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Detailed Study of the Influence of InGaAs
Matrix on the Strain Reduction in the InAs
Dot-In-Well Structure
Peng Wang1,3, Qimiao Chen1,3, Xiaoyan Wu1,3, Chunfang Cao1, Shumin Wang1,2 and Qian Gong1*

Abstract

InAs/InGaAs dot-in-well (DWELL) structures have been investigated with the systematically varied InGaAs thickness.
Both the strained buffer layer (SBL) below the dot layer and the strain-reducing layer (SRL) above the dot layer were
found to be responsible for the redshift in photoluminescence (PL) emission of the InAs/InGaAs DWELL structure.
A linear followed by a saturation behavior of the emission redshift was observed as a function of the SBL and SRL
thickness, respectively. The PL intensity is greatly enhanced by applying both of the SRL and SBL. Finite element
analysis simulation and transmission electron microscopy (TEM) measurement were carried out to analyze the strain
distribution in the InAs QD and the InGaAs SBL. The results clearly indicate the strain reduction in the QD induced
by the SBL, which are likely the main cause for the emission redshift.
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Background
Self-assembled quantum dots (QDs) utilized as an active re-
gion has provided a unique and flexible approach for fabri-
cating hetero-epitaxy photoelectric devices, offering many
advantages compared to the quantum well (QW) structure
[1]. InAs dot-in-well (DWELL) lasers on GaAs substrates
reveal particular importance due to its great potential in
the application of optical fiber communication requiring
light wavelength range of 1.3–1.6 μm [2]. Integration of
InAs DWELL structure and silicon substrate has been real-
ized by using germanium (Ge, only 0.08 % mismatch with
GaAs) as an intermediate layer, which is very significant for
the achievement of Si-based photoelectric integration [3, 4].
InAs/InGaAs DWELL superluminescent light-emitting
diode and room temperature (RT) continuous-wave (CW)-
operated lasers have been fabricated on Si and Ge-on-Si
substrates, respectively [5–7]. As described by its name, the
DWELL structure consists of a InAs QD layer embedded
in the InGaAs matrix, i.e., the InGaAs QW. By the dot

layer, the InGaAs matrix is split into two parts. The part
above the dot layer in the growth direction is usually called
the strain-reducing layer (SRL), while the part below the
dot layer is called the strained buffer layer (SBL). The
InGaAs SRL is identified to be responsible for the redshift
of the InAs QD optical emission as its strain-reducing effect
to the InAs QD. Studies of the dependence of optical prop-
erties on the InGaAs SRL have been carried out previously,
e.g., influence of In composition in InGaAs SRL on the
structural and optical properties of InAs QDs has been
studied by H.Y. Liu et al. [8]. Muhammad Usman et al. [9]
also made a detailed study of the strain-reducing effect
caused by the InGaAs SRL and identified the strain reduc-
tion as the dominating factor for the redshift of InAs QD
photoluminescence (PL) emission. InAlAs and GaAsSb
were also tried as the SRLs for reducing the compressive
strain of the InAs QD. Although more effective at wave-
length adjustment compared with InGaAs SRL (1.7-μm
PL emission has been achieved), applying InAlAs and
GaAsSb SRL was found to deteriorate the device perform-
ance [10–13]. In contrast, the SBL of the DWELL struc-
ture has been seldom studied while its importance could
not be neglected. It was found that the SBL facilitates the
growth of high-density QDs [14]. L. Seravalli et al. have in-
vestigated the effect of relaxed InGaAs layer instead of the
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InGaAs SBL on tuning of PL emission energy of InAs
QDs [15, 16]. The studies of Jin Soo Kim et al. and O. Nasi
et al. have involved the entire InGaAs matrix including
the SRL and SBL experimentally; nevertheless, just a few
discrete data were analyzed [17, 18] for the SBL. Specific
detailed research on emission energy tuning effect of
InGaAs matrix, especially the InGaAs SBL, still need to be
carried out.
In this work, the InAs DWELL structure has been

studied with the systematically varied InGaAs thick-
ness, especially the SBL thickness. The dependence of
the PL properties of the DWELL structure on the
thickness of SBL and SRL was investigated in detail.
Finite element analysis (FEA) simulation and trans-
mission electron microscopy (TEM) measurement in-
dicate that the reduction of the compressive strain in
the InAs QD is enhanced with the increase in the
thickness of the SBL layer. It is found that applying
both of the InGaAs SBL and SRL may reduce the
compressive strain in the InAs QD, leading to a re-
markable redshift in the PL emission.

Methods
InAs/InGaAs DWELL samples were grown on GaAs
(100) substrate by VG V90 gas source molecular beam
epitaxy (GS-MBE). The grown structure was started with
a 100-nm GaAs buffer layer grown at 580 °C after native
oxide desorption. Then, the substrate temperature was
lowered to 500 °C to grow the DWELL structure and a
3-nm GaAs cap layer. After that, the substrate
temperature was raised up to 580 °C for an annealing
process of 10 min, followed by growing a 100-nm GaAs
cap. The DWELL structure consists of an In0.12Ga0.88As
SBL, a QD layer formed by 2.2 monolayers (MLs) InAs,
and an In0.12Ga0.88As SRL. For morphology analysis of
the QD layer, an In0.12Ga0.88As SBL and 2.2 MLs InAs
was repeated at 500 °C on the surface. The thickness of
InGaAs SBL and SRL was systematically varied. PL spec-
tra were measured with a Nicolet Magna 860 Fourier
transform infrared (FTIR) spectrometer from Thermo
Fisher Scientific Inc, equipped with a liquid-nitrogen-
cooled InSb detector and a CaF2 beam splitter. Sam-
ples were excited by a diode-pumped solid state laser

Fig. 1 Room temperature PL spectra (a) and its intensity, energy information (b) of InAs QDs embedded in total thickness fixed InGaAs matrix

Fig. 2 Room temperature PL spectra (a) and its intensity, energy, and FWHM information (b) of InAs QDs embedded in SRL fixed InGaAs matrix
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(λ = 532 nm), and the double modulation mode was
used to eliminate the mid-infrared background radi-
ation over 2 μm. The InAs QD morphology was mea-
sured by a Bruker Icon atomic force microscopy (AFM) in
the tapping mode. The scanned area was 2 × 2 μm2. We
have also measured the TEM micrograph of InAs QD as-
sembled on the InGaAs SBL.
In order to analyze the strain reduction in the InAs QD

induced by the InGaAs SBL, finite element simulation was
carried out. The model consists of InAs/InGaAs DWELL
structure on a GaAs buffer layer with one InAs QD in-
cluded. The InAs QD is built in a spherical crown shape
with a diameter of 40 nm and height of 5 nm. The InAs
QD is located at the center of the 100 × 100 nm2 square
DWELL structure, which corresponds to the InAs QD
density measured by AFM. In the simulation, lattice con-
stant of the border is fixed, and a relaxation process is
conducted on the InAs/InGaAs DWELL region. The
strain distribution in the QD and the SBL was revealed by
the simulation.

Results and Discussion
Firstly, we investigated the first group of samples with a
total InGaAs layer thickness fixed at 8 nm, while the
InAs QD layer was inserted in the InGaAs matrix at a
different depth in the growth direction. Five InAs/
InGaAs DWELL samples were prepared with the SBL
thickness varying from 0 to 4 nm in step of 1 nm, while
the corresponding SRL thickness varying from 8 to
4 nm. RT PL spectra of the DWELL structure were
shown in Fig. 1a. Strong emissions at infrared band were
observed for all samples. Ground state (GS)-related
emissions are verified to dominate all the spectra. A red-
shift followed by a blueshift behavior of the PL emission
was observed when the InAs QD layer was moved from
the bottom of the InGaAs matrix upwards in the growth
direction. The red line marked the interesting wave-
length of 1.31 μm. The peak energy and intensity of the
PL spectra are summarized in Fig. 1b, and two distinct
regions are classified and marked by red and blue ar-
rows. Previous study has revealed that thickness increase
of the InGaAs SRL leads to redshift of the PL peak and
intensity enhancement, which is corresponding to SRL-
dominating region marked by the red arrow at the right
side [9]. However, a reversed tendency is observed for
the region at the left side, which is named as the SBL-
dominating region. A sharp redshift of the PL peak was
observed when the SBL thickness was increased from 0
to 2 nm, and a strong enhancement in PL intensity was
also observed. Therefore, the SBL layer plays an import-
ant role similar to the SRL in the wavelength tuning of
the InAs QDs. In addition, we also carried out the low-
temperature (LT) PL measurement and the developing
behavior of the PL intensity and linewidth; energy is
consistent with that at RT.
The above results suggest it is very necessary to study

the influence of SBL on the PL properties of the DWELL
structure. Five InAs/InGaAs DWELL samples were in-
vestigated with the SRL thickness fixed at 6 nm, while
the SBL thickness was varied from 0 to 4 nm. The PL

Fig. 3 Calculated compression strain of InAs QD as a function of
InGaAs SBL thickness and the simulation schematic diagram

Fig. 4 In-plane compression strain distribution map of InGaAs SBL (right) and the compression strain distribution on the dashed line (left)
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spectra were shown in Fig. 2a. Redshift of PL peaks was
indeed observed when the SBL thickness was increased.
The dependence of peak wavelength, intensity, and full
width at half maximum (FWHM) on the SBL thickness
was shown in Fig. 2b. Remarkable redshift of the PL
peak was obtained when the SBL thickness was in-
creased from 0 to 2 nm, and a saturation behavior was
observed when the SBL thickness was further increased.
It is found that a 2-nm InGaAS SBL results in a remark-
able 42-meV energy drop in the PL peak energy of the
DWELL structure. As shown in Fig. 2b, the peak inten-
sity was enhanced with the SBL thickness in the range of
0–2 nm and started to decrease when the SBL thickness
was above 2 nm. It is noteworthy that the PL linewidth
of the DWELL structure continuously decreases with
the increase in SBL thickness.
Previous study has confirmed that the InGaAs SRL is

effective at reducing the internal compressive strain in

the InAs QDs, which is the primary cause of PL emis-
sion redshift [19]. As mentioned above, the InGaAs SBL
also leads to redshift of the PL peak, likely through the
same mechanism as that of the SRL. In spite of being
fully strained, InGaAs SBL is also expected to reduce the
internal compressive strain in the InAs QDs. In order to
verify this fact, a simulated calculation was carried out
using FEA. The InAs QD is defined in a spherical crown
shape (width 40 nm, height 5 nm) and is enveloped by
the InGaAs matrix (SBL down and SRL up), as shown in
the inset of Fig. 3. The thickness of InGaAs SRL is fixed
at 6 nm. The statistical average compressive strain in the
InAs QDs is recorded from the simulated result with the
increase of the InGaAs SBL thickness. As shown in
Fig. 3, the compressive strain in the InAs QDs is ob-
served to be reduced continuously followed by a satur-
ation behavior as the InGaAs SBL thickness up to
2.4 nm, which is consistent with the above experiment

Fig. 5 TEM micrograph of InAs QD assembled on a InGaAs strain buffer layer. Lattice constants below and beside the InAs QD are compared
indicated by line I and II (a), lattice constants below the InAs QD with different depth are compared indicated by line I and III in the enlarged
image (b)

Fig. 6 AFM diagrams of InAs QDs overgrown on GaAs (a) and InGaAs SBL (b) and dependence of QD density and height on InGaAs SBL thickness (c)
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result shown in Fig. 2b. Therefore, both of the SBL and
SRL in the DWELL structure induce strain reduction in
the InAs QD, leading to redshift of the PL emission.
In order to have a better understanding of the strained

system, in-plane strain distribution of InGaAs SBL is
shown in Fig. 4 (the cross section position is marked by
the dash-dot line in the inset of Fig. 3), and the strain
distribution scan on the dashed line is also shown. As
can be seen, all the region of InGaAs SBL is still in com-
pressive strain and a specific strain distribution is re-
vealed. The red circular area, which has the minimum
compressive strain, is matched with the location of InAs
QD. Outward, a deep blue belt is surrounding, which
has the maximum compressive strain. Therefore, the
strong compressive strained InAs QDs tend to expand
(shown by the dashed arrows in the inset of Fig. 3),
through the deformation of the SBL exactly underneath.
This process is revealed by the redistribution of the
compressive strain in the InGaAs SBL shown in Fig. 4.
For a further direct-viewing investigation to the com-

pressive strain-reducing effect, we have measured the
TEM micrograph of InAs QD assembled on the InGaAs
SBL as shown in Fig. 5. Two white lines in Fig. 5a are lo-
cated in the InGaAs SBL, and line I is just underneath the
InAs QD. The ratio for the lattice constant between line I
and line II is 1.04. For Fig. 5b, another line III is added in
the GaAs buffer layer far beneath the InAs QD, and the
lattice constant ratio between line I and line III is 1.03. A
dark band, which indicates the disorder of crystal lattice,
is observed under the InAs QD. This should be caused by
the abovementioned deformation of the InGaAs SBL.
These observations are direct evidences that the lattice of
the compressive strained InGaAs SBL has been stretched
leading to strain reducing of the overgrown InAs QD,
which is consistent with the above simulation result.
In addition to the strain reduction effect, the SBL may

facilitate the growth of high-density InAs QDs. AFM im-
ages shown in Fig. 6a, b indicate that uniform InAs QDs

are formed on both GaAs and InGaAs SBL. Density of
the InAs QDs grown on InGaAs SBL is obviously larger
than that on GaAs. The dependence of the QD density
on the SBL thickness is shown in Fig. 6c. It is found that
the InAs QD density rises continuously with the InGaAs
SBL thickness up to 3 nm.
The redshift behavior of InAs QD PL emission has

been investigated as a function of the QD height previ-
ously [20]. As shown in Fig. 6b, a 1.0-nm increase in the
average QD height is observed as the SBL thickness is
changed from 0 to 4 nm. Such an increase in the QD
height can only cause a redshift less than 5 meV as the
quantum confinement effect becomes weak [20]. Thus,
the dominating reason for the redshift of PL emission is
the reduction of compressive strain in the QD induced
by the SBL and SRL as discussed before.
Finally, the dependence of the emission wavelength on

the thickness of SRL is investigated. Six InAs/InGaAs
DWELL samples were studied with the SBL thickness
fixed at 3 nm, while the SRL thickness is raised from 3
to 7 nm. The PL spectra are shown in Fig. 7a. The PL
peak undergoes redshift continuously as the SRL thick-
ness is changed from 3 to 6 nm. Saturation behavior is
observed when the SRL thickness is further increased
from 6 to 7 nm. The PL results are summarized in
Fig. 7b. More than 70-meV redshift is obtained when the
SRL thickness is changed from 3 to 6 nm. Moreover, the
PL peak intensity rises linearly with the SRL thickness
up to 6 nm and then declines slightly for the sample
with 7 nm SRL. For the samples with SRL thickness
below 6 nm, their PL peak linewidths are distributed
closely. However, sudden broadening of the PL emission
is observed for the sample with a 7-nm SRL, indicating
that the sample quality deteriorates slightly, likely due to
the too large compressive strain in the whole DWELL
structure. This observation is consistent with the previ-
ous study [9] and provides further support for our ex-
periment result.

Fig. 7 Room temperature PL spectra (a) and its intensity, energy, and FWHM information (b) of InAs QDs embedded in SBL fixed InGaAs matrix
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Conclusions
InAs/InGaAs DWELL structures with a varied InGaAs
matrix were grown by GS-MBE on GaAs (100) substrate.
Both of the InGaAs SRL and SBL are observed to be
responsible for the redshift of PL emission. The depend-
ence of the redshift on the SBL or SRL thickness obeys a
linear function followed by a saturation behavior. It is
found that the PL intensity can be greatly enhanced by
applying the SRL and SBL. FEA simulation results reveal
that the InGaAs SBL can also reduce the compressive
strain in the InAs QD, while the same effect was reported
previously for the InGaAs SRL, resulting in a remarkable
redshift in the PL emission. TEM measurement results
also confirmed that InGaAs SBL reduces the compressive
strain of InAs QD through lattice deformation. This de-
tailed study of wavelength tuning effect of the InGaAs
matrix on the PL emission of the DWELL structure is very
meaningful for the InAs QD device applications.

Abbreviation
AFM: atomic force microscopy; CW: continuous-wave; DWELL: dot-in-well;
FEA: finite element analysis; FWHM: full width at half maximum; GS: ground
state; GS-MBE: gas source molecular beam epitaxy; PL: photoluminescence;
QD: quantum dot; RT: room temperature; SBL: strained buffer layer;
SRL: strain-reducing layer; TEM: transmission electron microscopy.
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