1− pi)

r
2 +

r∑
l= r

2+1

(
r

l

)
pli (1− pi)

r−l if r is even.

(d) Sznajd model
There are different versions of this model sharing the same basic interaction

principle. The following is not the one originally introduced by Sznajd-

Weron and Sznajd [62] although the most popular variant. The individuals

are again considered to occupy the sites of a graph (forming the interac-

tion network) and to hold {−1,+1}-valued opinions. A pair of neighboring

agents is picked and if they agree, all their neighbors adopt this opinion as

well (illustrated in Figure 3.6 below). If they disagree, however, nothing

happens.
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Figure 3.6: Update rule in the Sznajd model: If the two neighbors picked
(black) agree, they impose their opinion on all other individuals
linked to them (gray).
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The Sznajd model is designed to incorporate the typical human behavior

to be influenced more easily by a group of people that agree on a certain

topic, compared to the influence of single individuals. Variants of the model

have in fact been applied in order to describe and analyze voting behavior in

elections.

(e) CODA model
In 2008, Martins [49] presented a new model featuring binary choices (be-

tween options A and B say, again represented by a spin σ ∈ {+1,−1}) that

is based on continuous opinions and discrete actions (CODA) in the follow-

ing sense: An opinion is in fact given by a probability distribution (more

precisely the odds p
1−p are considered, where p denotes the probability the

considered individual attributes to option A being the better choice, 1 − p

consequently the probability for the complementary option B). When agents

interact, they only tell each other their preference (i.e. σ = +1 correspond-

ing to p > 1
2 or σ = −1 corresponding to p < 1

2 ) but not the precise value

of p.

From this piece of information, the opinions are updated with a Bayesian

reasoning: Let α := P(σ = +1 |A) denote the probability that an agent

believes in A if that actually is the better choice and β := P(σ = −1 |B)

the analog for B in place of A. Assuming rational agents, one might think of

α and β to be larger than 1
2 . When individuals i and j meet and share their

preferences, σi and σj , the prior odds pi

1−pi
of agent i get updated to

P(A |σj = +1)

P(B |σj = +1)
=

pi
1− pi

· α

1− β
,

if σj = +1 and to pi

1−pi
· 1−α

β otherwise.

These interaction rules make the model distinct from the ones introduced so

far in two different ways: On the one hand, despite binary choices, the agents

hold continuous opinions and as a consequence hold back some information

when they interact. On the other, despite pairwise interactions, the model

does equip the agents with a certain memory of the past, which is normally

not the case for adaptive behavior in this setting. Both features can be seen

to incorporate traits of human behavior.
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Incorporation of selective exposure

There are many phenomena in opinion formation processes in groups, that can

not be captured by the models based on or closely related to the Ising model.

Although contrarian behavior can be incorporated into the Ising model by con-

sidering antiferromagnetic material (i.e. J < 0), as discussed already by Callen

and Shapero at the end of [7], this again leads to conformity even though only

on antiparallel sublattices. In order to include phenomena like homophily or

individual strong-willed behavior and persisting extremism, additional concepts

had to be implemented, such as bounded confidence for instance.

As alluded to in the introduction, models that incorporate this principle in-

volve in their interaction rules the mental defense mechanism known as selective
exposure, a psychological phenomenon which can not be found in the interplay

of physical particles: When two individuals meet, they will only influence each

another if their current opinion values are not too far apart from each other. More

precisely, in most of the models there exists a parameter θ ≥ 0 shaping the tol-
erance of the individuals: If the current opinion value of an agent is η, other

agents holding opinions at a distance larger than θ from η will just be ignored.

29
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Many of the bounded confidence models listed below have also been re-

viewed in [45]. Let us continue the list from the foregoing chapter with the

interacting particle system that is the core theme of this thesis.

4.1 Bounded confidence models

(f) Deffuant model
Besides the aforementioned tolerance θ, this model features another param-

eter, μ ∈ (0, 1
2 ], that embodies the willingness of an individual to approach

the opinion of the other in a compromise. Encounters always happen in

pairs, so if agents u and v meet at time t, holding opinions a, b ∈ R respec-

tively, the update rule reads as follows:

(ηt(u), ηt(v)) =

{
(a+ μ(b− a), b+ μ(a− b)) if |a− b| ≤ θ,

(a, b) otherwise,

where ηt(u) denotes the opinion of agent u at time t. The idea behind this

is simple: When two individuals interact and discuss the topic in question,

they will only rate the opinion encountered as worth considering if it is close

enough to their own personal belief. If this is the case, however, they will

have a constructive debate and their opinions will symmetrically get closer

to each other – in the special case μ = 1
2 , they will separate having come

to a complete agreement at the average of the opinions they hold before the

interaction.

In this manner, groups of compatible agents concentrate more and more

around certain opinion values (their initial average) and once each such clus-

ter of individuals is sufficiently far from neighboring ones, the final opinions

are formed and all groups will from then on only become more homoge-

neous by internal interactions.

When Deffuant, Neau, Amblard and Weisbuch introduced this model in [16]

(some authors refer to it as Deffuant–Weisbuch model), it was considered

on a finite number of agents having i.i.d. initial opinions, distributed uni-

formly on [0, 1]. As social network they chose the complete graph and a

finite square lattice respectively. The encounters occurred in discrete time

by picking at each time step a pair of agents uniformly at random from the

edge set of the underlying interaction network graph. Depending on the
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values of the model parameters, θ and μ, in their simulation-studies they

observed one of the following two long-time scenarios: Either the agents

ended up in one opinion cluster (corresponding to a consensus) or split into

several clusters (fragmentation or disagreement). A controversial point in

this context is the size threshold beyond which a small number of outliers

are considered minor clusters.

Stauffer et al. [61] introduced a discretized version of the model, in which

the opinions can take on values from the set {1, 2, . . . , q}, q ∈ N, and are

rounded to the nearest integer after an update of the form described above.

There have also been attempts to analyze the model with the tolerance pa-

rameter θ varying from individual to individual, revealing that in such a

generalization it is the individuals with largest tolerance that ultimately de-

termine the system’s behavior.

In a recent publication [58], the idea of variable confidence bounds θt(v)

that depend on the current opinion values has been presented: the more

extreme the opinion ηt(v) of an agent v, the smaller the corresponding value

of θ. This extension of the Deffuant model bears resemblance to the relative

agreement model (see below).

(g) Hegselmann–Krause model
The model introduced in [35] is quite similar to the Deffuant model, only

the rule for encounters (which again happen in discrete time) is different:

Given a network graph, at every time step each individual interacts with all

its compatible neighbors at once and takes the average as its new opinion.

If we let ∼ denote the reflexive adjacency relation, i.e. u ∼ v if u = v or u

and v are neighbors in the graph, and ηt(u) once more the opinion of agent

u at time t, we can write the update rule as follows:

ηt+1(v) =
1

Nt(v)

∑
u∼v

|ηt(u)−ηt(v)|≤θ

ηt(u) for all v, (4.1)

where the sum runs over the set of agents that consists of v plus its compat-

ible neighbors and Nt(v) =
∣∣{u; u ∼ v, |ηt(u) − ηt(v)| ≤ θ}∣∣ is the size

of this set at time t. Note that in contrast to the Deffuant model, the mean

opinion is not conserved over time.

When it comes to simulations of the model, the major disadvantage of the

Hegselmann–Krause model compared to the one introduced by Deffuant et



32 INCORPORATION OF SELECTIVE EXPOSURE

al. is that for a dense interaction network averages of large groups of agents

have to be calculated. This makes the running time until a meaningful pat-

tern – allowing to decide whether the system approaches consensus or frag-

mentation – emerges rather long. However, for a finite number of individuals

the system converges to a stable state in finite time: Once the opinion clus-

ters are formed and all agents in one fixed cluster are compatible with one

another, they will completely agree after one more time step making further

changes of their opinions impossible.

The two models for opinion dynamics introduced by Deffuant et al. as well as

Hegselmann and Krause, as described above, can be transferred to higher-di-

mensional opinions without any further changes – only the notion of distance

has to be specified: We need to replace the absolute value by a suitable metric,

which then determines the confidence ranges around a given opinion.

The vectorial version of both models was studied in [24] for instance – on

the complete graph with opinion vectors from the unit square [0, 1]2. Both the

Euclidean and the supremum norm (i.e. || . ||2 and || . ||∞) were used as distance

metric, shaping circular and square confidence ranges respectively. The gen-

eralization of the Deffuant model on the two-sidedly infinite path Z to higher-

dimensional opinion spaces is the object of investigation in two of the appended

papers (see below): While in Paper B, vector-valued opinions are considered and

the Euclidean as well as other metrics used as notions of distance, Paper C deals

with the case of opinions given by absolutely continuous probability measures

on [0, 1] and the total variation as distance metric.

(h) Axelrod model
The model proposed by Axelrod [1] in 1997 was actually the first one intro-

ducing the concept of bounded confidence. However here, rather than hav-

ing a sharp threshold, the probability of interaction decays gradually with

respect to the distance of the two opinions involved: Think of the individu-

als again as nodes of a network. Every single one of them is endowed with

an opinion vector in {1, 2, . . . , q}d, each coordinate of which is understood

to represent one of d cultural features and q is the number of possible traits

per feature. In that sense, the opinion vector η(i) = (η1(i), . . . , ηd(i)) is

modelling the current beliefs and attitudes of agent i with respect to d inter-

related topics.
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In an elementary step of the dynamics an individual i and a neighboring one,

say j, are randomly selected and interact with probability

pi,j =
1

d

d∑
k=1

�{ηk(i)=ηk(j)}, (4.2)

which is scaling with the number of shared attitudes. If they interact, one

of the features in which they disagree (i.e. k such that ηk(i) �= ηk(j)) is

chosen uniformly at random and individual j assumed to be convinced by

the arguments of i, in other words ηk(j) is set to be equal to ηk(i), just like

in the multitype voter model.

The Axelrod model became quite popular among social scientists for the fact

that it includes two principles (which we mentioned earlier) that are consid-

ered to be typical in cultural assimilation: social influence, i.e. interacting

makes people more alike, and homophily – humans tend to interact more

frequently with others that share essential beliefs, attitudes and behaviors.

Obviously, this model also features two kinds of absorbing states: Either all

opinions are the same (consensus) or any two neighboring opinions do not

share one single trait (disagreement).

Following the seminal paper of Axelrod [1] – who focussed on i.i.d. initial

opinion vectors being uniform on {1, 2, . . . , q}d and finite square lattices

as network – several analyses based on numerical simulations have been

performed and show that the value of q determines whether the final state

reached will be consensus or disagreement, for different networks and initial

distributions.

In the original model, the actual values of the coordinates are mere labels:

It does not make a difference if two neighbors have traits that differ by 1 or

q− 1. In [19] a more metric variant of the model has been considered in the

sense that the interaction probability in (4.2) is changed to

pi,j =
1

d

d∑
k=1

(
1− |ηk(i)− ηk(j)|

q − 1

)
.

A further variant of the Axelrod model was suggested in the paper by Def-

fuant et al. [16] as a multidimensional counterpart of the Deffuant model:

They considered the traits to be binary variables (corresponding to q = 2
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above) and neighbors interact only if the number of features they disagree

on does not exceed a given threshold. So the interaction probability becomes

a step function at some given confidence bound. Also the interaction rule

itself was defined slightly different: Once the random feature the individu-

als i and j disagree on is selected, j is not convinced of ηk(i) by default but

adapts with probability μ ∈ (0, 1
2 ].

(i) Relative agreement model
Shortly after introducing the Deffuant model, the authors Deffuant, Am-

blard, Weisbuch and Faure [15] came up with yet another model shap-

ing opinion formation under bounded confidence: In the so-called relative
agreement model, the mindset of an individual is characterized not only

by a continuous real-valued opinion, but also by an associated uncertainty.

Agents start from i.i.d. opinions, uniformly distributed on [−1, 1], and the

interaction rules are as follows: Individuals meet pairwise and when agent

i (holding opinion xi and uncertainty ui) encounters agent j (opinion xj ,

uncertainty uj), they interact only if the intervals [xi − ui, xi + ui] and

[xj − uj , xj + uj ] overlap. Under this premise, let

hij = min{xi + ui, xj + uj} −max{xi − ui, xj − uj}

denote the overlap. If hij > uj , i.e. xj ∈ [xi − ui, xi + ui], the opinion and

uncertainty value of agent i get updated from (xi, ui) to(
xi + μ · (hij

uj
− 1) · (xj − xi), ui + μ · (hij

uj
− 1) · (uj − ui)

)
and analogously for agent j. The parameter μ ∈ (0, 1

2 ] plays essentially the

same role as in the Deffuant model. Besides the fact that the relative agree-

ment model (just like the Axelrod model) implements a more gradual decay

of confidence with distance of opinions, there is another feature that makes

it a less idealized simplification of real-life opinion dynamics: the asym-

metry in its interactions. Even if hij > max{ui, uj}, implying that both

agents update their opinion and uncertainty when they meet, the amount of

influence agents have on each other differs. Individuals with low uncertainty

influence others more compared to those with high uncertainty value.

In [15], the model was simulated with the complete graph as interaction

network. In a later work [2], Amblard and Deffuant studied the model addi-

tionally on both a regular grid and a small-world network.
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Having listed some of the most common models for opinion dynamics, which

incorporate the idea of bounded confidence, it should be mentioned that in recent

years, there have been first attempts to apply these interacting particle systems to

areas outside the field of opinion formation in groups. For example, Morărescu

and Girard [51] used a variant of the weighted Hegselmann–Krause model to de-

fine a randomized algorithm designed to detect communities in networks: Given

the network G = (V,E) and opinion processes {ηt(v)}v∈V , they considered

the confidence bound to be decreasing in time – to be more precise, they set

θt = Rρt for appropriately chosen constants R > 0 and ρ ∈ (0, 1) – and

defined the set of active links at time t as

E(t) = {(u, v) ∈ E; |ηt(u)− ηt(v)| ≤ θt}.

The weighted version is a generalization of the original Hegselmann–Krause

model in the sense that the arithmetic mean in (4.1) gets replaced by a weighted

convex combination (to account for the fact that the influences of compatible

neighbors contributing to the updated opinion might not be equally strong). To-

gether with the time-dependent confidence bound, the update rule thus reads

ηt+1(v) =
∑
u∼v

|ηt(u)−ηt(v)|≤θt

pt(v, u) ηt(u) for all v.

The authors chose the weights to be given by doubly stochastic invertible ma-

trices P (t) =
(
pt(u, v)

)
u,v∈V

, that depend on E(t) only. They showed that

under these technical assumptions, the model started with absolutely continuous

opinions converges almost surely in finite time and their algorithm then returns

the stable opinion clusters as communities of the graph.

The idea behind it is easy to grasp: Strongly connected local clusters of

the graph perform enough updates to become more alike before the confidence

bound gets so small that it prevents further assimilation. Sparsely connected

parts of the network instead, will most likely not manage to homogenize fast

enough and thus freeze with multiple opinions. In fact, this community detection

algorithm performed quite well when tested on standard benchmark graphs and

compared to more established algorithms in this field, such as the traditional

methods of graph partitioning and spectral clustering or the popular one based

on edge centrality, which was proposed by Girvan and Newman in 2002. For a

detailed introduction to the topic of community detection in graphs as well as a

presentation of the standard techniques just named, we refer to [23].
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4.2 Disagreement versus consensus – earlier inves-
tigations of the Deffuant model

Now that we have put the model, which Deffuant et al. proposed first, into the

broader context of other common models for opinion formation processes, we

want to give a short overview of the results that have been achieved in earlier

analyses of the Deffuant model.

The findings in the original paper [16] were threefold. Starting from i.i.d.

initial opinions, uniformly distributed on [0, 1], the authors simulated various

configurations in order to understand the influence of the parameters θ and μ

as well as the underlying network topology in respect of the model’s long-term

behavior.

For the complete mixing case with n = 1000 individuals (i.e. the interaction

network is the complete graph K1000), Deffuant et al. noted that a confidence

parameter θ = 1
2 most likely leads to consensus (pretty much at the expectation

1
2 ), whereas θ = 1

5 causes a fragmentation into two finally homogeneous groups

(with opinion values roughly at 1
4 and 3

4 respectively). Besides this dichotomy of

regimes, by keeping θ fixed they found that the convergence parameter μ and the

model size n influence the convergence time only, not the qualitative behavior,

which as a consequence primarily depends on θ. The persistent opinions were

arranged equidistantly and their number scaled roughly like � 1
2θ .

When they tracked the opinion evolution of single agents from their initial

opinions to one of the several persistent ones in the fragmentation case, μ turned

out to be influential after all: They observed that the overlap of ranges (in terms

of initial opinions) that finally led to one of the persistent opinions strongly de-

pends on μ. For μ = 1
2 agents holding initial opinions in regions between two

persistent ones could basically end up in either of the two groups, while for

smaller values (e.g. μ = 1
20 ) almost every individual joined the cluster, whose

final opinion was closest to its initial opinion value. So in a certain sense, the

parameter μ determines how conservative the individuals are – both in the mi-

croscopic interactions and overall.

In addition to that, they simulated the model also for agents occupying the

sites of a square lattice (of size 29 × 29). Here, essentially the same qualitative

behavior was found: for θ > 0.3 a large group consensus around 1
2 with few

extrem-valued outliers and no consensus for smaller values of θ. In the frag-
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mentation case, however, the variety of scattered opinions was way bigger than

in the setting of complete mixing, as clusters of individuals that are compatible

in terms of opinion values can be separated spatially and in this way be prevented

from interacting.

In another article published by almost the same group of authors [65], an

investigation concerning heterogeneous confidence bounds was added: They

simulated the complete mixing case on 200 individuals with confidence bound

θ = 1
5 , except for 8 individuals among them featuring a larger value (θ = 2

5 ).

It is important to note that individual θ-values in the Deffuant model in gen-

eral violate mass conversation: An encounter of two agents, whose difference in

opinions lies in between their different values of θ, leads to the situation where

the one with larger θ performs an opinion update, the other one does not.

Nevertheless, an interesting combination of the fragmentation and consensus

case over the course of time could be observed in the simulations: In the short

run clustering depends on the lower confidence bound, in the long run it depends

on the higher bound. First, the majority of agents formed two incompatible opin-

ion clusters at a distance larger than 1
5 , then the few ‘open-minded’ agents started

to act as mediators between these groups and slowly but steadily brought them

within talking distance of each other, which finally led to a global consensus –

not at 1
2 though, as asymmetric interactions are not average preserving and can

cause such a drift. The transition time from one regime to the other depended

very much on the proportion of individuals with larger confidence bound.

In addition to it, Deffuant et al. simulated the model with confidence bounds

decreasing in time (which can be seen to describe the reasonable process of

positions hardening in the course of time). In the simplest fragmentation case

this led to major opinion clusters at values of about 0.60 and 0.42 – closer to

each other than in the case of constant confidence bounds. Clearly, this arises

from the fact that the opinions gather in a convergence movement first, before

the confidence bound becomes too small and they split into two incompatible

groups.

A completely different approach to the original model with fully mixed pop-

ulation, i.e. everybody interacts with everybody else, was pursued by Ben-Naim

et al. [3]. They did not run any computer simulations of the agent based model,

but considered a density based model instead (assuming that the number of indi-

viduals is large – a method termed thermodynamical limit in statistical physics):
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If P (x, t) denotes the density of agents having opinion x at time t and μ is fixed

to be 1
2 , the following rate equation arises:

∂

∂t
P (x, t) =

∫∫
|x1−x2|≤θ

P (x1, t)P (x2, t)
[
δ(x− x1+x2

2 )− δ(x− x1)
]

dx1 dx2,

where δ(.) denotes the Dirac delta function.

Given i.i.d. unif([0, 1]) initial opinions and θ = 1 (i.e. no bounded confi-

dence restriction), they showed that the density converges to a delta function at

the initial mean 1
2 . In the non-trivial cases (θ < 1), however, the rate equation is

no longer analytically solvable. Ben-Naim and his co-workers solved it numeri-

cally (after having discretized the opinion space into 200
θ equally spaced states)

and discovered some further interesting facts about the persistent opinion clus-

ters: In the long term, the density converges to a finite weighted sum of delta

functions, i.e.

P (x,∞) =

r∑
i=1

mi δ(x− xi),

where x1, . . . , xr are the persistent opinions and mi, 1 ≤ i ≤ r, the masses of

(that means the fraction of agents ending up in) the corresponding clusters. The

conservation laws (for mass and mean) obviously force

r∑
i=1

mi = 1 as well as

r∑
i=1

mi xi =
1
2 .

As could be expected, the behavior in the case of absent confidence restric-

tion (namely r = 1, x1 = 1
2 ) was also found for values θ > 1

2 , while for θ < 1
2

the number of clusters (at pairwise distance larger than θ) is larger than 1, in

fact r ≥ 3. In addition to that, they also found that there occur three types of

persistent opinion clusters: major (mass > θ), minor (mass < θ
100 ) and a central

cluster located at opinion value 1
2 . All of them are generated (and the central

cluster annihilated) in a periodic sequence of bifurcations as θ is decreased. The

first major clusters appear for θ < 1
4 , which coincides well with the findings of

Deffuant et al. who only considered major clusters and disregarded single out-

liers sticking to extrem opinions. Actually Ben-Naim et al. considered θ = 1 to

be fixed, the initial opinions instead to be i.i.d. unif([−Δ,Δ]) with variable Δ,

but a simple rescaling translates their results to the original model.

The heuristics they used and implemented, inspired by the methods in statis-

tical physics, were more rigorously applied and verified in a rather recent work
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by Gómez-Serrano et al. [30]. They motivate the mean-field approach mathe-

matically and prove that the long-term behavior of the limiting case (infinitely

many particles) is similar to that of the model with a very large but finite number

of completely mixing agents.

Laguna et al. [40] discovered another feature of the long-term behavior in

the Deffuant model with complete mixing which is governed by the convergence

parameter μ: The fraction of agents that end up in the two most extreme opinion

clusters (which Ben-Naim et al. already showed to be minor but of larger order

compared to the other minor clusters) is scaling with μ. For θ < 1
2 and larger

values of μ, the formation of central opinions is fast enough to seclude many

agents holding extreme initial opinions from the unification process. If μ is

comparatively small, however, those extremists have enough time to become

more moderate in order to be included in one of the major opinion clusters later

on. In this sense, even if it may sound counterintuitive, for θ < 1
2 the formation

of a partial consensus in the population actually benefits from a slower pace in

the dynamics.

Stauffer and Meyer-Ortmanns [60] were among the first ones to follow up

on the idea by Deffuant et al. to consider the model with an interaction topol-

ogy other than the complete graph. They used random graphs generated by the

Barabási–Albert model as underlying network – the usual undirected version (in-

troduced in Section 3.1) as well as a directed one. The results of their computer

simulations suggest that the transition from fragmentation to consensus happens

for the value of θ being about 0.4 (on both the directed and undirected network).

Unlike the case of a fully mixed population, the number of persistent opinions in

the non-consensus case not only depends on θ but also on n, the number of indi-

viduals (for the same reason as in the case of a square lattice). The dependence

of the number of clusters on n (with θ fixed) was estimated to be linear.

In 2004, Fortunato [22] investigated the threshold for a complete consensus
among the agents – as opposed to previous notions of consensus describing the

formation of a widely adapted main stream opinion neglecting some few outliers

(in other words: only one major cluster). He simulated the Deffuant model on

a complete graph, a square lattice with perodic boundary conditions as well as

two random graphs – those originating from the Barabási–Albert and the Erdős–

Rényi model. In the latter, he chose to adapt the probability p (with which an
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edge is kept) to the number n of agents in such a way that the average degree,

(n− 1)p, stays roughly constant.

Fortunato made two central observations: Firstly, the critical value for θ

above which a complete consensus is formed equals 1
2 in all four social topolo-

gies, irrespectively of μ. Secondly, on each of the four networks the probability

of complete consensus converges to a step function at the threshold θ = 1
2 when

the number of individuals is increased.

It has to be mentioned at this point that he performed update steps as ordered

sweeps over the population (for the sake of simplicity): In each round every

individual gets – one after the other – the opportunity to interact with a randomly

selected neighbor. This is different from the original update rule where the edge

along which the next potential interaction takes place is picked uniformly at

random. For large regular systems, however, this seems unlikely to matter.

The first result for the Deffuant model considered on an infinite graph was

published by Lanchier [41] in 2011. He studied the standard Deffuant model

(i.i.d. unif([0, 1]) initial opinions) on the two-sidedly infinite path Z using the

following geometric idea: Instead of analyzing the opinion profiles {ηt(v)}v∈Z

directly, where ηt(v) denotes the opinion of individual v at time t, he considered

what he calls their broken line representation, i.e. {ξt(v)}v∈Z with

ξt(0) = 0 and ξt(v) =

⎧⎪⎪⎨
⎪⎪⎩

∑
0≤u≤v−1

(2ηt(u)− 1), if v > 0,∑
v≤u≤−1

(2ηt(u)− 1), if v < 0.

Using quite intricate geometric arguments and the concentration inequality due

to Azuma–Hoeffding, he verified a set of properties for this concatenation of two

symmetric random walks (one evolving forwards, one backwards in time; both

starting at the origin) which allowed to prove the following result:

Theorem 4.1. Consider the Deffuant model on the graph G = (V,E), where
V = Z and E = {〈v, v + 1〉; v ∈ Z}. If μ ∈ (0, 1

2 ] is arbitrary but fixed, the
initial opinions are i.i.d. unif([0, 1]) and {ηt(v)}v∈Z denotes the opinion profile
at time t, then the following holds:

(i) For θ > 1
2 , all neighbors are eventually compatible in the sense that for all

v ∈ Z:
lim
t→∞P(|ηt(v)− ηt(v + 1)| ≤ θ) = 1.
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(ii) For θ < 1
2 , with probability 1 there will be infinitely many v ∈ Z with

lim
t→∞ |ηt(v)− ηt(v + 1)| > θ.

One thing that is quite remarkable about this phase transition in the behavior

of the Deffuant model is the fact that it already occurs for the one-dimensional

lattice – in marked contrast to the Ising model.

Häggström [32] used different techniques to reprove and slightly sharpen this

result – showing that in the consensus regime (i), all opinions actually converge

almost surely to the mean 1
2 of the initial distribution. The crucial idea in his

proof resides in the connection of the opinion dynamics of the Deffuant model

to a non-random interaction process, which he proposed to call Sharing a drink
(SAD). The SAD-procedure is dual to the opinion formation in the sense that it

keeps track of the opinion genealogy of an individual, i.e. the contributions of

all initial opinions to the current composition of its opinion.

This idea could in fact be employed to generalize the result for the Deffuant

model on Z to initial opinion configurations other than i.i.d. unif([0, 1]), as was

done in Paper A (see below) and by Shang [56] simultaneously and indepen-

dently.





5
Extreme opinions and water transport

In their analyses of the Deffuant model on Z featuring i.i.d. unif([0, 1]) initial

opinions, both Lanchier [41] and Häggström [32] singled out agents that are

cast-iron centrists. These agents start with an opinion value close to the mean
1
2 and will never move far away from it (irrespectively of future interactions),

due to the fact that the influences they can possibly be exposed to are – loosely

speaking – either close to the mean as well or marginal. The opinion ηt(v), of an

agent v ∈ Z at a later time t > 0, is a convex combination of all initial opinions

and the maximally possible contributions on Z decay inversely proportional to

the graph distance. Hence, the initial opinion profile {η0(v)}v∈Z can be such

that agent v sits well-shielded in a large section of individuals equipped with

initial opinions close to 1
2 and all individuals holding more extreme opinions are

too far away to have a significant influence on v.

With this idea in mind (leaving aside the fact that the bounded confidence

restriction might actually eliminate possible influences), obvious candidates for

vertices of this kind are what Häggström [32] calls two-sidedly ε-flat vertices

43
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and Lanchier [41] denotes by the random set

Ω0 =
{
v ∈ Z; 1

2 − ε < 1
n+1

v+n∑
u=v

η0(u),
1

n+1

v∑
u=v−n

η0(u) <
1
2 + ε, ∀n ≥ 0

}
.

If the initial opinions are i.i.d. unif([0, 1]), it can be verified that the set Ω0 is

almost surely non-empty (in fact of infinite cardinality) for all ε > 0, see Prop.

1.1 in [41] or Lemma 4.3 in [32], and that the opinion at two-sidedly ε-flat ver-

tices will be confined to the interval [ 12−6ε, 1
2+6ε] for all times, see Lemma 6.3

in [32]. This consideration, however, is adjusted to the geometry of the underly-

ing network Z and does not answer the question whether on more general graphs

as well (e.g. higher-dimensional grids), we can find vertices whose opinions are

constrained to stay close to the mean by the initial profile already.

In the standard Deffuant model, the existence of agents that will hold an

opinion close to the mean 1
2 , no matter how the random interactions take place,

force a supercritical behavior of the system (for θ sufficiently large) as they will

always be at speaking terms with the whole range of opinions [0, 1] then. Lorenz

and Urbig [46] addressed the question, for which values of θ an asymptotic con-

sensus on Kn can be enforced (alternatively prevented) if the interactions are

not random but chosen in an elaborate succession, i.e. the agents follow a prede-

fined communication plan, adjusted to the initial opinion profile. More precisely,

Lorenz and Urbig define θlow (resp. θhigh) as the infimum (resp. supremum) of

confidence bounds, such that returning to random encounters after an appropri-

ately chosen finite succession of interactions will lead to consensus (disagree-

ment) with probability 1, and prove

max
1≤k≤n−1

Δxk ≤ θlow ≤ max
1≤k≤n−1

k−1∑
j=0

μj Δxk−j as well as

θhigh = max
1≤k≤n−1

(
1

n− k

n∑
i=k+1

xi − 1

k

k∑
j=1

xj

)
,

where Δxi = xi+1−xi, for 1 ≤ i ≤ n−1, and (x1, . . . , xn) denotes the vector

of initial opinions {η0(i)}ni=1 in increasing order. These results are verified by

exhibiting a communication plan that circumvents (resp. aims for) the creation

of large gaps in the opinion range.

In the same way as for gaps, one can try to manipulate the interaction scheme

in such a way that the opinion of one fixed agent gets as extreme as possible



5.1. GREEDY LATTICE ANIMALS AND SITE PERCOLATION 45

(which might then answer the question if there are nodes stuck with an opin-

ion close to the mean for all times right from the beginning). If we drop the

bounded confidence restriction, this combinatorial optimization problem can be

seen as the task of transporting water on a graph without pumps: Agents are

reinterpreted as identical water barrels on a plane, their social network as a

system of (locked, water-filled) pipes connecting them and the opinion values

as the corresponding water levels. Opening pipe 〈u, v〉 will lead to an update

(η(u), η(v)) �→ ((1−μ) η(u)+μ η(v), (1−μ) η(v)+μ η(u)), where μ ∈ (0, 1
2 ]

can be chosen arbitrarily. We then want to maximize the water level in a fixed

barrel (target vertex) by opening and closing the locks in an appropriate order.

If we disregard the option to close locks, the problem turns into finding a

connected subset of nodes including the target vertex with maximal average; a

concept known as greedy lattice animal, which will be introduced and reviewed

in the next section. Its relation to the water transport problem, which is relevant

in the analysis of the Deffuant model as outlined above, will be discussed in

Section 5.2.

5.1 Greedy lattice animals and site percolation

In 1993, Cox, Gandolfi, Griffin and Kesten [13] introduced the notion of greedy

lattice animals: They considered an i.i.d. family of positive random variables

{Xv; v ∈ Zd} and the set of connected subsets comprising n vertices of the

grid including the origin, Ξ0(n) := {ξ ⊆ Zd; 0 ∈ ξ, |ξ| = n, ξ is connected}.
A set ξ ∈ Ξ0(n) with maximal weight

∑
v∈ξ Xv is called a (vertex) greedy

lattice animal (of size n), its weight denoted by Nn.

With respect to the common marginal distribution, represented by X0, the

random variable associated to the origin, they established the following asymp-

totic bound (where log+(x) is a short notation for the positive part of the loga-

rithm, i.e. max{log(x), 0}):

Theorem 5.1. If for some a > 0,

E
(
Xd

0 (log
+ X0)

d+a
)
<∞, (5.1)

then there exists a constant M ∈ R such that

lim sup
n→∞

Nn

n
≤M almost surely.
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In a subsequent publication, Gandolfi and Kesten [28] improved this result

by verifying that the moment condition for the marginal distribution in fact im-

plies a.s. linear growth of Nn in n: They showed that given (5.1), there exists a

constant N ∈ R such that limn→∞ Nn

n = N almost surely and in L1.

Recall that in the model of i.i.d. bond percolation, which was introduced

in Subsection 3.1, we take a graph and toss independent p-biased coins to de-

cide which of the edges are kept and removed respectively. Applying the same

thinning procedure not to the edges but to the vertices of a graph instead – i.e.

independently, each vertex is chosen to be kept (with probability p) or erased

along with all edges it is incident to (with probability 1 − p) – is called i.i.d.

site percolation. Similarly as for bond percolation, in dimension d ≥ 2, there

exists a critical probability pc ∈ (0, 1) for i.i.d. site percolation on Zd marking

the emergence of an infinite cluster. Note that the critical probabilities for bond

and site percolation on the integer lattice of dimension at least 2 are related but

not equal. For further details we refer once again to Grimmett [31].

Relating both concepts, greedy lattice animals and site percolation, Lee [43]

proved among other things the following:

Theorem 5.2. Fix d ≥ 2 and consider an i.i.d. family of positive bounded ran-
dom variables {Xv; v ∈ Zd}, the sets Ξ0(n) and random variables Nn, for
n ∈ N, as above. Let pc denote the critical probability of i.i.d. site percolation
on Zd, R := inf{r ∈ R; X0 ≤ r almost surely} be the essential supremum of
the marginal distribution and N the almost sure limit of Nn

n . Then the following
holds:

(i) If P(X0 = R) < pc, then N < R.

(ii) If P(X0 = R) ≥ pc, then N = R.

The case P(X0 = R) > pc is particularly easy and exhibits the connection

to site percolation most obviously: If we disregard all nodes but those v ∈ Zd

with Xv = R, with probability 1 an infinite cluster remains. The origin can

be connected to this cluster through finitely many other nodes, which guaran-

tees a nested sequence {ξn}n∈N of connected sets containing the origin with

limn→∞ 1
n |{v ∈ ξn; Xv = R}| = 1.

Apart from these results, the idea of a vertex greedy animal (as defined

above) can of course be applied to more general graphs than integer lattices.
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5.2 Optimizing pumpless water transport

In the context of making a fixed agent’s opinion (respectively the water level

at a target vertex) most extreme, we don’t care about the number of involved

vertices, hence with respect to greedy lattice animals the following definition is

most appropriate:

For a fixed graph G = (V,E), target vertex v and water levels {η(u)}u∈V ,

let us call a finite set C ⊆ V a lattice animal (LA) for v if C contains v and

is connected. C is a greedy lattice animal for v if it maximizes the average of

water levels over such sets, i.e. if its average equals the value

GLA(v) := sup
C LA for v

1

|C|
∑
u∈C

η(u).

Note that with this altered definition, a greedy lattice animal need not neces-

sarily exist for infinite graphs, as GLA(v) might not be attained.

If κ(v) denotes the supremum of water levels attainable at v by opening

and closing locks, GLA(v) can be used as a lower bound on κ(v) only. As a

consequence, for i.i.d. unif([0, 1]) initial water levels, we can not conclude from

Theorem 5.2 and P(η(0) = 1) = 0 that on Zd, the highest possible water level

at the origin 0 is bounded away from 1 with positive probability.

In fact, the two problems – greedy lattice animals and water transport – as

related as they might seem, are quite different from a technical point of view:

The option to shut open locks introduces a temporal dimension and makes it cru-

cial, which moves are performed first. To get the idea, consider the elementary

example depicted in Figure 5.1 below.

1.00.2

0.5

1.00.3

0.4
A

F

D E

B C

Figure 5.1: A simple water transport instance on 6 nodes.

If A is chosen to be the target vertex, the greedy lattice animal is given

by the set {A,B,C,D,E} with a value of GLA(A) = 0.58. Vertex F can
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however be used to improve the two bottlenecks B and D. This is done most

beneficially, if the pipe 〈D,F 〉 is opened first (until the two water levels have

balanced out completely at 0.4), then closed and thereafter the same procedure

repeated for the edge 〈B,F 〉, leading to κ(A) = 0.62. Further, this simple

water transport instance exemplifies the enhanced structural complexity of the

problem: While it is sufficient to consider spanning trees when searching for a

greedy lattice animal, additional edges forming circles might become important

in the corresponding water transport problem, as it is the case here.

In Paper D (see below), we address the water transport problem both on finite

and infinite graphs and consider its complexity. It turns out that one does not gain

from opening several pipes simultaneously or chosing the mixture parameter

μ in a move to be less than 1
2 , i.e. closing a pipe before the contents of the

two connected barrels have levelled completely. Furthermore, we found that in

dimension d ≥ 2 and given i.i.d. unif([0, 1]) initial opinions, the water level of

a fixed vertex of the integer lattice Zd can almost surely be raised as close to 1

as desired – in contrast to both greedy lattice animals and dimension d = 1.

This fact is one of the main obstacles when trying to generalize the results

established for the Deffuant model on the two sidedly-infinite path Z to higher

dimensions, as it invalidates one of the most central arguments.



6
Summary of appended papers

Paper A:
Further results on consensus formation in the Deffuant model

(co-authored with Olle Häggström)

The contribution of this paper to the analysis of long-term behavior in the Def-

fuant model featuring real-valued opinions on infinite graphs can be broken

down into three parts.

The first one – as alluded to in Section 4.2 – is the extension of the statement

from Theorem 4.1 to more general initial distributions. As was done in [41]

and [32], we consider the model on Z with i.i.d. initial opinions, this time how-

ever distributed according to a general law L(η0) in place of unif([0, 1]). Build-

ing on the ideas from [32], we were able to settle all cases in which the mean

E η0 of the initial marginal distribution is well-defined: If L(η0) is bounded,

there exists a critical value θc for the parameter θ that marks a sharp phase tran-

sition in the long-term behavior from almost sure disagreement (the agents split

into finite, incompatible but finally homogeneous segments) to a.s. complete

49
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consensus (all opinions converge to the mean E η0). The value of θc depends

on two characteristics of the distribution L(η0): its mean and its support. More

precisely, the critical value turns out to be

θc = max{E η0 − essinf(η0), esssup(η0)− E η0, h}, (6.1)

where the essential infimum and supremum mark the extreme ends of the support

and h denotes the length of its largest gap (which means the largest subinterval

I ⊆ [essinf(η0), esssup(η0)] with P(η0 ∈ I) = 0). In the case of an unbounded

initial distribution – under the assumption that not both E η+
0 and E η−

0 are in-

finite – the model a.s. behaves subcritically (disagreement) for any choice of

θ > 0. Note that this matches the statement for the bounded case, since θc as

defined in (6.1) becomes infinite for an unbounded initial distribution.

In addition to that, we point out how these results can be transferred to spe-

cial cases of dependent initial opinions. For the arguments used to be valid, it

is sufficient that the initial configuration is ergodic and fulfils an additional re-

quirement, that is called finite energy condition in percolation theory (and was

introduced by Newman and Schulman [52]).

In the second part, the model is considered on higher-dimensional integer

lattices Zd, d ≥ 2. Although the central ideas of proof from dimension one

do not transfer to higher dimensions, elaborating some of the arguments allows

us to prove at least the following partial result: If the marginal distribution of

the i.i.d. initial configuration is bounded and θ sufficiently large (strictly larger

than 3
4 in the case of unif([0, 1]) initial opinions for example), the opinion of

every agent will still almost surely converge to the mean of the initial distribu-

tion. In addition to this, on the one hand we show that the opinions converge in

distribution for any value of θ and on the other hand discuss a generalization to

transitive, amenable graphs.

In the last part, we consider the Deffuant model on the infinite cluster of su-

percritical i.i.d. bond percolation on Zd, d ≥ 2. In this setting one can retrieve

the results derived for the full grid and on top of that, we were able to show that

for small values of θ, the opinions of the agents belonging to the infinite cluster

cannot converge to one fixed value. Neighboring individuals could, however,

still come to a complete agreement in the long run without their opinions con-

verging to a deterministic limit (corresponding to the type of consensus, which

Lanchier [41] formulated in part (i) of Theorem 4.1).
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Paper B:
The Deffuant model on Z with higher-dimensional opinion
spaces

As mentioned in Section 3.2, this paper deals with the generalization of the Def-

fuant model on Z to vector-valued opinions. In the first part, we generalize the

findings for univariate opinions from Paper A to multivariate opinions and stick

to the Euclidean norm as natural replacement for the absolut value (which was

taken to measure the distance between two opinions in the case of real-valued

opinions). Using geometric arguments, that are considerably more involved than

in the case of scalar opinions, we manage to verify properties of the support of

the opinion distribution L(ηt) for times t > 0, depending on the initial distri-

bution L(η0). Especially the notion of a gap in the support of L(η0) has to be

properly defined and analyzed in higher dimensions in order to play the same

role as for univariate distributions.

In the second part, we allow for more general metrics ρ to be employed

as measures of distance – determining if the opinions of two agents are close

enough for them to interact. We are able to transfer the results from the Eu-

clidean case, given that ρ satisfies appropriate extra conditions: weak convexity,

local domination by the Euclidean distance and sensitivity to unbounded coordi-

nates. Through several examples, the necessity of these additional assumptions

is verified.

Paper C:
Overly determined agents prevent consensus in a generalized
Deffuant model on Z with dispersed opinions

The generalization of the original Deffuant model in terms of opinion spaces is

taken one step further in this paper: We consider the model on Z, in which opin-

ions are represented by absolutely continuous probability distributions on [0, 1].

In comparison to finite-dimensional opinions, the expectation of L(η0) corre-

sponds to the so-called intensity measure in the context of random probability

distributions.

For the sake of concreteness, we consider a model in which the initial opin-

ions are given by symmetric triangular distributions: Initially, for each agent

v ∈ Z independently, a vector (U, V ) from the uniform distribution on [0, 1]2
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is drawn. Then v gets attributed the random measure given by the density

that is 0 outside [m,M ] and linear on both [m, m+M
2 ] and [m+M

2 ,M ], where

m := min{U, V } and M := max{U, V }. This way of representing opinions

can be seen as an improvement over real-valued opinions introducing the idea of

uncertainty (around a favored value).

For this model, we calculate the intensity measure and verify that extremely

determined agents (i.e. |U − V | very small) will a.s. prevent consensus for any

θ ∈ (0, 1), given that the total variation is used to measure the distance between

two opinions.

If the determination is bounded, in the sense that the random vector (U, V )

is taken from unif([0, 1]2) conditioned on |U − V | ≥ γ, for a fixed constant

γ ∈ (0, 1), the picture changes. The phase transition in the long-term behavior

from a.s. disagreement to a.s. consensus, known from the investigations dealing

with finite-dimensional opinion spaces, reappears and we are able to calculate

the precise threshold value θc.

Paper D:
Water transport on graphs

(co-authored with Olle Häggström)

Incited by the impossibility of transferring the ideas used in the analysis of the

Deffuant model on Z to higher-dimensional grids, we defined and analyzed a

combinatorial optimization problem that can be seen as pumpless water trans-

port on a graph: The agents holding different opinion values are reinterpreted as

identical water barrels that are filled to different levels, the interactions (still tak-

ing place along the edges of the network) as opening the lock in the pipe between

the two nodes for a certain time span. In this manner, we essentially consider

the same interacting particle system and only think of converging water levels

instead of compromising individuals, but we drop the randomness of encounters

and the confidence bound restriction.

Asking for the maximal amount of water that can be accumulated in a fixed

target barrel by opening and closing the locks in an elaborate succession is

closely related to the question of how extreme the opinion of an agent possi-

bly can become depending on the initial configuration. First, we provide some

tools to describe and analyze optimal strategies to maximize the water in a given

barrel and solve the optimization problem for different types of finite graphs.
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Then, we consider the problem’s complexity and prove by a polynomial reduc-

tion of the satisfiability problem 3-SAT to a suitably chosen instance of the water

transport problem that the latter is NP-hard.

Finally, we verify a fact that in a manner of speaking accounts for the differ-

ent challenges faced in the analysis of the Deffuant model on the integer lattice

Zd, depending on the dimension d: Given i.i.d. unif([0, 1]) initial water levels,

the highest achievable amount in a fixed barrel depends on the initial configura-

tion in a non-deterministic way both for finite graphs and the two-sidedly infinite

path Z. For all other quasi-transitive infinite graphs, however, the level can a.s.

be increased to a value as close to 1 as desired by opening (and closing) the locks

in an appropriate order. The crucial feature of the underlying graph turns out to

be, whether or not the graph contains a neighbor-rich half-line, i.e. an infinite

path with sufficiently many extra vertices attached to it.
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