Actuator turbine models and trailing edge
flow: implementation in an in-house code

Master’s Thesis in Applied Mechanics
JOHANNA MATSFELT

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

Master’s Thesis 2015:76

Actuator turbine models and trailing edge flow: implementation in an in-house code

© JOHANNA MATSFELT, 2015

Master’s Thesis 2015:76

Department of Applied Mechanics
Division of Fluid Dynamics
Chalmers University of Technology
SE-41296 Goéteborg

Sweden

Tel. +46-(0)31 772 1000

Reproservice / Department of Applied Mechanics
Goteborg, Sweden 2015

Abstract

To be able to simulate a trailing edge flow in CALC some modifications needs to be
done in the code. The main reason for this is that CALC only can handle a computational
domain consisting of one block. Modifications are made both in the multigrid solver that
solves the pressure field and the flow solver. Some of the modifications that are made in
the multigrid solver can be recognized from the implementations in the flow solver but
the multigrid solver uses 1D arrays compared to 3D arrays in the flow solver.

This implementation allows CALC to run a flat plate simulation and this was one of
the validating cases run. One laminar flow and one turbulent flow using the Reynolds
Averaged Navier Stokes (RANS) turbulent model and the results showed good agree-
ment. One more validating RANS case was used here representing an airfoil instead of
a flat plate. This simulation showed that the flow fulfilled the no slip condition at the
surface of the airfoil which was the focus of the validation.

The second part of this master thesis consisted of implementing two Actuator tur-
bine models named Actuator disk model (ADM) and Actuator line model (ALM). The
implementation of ADM which is the less accurate model of the two was validated by
an axisymmetric flow using the 5-MW National Renewable Energy Laboratory (NREL)
wind turbine. The ALM model was validated using the same turbine but with a 3D flow
due to its 3D behaviour. The results were acceptable when comparing to the NREL data
and results in [1]. The results from the ADM simulation obtained by restricting the ¢;
variable in the Gaussian function showed that more consistent predictions of the rotor
thrust and power between different meshes could be obtained.

Acknowledgements

This master thesis started in the beginning of September 2014 and ended in the middle
of August 2015. It is a 60 HE project carried out at the fluid dynamics division at
Chalmers University of Technology in Gothenburg.

I would like to thank my supervisor and examiner Lars Davidson for believing in me
and letting me carry out this one year master thesis. I would also like to thank the staff
at the fluid dynamics division for their support.

Johanna Matsfelt, Gothenburg, August 2015

Contents

1 Trailing edge flow: implementation in CALC

1.1 Geometry e
1.2 Finite Volume Coefficients
1.3 No slip condition via source terms
1.4 Derivatives of pressure close to the airfoil
1.5 Multigrido
1.5.1 Geometry
1.5.2 Finite Volume Coefficients
1.5.3 Prolongation oo
1.6 Modifications needed for some turbulence models
1.6.1 Distance to the airfoil
1.6.2 Derivatives of ¢ close to the airfoil
2 Trailing edge flow: validation
2.1 Flat plate e
2.1.1 Laminar e e
2.1.2 RANS . . . e
2.1.3 Conclusions of flat plate cases
2.2 Airfoil e
2.2.1 Computational domain,
2.2.2 Boundary conditions
223 Imletdata
2.2.4 RANS . . .
2.2.5 Conclusions of airfoil case
3 Actuator turbine models
3.1 Actuator disk model
3.1.1 Gaussian function
3.1.2 Implementation in CALC
3.1.3 Validation

10
10
10
13
16
17
17
18
19
21
23

CONTENTS

3.2 Actuator linemodel 34
3.2.1 Gaussian function o 34

3.2.2 Implementation in CALC 35

3.23 Validationo 36

3.3 Conclusions e 37

4 Further work 39
Appendices 42
Appendix A CALC part of init.f file including modifications 42
Appendix B CALC part of conv.f file including modifications 55
Appendix C CALC dpdyf.f file including modifications 57
Appendix D CALC part of peter_init.f file including modifications 59
Appendix E CALC part of peter_multi.f file including modifications 74
Appendix F CALC part of mg 2d.f file including modifications 79
Appendix G CALC part of peter_relax.f file including modifications 83
Appendix H CALC distance to airfoil calculation in the mod.f file 89
Appendix I CALC dphidy.f file including modifications 94
Appendix J CALC part of ADM mod.f file 96
Appendix K CALC ADM force.f file 106
Appendix L CALC part of ALM mod.f file 109

Appendix M CALC ALM force.f file 121

i

Nomenclature

Symbols

Trailing edge flow

an

as

arean
areanjafpl
anjafpl
aljafpl
ahjafpl
countMax

4]

d99

iafp

jaf

Jafp
jb2jtt

k
movedivde

1%

¢

N
Pn
op
bs

bs
Re H

Re,

Northern coefficient of each cell

Southern coefficient of each cell

Northern face area of each cell

Southern face area of the cells on top of the airfoil

The x part of the southern face area of the cells on top of the airfoil
The y part of the southern face area of the cells on top of the airfoil
The z part of the southern face area of the cells on top of the airfoil
Maximum number of guesses preformed for the x coordinate on the airfoil
Changes between different multigrid levels or boundary layer thickness
Boundary layer thickness defined at 99% of u«

Dissipation

Weight function through the northern face of the specified cell

Weight function through the northern face of the cell south of the specified cell
Thickness of the airfoil along the y direction

Last cell along the x axis that is alongside the airfoil

iaf but traced through the multigrid levels

Cell below next to the airfoil along the y axis

jaf but traced through the multigrid levels

Nodes part of interpolation for the synthetic inlet fluctuations
Turbulent kinetic energy

Distance related variable to move the x coordinate guessed on the airfoil
Kinematic viscosity

Generic variable

¢ at the center of the cell north of the specified cell

¢ at the northern face of the specified cell

¢ at the center of the specified cell

¢ at the center of the cell south of the specified cell

¢ at the southern face of the specified cell

Reynolds number based on the thickness of the flat sturt

Reynolds number at position x

Sp Source term

Sy Source term

© Momentum thickness

u Velocity component along the x direction, [m/s]

Uso Velocity infinitely away from the airfoil, [m/s]

Uy Local mean free-stream velocity component along the z direction, [m/s]
v Velocity component along the y direction, [m/s]

w Velocity component along the z direction, [m/s]

Actuator turbine models

AngBlade Angle between the blades

B Number of blades on the wind turbine

Bladek Instantaneous k plane location of each of the blades

c Local chord length of the section, [m]

Cp Local drag coefficient

Cr, Local lift coefficient

dt Time step, [s]

Dapm Drag force in ADM, [N/m?]

Darm Drag force in ALM, [N/m)]

Ar Local radial mesh size, [m)]

Af Local tangential mesh size, [m]

Az Local axial mesh size, [m)]

ep Unit vector in the direction of the drag

er, Unit vector in the direction of the lift

elP Variable controlling the width of the Gaussian distribution in ADM
e3P Variable controlling the width of the Gaussian distribution in ALM
€ Variable controlling the width of the Gaussian distribution on cell level
n(ptP)P 1D Gaussian distribution

n(p*P)2P 2D Gaussian distribution

fapm Forces in ADM, [N/m?]

imiddif f Number of cells streamwise before and after the wind turbine
Lipum Lift force in ADM, [N/m?]

Larm Lift force in ALM, [N/m]

omega The Rotational speed to the blades, [rad/s]

Axial distance from evaluated point to the wind turbine, [m]

p'P
p2P Distance from evaluated point to the node on the line with the same radii, [m]
r Local radii of the section, [m]

R Rotor radii, [m]

0 Polar angle, [rad]

Theata2k Maps angles turned by the blades to k planes

tottime The total time of the simulation at this time step, [s]

Utang Tangential velocity used in ADM and ALM, [m/s]

u Cartesian z-axis velocity component in CALC, [m/s]

v Cartesian y-axis velocity component in CALC, [m/s]

Vil Local relative velocity, [m/s]

w Cartesian z-axis velocity component in CALC, [m/s]
Glossary

ADM Actuator Disk Model
ALM Actuator Line Model
BEM Blade Element Momentum Method

CFD Computational Fluid Dynamics
CPU Central Processing Unit
LES Large Eddy Simulation

NREL National Renewable Energy Laboratory
PANS Partially Averaged Navier Stokes

RANS Reynolds Averaged Navier Stokes

TDMA Tri-Diagonal Matrix Algorithm

URANS Unsteady Reynolds Averaged Navier Stokes

Trailing edge flow:
implementation in CALC

1.1 Geometry

The CALC code can only handle a computational domain consisting of one block. Here
the trailing edge of an airfoil will be part of the domain as seen in fig. 1.1. With this
setup the choice would have been to use multiple blocks. When a one block mesh is used
the location of the airfoil is needed to be traced. The variables iaf and jaf are used for
this. iaf is the last cell along the x axis that is alongside the airfoil and jaf is the cell
below the airfoil along the y axis.

The variables are inserted in their locations with respect to the airfoil in fig. 1.2. The
one block configuration will by default treat the jaf cells as within the airfoil if the x cell
counter is less or equal to iaf. The physical interpretation of this can be seen in fig. 1.3.

Figure 1.1: Case setup including the trailing edge of the airfoil, not drawn to scale.

1.1. GEOMETRY
CHAPTER 1. TRAILING EDGE FLOW: IMPLEMENTATION IN CALC

7

Figure 1.2: Variables used to track the airfoil location in the computational domain.

jaf

jaf +1 \

i

Figure 1.3: Variables used to track the airfoil location in the computational domain seen
in default setup.

To avoid this problem the calculation of the center locations uses the y coordinate of the
corner of the cell with the x counter iaf and the y counter jaf i.e. the last cell along
the z axis below the airfoil. The same strategy is used when calculating the areas and
volumes of the cells below the airfoil.

Due to the presence of the airfoil and the one block configuration a problem occurs
with the areas located between the cells jaf and jaf+1. This is the areas that now
should represent the top and bottom of the airfoil. So they are no longer representing
the same areas between the cells which is the normal case when a one block configuration
is used. The northern areas of the jaf cells should represent the bottom of the airfoil
while the southern areas of the jaf+1 cells should represent the top of the airfoil. This
problem was solved by introducing a new variable. The northern areas of the jaf cells
have the standard variable name arean while the southern areas of the jaf+1 cells will

1.2. FINITE VOLUME COEFFICIENTS
CHAPTER 1. TRAILING EDGE FLOW: IMPLEMENTATION IN CALC

areanjafpl (..,jaf,..)\

arean(..,jaf,..)—/

Figure 1.4: Varibale names of the different areas on top of and below the airfoil.

be identified by the variable areanjafp1.

The use of the different area variables can be seen in fig. 1.4. The primary reason for
implementing it like this is that the southern areas of the jaf+1 cells are used at fewer
locations in the code than the northern areas of the jaf cells. The second contributing
factor is that the bottom of the airfoil is flat which makes it straightforward to find the
correct coordinates of these nodes. If the line in the mesh would have continued along
the bottom instead of the top of the airfoil, the bottom corners of the top cells would
have been needed to be provided to the code separately and needed to be changed for
each mesh to avoid approximations. The volumes of the cells on top of the airfoil are
separately calculated using the corner coordinates specified by the mesh and using the
south areas from the variable areanjafp1. In the default setup the volumes on top of
the airfoil would have been calculated correctly but due to the modifications of arean
now only representing the cells below the airfoil an error is introduced if they are not
calculated separately. The calculations described above are in CALC performed in the
file init.f seen in appendix A.

1.2 Finite Volume Coefficients

If there is a body in the flow, the flow will react differently compared to if the body
wasn’t there. In the one block configuration with the trailing edge of an airfoil in the
flow and the modifications above the body has no surface for the flow to feel. The physics
of the body need to be introduced as modifications of how the flow is handled by the
code. One modification needed is if the airfoil is not in the flow all the cells should
send information to each other. But when the airfoil is present the cells on top of and
below the airfoil should not have any connection to each other. One step is to put the
coefficient ay to zero for the cells below the airfoil [2]. For the cells on the top of the
airfoil coefficient ag is put to zero. The cells are now isolated from each other for all the
¢ variables e.g. u, v, w. In CALC this is done in the file mod.f.

Another modification is that the convective fluxes from the bottom of the airfoil are

1.3. NO SLIP CONDITION VIA SOURCE TERMS
CHAPTER 1. TRAILING EDGE FLOW: IMPLEMENTATION IN CALC

set to zero to represent that no flow is allowed to flow through the airfoil. This is made
in the mod.f file in CALC. The convective fluxes in CALC consists of a velocity-pressure
coupling, for this the Rhie-Chow interpolation is used. The Rhie-Chow interpolation is
used rather than linear interpolation to make sure that no unphysical oscillations will
appear in the velocity and pressure fields [3]. In the interpolation values at four nodes
are used. To have no connection along the y axis between the top and bottom of the
airfoil the interpolation for the nodes close to the airfoil cannot use values on the other
side of the airfoil. This modification can be seen in the conv.f file, the modified section
of conv.f can be seen in appendix B.

1.3 No slip condition via source terms

The one block configuration with no surface for the flow to feel also introduces a problem
because the no slip condition needs to be fulfilled at the surface of the airfoil. Here it
is introduced as a boundary condition between the cells on top of and below the airfoil.
The boundary condition is implemented by the use of source terms. The connection
between the cells on top of and below the airfoil is cut. This is done by putting the
coefficient an to zero for the cells below the airfoil and ag to zero for the cells on top
of the airfoil [2]. This modification is identical to what is done to cut the connection
between the cells above and below the airfoil. So no further modification of the code is
needed to fulfill this criterion.

The source term implementation uses the original values of the coefficients ay and
as and implement them via the source terms Sy and Sp. For the cells below the airfoil
the source terms will be

Sp = —an,Su = anN Pairfoil

The no slip condition only applies to the turbulent kinetic energy k and the velocity
components thereby ¢ refers to k, u, v or w. Due to the no slip condition at the surface
of the airfoil, all of the quantities represented by ¢ are equal to zero at the surface.
This results in a cancelling of the contribution to the source term Sy. The unmodified
coefficients a and ag in CALC contain contributions from both convection and diffusion.
This implementation is only for the cells closest to the airfoil so the contribution due to
convection is zero resulting in

Sp Sy =0

- _a’Ndiffusion’

The source terms are modified in the same way for the top of the airfoil only switching
from the north coefficient an to the south coefficient ag

SP = _aniffusion7 SU =0

1.4. DERIVATIVES OF PRESSURE CLOSE TO THE AIRFOIL
CHAPTER 1. TRAILING EDGE FLOW: IMPLEMENTATION IN CALC

1.4 Derivatives of pressure close to the airfoil

Next to a surface the pressure change along the normal direction is zero. In the case of
the airfoil the pressure change along the y direction next to the airfoil should be zero
due to the boundary condition d¢/dn = 0. In CALC the pressure gradient over a cell is
calculated using the values at the faces. To interpolate ¢ here representing the pressure
from the node center to the faces linear interpolation with weight functions f is used in
CALC [3]. This can be seen in the files dpdxf.f, dpdyf.f, dpdzf.f and in the dpdxfo.f,
dpdyfo.f, dpdzfo.f. For the northern face of a cell the interpolation is made using formula

On = fypdn + (1 = fyp)oP (1.1)

When interpolating the values of the northern faces for the cells below the airfoil, the
cells on top of the airfoil should not have any connection to it. This is obtained by
choosing the value of zero for the weight function f,, in eq. 1.1 for these cells and this is
done in the file mod.f. The northern face value are thereby set to the same values as the
center of the cell and a zero d¢/dn between the cell center and the airfoil is the result
as required.

In the same way as for the cells below the airfoil, the value at the faces of the cells
on top of the airfoil should not have any connection to the value of the cells below the
airfoil. In the same way as above the airfoil a zero pressure change along the y direction
next to the surface below the airfoil should be obtained. To interpolate ¢ from the center
to the southern face the following formula is used

bs = fysdp + (1 — fys)os (1.2)

No contact between the cells on top of and below the airfoil occurs if f,¢ is set to one for
the cells on top of the airfoil. It should be noted that the weight function f, in eq. 1.2
for the cells on top of the airfoil is the same weight function as f,, in eq. 1.1 for the
cells below the airfoil. This weight function has from above already been set to zero in
favour of the cells below the airfoil; but for the cells on top of the airfoil a value of one is
required. This is solved by an if statement to override the south face value after it has
been calculated using the center value of the cell above the airfoil. This results in a zero
d¢/dn between the cell center and the airfoil. The special area variable areanjafp1 is
used in the calculation to represent the south area of the cell at the top of the airfoil.
The implementation in all the files are made in the same way and as an example the
implementation in the dpdyf.f file can be seen in appendix C.

1.5 Multigrid

To obtain the pressure field in CALC a multigrid solver is used. The multigrid solver is
prefered compared to the tri-diagonal matrix algorithm (TDMA) because of its speed up
of the convergence rates. Further information about the theory of the multigrid solver
and its default implementation in CALC can be found in [4].

1.5. MULTIGRID
CHAPTER 1. TRAILING EDGE FLOW: IMPLEMENTATION IN CALC

coarser

[

1
N |
A N

Figure 1.5: iafp and jafp through different multigrid levels.

Many modifications in the multigrid solver for the pressure can be recognized from
earlier sections for the velocity components. The major differences are that the multigrid
solver uses 1D arrays while the flow solver uses 3D arrays. Another difference is that in
the multigrid solver the variables has to be traced through the different multigrid levels.

1.5.1 Geometry

The location of the last cell along the x axis below the airfoil is named iaf from the
implementation in the flow solver. The cell that would by default be treated as inside
the airfoil along the y axis is named jaf These variables are now needed to be traced
through the different multigrid levels, which is why new variable names are introduced.
The variable names were changed from iaf and jaf to iafp and jafp. The original variables
are integers but the new ones are 1D arrays containing integers. The size of the arrays
corresponds to the number of multigrid levels used. For this implementation to work
the original choice of the iaf and jaf has to be in such a way so that they through each
multigrid level still corresponds to the same positions with respect to the airfoil. An
example when this is applied between two multigrid levels can be seen in fig. 1.5. In the
same way as before the center locations, areas and volumes of the cells below the airfoil
needs to be modified. The modifications are made in the same way as before but the
coding could at first appear as different because of the 1D arrays instead of 3D arrays
and that the operations are made at each multigrid level. The southern areas of the cells
on top of the airfoil have a different variable name compared to the original areanjafp1
now changed to anjafpl, aljafpl and ahjafpl for the x, y and z part of the area. The
modifications explained above can be seen in the file peter_init.f in appendix D.

1.5.2 Finite Volume Coefficients

The coefficients ay and ag are treated in the same way as for the velocity. ay is set to
zero for the cells below the airfoil and for the cells on top of the airfoil the coefficients ag

1.5. MULTIGRID
CHAPTER 1. TRAILING EDGE FLOW: IMPLEMENTATION IN CALC

are set to zero and they are traced through the different multigrid levels. This is done
at the end of the file peter_init.f seen in appendix D.

1.5.3 Prolongation

When going from a multigrid level of a coarse grid to one with a finer grid prolongation
interpolation is used. The type of interpolation for the prolongation is in CALC bilinear
for the two dimensional part of the multigrid solver and trilinear for the three dimensional
part [4]. The three dimensional prolongation used in CALC follow the formula

87 i =7 (2707 1 + 90141, 5. 5 + 967 g1,k + 907 g k11

1
64

+ 35}+1,J+1,K + 36}+1,J,K+1 + 35},J+1,K+1 (1.3)

1
+ 071,041, K+1)

The indices written as uppercase letters together with the superscript 1 in eq. 1.3 and the
following equations in this section indicate locations in the coarser multigrid level. The
indices as lowercase letters together with the superscript 2 indicate locations in the finer
multigrid level. These notations are consistent with what is used in [4]. The formula
used in the two dimensional part of the multigrid solver is

1
51‘2,3‘ = E(96},J + 35}+1,J + 35},J+1 + 5}+1,J+1) (1.4)

In the one block setup the interpolation is not allowed to include nodes from both below
and on top of the airfoil. From the equations above 1.3 and 1.4 it can be seen that they
include ¢ with both index §; and d;41. By default CALC performs the prolongation
step and interpolation using nodes both below and on top of the airfoil. The solution
for the nodes below the airfoil is to choose §741 equal to §; and for the nodes on top of
the airfoil to choose d; equal to §y41. For the three dimensional eq. 1.3 the nodes below
the airfoil will now use the following prolongation step.

1
07k =51
+ 35}+1,J,K + 36}+1,J,K+1 + 36},J,K+1

(276},J,K + 96}+1,J,K + 96},J,K + 95},J,K+1

1
+ 0711,k +1)

1
:6_4(366}"]’](+ 12671 75 + 1267 51 + 40141, 7 541)

(1.5)

1
:1_6(95},J,K + 307 1.5 + 307 rcs1 + 0Tt gks1)

The connection to eq. 1.4 can be seen because the the resulting eq. 1.5 is a two dimen-
sional prolongation formula. The difference is that eq. 1.4 is in the z-y plane and eq. 1.5

1.6. MODIFICATIONS NEEDED FOR SOME TURBULENCE MODELS
CHAPTER 1. TRAILING EDGE FLOW: IMPLEMENTATION IN CALC

is in the x-z plane. The modification implemented in the CALC code can be seen in
the peter_multi.f file in appendix E. In the two dimensional case eq. 1.4 will for the cells
below the airfoil take the following shape

1
8, :1_6(95}’“’ + 30711, + 307 7+ 0141,5)
1
:1_6(125},J + 45}+1,J) (1.6)
1
21(36},J + 6}+1,J)

Also in the two dimensional case the prolongation eq. 1.6 decreases one dimension from
the original eq. 1.4. The two dimensional prolongation for the nodes closest to the airfoil
will be linear along the = axis instead of two dimensional in the z-y plane. This can be
seen in the mg_2d.f file in appendix F.

The mg_2d.f file is coded in a way to be able to handle all possible two dimensional
combinations i.e. the planes z-y, x-z and y-z without the knowledge where the plane
is located inside the computational domain. When the one block configuration is used
containing the trailing edge of an airfoil the code needs to know if the plane cuts through
the airfoil or not. For the z-y plane the variables iafp and jafp have been added to the
parameter list in the file peter_relax.f seen in appendix G. The z-z plane will never cut
through the airfoil so no further information is needed for the prolongation in this plane.
The location of the y-z plane may or may not cut through the airfoil. The variable taf
was introduced for this purpose. If taf is true the plane will cut through the airfoil and
the prolongation should be according to eq. 1.6 otherwise according to eq. 1.4.

1.6 Modifications needed for some turbulence models

In some of the turbulence models further modifications are needed to make the imple-
mentation work properly.

1.6.1 Distance to the airfoil

The shortest distance to the airfoil for each cell center is used in some of the turbulence
models available. One of them is the Reynolds Averaged Navier Stokes (RANS) model
implemented in CALC. The distance is here used in a damping function for calculating
the viscosity and can be seen in the file vist_pans.f. The coordinates of the airfoil is
found from the mesh and linear interpolation is used in between the given values. As a
first guess it is assumed that the coordinate on the airfoil has the same x coordinate as
the center of the cell. The guessed = coordinate and the y coordinate of the cell is used
to orientate on the airfoil where the shortest distance to the cell center can be found.
The y coordinate on the airfoil corresponding to the guessed = coordinate is found and
the distance between it and the cell center is calculated. The second guess of the x
coordinate moves the guessed x coordinate value a bit along the positive x axis. The

1.6. MODIFICATIONS NEEDED FOR SOME TURBULENCE MODELS
CHAPTER 1. TRAILING EDGE FLOW: IMPLEMENTATION IN CALC

moving distance is dependent by the variable movedivide. This variable is dependent on
the geometry of the airfoil and a value of 1000 was chosen for this setup. Again the y
coordinate on the airfoil is found and the distance to it is calculated. The algorithm
now has enough information to on its own make guesses whether to go along the positive
or negative x axis and the distance to move. A maximum of 100 guesses of = locations
for each cell is made specified using the variable countMaz. The distance to the airfoil
calculation is done in the mod.f. file and can be seen in appendix H.

1.6.2 Derivatives of ¢ close to the airfoil

In all of the available turbulence models the derivative of the variable ¢ is used. The
Large Eddy Simulation (LES) model is one of them. It is here part of the calculation of
viscosity and the ¢ variable is one of the three velocity components. This can be seen
in the file vist_les.f. At the airfoil due to the no slip condition the derivative should be
taken with a value of zero at the airfoil surface. When using a one block mesh there
exists no values at the airfoil surface. To represent these values when the derivatives
next to the surface of the airfoil is calculated. The northern face value of the cells below
the airfoil i.e. at jaf is set to zero. In the same way the southern face value of the
cells on top of the airfoil i.e. at jaf+1 is set to zero. For the jaf+1 cells also the south
areas are specified using the variable areanjafp1. The derivatives are calculated in the
files dphidx.f, dphidy.f and dphidz.f. The implementation in all the files are made in
the same way and as an example the implementation in the dphidy.f file can be seen in
appendix I.

Trailing edge flow: validation

To validate the implementation in CALC a flat plate and an airfoil setup is used.

2.1 Flat plate

Two cases are used as validation cases for the flat plate. For each case two simulations
are performed, the first a one sided setup where all implementations done is commented
away. The second a two sided case where the top and bottom results should be identical.
The first test case is a laminar flat plate simulation where external results are used to
validate the simulation results. The second case is a RANS simulation of a flat plate
flow with comparison between the two simulations.

In all the simulations performed boundary conditions are applied to the planes lim-
iting the z, y and z axis. These planes are assigned names according to fig. 2.1.

2.1.1 Laminar

The laminar case is a steady and incompressible two dimensional flow along a flat plate.
The case setup can be found in appendix B in [5]. The given data is obtained using the
same code as the implementation is made in i.e. CALC but without the implementation.
The basic setup of the case can be seen in fig. 2.2, with the flow simulated 0.19m before

Gﬂf BACK
I

Figure 2.1: Name declaration of the planes in the computational domain.

10

2.1. FLAT PLATE CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

Inlet Outlet

|
|
|
|
|
|
|
|
|
|sassrostig S S | |
|
|
|
|
|
|
|
|
|

Y

L

Figure 2.2: The case setup, not drawn to scale.

Inlet

i C

Figure 2.3: The one sided case setup, not drawn to scale.

it reaches the flat plate. The media simulated is air at 20°C at a uniformed velocity of
1m/s. The discretization scheme used is the hybrid scheme, personal communication [6].
The hybrid discretization scheme is also used in all the flat plate simulations performed
to validate the implementation.

One sided

When the code is run as a one sided flat plate the whole case seen in fig. 2.2 is not
needed to be simulated; only the top part of the plate is used as seen in fig. 2.3 with the
computational domain marked in red. It has a length of 2.461m and a height of 1.289m.
The mesh used has 252 nodes along the x axis and 200 nodes along the y axis.

The presence of the flat plate is simulated by applying boundary conditions to the
bottom boundary named BOTTOM in fig. 2.1. For the velocity components the following
boundary conditions are applied. A wall boundary condition is used at the flat plate and
a symmetry boundary condition is used before and after the plate. The inlet condition
is applied to the plane named LEFT in fig. 2.1. The inlet boundary condition is an

11

2.1. FLAT PLATE CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

0.051 0.05r
0.04f 0.04¢
0.03- 0.03f
Y Y

0.02+ 0.02y
o1l 0.01

‘ : : : ‘ % 1 2 3 4 5

0 0.2 0.4 0.6 0.8 1 v -3

u x 10
(a) u velocity component (b) v velocity component

Figure 2.4: Comparison of the velocity components profiles at x equal to 1.5645m between
the simulation and the given data. —: Data, O: Simulation.

uniformed u velocity with zero flow along the y axis. On the plane named RIGHT
an outlet Neumann boundary condition of zero change of the u and v component of
the velocity along the x axis is applied. The boundary named TOP has a symmetry
boundary condition along the whole boundary. Cyclic boundary conditions are applied
to the planes named FRONT and BACK, these boundary conditions are also used for
the pressure on these planes. On all the other planes seen in fig. 2.1 Neumann boundary
conditions of zero gradient are applied for the pressure.

The onesided case is run using a numerous of if statements in the implementation
and a value of -1 for the variables iaf and jaf. The implementation is not made to easily
handle this case but to make sure that nothing of the original code has been damaged
during the implementation this case is run. The u and v velocity profiles from the
simulation are compared to the profiles from the given data close to the flat plate at x
equal to 1.5645m seen if fig. 2.4. The u velocity profile of the simulation is spot on the
given data. A difference between the simulation and the given data can be seen in the
v component of the velocity profile. The magnitude of the v velocity should be noted
which is 1073 so both the results show acceptably good agreement to the given data.

Two sided

The implementation makes it possible to simulate the flat plate as infinitely thin. This
results in that the simulations of both the one sided and two sided flat plate should give
the same results. The computational domain used to simulate the two sided flat plate
can be seen in fig. 2.5, the black line indicates the location of the flat plate.

The two sided flat plate computational domain is the one sided flat plate but mirrored
along the y equal to zero plane. This simulation should thereby give the same results
for the profiles of the u and v components of the velocity as the one sided simulation.

The u and v velocity profiles at x equal to 1.5645m are compared to the data given
close to the flat plate in fig. 2.6. The mesh used both for the simulation on top and

12

2.1. FLAT PLATE CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

Inlet Outlet

Y

L |

Figure 2.5: The two sided case setup, not drawn to scale.

0.05p 0.05¢
o
0.04f 0.04r o
0.03f 0.03 s
Y Y
0.02- 0.02}
0.01f 0.01f
0 ‘ ‘ ‘ ‘ ‘
o ‘ ‘ ‘ ‘ ‘
0 02 04 06 08 1 0 ! 2, @ 4 5
U x 10
(a) u velocity component (b) v velocity component

Figure 2.6: Comparison of the v and v velocity profiles at z equal to 1.5645m between the
simulation and the given data. —: Data, O: Simulation on top, o: Simulation below.

below the plate is identical. The u velocity profiles of the two sided flat plate show good
agreement to the data. For the v velocity component profile the values on top of and
below the airfoil are spot on each other. But their values differ toward the given data. In
the same way as for the one sided flat plate simulation the magnitude of the v velocity
component is 1073, so the seen difference is accepted. Also the two sided simulation
show good agreement toward the given data.

2.1.2 RANS

In this validating case a flat plate is also used, but here it starts from the beginning
of the computational domain. The RANS k — ¢ turbulence model is use to predict the
behavior of the flow. The inlet profiles used in this case is not uniformed as can be seen
in fig. 2.7.

The length of the flat plate used in this validating case is 6m and the length between

13

2.1. FLAT PLATE CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

Inlet Outlet

I
I
I
I
I
I
I
|
1
// 7] |
I
I
I
I
I
I
I
I
l

Figure 2.7: The case setup, not drawn to scale.

Inlet Outlet

//

Figure 2.8: The one sided case setup, not drawn to scale.

the inlet and outlet is 12m. The inlet profiles used in the simulations are the profiles that
will be used on top of the airfoil at a momentum thickness of 4100 for the airfoil simula-
tion. The simulation for the one sided plate uses the computational domain marked in
red in fig. 2.8.

In the same way as for the earlier validating case the flat plate is simulated using a
wall boundary condition on the plane in the computational domain named BOTTOM
in fig. 2.1. After the flat plate along the x axis a symmetry boundary condition is used.
The height of the computational domain is 3.8486m. The mesh used has 50 nodes along
the z axis and 70 nodes along the y axis. In the two sided simulation this validation case
uses in the same way as the laminar validating case an infinitely thin flat plate. The
computational domain is marked in red in fig. 2.9.

The inlet profiles used in the simulation seen in fig. 2.9 are identically the same on
top of and below the flat plate with respect to the flat plate i.e. the sign of the v velocity
profile is changed for the profile below the flat plate. The profiles for u, v, k and € of
the one sided and on each side of the two sided simulation are compared at x equal to
4.625m.

14

2.1. FLAT PLATE CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

Inlet Outlet

Figure 2.9: The two sided case setup, not drawn to scale.

0.6 0051
0.5 0.04f
Af
0 0.03f
Yosl Y
0.02f
0.2F
ol 0.01f
0 ‘ ‘] 0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
u u
(a) Boundary layer (b) Zoom near the flat plate

Figure 2.10: Comparison of the u velocity profile at = equal to 4.625m between the simu-
lations. ——: One sided, O: Simulation on top, o: Simulation below.

The result of the u velocity profiles is seen in fig. 2.10 show that the predicted values
both on top of and below the flat plate in the two sided simulation is spot on the predicted
values from the one sided simulation. In fig. 2.11 it can be seen that the predicted values
of the v velocity profiles on top of and below the airfoil gives more or less the same
results. But they both differ compared to the one sided simulation. But as could be
seen by the x axis of both the figures shown in fig. 2.11 their magnitudes are small i.e.
10~ for the left figure and 107% for the right one. So the results given by both the
simulations are acceptably close to each other. Even when the k profiles are zoomed in
close to the flat plate as seen in the right figure in fig. 2.12 the predicted values from
all the simulations seems to give the same results. Also the predicted & values were
compared between the simulations and can be seen in fig. 2.13. In the same way as the
k profiles the ¢ profiles from the simulations seem to predict identically the same results
even when zooming in close to the flat plate.

15

2.1. FLAT PLATE CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

0.05
0.6
0.5+ 0.04f
041 0.03f
y 0.3f Y
0.02f
0.2¢
oal 0.01f
0 ‘ ‘ ‘ ‘ ‘ ‘
-5 0 5 10 15 E}5 0 5 10 15
v x10™ v x10°
(a) Boundary layer (b) Zoom near the flat plate

Figure 2.11: Comparison of the v velocity profile at x equal to 4.625m between the simu-

lations. ——: One sided, O: Simulation on top, o: Simulation below.
0.05¢
0.6
0.04
0.03
Y
0.02
0.01}
% 2 4 6 8
k x107°
(a) Boundary layer (b) Zoom near the flat plate

Figure 2.12: Comparison of the k profile at = equal to 4.625m between the simulations.
—: One sided, O: Simulation on top, o: Simulation below.

2.1.3 Conclusions of flat plate cases

All the compared profiles show similar results within accepted difference in the margins
between the one and two sided simulations and the given data. This shows that nothing
of the original code has been damaged during the implementation. The results obtained
from the top of and below the flat plate are identically the same results. So the imple-
mentation makes the flow behave in the same way on top of and below the flat plate
which is an important point to show for this implementation to be correct.

16

2.2. AIRFOIL CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

0.057
0.6
0.5 0.04f
0.4 0.03
Yos Y
0.02}
0.2}
0.1 o.o1r
0 ‘ : 0 ‘ ‘ ‘
0 0.01 0.02 0.03 0.04 0 0.01 0.02 0.03 0.04
g £
(a) Boundary layer (b) Zoom near the flat plate

Figure 2.13: Comparison of the ¢ profile at = equal to 4.625m between the simulations.
—: One sided, O: Simulation on top, o: Simulation below.

21

1
Ty
0

X

!
|
|
|
|
-20 :
-4 0 20
x/H
Figure 2.14: Dimensions of the computational domain including the trailing end of the
airfoil, not drawn to scale.

2.2 Airfoil

In the same way as the implementation can handle an infinitely thin flat plate it can also
handle the trailing edge of an airfoil inside the computational domain. The only thing
that is different when the airfoil is run instead of the flat plate is the mesh used.

2.2.1 Computational domain

The computational domain is shaped to be able to compare the results from simulations
with the experiments by Blake in [7]. The chosen dimensions of the computational
domain can be seen in fig. 2.14.

17

2.2. AIRFOIL CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

The origin of the computational domain is located at the trailing edge of the airfoil
as seen in fig. 2.14. Along the y axis the computational domain extents y/H = 20 units
on each side of the airfoil, i.e. it reaches from y/H = -20 to y/H = 21. The thickness of
the airfoil in the y direction is defined as H. Along the x direction the domain extend
from x/H = -4 to z/H = 20. The width of the computational domain is chosen to 0.5H
along the z axis.

The size of the computational domain along the y axis is consistent with the three
simulations by Wang in [8] and Wang et al. in [9, 10]. One of the simulations made
by Wang in [8] uses a computational domain of height 82H and Gritskevich et al. uses
in [11] a domain reaching from y/H = -40 to y/H = 40. These computational domains
are about double the size as the one in fig. 2.14 but in the articles using the smaller
computational domain no issues regarding boundary conditions interfering with the sim-
ulation seemed to be present. So the smaller computational domain was chosen to save
Central Processing Unit (CPU) time. Along the x axis the computational domain uses
the same dimensions and positioning of the airfoil as in [11]. The only difference is that
in this implementation both the top and bottom inlets will be located at x/H = -4,
while [11] has the top inlet at /H = -4 and the bottom at x/H = -1. Wang et al. uses
larger dimensions of the domain including the airfoil with x axis lengths of 20H [8] and
16.5H [8, 9, 10]. In all these simulations more of the flow on the sides of the airfoil is
simulated e.g. in the 16.5H simulations the inlets are positioned at about x/H = -8.
The x/H = -4 inlet was chosen to save CPU time and the inlet conditions from the
simulations by Wang et al. were recalculated for the new positions, further information
of how this was done is presented later in the report. The computational domain in the
simulations by Wang et al. extends to about z/H = 8. The longer distance towards the
outflow used in [11] were preferred to make sure that the outflow boundary condition
does not affect the results of the simulation. The width of the computational domain
used in [8, 9, 10, 11] was 0.5H which is also chosen for this simulation. The curve de-
scribing the trailing edge of the airfoil used in this simulation is the same as used by
Bentaleb et al. in [12].

Ywait =(1 — R1) +y/R? — 22 for 0<x/H <23

R2
Ywall =Y2 — Tl — (w9 —x)? for 23 <ux/H < 2.835 (2.1)

Ywall =Ro — \/R% —(2.937 —xz)? for 2.835 <x/H <2937

In eq. 2.1 the constants are Ry = 4.03H, Ry = 0.334H and y» = 1.936H. The trailing
edge of the airfoil is located at x/H = 0 and y/H = 0 and the computational domain is
built around it.

2.2.2 Boundary conditions

The boundary conditions specified for the velocity components and the pressure are not
identical at all the planes. The planes of the computational domain where the boundary

18

2.2. AIRFOIL CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

conditions are applied can be seen in fig. 2.1.

Velocity

At the planes TOP and BOTTOM seen in fig. 2.1 the boundary condition specified is
symmetry. This simulates that the airfoil is located far away from being affected by
any other body. The condition means that no flow will pass through this plane and the
gradients of all the velocity components at the plane is zero, which is resonable since the
flow on each side of the plane is identical to each other if no disturbances are present.
This boundary condition has to be applied sufficiently far away from the airfoil so that
the presence of the airfoil does not cause any flow through the boundaries. On the
planes named FRONT and BACK according to fig. 2.1 cyclic boundary condition are
applied. This boundary condition means that the airfoil has an infinitely length along
the z axis. The outflow boundary condition applied at plane RIGHT in fig. 2.1 is a
Neumann boundary condition with zero change of the velocity component in the normal
direction to the plane. The inlet boundary condition used at plane LEFT in fig. 2.1 is
taken from a Reynolds Averaged Navier Stokes (RANS) simulation of a flow along a flat
plate with data from a location of prescribed local momentum thickness.

Pressure

The boundary condition for the pressure is cyclic on the planes FRONT and BACK in
fig. 2.1. On the other planes a Neumann zero gradient boundary condition is applied.

2.2.3 Inlet data
Local momentum thickness

To be able to compare the results obtained from the simulations using this implemen-
tation with the experiments performed by Blake in [7] the RANS data used at the inlet
have to have the same Reynolds number Reg based on the local momentum thickness
and boundary layer edge velocity as the flow in the experiments. Wang et al. uses in [9]
Reg equal to 2760 for the profiles below the airfoil and a Reg value of 3380 on top
of the airfoil to duplicate the experiments performed by Blake. The dimensions of the
computational domain used in the simulation performed by Wang et al. are different.
The inlet used by Wang et al. is located at /H = —8. The mesh used in this imple-
mentation has an inlet located at x/H = —4. At these new locations the momentum
thicknesses on top and below the airfoil are needed. They can be found using the data
from the experiments performed by Blake and the formulas from Apsley in [13]. Blakes
experiments are performed using a flat strut with thickness 2 inches at a velocity of 100
ft/s at the Reynolds number based on the thickness of the flat strut Reg of 1.02 - 105 [7].
Using the definition of Rej; the kinematic viscosity v used in the experiments performed
by Blake can be found from.

19

2.2. AIRFOIL CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

Uoo H
v

Rey =

Next the momentum thickness © for the Reg used by Wang et al. is found using the
definition of Reg seen below.

RBQZM
1%

The x location can be found from the obtained data using the formulas by Apsley in [13].
Here the momentum integral relation for a zero pressure gradient boundary layer and
the power law approximation is used to obtain the formulas presented below for the
momentum thickness and the boundary layer thickness 9.

o= 7—725 (2.2)
g —17
0 — 0.166Re; (2.3)

x
In eq. 2.3 Re, is the Reynolds number at position z i.e.

Re, = —

By combining eq. 2.2 and 2.3 the x location for the simulation by Wang et al. can be
found. Now we use the difference in x location towards our inlet and eq. 2.2 and 2.3
is again used; now to find the new momentum thickness. The RANS simulation result
used as part of the inlet profiles in this implementation applied at the top of the airfoil
has a momentum thickness of 4100 and below the airfoil a momentum thickness of 3500.

Scaling

The inlet data used in the simulation need to be rescaled because the Reg values were
the same, but the momentum thicknesses did not have the same values as have been
calculated for the locations of the inlets in the mesh. To obtain the same momentum
thickness the momentum thickness of the data is calculated and a factor is created to
obtain the required momentum thickness. This factor is then applied to the center and
corner locations of the nodes in the data.

The data that should be used as inlet profiles in CALC should have a maximum
value of u equal to one. The original maximum wu value is larger than one and is used as
a factor. The factor is applied to the quantities depending on their velocity dependence
e.g. v and v is scaled only by the factor while the turbulent kinetic energy k is scaled by
the factor up to the power of two. The dissipation ¢ is needed to be scaled in a different

20

2.2. AIRFOIL CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

way. This to fit the boundary condition at the surface of the airfoil presented in [14] and
seen below

2kv
€= —
Y2
In eq. 2.4 y is defined as the normal distance from the airfoil. To scale the dissipation
to fit with the boundary condition the used scale factor is presented below

(lljsim)(Vsim)
Efactor = d%g;smida;a (25)
(699,data)

(2.4)

In eq. 2.5 kg is the turbulent kinetic energy that will be used in the simulation in CALC
and kgq, is for the given data. In the same way as for the turbulent kinetic energy vgim
is the kinematic viscosity that will be used in the CALC simulation and vg4, is for the
given data. The dgg sim is the thickness of the boundary layer in the simulation where
the limit is when u is 99% of the u velocity infinitely away from the airfoil often defined
as Ueo. The dgg gatq is the thickness of the boundary layer for the given data.

The data are interpolated from the given nodes of the data to the nodes of the mesh.
Linear interpolation is used. The given data value for the dissipation at the airfoil can
not be used in the interpolation if nodes of the mesh are located closer to the airfoil
than the data nodes, because this value is not the correct boundary value. To obtain
the values of € the boundary condition eq. 2.4 is used for the nodes in the mesh closer
to the airfoil.

The inlet profiles are written to one file for both the inlets. But the data is obtained
from RANS simulations that have a wall at the bottom. In the airfoil simulation the
wall i.e. the airfoil is located at the bottom for the top profile but the airfoil is on the
top of the bottom profile. To represent this for the bottom profile the v velocity profile
has to be mirrored.

2.2.4 RANS

In this validating case the RANS k — ¢ turbulence model is used to predict the behavior
of the flow. The discretization scheme used is the same scheme as used in the simulations
of the flat plate validating cases i.e. the hybrid scheme. The u/u~ and ;s profiles are
available from the experiments performed by Blake in [7] to validate the implementation.

The predicted u/uq velocity profiles are compared with measurements at locations
x/H = -3.125, -2.125, -1.625, -1.125 and -0.625 see fig. 2.15. Here it is seen that the
velocity profiles all fulfills the no slip condition at the surface of the airfoil. All the
profiles from the experiments have similar shapes as those from the simulation, but their
magnitudes are different. The focus in this studied was the implementation to be able
to run this case setup and get converging results. No case setup that is more simplified
than this is available to validate the implementation without changing the physics of
the simulation. If simulations should be run to obtain results that is in agree with
the experiments by Blake it is recommended to do a mesh study and to change the

21

2.2. AIRFOIL CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

-3 -25 -2 -15 -1 -05 0 0.5

u/Uoo +x/H
Figure 2.15: Comparison of the u profiles obtain by the simulation and the experiments
by Blake at locations, z/H = -3.125, -2.125, -1.625, -1.125 and -0.625. —: Drawn airfoil,

—: Simulation, e : Experiments by Blake.

15
1
y/H
0.5
0 1 1 1 1 1 1 1 I
-3 -25 -2 -15 -1 -05 0 0.5
Upms + ¢/ H
Figure 2.16: Comparison of the s + x/H profiles obtain by the simulation and the ex-
periments by Blake at locations, x/H = -2.125,-1.625, -1.125 and -0.625. ——: Drawn airfoil,

—: Simulation, e : Experiments by Blake.

turbulence model. Nothing of this has been done in this study and it is recommended to
read [8, 9, 10, 11] where the results in agreement with the experiments is the main focus,
if this is the goal of the study by the reader. In this study the simulation converged and
the profiles in fig. 2.15 show that the no slip condition is fulfilled is an acceptable result.

The profiles of u..,s are compared from the experiments by Blake and from this
simulation at the locations z/H = -2.125, -1.625, -1.125 and -0.625 in fig. 2.16. In the
same way as for the u/us profiles these profiles also show that the no slip condition is
fulfilled at the surface of the airfoil. The wu,,,s profiles obtained from the simulation and
the experiments show similar behavior but their magnitudes are different in the same
way as for the u/u, profiles in fig. 2.15.

22

2.2. AIRFOIL CHAPTER 2. TRAILING EDGE FLOW: VALIDATION

2.2.5 Conclusions of airfoil case

Both the comparisons of u/us and s show that the no slip condition is fulfilled at
the surface of the airfoil. The simulation itself was converging which is important to
show that the implementation in CALC is made in a correct way. So the focus of this
study to implement this case setup in CALC is seen as completed.

23

Actuator turbine models

In wind turbine CFD simulations actuator turbine models are often used in favour of
solving the flow field over each blade. The main advantage of this is that the boundary
layer on each blade does not need to be resolved so the mesh resolution can be reduced
significantly. [15]

In actuator turbine models the wind turbine is simulated by drag forces. But the
exact representation of the blades could vary in numerous ways e.g. a disk in Actuator
Disk Model (ADM) and lines in an Actuator Line Model (ALM). The physical repre-
sentation of ADM and ALM can be seen in fig. 3.1. In this work an ADM and an ALM
were implemented that both apply thrust and tangential force.

3.1 Actuator disk model

Due to that the ADM simulates the wind turbine blades as a disk the flow will be
axisymmetric. The ADM is based on the Blade Element Momentum Method (BEM)
which calculates the forces on the blades by 2D airfoil profiles. The lift and drag force
calculations for the ADM can be seen below.

oOF B 1
fapm = 94 = (LapmsDapum) = ﬁil)vfelc(CLeL,CD@D) (3.1)

In ADM the lift and drag forces, Lapys and Dpys are per unit area as can be seen in
eq. 3.1. An example of an area section where the force from an ADM routine could be
applied on can be seen in fig. 3.2. In eq. 3.1 B represents the number of blades on the
wind turbine and r represents the local radius to the center location on the area section.
The rest of eq. 3.1 is an ordinary lift and drag force formula for an airfoil where V. is
the local relative velocity and c¢ represents the local chord length. C, and Cp are the
local lift and drag coefficients and e;, and ep are the unit vectors in the directions of the
lift and drag. Further information on the steps from BEM to ADM can be found in [16].

24

3.1. ACTUATOR DISK MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

y‘
T

Figure 3.1: Wind turbine to ADM and ALM.

Figure 3.2: Area sections of ADM.

3.1.1 Gaussian function

The forces obtained from the ADM are in the axial plane of the wind turbine. Applying
these forces to the Computational Fluid Dynamics (CFD) simulation as a point force
will lead to oscillations [1]. To avoid these oscillations the force could be smeared away
from the single point in numerous ways. Here the force will be smeared using a Gaussian
distribution. For the ADM a 1D Gaussian distribution smearing in the axial direction
is recommended [16] and can be seen in fig. 3.3.

1 (H1D)2
1D\1D “\ D
= e \° 3.2
np ") = a5 Nz (3.2)
In eq. 3.2 the 1D Gaussian distribution used in this implementation can be seen. p'? is
the axial distance from the point evaluated to the wind turbine. The variable P is a
function of ¢; and the mesh resolution along the axial direction Azx.

25

3.1. ACTUATOR DISK MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

e

Figure 3.3: 1D gaussian applied.

el =g Ax (3.3)

1

D is described by eq. 3.3. ¢; is recommended to be in the
range from 1 to 4 [16] and Az is the local axial mesh size.

In this 1D smearing case €

3.1.2 Implementation in CALC

The implementation of ADM in CALC is first visible in the mod.f file where the part with
ADM implementation code can be seen in appendix J. Variables that will be constant
during the whole simulation are first initialized e.g. the number of nodes radially on the
blades. In this section the location of the wind turbine in the mesh is also found.

The velocity in ADM is represented in two dimensions by the axial and the tangential
velocity. The CALC code uses Cartesian coordinates with the x axis being the axial
direction and the z axis pointing upwards and the y axis specified from the two others.
The axial velocity in the ADM is the same as the Cartesian u component of the velocity
in CALC. The tangential velocity is obtained from

Utang = —vsin(0) + wcos(0) (3.4)

Here usqng is the tangential velocity in ADM and 6 is the polar angle coordinate which
needs to be found for each cell of the mesh in the y-z plane. This is needed because
CALC cannot handle a 2D axisymmetric mesh. When the mesh is axisymmetric it needs
a y-z plane formed like a regular polygon due to the multigrid solver for the pressure.
A representation of such a mesh can be seen in fig. 3.4. This is followed by reading
the dimensions of the blades from the aeroData.inp file followed by the lift, drag and
momentum coefficients from the CLCDCMTable.inp file.

26

3.1. ACTUATOR DISK MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

Figure 3.4: The mesh used in ADM and ALM.

In each time step the axial and tangential velocities are averaged over all the cells
on the same radii from the center of the wind turbine rotor. This is followed by sending
the variables to the force subroutine seen in appendix K. It is first checked if the cell is
located on the blade outside of the hub radius. If not only a drag force is applied and
returned to the mod.f file. If the cell is located outside of the hub radii the flow angle,
the angle of attack and the Mach number of the flow are calculated and by the help
of subroutines aeroTable and foilcledem the lift and drag coefficients are found. These
coeflicients are then used together with the flow angle to obtain the coefficients in the
normal direction referred to as the axial direction in the mod.f file and the tangential
direction. Last in the force routine the normal and the tangential forces are calculated.
Here eq. 3.1 is used but in the normal and the tangential directions instead of the lift and
drag directions. The reason is that the normal and the tangential velocities are supplied
to the force subroutine.

When returning to the mod.f file the normal force (from here on called the axial force)
and the tangential force are converted from Newton per meter squared on a circular area
to a regular polynomial area due to the mesh. The drag force in the axial and tangential
directions will be applied to the momentum equations as source terms. To do this the
unit needs to be Newton and not Newton per area section. So the forces are multiplied
by the area in the y-z plane of the cell. Next the tangential force is projected to a y and
z component and added as source terms in the V and W momentum equations.

The smearing of the force takes place in the mod.f file. Here the Gaussian distribution
eq. 3.2 and the e'? eq. 3.3 equations are used. In the end of mod.f the smeared force
is added to the Swu source term. To smear the force axial in the computational domain
the variable imiddif f is used. It represents the number of cells in the axial direction
upstream and downstream of the wind turbine where the smeared force will be added to

27

3.1. ACTUATOR DISK MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

-
- S~

imiddif f_1 imiddif f_2 imiddif f2 imiddif f_1

Figure 3.5: Choice of imiddiff parameter. Here imiddif f_1 has a good value but
imiddif f-2 has a value which is too low. The Gaussian function described by eq. 3.2 is
shown by the dashed line.

the Swu source term. Depending on the magnitude of the force and the parameters of the
Gaussian distribution the smeared force will be wider or narrower. When first starting
a new setup of the simulation it is important to make sure that the contribution to the
source term in the start and end cell is close to zero. Because if it is not this could cause
oscillations in the simulation. In fig. 3.5 two dummy variables are shown representing
the values of the imiddif f variable. imiddif f_1 has a larger value than imiddif f_2.
This means that the imiddif f_1 value choice will start applying the smeared force at a
cell located further away from the wind turbine. The Gaussian function in fig. 3.5 has
a value close to zero at this location. So imiddif f_1 is a good choice of value for the
imiddif f variable. However consider the imiddif f_2 value of the imiddif f variable.
It is here seen that the Gaussian function is not close to zero. So a choice representing
imiddi f f_2 is not recommended.

Before the force is added to the momentum equations it is smeared with the Gaussian
function. The Gaussian is integrated for each radial position along the axial axis. Then
when the Gaussian is used to smear the force this integrated Gaussian is used to scale
so that the final contribution of the Gaussian is equal to one. Here the force is added
to the source term of the u velocity, but the same follows for the v and w velocity by
changing the applied force to the y and z forces.

3.1.3 Validation

To validate the ADM implementation the 5-MW reference wind turbine from National
Renewable Energy Laboratory (NREL) is used [17]. This wind turbine is used due to
the amount of available data e.g. velocity profiles at velocity specific rotational speed of
the rotor and pitch angle of the blades. The RANS k-¢ turbulence model was used.

This first setup describes a uniformed wind blowing on the rotor blades and the hub
and can be seen in fig. 3.6. This representation allows the simulation to be run using axis
symmetry. The axisymmetric computational domain can be seen in fig. 3.7 expressed in
units of rotor radii. The flow is simulated 10 rotor radii before the wind turbine and 20
after. Radially the flow is simulated 9 rotor radii outside of the wind turbine. Radially
the mesh has 240 cells.

28

3.1. ACTUATOR DISK MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

wind

Figure 3.6: First setup.

9R

r
Lx 10R 20R

Figure 3.7: Axisymmetric computational domain in units rotor radii. The location of the
wind turbine is seen as the thick line inside the computational domain.

Velocity profiles

From the NREL documentation the velocity profiles can be found. The rotational speed
seen in fig. 3.8(a) and the blade pitch angle shown in fig. 3.8(b) were taken from this
technical report to be able to compare the behaviour of the ADM implementation for
different wind velocities [17]. In the velocity profile simulations the mesh had 160 cells
in the axial direction distributed uniformly, which corresponds to a Ax value of 11.81
m.

In fig. 3.9 the predicted rotor power and rotor thrust can be seen as functions of
the wind speed. The NREL data using the BEM model is seen in red and the ADM
simulation using the RANS turbulence model is seen in blue. The shape of the ADM
curves are close to the NREL shape but have a distance in between them. At wind speeds
larger than 11.4 m/s the blades start to pitch as seen in fig. 3.8(b) and the influence of
this on the rotor power and thrust is also captured by the ADM implementation seen
in fig. 3.9. The results from the ADM is not expected to give the exactly same results
as the NREL data because different models have been used. Rather it should have the
main shape equal to the NREL data which has been shown here.

€ parameter

The € and A parameters have been shown to have an impact on the results from the CFD
simulation [1, 16]. Simulations when varying the € and A parameters were performed to

29

3.1. ACTUATOR DISK MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

14 T i ; . 10
8,
6,
4,
2,
L L L L 0 Il
6 8 10 12 14 6 8 10 12 14
Wind speed [m/s] Wind speed [m/s]
(a) Rotational speed (b) Pitch angle

Figure 3.8: Rotational speed [rad/s] and pitch angle on the blade [°] as function of the
wind speed from the NREL data [17].

900
800r
700r
6001
500f
400r
300

200r

6 8 10 12 14 197 8 10 12 14
Wind speed [m/s] Wind speed [m/s]
(a) Rotor power (b) Rotor thrust

Figure 3.9: Rotor power [MW] and thrust [kN] as function of the wind speed.
——: NREL BEM, —: ADM RANS.

30

3.1. ACTUATOR DISK MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

investigate the impact on this implementation of ADM. The uniformly inflow was chosen
to be 8 m/s and the rotational speed was 1.003 rad/s and zero pitch angle. Here the 1D
¢ parameter described by eq. 3.3 and the axial mesh size named Ax were varied.

The input used in this simulation was quite close to the input used in [1]. The
same wind turbine was used, the inflow velocity was also 8 m/s, the rotational speed
was a bit lower 0.959 rad/s. They used a 3D Gaussian distribution which should give
slightly different results [1, 16]. The software in [1] was OpenFOAM using LES with
the Smagorinsky subgrid model which should provide more accurate results compared
to the RANS k-¢ model used here but the magnitude of the difference is unknown [5].

The rotor power results from the simulations performed in this master thesis can
be seen in fig. 3.10. The span of data used for the parameters was larger in these
simulations than in the simulations made by [1] seen in fig. 3.11. All the data from
the present simulations are shown in fig. 3.10(a) and data from a similar span as in [1]
can be seen in fig. 3.10(b). The reason that data for the lowest £ value of 2.36 is not
presented for meshes with Ax larger than 2.36 is the large oscillations introduce that
caused the simulations to diverge. The result from the simulations in [1] show an overall
larger amplitude of the results from minimum 1.95 MW with ¢ = 4.2 m and uniform
A = 4.25 m to a maximum of 2.25 MW with ¢ = 10.5 m and uniform A = 1.1 m [1].
Comparing to approximately the same parameter values here giving 1.35 MW for ¢ = 3.78
m and Az = 4.2 m to 1.59 MW for ¢ = 11.81 m and Az = 1.05 m. Giving a difference
in their simulations of 0.3 MW and in this simulations 0.25 MW. So the difference is
more or less the same but it is unknown if the difference is due to the different Gaussian
functions or turbulence models used or something else.

The main behaviour of the rotor power when the parameters are changed is the same
between the simulations. Keeping ¢ constant and increasing A will decrease the rotor
power predicted. Whereas keeping A constant and increasing ¢ will increase the rotor
power. The power of the choice of A and € can be seen in fig. 3.10(a). Here the predicted
rotor power varies between 0.48 MW and 1.63 MW.

Data for the rotor thrust is also presented in fig. 3.12 in the same way as for the
rotor power. The thrust shows the same behaviour as the power keeping € constant
and increasing A decreases the predicted rotor thrust. Whereas keeping A constant and
increasing ¢ increases the rotor thrust. Fig. 3.12(a) shows the power for different A and
€ and the trust predictions vary from 200 kN to 360 kN. No comparing data for the rotor
thrust are available in [1].

To limit these differences in predicted rotor power and thrust it is in [16] recom-
mended to limit the ¢; parameter in eq. 3.3 between 1 and 4. This will limit the £'?
parameter differently for different choices of Az i.e. meshes. Showing this in fig. 3.10 and
fig. 3.12 proved difficult so the data was rearranged and shown as constant Az profiles
in fig. 3.13 instead of constant e'? profiles. The part of the profiles in fig. 3.13 that are
solid shows a g; value between 1 and 4 and the dashed part has values outside of this
interval.

It is now clearly seen the 'P value varies a lot from the mesh with the smallest
Az to the one with the largest Ax. But the rotor power and thrust is for all the

31

3.1. ACTUATOR DISK MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

2
————————m 1.6+
1.5¢]
1.5¢ \
l,
1.4
0.5r
1.3
% 2 4 6 8 10 12 L2y 2 3 4
Az [m) Az [m]
(a) All data (b) Zoomed
Figure 3.10: Rotor power [MW] as function of Az [m]. —: &P = 236 m,
e =378 m, —: &P =630 m, ——: P = 1181 m, — P = 1512 m,
——e!P? =25.20 m.

2.1\'\]

1.9¢
1.8

1.7

% 1 2 3 4

Az [m)
Figure 3.11: Rotor power [MW] as function of the Az [m], data obtained from [1].
——e=42m, re=63m,—e=84m,—:¢=10.5m.

32

ACTUATOR DISK MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

3.1.
400 400
250 3801
360(
300f -
3401 \ ,
250F
320¢
200 L L L L L L 300 L L L L
0 2 4 6 8 10 12 1 2 3 4
Az [m] Az [m]
(b) Zoomed
— eP = 236 m,

Figure 3.12:

(a) All data
Rotor thrust [kN] as function of the Az [m]

e =378 m, —: e =630 m, —: &P = 11.81 m, — ' = 15.12 m,

cetP =2520m
: : ‘ ‘ 400 \ : : ‘
16{/"/_—’”.
I - 3501 7~ /"/““‘“ﬂuﬂ"
L4 'o' .
. *
1.2} K 0
N 300f ¢
1r H !
0.8 250)
06 1 :
0.4 ' i i i i i i i i
0 10 20 30 40 50 2000 10 20 30 40 50
e [m] e [m]
(b) Rotor thrust

(a) Rotor power
Rotor power [MW] and thrust [kN] as function of the & [m]
Az = 1575 m, — Az = 236 m, — Az = 3.78 m,

Figure 3.13:
— Az = 1.050 m, —

:Ar =6.30 m, —: Az =11.81.m
The interval of the

Az values much more restricted for the recommended e; values.
smallest predicted rotor power is now 1.4 MW to the largest of 1.63 MW. This shows a
difference of 0.23 MW compared to 1.15 MW for the non restricted ¢; simulations. In
the rotor thrust the smallest predicted value is now 330 kN and the largest 360 kN. So

the difference is now 30 kN compared to 160 kN for the non restricted ¢; simulations.
So to be able to have more consistent predictions of the rotor power and thrust

33

3.2. ACTUATOR LINE MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

et

Figure 3.14: 2D Gaussian smears forces both in the axial direction in the same way as the
1D Gaussian seen in fig. 3.3 but now also in the rotor plane.

between different meshes i.e. different A values it is more important to keep track of the
¢; parameter than the ¢!” parameter in eq. 3.3.

3.2 Actuator line model

In ALM the blades are simulated as lines. This representation makes it not possible to
run the simulation axisymmetric as in ADM now a 3D simulation is needed.

oF

farm = oL

The ALM formula for lift and drag can be seen in eq. 3.5, as Lary and Dar . Compared
to the ADM the ALM formula has the unit force per length instead of force per area.
ALM can capture the tip and root vortices which ADM cannot. To have a representation
of these vortices is important when studying the near wake which is a clear advantage
of the ALM over the ADM. The advantage of ADM compared to ALM is the speed of
convergence if the near wake is not to be studied. [1]

1
= (Larm,Darmr) = §PV7~2ezC(CL6L, Cpep) (3.5)

3.2.1 Gaussian function

The force obtained from the ALM is along a line. The 2D Gaussian distribution rec-
ommended from [16] will not only smear the force in the axial direction but also in the
tangential direction following a constant radii in the rotor plane. Hence the force will
not only be applied as in fig. 3.3 but also in the rotor plane (seen in fig. 3.14).

n(p*?)2P = (53;)2776_(273_17) (3.6)

34

3.2. ACTUATOR LINE MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

The 2D Gaussian distribution can be seen in eq. 3.6. The variable p?” is the distance
from the evaluated point to the node on the line with the same radius. The e'P from
ADM is now not only a variable depending on the axial mesh resolution but the whole
3D mesh resolution and is hence denoted by £3P.

&30 = ¢;\/(RAG)2AT2Ax? (3.7)

Eq. 3.7 shows the formula for e3P recommended and used here [16]. The variable R is
the rotor radius, Af, Ar and Ax are the local tangential, radial and axial mesh size
respectively.

3.2.2 Implementation in CALC

The implementation of ALM in CALC has many similarities to the implementation of
ADM. This section will only present changes and further implementations needed for
the ALM compared to the ADM.

To run ALM compared to ADM the location of the blades i.e. the lines need to be
traced. This is done in the mod.f file seen in appendix L after the airfoil data has been
read. The first thing that needs to be done is to trace the angle the blades has turned
within one lap to the current k& plane. This is done by the variable T'heata2k which maps
angles to k planes. Finally the angle between the blades are calculated and defined by
the AngBlade.

Each time step the location of the blades needs to be found. To do this the time step
dt, the total time of the simulation at this current time step tottime and the rotational
speed omega are used. First the number of whole laps the blades has turned is found.
The radians this corresponds to are then subtracted from the total radians turned to find
the radians turned within the lap. Then Theata2k and AngBlade variables are used to
find the k plane location of each blade and store it in the Bladek variable.

For each blade the local axial and tangential velocity are now found and used as
input in the force subroutine for ALM seen in appendix M. The only difference between
the force subroutine in ADM and ALM is the two formulas for calculating the normal
and tangential force at the end of the routine. In ALM the formulas are given in eq. 3.5.

Like in ADM the ALM forces must have the unit Newton. This is obtained by
multiplying the forces obtained from the force subroutine by the radial mesh size of the
cells seen in fig. 3.15. The 3P will vary in the mesh because it includes Ar. So to be
able to compare the constant e in ADM to the varying 3P in ALM the €3 values
are averaged. Observe that this is only for comparison reasons and the mesh local value
of e3P is used in the simulation.

The 2D Gaussian distribution is integrated for each radial position over the axial
and the tangential axis. Like in the ADM the integral is scaled so that it is equal to
one. This is the definition of a Gaussian, but without scaling the integrated 2D Gaussian
is much larger than one. The force from each blade is then added to the source term
individually after being smeared. This is done in the mod.f file in appendix L and here
eq. 3.6 and eq. 3.7 are used.

35

3.2. ACTUATOR LINE MODEL CHAPTER 3. ACTUATOR TURBINE MODELS

o

et

Figure 3.15: 2D gaussian in addition to 1D gaussian also apply forces in the rotor plane

3.2.3 Validation

The ALM implementation is validated in this section. Both the Unsteady Reynolds
Averaged Navier Stokes (URANS) and the Partially Averaged Navier Stokes (PANS)
turbulence models are used.

Velocity profiles

To validate the ALM implementation the same wind turbine as used in the ADM val-
idation, the 5-MW reference wind turbine from NREL is used [17]. This first setup
describes a uniformed wind blowing on the rotor blades and the hub and can be seen in
fig. 3.6. This setup allowed the ADM simulation to be carried out using axis symmetry
but in the ALM the lines are rotating so the simulation now needs to be run in 3D. The
computational domain was the same as in ADM and can be seen in fig. 3.7. The wind
speeds were the same as in the ADM simulations. The rotational speed and the blade
pitch angle versus wind speed are shown in fig. 3.8.

When the PANS turbulence model is used the LES region is specified as the black
region in the computational domain in fig. 3.16 and the URANS region is white. The
transitions between the regions take place over a distance of two rotor radius.

In fig. 3.17 the predicted rotor power and rotor thrust are presented as functions of
the wind speed. The NREL data using the BEM model is included in red and the ADM
simulation using the RANS turbulences model is seen in blue. The ALM simulations
using URANS and PANS are also shown. When predicting the rotor thrust ALM predicts
somewhat higher values than ADM but not as high as the NREL data. Comparing the
ALM simulations to each other the values predicted by the PANS gives slightly lower
rotor power and thrust than the URANS simulation. Here the ALM shows values in
closer agreement to the NREL data than the ADM results.

36

3.3. CONCLUSIONS CHAPTER 3. ACTUATOR TURBINE MODELS

IR

e —
|

T—KI‘ 10R 20R

Figure 3.16: The LES region seen in black and URANS region in white. They are shown
in the axisymmetric computational domain in units rotor radius.

6
800
600 1
400 1
200
6 8 10 12 4 6 8 10 12 14
Wind speed [m/s] Wind speed [m/s]
(a) Rotor power (b) Rotor thrust

Figure 3.17: Rotor power [MW] and thrust [kN] as function of the wind speed.
——: NREL BEM, —: ADM RANS, —: ALM URANS, — ALM PANS.

3.3 Conclusions

When comparing the ADM and ALM velocity profiles of the rotor power and the rotor
thrust to the NREL data the main shape is the same. This was the focus due to NREL
uses the BEM model so no actuator turbine model when predicting the quantities. Both
the 1D in ADM and 2D in ALM Gaussian distributions have been normalized so that
the integral is equal to one.

When varying the values of the ¢ and the Az parameters in the ADM simulation
and comparing the predicted rotor power to [1] the difference between the maximum
and minimum were more or less the same. But it is unknown if the small difference is
due to the different Gaussian distributions or turbulence models or something else. No
comparing data for the rotor thrust are available in [1].

37

3.3. CONCLUSIONS CHAPTER 3. ACTUATOR TURBINE MODELS

To have more consistent predictions of the rotor power and the rotor thrust in ADM
between different meshes i.e. different Az values it is more important to keep track of
the g; parameter than the e'? parameter in eq. 3.3.

38

Further work

In the trailing edge flow in the airfoil case a mesh refinement study needs to be done.
To obtain velocity profiles that agree with the experiments by Blake to a larger extent
than the ones presented here it is also recommended to change the turbulence model.

In the ALM simulation the rotor power and rotor thrust dependence on the mesh
resolution and the 2P is still needed to be found.

39

1]

[6]

[7]

Bibliography

L. M. Tossas, S. Leonardi, Wind turbine modeling of computational fluid dynam-
ics, Tech. rep., National Renewable Energy Laboratory, University of Puerto Rico,
Mayaguez, Puerto Rico (2013).

H. K. Versteeg, W. Malalasekra, An introduction to computional fluid dynamics
and finite volume method, 2nd Edition, Pearson Education Limited, Harlow, Great
Britian, 2007.

L. Davidson, B. Farhanieh, Calc-bfc a finte-volume code employing collocated vari-
ble arrangement and cartesian velocity components for computation of fluid flow
and heat transfer in complex three-dimensional geometrist, Publication no 95/11,
Division of Fluid Dynamics, Dept. of Applied Mechanics, Chalmers University of
Technology, Goteborg, Sweden (1995).

P. Johansson, A three dimensional laminar multigrid method applied to the simplec
algorithm, Publication no 92/11, Division of Fluid Dynamics, Dept. of Applied
Mechanics, Chalmers University of Technology, Géteborg, Sweden (1992).

L. Davidson, Fluid mechanics, turbulent flow and turbulence modeling, 23 dec,
Division of Fluid Dynamics, Dept. of Applied Mechanics, Chalmers University of
Technology, Géteborg, Sweden (2014).

L. Davidson, Division of Fluid Dynamics, Dept. of Applied Mechanics, Chalmers
University of Technology, Goéteborg, Sweden (2014).

W. Blake, A statistical description of pressure and velocity fields at the trailing
edges of a flat strut, 4241, David W. Taylor Naval ship research and development
center, Bethesda, USA (1975).

M. Wang, Progress in large-eddy simulation of trailing-edge turbulence and aeroa-
coustics, in: Annual Research Briefs, Center for Turbulent Research, Stanford
Univ./NASA Ames Research Center, 1997, pp. 37-49.

40

BIBLIOGRAPHY BIBLIOGRAPHY

[9]

[10]

[11]

M. Wang, P. Moin, Dynamic wall modelling for large eddy simulation of complex
turbulent flows, Physics of Fluids 14 (7) (2002) 2043-2051.

M. Wang, P. Moin, Computation of trailing-edge flow and noise using large-eddy
simulation, ATAA Journal 38 (12) (2000) 2201-2209.

M. Gritskevich, A. Garbaruk, J. Schiitze, F. Menter, Development of ddes and
iddes formulations for the k-w shear stress transport model, Flow, Turbulence and
Combustion 88 (2012) 431-449.

Y. Bentaleb, S. Lardeau, M. A. Leschziner, Large-eddy simulation of turbulent
boundary layer separation from a rounded step, Journal of Turbulence 13 (4) (2012)
1-28.

D. Apsley, Turbulent boundary layers, Tech. rep., The university of Manchester,
Manchester, Great Britain (2009).

L. Davidson, An introduction to turbulence models, Publication no 97/2, Division
of Fluid Dynamics, Dept. of Applied Mechanics, Chalmers University of Technology,
Goteborg, Sweden (2011).

N. Troldborg, Actuator line modeling of wind tubine wakes, Ph.D. thesis, Dept.
of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
(2008).

R. Mikkelsen, Actuator disk methods applied to wind turbines, Ph.D. thesis, Dept.
of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
(2008).

W. M. J. Jonkman, S. Butterfield, G. Scott, Definition of a 5-mw reference wind
turbine for offshore system development, Tech. rep., National Renewable Energy
Laboratory, Golden, Colorado (2009).

41

CALC part of init.f file including
modifications

subroutine init

chapter 0 0 0 0O O O O O preliminaries 0 0 0 0 0 O
0

include ’COMMON
include ’CASECOM’

dimension xcmod (it ,jt ,kt),ycmod(it ,jt,kt),zcmod (it ,jt , kt)

chapter 1 1 1 1 1 1 geometrical quantities 1 1 1 1 1
1

c————calculate the nodes of the control volume.

pi=4.xatan (1.)
do 100 kk= 1,nk
do 100 jj= 1,nj
do 100 ii= 1,ni

iml=max(ii —1,1)
jmi=max(jj —1,1)
kml=max(kk —1,1)

i=min(ii ,niml)

42

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

j=min(jj ,njml)
k=min (kk ,nkm1)

xp(ii,jj ., kk)=

& 0.125x(xc(i,j,k)+xc(iml,j, k)+xc(i,jml, k)+xc(iml,jml k)

& +xc(i,],kml)+xc(iml,j ,kml)+xc(i,jml,kml)+xc(iml,jml, kml))
yp(ii,jj, kk)=

& 0.125%(yc(i,j,k)+yc(iml,j,k)+yc(i,jml,k)+yc(iml,jml, k)

& +yc(i,j,kml)+yc(iml,j kml)+yc(i,jml, kml)+yc(iml,jml, kml))
zp (ii,jj ,kk)=

& 0.125%(zc(i,j,k)+zc(iml,j, k)+zc(i,jml, k)+zc(iml,jml k)

& +zc (i,j,kml)+zc(iml,j ,kml)+zc(i,jml, kml)+zc(iml,jml, kml))

¢ Modified by Matsfelt
¢ Modify the yp for nodes in the airfoil
if (ii.le.iaf.and.jj.eq.jaf) then

yp(ii,jj kk)=
& 0.125%(yc(iaf ,j,k)+yc(iaf,j,k)+yc(i,jml, k)+yc(iml,jml k)
& +yc(iaf ,j ,kml)+yc(iaf,j kml)+yc(i,jml, kml)+yc(iml,jml, kml))

end if
¢ Modified by Matsfelt

100 continue

c———calculate the area of the control volume faces
do 110 k= 1,nkml
do 110 j= 1,njml
do 110 i= 1,niml

iml=max(1,i—1)
jml=max(1,j—1)
kml=max (1 ,k—1)

c
ax=xc(i,j,k)—xc(iml,j k) !
ay=yc(i,j,k)—yc(iml,j k) !
az=zc (i,j,k)—zc(iml,j k) !

c
bx=xc(i,j,k)—xc(i,j,kml) !
by=yc(i,j,k)—yc(i,j,kml) !
bz=zc(i,j,k)—zc(i,j,kml) !

c

43

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

cx=xc(i,j,k)—xc(i,jml, k)

cy=yc(i,j,k)-yc(i,jml, k) !
cz=zc (i,j,k)—zc(i,jml, k)

dx=xc(i,jml,kml)—xc(i,jml, k) !
dy=yc(i,jml,kml)—yc(i,jml, k) !
dz=zc (i,jml,kml)—zc(i,jml,k) !

ex=xc(1i,jml,kml)—xc(i,j,kml) !
ey=yc(i,jml kml)—yc(i,j,kml) !
ez=zc (i,jml kml)—zc(i,j,kml) !

ox=xc (iml,j ,kml)—xc (iml,j k) !
oy=yc (iml,j ,kml)—yc(iml,j k) !
oz=zc (iml,j ,kml)—zc (iml,j k) !

px=xc (iml,jml,k)—xc(i,jml, k) !
pz=zc (iml,jml ,k)—zc (i,jml, k) !

gx=xc (iml,jml,k)—xc(iml,j k) !
qz=zc (im1,jml ,k)—zc (iml,j k) !

rx=xc (iml,j ,kml)—xc(i,j,kml) !
ry=yc(iml,j ,kml)—yc(i,j,kml) !
rz=zc (iml,j ,kml)—zc(i,j ,kml) !

¢ Modified by Matsfelt
¢ Modify the yc at jaf level for the locations in the airfoil
if (i.le.iaf.and.j.eq.jaf) then

ay:yc(iaf ,j ,k)—yc(laf ,j ak) !
by=yc(iaf ,j,k)—yc(iaf,j, kml) !
cy=yc(iaf,j,k)—yc(i,jml k) !

ey=yc(i,jml,kml)—yc(iaf,j,kml) !
oy=yc(iaf ,j ,kml)—yc(iaf,j, k) !

qy:yc(lml 7Jm1 ,k)—yc(laf 7J 7k) !
ry=yc(iaf ,j ,kml)—yc(iaf,j kml) !

44

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

end if
¢ Modified by Matsfelt

ailx=cy+*bz—czxby
aily=cz*bx—cx*bz
ailz=cxxby—cy*bx

ai2x=eyxdz—ezxdy
ai2y=ez+xdx—exx*dz
ai2z=exxdy—ey*dx

ajlx=by*az—bzxay
ajly=bzxax—bxx*az
ajlz=bxxay—by=xax

aj2X=0y*TZ—O0Z*Ty
aj2y=0Z*IX—0X*TZ
aj2Z=0X*Ty—0y*TX

aklx=cy*pz—cz*py
akly=cz*px—Ccx*pz
aklz=cx*py—cy*px

ak2x=qy*az—qz+*ay
ak2y=qz*ax—qx+*az
ak2z=qx*ay—qy*ax

areaex (i,j,k)=0.5%(ailx+ai2x)
areaey (i,j,k)=0.5x%(aily+ai2y)
areaez (i,j,k)=0.5x%(ailz+ai2z)
areanx (i,j,k)=0.5%(ajlx+aj2x)
areany (i,j,k)=0.5x(ajly+aj2y)
areanz (i,j,k)=0.5x%(ajlz+aj2z)
areahx (1,j,k)=0.5%(aklx+ak2x)
areahy (i,j,k)=0.5x(akly+ak2y)
areahz (i,j,k)=0.5%(aklz+ak2z)

110 continue

c———calculate the volume.

45

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

¢ volume=0.333*area times coord. (sum over all faces)
volsum=0.0
do 120 k= 2,nkml
do 120 j= 2,njml
do 120 i= 2,niml

iml=i-1
jml=j—1
kml=k—1

c—— east face
xe=0.25x(xc(i,j,k)+xc(i,jml, k)+xc(i,jml,kml)+xc(i,],kml))
ye=0.25%(yc(i,j,k)+yc(i,jml, k)+yc(i,jml,kml)+yc(i,j, kml))
ze=0.25%(zc(i,j,k)+zc(i,jml,k)+zc(i,jml kml)+zc(i,j,kml))

@)

Modified by Matsfelt
Modify ye for the locations in the airfoil
if (i.le.iaf.and.j.eq.jaf) then
ye=0.25x%(yc(iaf ,j ,k)+yc(i,jml,k)+yc(i,jml, kml)+yc(iaf,j, kml))
end if
¢ Modified by Matsfelt

o

vole=xexareaex (i,j,k)+yexareaey (i,j,k)+zexareaez (i,j,k)

c—— west face
XW=
& 0.25%(xc(iml,j,k)+xc(iml,jml, k)+xc(iml,jml kml)+xc(iml,j kml))
yw=
& 0.25%(yc(iml,j ,k)+yc(iml,jml, k)+yc(iml,jml kml)+yc(iml,j kml))
ZW=

& 0.25%(zc(iml,j ,k)+zc(iml,jml, k)+zc(iml,jml kml)+zc (iml,j , kml))

¢ Modified by Matsfelt
¢ Modify yw for the locations in the airfoil
if (i.le.iaf.and.j.eq.jaf) then
yw=
& 0.25x(yc(iaf,j,k)+yc(iml,jml, k)+yc(iml,jml, kml)+yc(iaf,j kml))
end if
¢ Modified by Matsfelt

volw==xwx*areaex (1 —1,j ,k)—ywxareaey (i—1,j ,k)—zwxareaez (i—1,j ,k)

c——north face

46

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

xn=0.25*(xc(i,j,k)+xc(iml,j, k)+xc(iml,j kml)+xc(i,j,kml))
yn=0.25%(yc(i,j,k)+yc(iml,j,k)+yc(iml,j ,kml)+yc(i,j, kml))
zn=0.25%(zc(i,j,k)+zc(iml,j ,k)+zc(iml,j ,kml)+zc(i,],kml))

Modified by Matsfelt
Modify yn for the locations in the airfoil
if (i.le.iaf.and.j.eq.jaf) then
yn=0.25x%(yc(iaf ,j ,k)+yc(iaf,j,k)+yc(iaf,j ,kml)+yc(iaf,j, kml))
end if
¢ Modified by Matsfelt

e B¢}

voln=xnxareanx (i,j,k)+ynxareany (i,j,k)+znxareanz(i,j, k)

c——— south face
XS=
& 0.25%(xc(i,jml,k)+xc(iml,jml, k)+xc(iml,jml kml)+xc(i,jml, kml))
ys=
& 0.25%(yc(i,jml,k)+yc(iml,jml, k)+yc(iml,jml kml)+yc(i,jml, kml))
zZ8=

& 0.25%(zc(i,jml,k)+zc(iml,jml, k)+zc(iml,jml kml)+zc(i,jml, kml))
vols=xs*areanx(i,j—1,k)—ysxareany (i,j—1,k)—zs*areanz(i,j—1,k)

c—— high face
xh=0.25*(xc(i,],k)+xc(i,jml, k)+xc(iml,jml, k)+xc(iml,j k))
vh=0.25%(yc(i,j,k)+yc(i,jml,k)+ye(iml,jml, k)+yc(iml,j k))
zh=0.25%(zc(i,j,k)+zc(i,jml, k)+zc(iml,jml, k)+zc(iml,j k))

@)

Modified by Matsfelt
Modify yh for the locations in the airfoil
if (i.le.iaf.and.j.eq.jaf) then
yh=0.25%(yc(iaf ,j ,k)+yc(i,jml,k)+yc(iml,jml k)+yc(iaf,j, k))
end if
¢ Modified by Matsfelt

o

volh=xhxareahx (i,j,k)+yhxareahy (i,j,k)+zhxareahz(i,j, k)

c—— low face
x1=
& 0.25%(xc(i,],kml)+xc(i,jml,kml)+xc(iml,jml kml)+xc(iml,j kml))
yl=
& 0.25%(yc(i,],kml)+yc(i,jml,kml)+yc(iml,jml kml)+yc(iml,j kml))
zl=

47

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

& 0.25%(zc(i,],kml)4+zc(i,jml,kml)+zc(iml,jml kml)+zc (iml,j kml))

¢ Modified by Matsfelt
¢ Modify yl for the locations in the airfoil

if (i.le.iaf.and.j.eq.jaf) then
y1=0.25%(yc(iaf ,j ,kml)+yc(i,jml, kml)
& +yc(iml,jml ,kml)+yc(iaf ,j ,kml))
end if
Modified by Matsfelt

voll=xlxareahx (i,j,k—1)—ylxareahy(i,j,k—1)—zl*areahz(i,j,k—1)

vol(i,j,k)=abs(volet+volw+voln+vols+volh+voll)/3.

¢ Modified by Matsfelt
¢ The volumes of jaf+1 cells are modified later in the code

(eI}

and will then be added to volsum
if (j.ne.(jaf+1)) then
volsum=volsum+vol (i,j ,k)

end if
Modified by Matsfelt

120 continue

Modified by Matsfelt
Modify the areas and volumes for the nodes at jaf+1
j=jaf

calculate the area of the control volume faces

do k= 1,nkml
do i= 1,(iaf+1)

iml=max(1,i—1)
jml=max(1,j—1)
kml=max(1,k—1)

ax=xc(1,j,k)—xc(iml,j k) !

ay:yc(l aj ,k)_yc(lml aj ’k) !
az=zc(i,j,k)—zc(iml,j k) !

48

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

bx=xc(i,j,k)—xc(i,j,kml) !

by:yC(l »J ’k)_yc(l ,J akml) !
bz=zc(i,j,k)—zc(i,j,kml) !

cx=xc(i,j,k)—xc(i,jml, k) !
Cy:yC(l aJ ’k)_yc(l ,Jml?k) !
cz=zc(i,j,k)—zc(i,jml, k) !

dx=xc(i,jml,kml)—xc(i,jml, k) !
dy=yc(i,jml, kml)—yc(i,jml, k) !
dz=zc (i,jml,kml)—zc(i,jml,k) !

ex=xc(i,jml,kml)—xc(i,j,kml) !
ey=yc(i,jml, kml)—yc(i,j,kml) !
ez=zc (i,jml kml)—zc(i,j,kml) !

ox=xc (iml,j ,kml)—xc(iml,j k) !
oy=yc (iml,j ,kml)—yc(iml,j k) !
oz=zc (iml,j ,kml)—zc (iml,j ,k) !

px=xc (iml,jml k)—xc(i,jml k) !
pz=zc (iml,jml ,k)—zc (i,jml, k) !

gx=xc (iml,jml,k)—xc (iml,j k) !
qz=zc (iml,jml,k)—zc (iml,j k) !

rx=xc (iml,j ,kml)—xc(i,j,kml) !
ry=yc(iml,j ,kml)—yc(i,j,kml) !
rz=zc (iml,j ,kml)—zc(i,j,kml) !

ailx=cy#*bz—czxby
aily=cz*bx—cx*bz
ailz=cxxby—cy*bx

ai2x=ey+dz—ezxdy
ai2y=ez+xdx—exx*dz

ai2z=exxdy—ey*dx

ajlx=byxaz—bzxay

49

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

ajly=bz*ax—bxx*xaz
ajlz=bxxay—byx*xax

aj2X=0y*TrzZz—0Z*Try
aj2y=0Z*IX—O0X*TZ
aj2Z=0X*Ty—Oy*TIX

aklx=cy*pz—cz*py
akly=cz*px—cx*pz
aklz=cx*py—cy*px

ak2x=qy*az—qz*ay
ak2y=qz*ax—qx*az
ak2z=qx*ay—qy*ax

areaexjafpl (i,j,k)=0.5%(ailx+ai2x)
areaeyjafpl (i,j,k)=0.5%(aily+ai2y)
areaezjafpl (i,j,k)=0.5%(ailz+ai2z)

areanxjafpl(i,j,k)=0.5%(ajlx+aj2x)
areanyjafpl(i,j,k)=0.5x(ajly+aj2y)
areanzjafpl (i,j,k)=0.5%(ajlz+aj2z)

areahxjafpl(i,j,k)=0.5%(aklx+ak2x)

0
areahyjafpl(i,j,k)=0.5x(akly+ak2y)
areahzjafpl (i,j,k)=0.5%(aklzt+ak2z)

end do
end do

calculate the volume.
j=jaf+1

do k= 2 ,nkml
do i= 2,(iaf+1)

iml=i—1
jml=j—1
kml=k—1

cast face

20

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

xe=0.25x(xc(i,j,k)+xc(i,jml, k)+xc(i,jml,kml)+xc(i,],kml))
ye=0.25%(yc(i,j,k)+yc(i,jml,k)+yc(i,jml,kml)+yc(i,j, kml))
ze=0.25%(zc(i,j,k)+zc(i,jml,k)+zc(i,jml kml)+zc(i,j,kml))

vole=
& xexareaex (i,j,k)+yexareaey (i,j,k)+zexareaez (i,j,k)

c—— west face
XW=
& 0.25%(xc(iml,j,k)+xc(iml,jml, k)+xc(iml,jml kml)+xc(iml,j kml))
yw=
& 0.25%(yc(iml,j ,k)+yc(iml,jml, k)+yc(iml,jml kml)+yc(iml,j kml))
Zw=
& 0.25%(zc(iml,j ,k)+zc(iml,jml,k)+zc(iml,jml kml)+zc(iml,j kml))

volw=
—xwskareaex (1—1,j ,k)—ywxareaey (i—1,j ,k)
—zwxareaez (i —1,j,k)

& &

c——— north face
xn=0.25*(xc(i,j,k)+xc(iml,j, k)+xc(iml,j kml)+xc(i,j,kml))
yn=0.25%(yc(i,j,k)+yc(iml,j,k)+yc(iml,j kml)+yc(i,j,kml))
zn=0.25%(zc(i,j,k)+zc(iml,j ,k)+zc(iml,j ,kml)+zc(i,],kml))

voln=
& xnkxareanx (i,j,k)+ynkxareany (i,j,k)+znxareanz(i,j, k)

c—— south face
Xs=
& 0.25%(xc(i,jml,k)+xc(iml,jml, k)+xc(iml,jml kml)+xc(i,jml, kml))
ys=
& 0.25%(yc(i,jml,k)+yc(iml,jml, k)+yc(iml,jml kml)4+yc(i,jml, kml))
z8=
& 0.25%(zc(i,jml,k)+zc(iml,jml, k)+zc(iml,jml kml)+zc(i,jml, kml))

¢ Using the areanyjafpl for the south areeas
vols=
& —xsxareanxjafpl(i,j—1,k)—ysxareanyjafpl(i,j—1,k)
& —zsxareanzjafpl (i,j—1,k)

51

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

c———high face
xh=0.25%(xc(i,j,k)+xc(i,jml,k)+xc(iml,jml, k)+xc(iml,j k))
yh=0.25%(yc(i,j,k)+yc(i,jml, k)+yc(iml,jml, k)+yc(iml,j, k))
zh=0.25%(zc(1,j,k)+zc(i,jml, k)+zc(iml,jml,k)+zc(iml,j k))

volh=
& xhxareahx(i,j,k)+yhxareahy(i,j,k)+zhxareahz(i,j k)

c—— low face
xl=
& 0.25%(xc(i,],kml)+xc(i,jml,kml)+xc(iml,jml kml)+xc(iml,j kml))
yl=
& 0.25%(yc(i,],kml)+yc(i,jml,kml)+yc(iml,jml kml)+yc(iml,j kml))
zl=

& 0.25%(zc(i,],kml)4+zc(i,jml,kml)+zc(iml,jml kml)+zc (iml,j kml))
voll=

& —xlxareahx(i,j,k—1)—ylxareahy(i,j,k—1)

& —zlxareahz(i,j,k—1)
vol(i,j,k)=abs(volet+volw+voln+vols+volh+voll)/3.
volsum=volsum+vol (i,j,k)

end do

end do
¢ Modified by Matsfelt

do 140 k= 2,nkml
do 140 j= 2,njml
do 140 i= 2,niml

iml=i—-1
jml=j—1
kml=k—1

XW=

& 0.25%(xc(iml,j ,k)+xc(iml,jml, k)+xc(iml,j ,kml)+xc(iml,jml kml))
xe=0.25%(xc(i,j,k)+xc(i,jml, k)+xc(i,j,kml)+xc(i,jml, kml))

52

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

yw=

& 0.25%(yc(iml,j ,k)+yc(iml,jml, k)+yc(iml,j kml)+yc(iml,jml, kml))
ye=0.25x(yc(i,j,k)+yc(i,jml, k)+yc(i,j,kml)+yc(i,jml,kml))
Zw=

& 0.25%(zc(iml,j ,k)4+zc(iml,jml, k)+zc(iml,j ,kml)+zc (iml,jml kml))
ze=0.25%(zc(i,j,k)+zc(i,jml,k)+zc(i,]j,kml)+zc(i,jml,kml))

X§=

& 0.25%(xc(i,jml,k)+xc(iml,jml, k)+xc(i,jml, kml)+xc(iml,jml, kml))
xn=0.25%(xc(i,j,k)+xc(iml,j,k)+xc(i,j,kml)+xc(iml,j kml))
ys=

& 0.25%(yc(i,jml,k)+yc(iml,jml k)+yc(i,jml, kml)+yc(iml,jml, kml))
z8=

& 0.25%(zc(i,jml,k)+zc(iml,jml,k)+zc(i,jml, kml)+zc(iml,jml, kml))
zn=0.25%(zc(i,j,k)+zc(iml,j ,k)+zc(i,j,kml)+zc(iml,j kml))

xl=

& 0.25%(xc(i,j,kml)+xc(iml,j ,kml)+xc(i,jml, kml)+xc(iml,jml, kml))
xh=0.25%(xc(i,],k)+xc(iml,j ,k)+xc(i,jml,k)+xc(iml,jml k))
yl=

& 0.25%(yc(i,],kml)4+yc(iml,j,kml)+yc(i,jml,kml)+yc(iml,jml, kml))
yh=0.25%(yc(i,],k)+yc(iml,j k)+yc(i,jml, k)+yc(iml,jml, k))
zl=

& 0.25%(zc(i,],kml)4zc(iml,j, kml)+zc(i,jml,kml)+zc(iml,jml, kml))
zh=0.25%(zc(i,j,k)+zc(iml,j,k)+zc(i,jml, k)+zc(iml,jml, k))

¢ Modified by Matsfelt
¢ Modify y for the locations in the airfoil
if (i.le.iaf.and.j.eq.jaf) then
yw=
& 0.25x(yc(iaf,j ,k)+yc(iml,jml, k)+yc(iaf,j kml)+yc(iml,jml, kml))
ye=0.25x%(yc(iaf ,j ,k)+yc(i,jml,k)+yc(iaf,j, kml)+yc(i,jml,kml))

yn=0.25x%(yc(iaf ,j ,k)+yc(iaf,j,k)+yc(iaf,j , kml)+yc(iaf,j, kml))
y1=0.25%(yc(iaf ,j ,kml)+yc(iaf,j, kml)
& +yc(i,jml, kml)+yc(iml,jml kml))
yh=0.25%(yc(iaf ,j,k)+yc(iaf,j ,k)+yc(i,jml,k)+yc(iml,jml k))
end if
¢ Modified by Matsfelt

c———~calculate the weightfunctions

93

APPENDIX A. CALC PART OF INIT.F FILE INCLUDING MODIFICATIONS

dell=

& sqrt ((xe—xp(i,j,k))*«*x2+(ye—yp(i,j,k))*«*x2+(ze—zp(i,], k))*x*2)
del2=sqrt ((xe—xp(i+1,j ,k))**x2+ (ye—yp(i+1,j,k))**2

& +(ze—zp (i+1,j,k))*x%2)
fx(i,j,k)=dell /(dell+del2)

dell=

& sqrt ((xn—xp(i,j,k))**24+(yn—yp(i,j,k))**2+(zn—zp(i,j,k))*%2)
del2=sqrt ((xn—xp(i,j+1,k))**x2+ (yn—yp(i,j+1,k))**2

& +(zn—zp (i,j+1,k))*x%2)
fy (i,j,k)=dell /(dell+del2)

dell=sqrt ((xh—xp(i,j,k))**2+(yh—yp(i,j,k))xx2
& +(zh—zp (i, ,k))*x*2)

del2=sqrt ((xh—xp(i,j,k+1))**2+(yh—yp(i,j,k+1))*=2
& +(zh—zp(i,],k+1))xx2)

(
fz (i,j,k)=dell/(dell+del2)

140 continue

¢c— Volumes and the weight functions for boundary nodes

chapter 2 2 2 2 2 set variables to small vzpue 2 2 2 2

return
end

54

CALC part of conv.f file including
modifications

do k=2,nkml
do j=2,njml
do i=2,niml

c east

¢ north
jp2=min(j+2,nj)
jpl=min(j+1,njml)
jpl=j+1
jml=j—1

¢ Modified by Matsfelt
if (i.le.iaf) then
if (j.eq.(jaf—1)) then
jp2=jpl
else if (j.eq.jaf) then
Jp2=]
jpl=]
else if (j.eq.(jaf+1)) then
jml=j
end if
end if
¢ Modified by Matsfelt

95

APPENDIX B. CALC PART OF CONV.F FILE INCLUDING MODIFICATIONS

voln=0.5%(vol (i,jpl,k)+vol(i,j,k))

ann=(areanx (i,]j,k)**24+areany (i,] ,k)*x2+4
areanz(i,j,k)*x2)/voln

un=fy (i ,j k)% phi (i, j+1k,u)+(L—fy(i,j,k))#*phi(i,j.k,u)
wn=Ly (1] k)% phi (i, j+1.k,w)+(L.—fy (i,),k))*phi(i,j, k,w)

convnc= dennx(areanx(i,j,k)xuntareany(i,j,k)xvn
& +areanz (i,j,k)*wn)

dp=0.25«(phi(i,jp2,k,p)—phi(i,j,k,p)+phi(i,jpl,k,p)
—phi(i,jml,k,p))
convn (i,j,k)=convnct+annxdp*dtt
high
end do

end do
end do

o6

CALC dpdyt.f file including
modifications

function dpdyf(i,j, k)
include ’COMMON

¢ the derivative dpdy at node i,j,k is calculated here using
¢ Neumann boundary condition

jml=max(j —1,2)
jpl=min(j+1,njml)

phie=fx (i,j,k)*phi(i+1,j,k,p)+(1.—fx(i,j,k))*phi(i,j,k,p)
phiw=fx (i —1,j ,k)*phi(i,j,k,p)+(1.—fx (i—1,j,k))
phin=fy (i,j,k)*phi(i,jpl . k,p)+(1.—fy(i,j,k))*phi(i,j,k,p)
& «phi(i,jml,k,p)
phih=fz (i,j,k)*phi(i,j, k+1,p)+(1.—fz(i,j,k))*phi(i,j,k,p)
phil=fz (i,j,k—1)xphi(i,j,.k,p)+(1.—fz(i,j,k—1))
& «phi(i,j,k—1,p)

dpdyf=(phiexareaey (i,j,k)—phiwxareaey (i—1,j,k)
& +phinsareany (i,j,k)—phisxareany(i,j—1,k)
& +phihxareahy (i,j,k)—philxareahy(i,j,k—1))/vol(i,j, k)

o7

APPENDIX C. CALC DPDYF.F FILE INCLUDING MODIFICATIONS

¢ Modified by Matsfelt
¢ To break the connection between the cell jaf+1 above the airfoil
¢ and jaf below.

if (i.le.iaf.and.j.eq.(jaf+1)) then

phis=phi(i,j,k,p)

dpdyf=(phiexareaey (i,j,k)—phiwsxareaey (i—1,j,k)

& +phinxareany (i,j,k)—phisxareanyjafpl(i,j—1,k)
& +phih*areahy (i,j,k)—philxareahy(i,j,k—1))
& Jvol(i,j,k)

end if

¢ Modified by Matsfelt

return
end

o8

CALC part of peter_init.f file
including modifications

subroutine peter_init(xa,ya,za,iin ,jin , kin, id,jd, 6 kd,
cycli ,cyclj ,cyclk ,iaf jjaf ifirst ,ilast)

include 'PETER.COMMON’

common /peter/kst(100),kst_2d(100)

dimension xa(id,jd,kd),ya(id,jd, kd),za(id,jd kd)
logical cycli,cyclj,cyclk

integer walwidth

pi=4.xatan (1.)
cccccece Calculate the number of levels in the multigrid cccce

ipa=iin
jpa=jin
kpa=kin
nlev=1
ipb=ipa
jpb=jpa
kpb=kpa
ilc=ifirst
i2c=ilast

¢ Modified by Matsfelt

29

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

iairfoil=iaf
jairfoil=jaf
¢ Modified by Matsfelt

do 1=1,100

if (mod(ipa —2,2).eq.0) then
if (mod(jpa—2,2).eq.0) then
if (mod(kpa—2,2).eq.0) then
ipa=(ipa—2)/2+2
ipa=(jpa—2)/2+2
kpa=(kpa—2)/2+2
walwidth=i2c—ilc
if (ipa.ge.4.and.jpa.ge.4.and.kpa.ge.4.and.nlev.le.3)then

ipb=ipa

jpb=jpa

kpb=kpa

ile=(ilc)/2+1

i2¢=(i2¢c —1)/2+1

¢ Modified by Matsfelt
iairfoil=(iairfoil —1)/2+1
jairfoil=(jairfoil —1)/2+1
¢ Modified by Matsfelt

nlev=nlev+1
write (6 ,%) 'nlev ,ipb,jpb,kpb’ ,nlev, ipb, jpb, kpb
write (6 ,%) 'nlev ,ilc ,i2¢’ , nlev ,ilc,i2¢

end if

end if
end if
end if
end do
write (6 ,+) 'NUMBER OF LEVELS=", nlev

ccccece Setup pointer system and define coarse grids cccceccceccccccce

do klev=2,nlev
ni(klev)=2x%(ni(klev—-1)—2)42

60

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

nj(klev)=2x%(nj(klev—-1)—2)+2

nk (klev)=2x(nk(klev —1)—2)+2

kst (klev)=kst (klev —1)+ni(klev —1)xnj(klev —1)xnk(klev —1)
end do

¢ Modified by Matsfelt
¢ Trace the iaf and jaf through the levels

iafp(l)=iairfoil
jafp(l)=jairfoil

write (6 ,%) klev=1:iafp (1),jafp (1),
iafp (1),jafp (1)

do klev=2,nlev
iafp (klev)=2x(iafp (klev—1)—1)+1
jafp (klev)=2x(jafp (klev—-1)—1)+1

write (6 ,%) " klev ,iafp ,jafp

. klev ,iafp (klev),jafp (klev)
end do

¢ Modified by Matsfelt

call key(nlev,lst ,ist ,ni(nlev),nj(nlev),nk(nlev))

c$doacross local (k,j,i,io0)

do k=1,nk(nlev)

do j=1,nj(nlev)

do i=1,ni(nlev)
io=lIst (k)+ist (i)+]
p(io)=xa(i,j,k)
t(io)=ya(i,j,k)
pm(io)=za(i,j,k)

end do

end do

end do

do klev=nlev,2,—1
klevc=klev —1

call key(kleve,lstc ,istc ,ni(kleve),nj(kleve),nk(kleve))

61

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

call key(klev ,lst ,ist ,ni(klev),nj(klev),nk(klev))

c X,y,z on coarse meshes

88

do k=1,nk(klevc)—1
do j=1,nj(klevc)—1
do i=1,ni(kleve)—1
io=lstc (k)+istc (i)+]
p(io)=p(lst (2xk—1)+ist (2*xi—1)+2xj—1)
t(io)=t(lst (2xk—1)4+ist (2xi—1)+2xj—1)
pm(io)=pm(lst (2xk—1)+ist (2xi—1)+2%j—1)

end do
end do
end do
end do

format (1x,15(1pel3.6,2x))

cccececece Calculate the coefficients on all meshes ccccecececcece

do klev=1,nlev
call key(klev,lst ,ist ,ni(klev),nj(klev),nk(klev))

Area calculation

do k=1,nk(klev)—
do i=1,ni(klev)—
do j=1, nj(klev) 1
iml=max(1,i—1)
jml=max(1 ,J—l)
kml=max (1 ,k—1)

io=lst (k)+ist (i)+]
il=lst (kml)+ist (i)+]
iw=lIst (

k

km

k)+ist (im1)+]
iwl=lst (kml)+ist (im1)+j
is=lst (k)+ist (i)+jml
isw=lst (k)+ist (iml)+jml
isl=lst (kml)+ist (i)+jml

ax=p(io)—p(iw)

62

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

ay=t (io)—t (iw)
az=pm(io)—pm(iw)

bx=p(io)-p(il)
by=t (io)—t(il)
bz=pm(io)—pm(il)

cx=p(io)—p(is)
cy=t (io)—t(is)
cz=pm(io)—pm(is)

dx=p(isl)—p(is)
dy=t (isl)—t(is)
dz=pm(isl)—pm(is)
ex=p(isl)—p(il)
ey=t(isl)—t(il)
ez=pm(isl)—pm(il)

ox=p(iwl)—p(iw)
oy=t (iwl)—t (iw)
oz=pm(iwl)—pm(iw)

px=p (isw)—p(is)
py=t (isw)—t (is)
pz=pm(isw)—pm(is)

qx=p (isw)—p (iw)
qy=t (isw)—t (iw)
qz=pm(isw)—pm(iw)

rx=p(iwl)—p(il)
ry=t (iwl)—t (il)
rz=pm(iwl)—pm(il)

ailx=cy#*bz—czx*by
aily=cz*bx—cxx*bz
ailz=cxxby—cyxbx

ai2x=ey+*dz—ezx*xdy

ai2y=ez+dx—exx*xdz
ai2z=exxdy—eyxdx

63

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING

MODIFICATIONS

ajlx=byxaz—bzxay
ajly=bz*ax—bxx*az
ajlz=bxxay—by=xax

aj2X=0y*TZ—O0Z*Ty
aj2y=0Z*IrX—0X*TZ
aj2Z=0X*Ty—0y*TX

aklx=cy*pz—cz*py
akly=cz*px—Ccx*pz
aklz=cx*py—cy*px

ak2x=qy*az—qz*ay
ak2y=qz*ax—qx=*az
ak2z=qx*ay—qy*ax

¢ Modified by Matsfelt

¢ Modify the a..

C

in the airfoil.

if (i

y parameters for

if the location

is

e.iafp (klev).and.j.eq.jafp (klev)) then

ioiaf=lst
iliaf=Ist
iwiaf=Ist

iwliaf=

ax=p(io
ay=t (ioiaf)—
az=pm(io

bx=p(io)
by=t (ioiaf)—
bz=pm(io)—pm

cx=p(io
cy=t (ioiaf)—
cz=pm(io

ex=p(isl)—
sl)
sl

ey=t (1
ez=pm(i

s

(k
(km
(k
t(

)+ist (iafp (klev))+]
1)+ist (iafp (klev))+
)+ist (iafp (klev))+]
k)t ist (iafp (klev))+

)—p(iw)

t(iwiaf)
)—pm(iw)

—-p(il)
t(iliaf)
(il)

)—p(is)

)—p

p(i

t(is)
)—pm(

is)
)

(111af)

m(il)

64

]

]

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

ox=p(iwl)—p(iw)
oy=t(iwliaf)—t(iwiaf)
oz=pm(iwl)—pm(iw)

qx=p (isw)—p(iw)
qy=t (isw)—t (iwiaf)
qz=pm(isw)—pm(iw)

rx=p(iwl)—p(1il)
ry=t (iwliaf)—t(iliaf)
rz=pm(iwl)—pm(il)

ailx=cy#*bz—czxby
aily=cz+bx—cxx*bz
ailz=cxxby—cy*bx

ai2x=eyx*dz—ezxdy
ai2y=ez+xdx—exx*dz
ai2z=exxdy—ey*dx

ajlx=byxaz—bzxay
ajly=bz*ax—bxx*xaz
ajlz=bxxay—by=xax

aj2X=0y*TIZ—O0Z*Ty
aj2y=0Z*IX—0X*TZ
aj2Z=0X*Ty—0y*TX

aklx=cy*pz—cz*py
akly=cz*px—Ccx*pz
aklz=cx*py—cy*px

ak2x=qy*az—qzx*ay
ak2y=qz*ax—qx+*az
ak2z=qx*ay—qy*ax

end if
¢ Modified by Matsfelt

0)=0.5%(ailx+ai2x)
ae(i0)=0.5x(aily+ai2y)
0)=0.5x%(ailz+ai2z)

65

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING

MODIFICATIONS

an(io)=0.5x(ajlx+aj2x)
al (i0)=0.5%(ajly+aj2y)
ah(io)=0.5%(ajlz+aj2z)
ap (i0)=0.5x(aklx+ak2x)
su(io)=0.5%(akly+ak2y)
co(io)=0.5x(aklz+ak2z)
end do
end do

end do

¢ Modified by Matsfelt

¢ Modify the the northern area of the jaf cells

¢ used in the jaf+1 volume calculation .

¢ copy the northern areas to the jafpl matrixes

do k=1,nk(klev)—1

do i=1,ni(klev)—1

do j=1,nj(klev)—1

io=lst (k)+ist (i)+]

anjafpl (io)=an(io

aljafpl (io)=al
ahjafpl(io)=ah(io

end do
end do
end do

Area calculation
do k=1,nk(klev)—1

—~

)
io)
)

do i=1,(iafp (klev)+1)
j=jafp (klev)

iml=max(1,i—1)
jml=max(1,j—1)
kml=max(1,k—1)

io=lst (k)+ist (i)+]
il=1lst (kml)+ist (i)+]
iw=l1st (k)+ist (iml)+]j

66

because they are

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

iwl=lst (kml)+ist (iml)+j
is=lst (k)+ist (i)+jml

isw=lst (k)+ist (iml)+jml
isl=lst (kml)+ist (i)+jml

ax=p(i0)—p(iw)
ay=t (io)—t (iw)
az=pm(io)—pm(iw)

bx=p (i0)—p(il)
by=t (io)—t(il)
bz=pm(io)—pm(il)

cx=p(io)—p(is)
cy=t (io)—t(is)
cz=pm(io)—pm(is)

dx=p(isl)—p(is)
dy=t (isl)—t(is)
dz=pm(isl)—pm(is)
ex=p(isl)—p(il)
ey=t (isl)—t(il)
ez=pm(isl)—pm(il)

oy=t (iwl)—t (iw)
oz=pm(iwl)—pm(iw)

px=p (isw)—p(is)
py=t (isw)—t (is)
pz=pm(isw)—pm(is)

qx=p (isw)—p (iw)
qy=t (isw)—t (iw)
qz=pm(isw)—pm(iw)
rx=p(iwl)—p(il)
ry=t (iwl)—t (il)

rz=pm(iwl)—pm(il)

ailx=cy+*bz—czx*by

67

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING

MODIFICATIONS

aily=cz*bx—cxx*bz
ailz=cxxby—cy*bx

ai2x=eyxdz—ezxdy
ai2y=ez+xdx—exx*dz
ai2z=exxdy—ey*dx

ajlx=byxaz—bzxay
ajly=bz*ax—bxx*az
ajlz=bxxay—byx*xax

aj2X=0y*TIZ—O0Z*Ty
aj2y=0Z*IX—0X*TZ
aj2Z=0X*Ty—O0y*TX

aklx=cy*pz—cz*py
akly=cz*px—cx*pz
aklz=cx*py—cy*px

ak2x=qy*az—qzx*ay
ak2y=qz*ax—qx*az
ak2z=qx*ay—qy*ax

anjafpl (io)=0.5*(ajlx+aj2x)
aljafpl (io)=0.5%(ajly+aj2y)
ahjafpl(io)=0.5%(ajlz+aj2z)

end do
end do
¢ Modified by Matsfelt

c Aspect ratio calculation
C Choice of smoother
C Calculate volumes

do k=2,nk(klev)—1
do i=2,ni(klev)—1

68

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

do j=2,nj(klev)—
iO:lst(k)—i—lst()+
iw=lIst (k)+ist (i—1)+]j
is=lst (k)+ist (i)+j—1

il=Ist (k—1)+ist (1)+]
iws=1st (k)+ist (i—1)+j—1
iwl=lst (k—1)+ist (i—1)+]
isl=lst (k—1)+ist (i)+j—1
iwsl=lst (k—1)+ist (i—-1)+j—1

xw=0.25x%(p(iw)+p(iws)+p(iwl)+p(iwsl))
xe=0.25%(p(io)+p(is)+p(il)+p(isl))
yw=0.25x%(t (iw)+t (iws)+t (iwl)+t(iwsl))
ye=0.25%(t (io)+t (is)+t(il)+t(isl))
zw=0.25%(pm(iw)+pm(iws)+pm(iwl)+pm(iwsl))
ze=0.25%(pm(io)+pm(is)+pm(il)+pm(isl))

xs=0.25%(p(is)+p(iws)+p(isl)+p(iwsl))
xn=0.25%(p(io)+p(iw)+p(il)+p(iwl))
ys=0.25%(t (is)+t(iws)+t(isl)+t(iwsl))
yn=0.25%(t (io)+t (iw)+t(il)+t(iwl))

zs =0.25%(pm(is)+pm(iws)+pm(isl)+pm(iwsl))
zn=0.25%(pm(io)+pm(iw)+pm(il)+pm(iwl))

x1=0.25%(p(il)+p(iwl)+p(isl)+p(iwsl))
xh=0.25%(p(io)+p(iw)+p(is)+p(iws))
y1=0.25%(t(il)+t(iwl)+t(isl)+t(iwsl))
yh=0.25%(t (io)+t (iw)+t(is)+t(iws))
z1=0.25%(pm(il)+pm(iwl)4+pm(isl)+pm(iwsl))
zh=0.25%(pm(io)+pm(iw)+pm(is)+pm(iws))

¢ Modified by Matsfelt
¢ Modify the y dependent location parameters if the location is
¢ in the airfoil.

if (i.le.iafp(klev).and.j.eq.jafp(klev)) then

ioiaf=1st (k)+ist (iafp (klev))+j
iwiaf=1st (k)+ist (iafp (klev))+]
iliaf=lst (k—1)+ist (iafp (klev))+j
iwliaf=1st (k—1)+ist (iafp (klev))+]

yw=0.25%(t (iwiaf)+t(iws)+t(iwliaf)+t(iwsl))
ye=0.25%(t (ioiaf)+t(is)+t(iliaf)+t(isl))

69

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

yn=0.25%(t(ioiaf)+t(iwiaf)+t(iliaf)+t(iwliaf))

y1=0.25x%(t(iliaf)+t(iwliaf)+t(isl)+t(iwsl))
yh=0.25%(t (ioiaf)+t(iwiaf)+t(is)+t(iws))

end if
¢ Modified by Matsfelt

ew=sqrt ((xe—=xw)**2+(ye—yw)**2+(ze—zw)**2)
sn=sqrt ((xn—xs)**x2+ (yn—ys)**2+(zn—zs) **2)
hl=sqrt ((xh—x1)**24+(yh—yl)**24(zh—z1)*%2)

vole=xexaw(io)+yexae(io)+zexas(io)
volw=—=xws*aw (iw)—ywxae (iw)—zwx*as (iw)
voln=ynxal (io)+znx*ah (io)+xn*an(io)
vols=—ysxal (is)—zs*ah(is)—xs*an(is)
volh=zhxco (io)+xh*ap (io)+yh*su(io)
voll=zlxco(il)—xlxap(il)—ylxsu(il)

st (io)=abs(volet+volw+voln+vols+volh+voll)/3.
if (sr(io).lt.le—20)write (6,%) 'VOL=0",i,j,k,klev,
vole ,volw ,vols ,voln ,volh , voll

end do
end do
end do

¢ Modified by Matsfelt
¢ Modify the jaf+4+1 volumes until iaf+1
c Calculate volumes

do k=2,nk(klev)—
do i=2,(iafp (klev)+1)
j=jafp (klev)+1

)+

io=lst (k)+ist (i
(i)

)+J—

(i)+]

(k
iw=1st (k)+ist
is=lst (k)+ist (i
il=lIst (k—1)+ist
iws=1st (k)+ist (i

i
i—
i
1)+J -1

70

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

iwl=lst (k—=1)+ist (i—1)+]
isl=lst (k—1)+ist (i)+j—
iwsl=lst (k—1)+ist (i— 1)+J—

xw=0.25%(p(iw)+p(iws)+p(iwl)+p(iwsl))
xe=0.25%(p(io)+p(is)+p(il)+p(isl))
yw=0.25%(t (iw)+t (iws)+t(iwl)+t (iwsl))
ye=0.25%(t (io)+t (is)+t(il)+t(isl))
zw=0.25%(pm(iw)+pm(iws)+pm(iwl)+pm(iwsl))
ze=0.25%(pm(io)+pm(is)+pm(il)+pm(isl))

xs=0.25%(p(is)+p(iws)+p(isl)+p(iwsl))
xn=0.25%(p(io)+p(iw)+p(il)+p(iwl))
ys=0.25%(t (is)+t(iws)+t(isl)+t(iwsl))
yn=0.25%(t (io)+t (iw)+t(il)+t(iwl))

zs =0.25%(pm(is)+pm(iws)+pm(isl)+pm(iwsl))
zn=0.25%(pm(io)+pm(iw)+pm(il)+pm(iwl))

x1=0.25%(p(il)+p(iwl)+p(isl)+p(iwsl))
xh=0.25%(p(io)+p(iw)+p(is)+p(iws))
yl1=0.25%(t(il)+t (iwl)+t(isl)+t(iwsl))
yh=0.25%(t (io)+t (iw)+t(is)+t(iws))
z1=0.25%(pm(il)+pm(iwl)+pm(isl)+pm(iwsl))
zh=0.25%(pm(io)+pm(iw)+pm(is)+pm(iws))

ew=sqrt ((xe—xw)x*2+(ye—yw)x*2+(ze—zw)**2)
sn=sqrt ((xn—xs)**2+(yn—ys)**2+4(zn—zs)**2)
hl=sqrt ((xh—x1)**24+(yh—yl)**24+(zh—z1)*%2)

vole=xexaw(io)+yexae(io)+zexas(io)
volw=—=xws*aw (iw)—ywxae (iw)—zwkas (iw)
voln=ynxal (io)+znx*ah (io)+xn*an(io)

vols=ys*aljafpl (is)—zsxahjafpl (is)—xs*xanjafpl (is)

volh=zhxco (io)+xh*ap(io)+yh=*su(io)
voll=—zlxco(il)—xl*ap(il)—ylxsu(il)

sr (io)=abs(vole+volw+voln+vols+volh+voll)/3.

if(sr(io).lt.le—20)write (6,%) 'VOL=0",i,j,k,klev ,
vole ,volw ,vols ,voln ,volh , voll

71

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

end do
end do
¢ Modified by Matsfelt

c—— Coefficient assembly for d2p/dx2+d2p/dy2=f

c$doacross local (k,i,j,io)
do k=1,nk(klev)
do i=1,ni(klev)
do j=1,nj(klev)
io=lst (k)+ist (i)+]
p(io)=aw(io)*x2+ae(io)**2+as(io)**2
t(io)=al(io)**24+an(io)**x2+ah(io)**2
pm(io)=co(io)**x2+ap(io)**2+su(io)**2
end do
end do
end do

do k=2,nk(klev)—1
do i=2,ni(klev)—1
do j=2,nj(klev)—1
io=lst (k)+ist (i)+]
in=io+1
is=io—1
ie=lst (k)+ist (i+1)+]
iw=lst (k)+ist (i—1)+]
il=Ist (k—1)+ist (1)+]
ih=Ist (k+1)+ist (1)+]
vole=0.5%(sr(ie)+sr(io))+1.e—30
if (i.eq.ni(klev)—1) vole=0.5%sr(io)
ae(io)=p(io)/vole

volw=0.5%(sr(io)+sr(iw))+1.e—30

if (i.eq.2) volw=0.5%sr(io)
aw(io)=p(iw)/volw

voln=0.5%(sr (in)+sr(io))+1.e—30

if (j.eq.nj(klev)—1) voln=0.5%sr(io)

an(io)=t(io)/voln

vols=0.5%(sr (io)+sr(is))+1.e—30

72

APPENDIX D. CALC PART OF PETER_INIT.F FILE INCLUDING
MODIFICATIONS

if (j.eq.2) vols=0.5*sr(io)
as(io)=t(is)/vols

volh=0.5%(sr (ih)+sr(io))+1.e—30

if (k.eq.nk(klev)—1) volh=0.5%sr(io)
ah(io)=pm(io)/volh

voll=0.5%(sr (io)+sr(il))+1.e—30

if (k.eq.2) voll=0.5%sr(io)

al (io)=pm(il)/voll

¢ Modified by Matsfelt

¢ Modify the y dependent location parameters if the location is

¢ in the airfoil and save in the parameter locations from above.
if (i.le.iafp(klev).and.j.eq.jafp (klev)) then

an(io)=0.
elseif (i.le.iafp(klev).and.j.eq.(jafp(klev)+1)) then
as (io0)=0.

end if
¢ Modified by Matsfelt

end do
end do
end do

c—— Boundary condition dp/dn=0

c—— Diagonal coefficient evaluation

end do
return
end

73

CALC part of peter_multi.f file
including modifications

subroutine peter_multi(resin ,iin ,jin , kin,
tryck ,sormax ,icycmax, cycli,cyclj ,cyclk)

include ’PETER.COMMON’

logical cycli,cyclj,cyclk

dimension resin (iin,jin ,kin),tryck(iin ,jin ,kin)
integerx4 lock (0:1000)

c— Initialization
c— Bilinear restriction
c— Bilinear prolongation

¢ go from the coarsest to the finest grid
do 800 klev=2,nlev

call key(klev ,lst ,ist ,ni(klev),nj(klev),nk(klev))
kleve=klev —1

call key(kleve,lstc ,istc ,ni(kleve),nj(kleve),nk(kleve))
¢ fix Neumann boundary conditions

do k=1,nk(klevc)
do i=1,ni(klevc)

74

APPENDIX E. CALC PART OF PETER_MULTLF FILE INCLUDING
MODIFICATIONS

in=lstc (k)+iste (i
inml=Istc (k)+istc
is=lstc (k)+istc (i
isml=lstc (k)+istc
p(in)=p(inm1)
p(is)=p(ism1)
end do
end do
do k=1,nk(klevc)
do j=1,nj(klevc)
in=lstc (k)+istc (ni(kleve))+j
inml=lstc (k)+istc (ni(kleve)—1)+]
is=lstc (k)+istc (1)+]
isml=lstc (k)+istc(2)+]
p(in)=p(inm1)
p(is)=p(ism1)
end do
end do
do i=1,ni(klevce)
do j=1,nj(klevc)
ih=Istc (nk(kleve))+istec (i)+]
il=lstc(1)+istc (i)+]
ihml=lstc (nk(kleve)—1)+istc (i)+]
ilml=lstc (2)+istc (i)+]
p(ih)=p(ihm1)
p(il)=p(ilm1)
end do
end do

+nj(kleve)

i)+nj(kleve)—1
+1
i)42

A_/,—_/

call peter_cyclic(istc ,lstc ,ni(kleve),nj(kleve),nk(kleve),
kleve , cycli , cyclj , cyclk)

do k=2,nk(klevc)
IstcO=Istc (k)

Istcl=Istc (k—1)
Ist2=1lst (2xk—2)
Ist3=1st (2xk—3)
do i=2,ni(klevc)
istcO=istc (1)

istcl=istc(i—1)
ist2=ist (2%i—2)
ist3=ist (2xi—3)
do j=2,nj(klevc)

75

APPENDIX E. CALC PART OF PETER_MULTLF FILE INCLUDING
MODIFICATIONS

c coarser mesh location parameters
¢ North

ihnec=lstcO0+istc0+j
ihnwe=lstcO+istcl+]j
ilnec=lstcl+istc0+]
ilnwc=lstcl+istcl+j

South
ihswe=lstcO+istcl+j—1
ihsec=lstcO+istc0+j—1
ilswe=Ilstcl+istcl+j—1
ilsec=lstcl+istc0+j—1

c finer mesh location parameters
¢ North

ihneb=lst2+ist242x%j—2
ihnwh=Ist24ist3+2xj—2
ilneb=1st3+ist2+42xj—2
ilnwb=1st3+ist3+2x%j—2

South
ihswb=lst2+ist3+2xj—3
ihseb=1st2+ist2+2%j—3
ilswb=1st3+ist3+42x%j—3
ilseb=lst3+ist2+2xj—3

¢ Modified by Matsfelt

If the cell above the airfoil should not be affected
by the cell below the airfoil.
if (i.le.iafp(klevc).and.j.eq.(jafp (kleve)+1)) then
Prolongation to the finer mesh above the airfoil
coarser mesh location parameters

¢ North

ihnec=lstcO0+istc0+j
ihnwe=lstcO+istcl+j
ilnec=lstcl+istc0+]
ilnwec=lstcl+istcl+j

South
ihswe=lstcO+istcl+j
ihsec=lstcO+istc0+j
ilswe=lstcl+istcl+j

76

APPENDIX E. CALC PART OF PETER_MULTLF FILE INCLUDING
MODIFICATIONS

ilsec=lstcl+istc0+j

end if
¢ Modified by Matsfelt

¢ prolongate the pressure from a coarse to a fine grid
¢ North
p (ihnwb)=p(ihnwb)+(27.*p(ihnwc)+9.xp(ihnec)
+9.xp(ihswe)+3.xp(ihsec)+9.xp(ilnwc)
+3.xp(ilnec)+3.xp(ilswec)+1.%p(ilsec))/64.

p(ihneb)=p(ihneb)+ (9.%p(ihnwc)+27.xp(ihnec)
+3.xp(ihswec)+9.xp(ihsec)+3.xp(ilnwe)
+9.xp(ilnec)+1.xp(ilswe)+3.xp(ilsec))/64.

p(ilnwb)=p(ilnwb)+ (9.%p(ihnwc)+3.xp(ihnec)
+3.xp(ihswe)+1.xp(ihsec)+27.xp(ilnwc)
+9.xp(ilnec)+9.xp(ilswe)+3.xp(ilsec))/64.

p(ilneb)=p(ilneb)+ (3.*p(ihnwc)+9.xp(ihnec)
+1.xp(ihswec)+3.xp(ihsec)+9.xp(ilnwe)
+27.xp(ilnec)+3.xp(ilswec)+9.xp(ilsec))/64.

¢ Modified by Matsfelt
If the cell above the airfoil should not be affected
by the cell below the airfoil.
if (i.le.iafp(klevc).and.j.eq.(jafp(klevc)+1)) then
Prolongation to the finer mesh below the airfoil

c coarser mesh location parameters

¢ North
ihnec=lstcO0+istc0+j—1
ihnwe=IstcO+istcl+j—1
ilnec=lstcl+istc0+j—1
ilnwe=lstcl+istcl4j—1

¢ South

ihswe=lstcO+istcl+j—1
ihsec=lstcO0+istc0+j—1
ilswe=lstcl+istcl+j—1
ilsec=lstcl+istc0+j—1

end if

7

APPENDIX E. CALC PART OF PETER_MULTLF FILE INCLUDING
MODIFICATIONS

¢ Modified by Matsfelt

¢ prolongate the pressure from a coarse to a fine grid
¢ South

C

if not

p(ihswb)=p(ihswb)+(9.%p(ihnwc)+3.xp(ihnec)
+27.xp(ihswe)+9.xp(ihsec)+3.xp(ilnwe)
+1.xp(ilnec)+9.xp(ilswe)+3.xp(ilsec))/64.

p(ihseb)=p(ihseb)+ (3.*p(ihnwc)+9.xp(ihnec)
+9.xp(ihswec)+27.%p(ihsec)+1.xp(ilnwc)
+3.xp(ilnec)+3.xp(ilswe)+9.xp(ilsec))/64.

p(ilswb)=p(ilswb)+(3.*p(ihnwc)+1.xp(ihnec)
+9.xp(ihswe)+3.xp(ihsec)+9.xp(ilnwc)
+3.xp(ilnec)+27.%p(ilswec)+9.xp(ilsec))/64

p(ilseb)=p(ilseb)+ (1l.*p(ihnwc)+3.xp(ihnec)
+3.%p(ihswe)+9.xp(ihsec)+3.xp(ilnwc)
+9.%p(ilnec)+9.xp(ilswec)+27.xp(ilsec))/64
end do
end do
end do

on the finest grid (=nlev), solve the pressure
if (klev.ne.nlev) then

call peter_relax(1l,cycli,cyclj,cyclk)

end if

800 continue

return

end

78

CALC part of mg_2d.f file
including modifications

subroutine mg_2d(aw,ae,as,an,ap,t,p,sr,su,nlev ,ni,nj,al,
ah,iplane ,iwall jiwal2 ,iafp ,jafp ,
cycli ,cyclj,cyclk ,wallj , taf)

dimension aw(x),ae(*),as(*),an(*),ap(*),t(*),p(*),sr(x),su(x*)
,ist (1000),istc (1000),ni(*),nj(*x),al(*),ah(x),iwall (100),

iwal2 (100),iafp (100),jafp (100)

logical cycli,cyclj,cyclk ,wallj ,taf

Initialization

If the 3D-MG has reached the coarsest level

V(1,1)—cycle without postsmoothing on the coarsest level
Only one cycle is performed

Bilinear restriction (from fine to coarse)

Bilinear prolongation

do klev=2,nlev
call key2(klev ,ist ,ni(klev),nj(klev))
kleve=klev -1
call key2(klevc ,istc ,ni(kleve),nj(kleve))

79

APPENDIX F. CALC PART OF MG_2D.F FILE INCLUDING MODIFICATIONS

(el e}

do i=1,ni(klevc)
in=istc (i)+nj(kleve)
inml=istc (i)+nj(kleve)—1
is=istc (i)+1
isml=istc (i)+2
p(in)=p(inm1)
p(is)=p(ism1)

end do

do j=1,nj(klevce)
in=istc (ni(kleve))+j
inml=istc (ni(kleve)—1)+]
is=istc(1)+]
isml=istc (2)+]
p(in)=p(inm1)
p(is)=p(ism1)

end do

Periodic boundary conditions:

North

South

North

call peter_2d_cyclic (p,kleve,istc ,ni,nj,
iplane ,iwall ,iwal2 ,cycli ,cyclj ,cyclk ,wallj)

do i=2,ni(klevce)
istcO=istc (1)
istcl=istc(i—1)
ist2=ist (2xi—2)
ist3=ist (2xi—3)
do j=2,nj(klevc)

coarser mesh location parameters
ilnec=istc0+]

ilnwe=istcl+]j

ilswe=istcl+j—1
ilsec=istc0+j—1

finer mesh location parameters

80

APPENDIX F. CALC PART OF MG_2D.F FILE INCLUDING MODIFICATIONS

o 0O 0 o0 o 0

o

ilneb=ist2+2xj—2
ilnwb=ist3+2xj—2

South

ilswb=ist3+2%j—3
ilseb=ist2+4+2%j—3

Modified by Matsfelt

The prolongation are not allowed to cross the limits of the airfoil
Special cases for each plane:
iplane=1 => z—y plane, taf true x value ok i.e. airfoil , check y
iplane=2 => x—z plane, not affected by the airfoil configuration
iplane=3 => x—y plane, check here if x and y is at the airfoil

if (iplane.ne.2) then
if ((iplane.eq.1l.and.taf
.(iplane.eq.3

.and.j.eq.(jafp(kleve)+1)).or.

..and.i.le.iafp (klevc).and.j.eq.(jafp (klevc)+1))) then

coarser mesh location parameters

North
ilnec=istc0+]
ilnwe=istcl+]j
South
ilswe=istcl4]
ilsec=istc0+]
end if
end if

Modified by Matsfelt

prolongate the pressure from a coarse to a fine grid

North

p(ilnwb)=p(ilnwb)+(9.xp(ilnwc)
+3.xp(ilnec)+3.%p(ilswe)+1.xp(ilsec))/16.

p(ilneb)=p(ilneb)+(3.xp(ilnwc)
+9.%«p(ilnec)+1.xp(ilswec)+3.%p(ilsec))/16.

81

APPENDIX F. CALC PART OF MG_2D.F FILE INCLUDING MODIFICATIONS

airfoil

check y

¢ Modified by Matsfelt
¢ The prolongation are not allowed to cross the limits of the
¢ Special cases for each plane:
c iplane=1 => z—y plane, taf true x value ok i.e. airfoil ,
¢ iplane=2 => x—z plane, not affected by the airfoil configuration
c iplane=3 => x—y plane, check here if x and y is at the airfoil
if (iplane.ne.2) then
if ((iplane.eq.l.and.taf.and.j.eq.(jafp (klevc)+1)).or.
(iplane.eq.3
..and.i.le.iafp (klevc).and.j.eq.(jafp (klevc)+1))) then

c coarser mesh location parameters
¢ North

ilnec=istc0+j—1

ilnwe=istcl+j—1
¢ South

ilswe=istcl+4j—1
ilsec=istc0+j—1

end if
end if
¢ Modified by Matsfelt

¢ prolongate the pressure from a coarse to a fine grid
¢ South
p(ilswb)=p(ilswb)+(3.xp(ilnwc)
+1.x«p(ilnec)+9.xp(ilswc)+3.%p(ilsec))/16.

p(ilseb)=p(ilseb)+(1l.xp(ilnwc)
+3.xp(ilnec)+3.xp(ilswe)+9.xp(ilsec))/16.
end do
end do
if (klev.ne.nlev)call peter_2d_relax (klev ,maxa,aw,ae
,as,an,ap,t,p,sr,ist ,ni,nj,iplane ,iwall ,iwal2 , cycli
. cyclk , wallj)
end do
end do

return
end

82

,eyelj,

CALC part of peter_relax.f file
including modifications

subroutine peter_relax (mmm, cycli ,cyclj,cyclk)

include ’PETER COMMON

logical cycli,cyclj,cyclk ,wallj ,taf

common /peter/kst(100),kst_2d(100)

dimension bw(io2dmax),be(io2dmax),bs(io2dmax),bn(io2dmax)
dimension bp(io2dmax),bsu(io2dmax),btry (io2dmax)
dimension bl(io2dmax) ,bh(io2dmax)

dimension sll (io2dmax),sl2 (io2dmax)

dimension a(1000),b(1000),c(1000),d(1000)

dimension pnew (iomax)

integer*4 lock (0:1000) ! should be max(it,jt,h6kt)

maxit2=nmmm
if (klev.eq.1l.and.nlev.gt.1l) maxit2=25

do 100 iter=1,maxit2

call peter_cyclic(ist ,lst ,ni(klev),nj(klev),nk(klev),
klev ,cycli ,cyclj ,cyclk)

Symmeteric point—gs (forward and backward sweep)

X—line—gs

83

APPENDIX G. CALC PART OF PETER_RELAX.F FILE INCLUDING
MODIFICATIONS

Y—line —gs

Z—line —gs

X—plane—gs
if (sol(5).eq.1)then

call key(klev,lst ,ist ,ni(klev),nj(klev),nk(klev))
kst_2d (1)=1

call peter_cyclic(ist ,Ist ,ni(klev),nj(klev),nk(klev),
klev ,cycli ,cyclj ,cyclk)

do 1=2,ni(klev)—1
icou=0
do kl=1,klev
kst_2d (kl4+1)=kst_2d (kl)+nj(kl)*nk(kl)
end do
isti=ist (i)
istip=ist (i+1)
istim=ist (i—1)
do k=1,nk(klev)
Istk=Ist (k)
icoutmp=kst_2d (klev)—1 4+ (k—1)xnj(klev)
do j=1,nj(klev)
icou = icoutmp + j
io=lstk+isti+j
iw=lstk+istim+j
ie=lstk+istip+j
bw(icou)=al(io)

be (icou)=ah(io)

bs(icou)=as(io)

bn(icou)=an(io)

bp(icou)=ap(io)

bl(icou)=aw(io)

bh(icou)=ae(io)
bsu(icou)=t(io)+sr(io)+ae(io)*p(ie)+aw(io)*p(iw)
btry (icou)=p(io)

end do

end do

84

APPENDIX G. CALC PART OF PETER_RELAX.F FILE INCLUDING
MODIFICATIONS

e B¢}

Modified by Matsfelt
If the i coordinate show that the airfoil will be part
of the set taf to true for the in z—y plane.
if (i.le.iafp(klev).and.j.eq.(jafp(klev)+1)) then
taf=.true.
else
taf=.false.
end if
Modified by Matsfelt

call mg 2d(bw,be,bs,bn,bp,bsu,btry,sll sl2 klev,
nk,nj,bl,bh,1,iwall ;iwal2 ,iafp ,jafp,
cycli ,cyclj ,cyclk , wallj , taf)

kl=klev
do k=nk(kl),1,-1
Istk=Ist (k)
icoutmp=kst_2d (klev)—1 4+ (k—1)xnj(klev)
do j=1,nj(kl),1
icou = icoutmp + j
io=lstk+isti+j
p(io)=btry(icou)
end do
end do
end do

call peter_cyclic(ist ,Ist ,ni(klev),nj(klev),nk(klev),
klev ,cycli ,cyclj ,cyclk)

end if

Y—plane—gs

if (sol(6).eq.1)then
call key(klev ,lst ,ist ,ni(klev),nj(klev),nk(klev))
kst_2d (1)=1
do j=2,nj(klev)—1
icou=0
do kl=1,klev
kst_2d (k1+1)=kst_2d (k1)+ni(kl)*nk(kl)

85

APPENDIX G. CALC PART OF PETER_RELAX.F FILE INCLUDING
MODIFICATIONS

end do
kl=klev

do i=1,ni(klev)
isti=ist (i)
icoutmp=kst_2d (klev)—1 4+ (i—1)*nk(klev)
do k=1,nk(klev)
Istk=Ist (k)
icou=icoutmp + k
io=lstk+isti+j

in=io+1
is=io—1
bw(lcou) aw(1i0)
be(icou)=ae(io)
bs(icou)=al(io)
bn(icou)=ah(io)
bp(icou)=ap(io)
bl(icou)=as(io)
bh(icou)=an(io)
bsu(icou)=t(io)+sr(io)+an(io)*p(in)+as(io)*p(is)
btry (icou)=p(io)
end do
end do

¢ Modified by Matsfelt

c The prolongation in the x—z plane in mg 2d will not be

¢ affected by the airfoil configuration. The specified taf

¢ value has no importance only set to have it initialized.
taf=.false .

call nu;2d(bw,be,bs,bn,bp,bsu,btry,sll,le,klev,
,nk, bl ;bh,2 iwall ,iwal2 ,iafp ,jafp ,
cycll cyclj ,cyclk ,wallj , taf)
¢ Modlfled by Matsfelt

kl=klev
do i=1,ni(kl),1
isti=ist (i)
icoutmp=kst_2d (klev)—1 + (i—1)*nk(klev)
do k=1,nk(kl),1
Istk=Ist (k)
io=lstk+isti+j
icou=icoutmp + k

86

APPENDIX G. CALC PART OF PETER_RELAX.F FILE INCLUDING
MODIFICATIONS

p(io)=btry (icou)
end do
end do
end do

call peter_cyclic(ist ,lst ,ni(klev),nj(klev),nk(klev),
klev ,cycli ,cyclj ,cyclk)

end if

Z—plane—gs

if(sol(7).eq.1) then
call key(klev ,Ist ,ist ,ni(klev),nj(klev),nk(klev))
kst_2d (1)=
do k=2,nk(klev)—
icou=0
do kl=1,klev
kst_2d (kl4+1)=kst_2d (kl)+ni(kl)*nj(kl)
end do

Istk=lst (k)
Istkm=Ist (k—1)
Istkp=lst (k+1)

do i=1,ni(klev)
isti=ist (1)
icoutmp = kst_2d(klev)—14+(i—1)*nj(klev)
do j=1,nj(klev)
icou=icoutmp+j]
io=lstk+isti+j
ih=Istkp+isti+]
il=lstkm+isti+j
bw(icou) aw(io)
be (icou)= io
bs(icou)=as
bn(icou)=an
bl(icou)=
bh(icou)=ah
bp(icou)=ap
bsu(icou)=t
btry (icou)=

O —~

tsr(io)+ah(io)*p(ih)+aJ(io)*p(il)

87

APPENDIX G. CALC PART OF PETER_RELAX.F FILE INCLUDING
MODIFICATIONS

(eI e e NNeRNNe]

end do
end do

Modified by Matsfelt

Modified by Matsfelt

100

The mg_2d code will loop over the whole x—y plane and on its
own feel if the airfoil is part of the prolongation or
not. The specified taf value has no importance only set
to have it initialized.

taf=.true.

call mg_2d(bw,be,bs,bn,bp,bsu,btry,sll , sl2 klev
ni,nj,bl,bh,3 ,iwall ;iwal2 ,iafp ,jafp,
cycli ,cyclj,cyclk ,wallj , taf)

kl=klev

do i=1,ni(kl),1

isti=ist (i)

icoutmp = kst_2d (klev)—1+4(i—1)xnj(klev)

do j=1,nj(kl),1
io=lstk+isti+j
icou=icoutmp + j
p(io)=btry(icou)

end do

end do

end do

call peter_cyclic(ist ,Ist ,ni(klev),nj(klev),nk(klev),
klev ,cycli ,cyclj ,cyclk)

end if

continue
return
end

88

CALC distance to airfoil
calculation in the mod.f file

subroutine modify

include ’COMMON

include ’CASECOM’

include 'MOD.COM’

dimension utemp (jt ,kt),vtemp(jt ,kt),wtemp(jt , kt)

common/inletl /umean(jt),rkmean_in(jt),epsmean_in(jt),
ufluct (jt ,kt), vfluct (jt ,kt),wfluct(jt ,kt),vmean(jt),
u2_prim,uv_fluct(jt),uv_rans(jt),uu_synt2d(jt),vv_synt2d (jt),
ww_synt2d(jt),uv_synt2d (jt),ommean_in(jt)

common /cmean /umeanv (it , jt) ,vmeanv (it ,jt),umean2v (it ,jt),
vmean2v (it ,jt),wmean2v (it ,jt),ss_u

character filny*140,test*140,name_end*110

¢ deltan2d related wvariables

c— section 0 ———— initialization

dimension xTop(it),yTop(it)
integer countSize ,count ,ifound
logical flag ,flagl

entry modini

89

APPENDIX H. CALC DISTANCE TO AIRFOIL CALCULATION IN THE MOD.F
FILE

¢ Modified by Matsfelt

I Calculates the closest distance from each cell center to the

! airfoil is needed in vist_pans.f and calced_pans to run RANS
! the original variable name is dist but is here named deltan2d

diff2org=2.937 ! Diff in the top equation has to move the curve.

k=nk /2
movedivide=1000. ! Factor to divide the moving distance with
countMax=100. ! Number of guesses to find closest

! location on the curve

! Take the x and y values of the top of the airfoil to be used in
! linear interpolation between.

countSize=1
do i=2,(iaf+1)
if (xc(i,jaf ,k).gt.(—diff2org)) then
xTop(countSize)=xc(i—1,jaf k)
yTop(countSize)=yc(i—1,jaf k)

countSize=countSize+1

end if
end do

countSize=countSize —1

do i=1,ni
do j=1,nj
count=1
flag=0
! Default 0, set to 1 for locations where no iteration
! is needed

ysource=yp(i,j, k)

if (j.eq.jaf.and.i.le.iaf) then
I The real y value of the nodes just above the
I airfoil is y2d(iaf,jaf)
ysource=yp (iaf ,jaf k)

end if

90

APPENDIX H. CALC DISTANCE TO AIRFOIL CALCULATION IN THE MOD.F
FILE

do while (count.le.countMax.and. flag.eq.0)

if (count.eq.l) then
xn=xp (i,j,k) ! First guess
ifound=2

elseif (count.eq.2) then
! Second guess move 1/movedivide along the
| positive x axis
deltanold=deltan
xn=xn+1/(count*movedivide)

else
xn=(deltanold —deltan)/(count+*+movedivide)+xn
deltanold=deltan

end if

if (ysource.ge.yc(iaf , jaf k)) then ! Top equation:
if (xn.lt.(—diff2org)) then
! The top surface of the airfoil
yn=yc (1,jaf k)
elseif (xn.le.xTop(countSize)) then
! The curved surface of the airfoil
Find the location where xn is larger
than the value of xTop to the
left and larger than that
to the right.
flagl=0
do while (ifound.le.countSize.and. flagl.eq.0)
if (xTop(ifound —1).le.xn
.and.xTop(ifound).ge.xn) then
I' If the xn value is located in
! between the xTop values.
yn=((yTop(ifound)—yTop(ifound —1))/
(xTop(ifound)—xTop(ifound —1)))x
(xn—xTop (ifound —1))+yTop (ifound —1)
flagl=1
end if
if (flagl.eq.0) then
if (xTop(ifound —1).1t .xn
.and . ifound.ne.countSize) then
ifound=ifound+1
else if (ifound.eq.2) then
! The ifound value is not allowed

!
!
!
!

91

APPENDIX H. CALC DISTANCE TO AIRFOIL CALCULATION IN THE MOD.F
FILE

! to be lower than 2 so

! the same ifound value

! is used in the next guess.

else if (ifound.eq.countSize) then
! To allow the the last number

! to be guessed again

else
ifound=ifound -1
end if
end if

end do

else if (xn.gt.xTop(countSize)) then
! The section above and behind the airfoil
xn=xTop(countSize)
yn=yTop(countSize)

end if

else if ((ysource.gt.yc(iaf, 6 jaf—1k))
.and.(xp(i,j,k).gt.xc(iaf ,jaf—1,k))) then
! Side equation
yn=ysource
! The shortest distance to the location
! will allways have the same y value.
xn=xTop(countSize)
flag=1
else ! Bottom equation

yn=yc (iaf ,jaf k)

! The real location of the bottom

' of the airfoil

if (xp(i,j,k).gt.xc(iaf, jaf—1,k)) then
! The location has a x value larger
! than the arifoil
xn=xc (iaf ,jaf —1k)

end if
flag=1
end if

deltan =(((abs(xp(i,j,k)—xn))*=2.
+(abs(ysource—yn))*%2.))*%0.5
! Differnce between the predicted location
! and the i,j.

if (count.eq.l) then
deltan2d (i, j)=deltan

92

APPENDIX H. CALC DISTANCE TO AIRFOIL CALCULATION IN THE MOD.F
FILE

else
if (deltan2d(i,j).lt.deltan) then
! if the new guessed deltan value is lower
! than that specified in deltan2d put it in

I deltan2d.
deltan2d (i, j)=deltan

end if

end if

count=count+1

end do
end do
end do

¢ Modified by Matsfelt

93

CALC dphidy.f file including
modifications

function dphidy(i,j,k,nphi)
include ’COMMON

¢ the derivative dphidy at node i,j,k for variable nphi is calculated here

phie=fx (i,j,k)*phi(i+1,j,k,nphi)+(1.—fx(i,j,k))*phi(i,j,k,nphi)
phiw=fx (i—1,j ,k)*phi(i,j,k,nphi)+(1.—fx(i—1,j,k))

& xphi(i—1,j,k,nphi)
phin=fy (i,j,k)*phi(i,j+1,k,nphi)+(1.—fy(i,j,k))*phi(i,j,k,nphi)
phis=fy (i,j—1,k)*phi(i,j,k,nphi)+(1.—fy(i,j—1,k))

& «phi(i,j—1,k,nphi)
phih=fz (i,j,k)*phi(i,j,k+1,nphi)+(1.—fz(i,j,k))*phi(i,j,k,nphi)
phil=fz (i,j,k—1)«phi(i,j,k,nphi)+(1.—fz(i,j,k—1))

& xphi(i,j,k—1,nphi)

dphidy=(phiexareaey (i,j,k)—phiwxareaey (i—1,j,k)
& +phinsareany (i,j,k)—phisxareany(i,j—1,k)
& +phihxareahy (i,j,k)—philxareahy(i,j,k—1))/vol(i,j, k)

¢ Modified by Matsfelt
¢ To break the connection between the cell jaf+1 above the airfoil
¢ and jaf below.

if (i.le.iaf.and.j.eq.jaf) then

94

APPENDIX 1. CALC DPHIDY.F FILE INCLUDING MODIFICATIONS

phin=0.
dphidy=(phiexareaey (i,j,k)—phiwxareaey (i—1,j,k)
& +phinsareany (i,j,k)—phisxareany (i,j—1,k)
& +phihxareahy (i,j,k)—philxareahy(i,j,k—1))/vol(i,j, k)
elseif (i.le.iaf.and.j.eq.(jaf+1)) then
phis=0.
dphidy=(phiexareaey (i,j,k)—phiwxareaey (i—1,j,k)
& +phinkareany (i,j,k)—phisxareanyjafpl(i,j—1,k)
& +phihxareahy (i,j,k)—philxareahy(i,j,k—1))
& /vol(i,j, k)

end if
¢ Modified by Matsfelt

return
end

95

CALC part of ADM mod.f file

subroutine modify
include 'COMMON

include ’'CASECOM’
include 'MOD.COM’

integer , parameter :: nSpanLoc = 19, nBlade = 3,

1 NSPANM = 30, NANGM = 365, NMACHM = 3

double precision , parameter :: rHub = 1.50d0, rTip = 63.00d0,
1 vInf = 8.0d0, rho = 1.225d0,

1 soundSpeed = 340.0d0, pitch = 0.0d0

double precision, dimension(nSpanLoc) :: rSpan, cSpan, tSpan
double precision, dimension(jt) :: rNode, afa, tfa

double precision :: temp, um, wm, axialForce, tangentForce,h omega
double precision :: rcp, twist, chord, AngleOfAttack

integer :: NSPANB, NMACHB, counter

integer , dimension (NSPANM) :: NANGB

double precision, dimension (NMACHM) :: AMACHIB

double precision , dimension (NSPANM) :: RCB

double precision , dimension (NSPANM, NANGM) :: AATB

double precision , dimension (NSPANM, NMACHM, NANGM) :: CLTB,CDTB,
1 CMIB

integer counterj
ADM varibale for mod. f

common /admmod/imid , jmin , jmax , kmin , kmax,xpl ,xpWT,
csmear , nksec ,avgk ,phiavgu(jt),phiavgtheta(jt),

96

APPENDIX J. CALC PART OF ADM MOD.F FILE

thetayz (jt ,kt),Fyadm(jt ,kt), ,Fzadm(jt 6 kt),
testtheta ,vv,vw, testr ,testdiffrtheta ,
phiavgr(jt),diffphiavgrphiavgtheta(jt)

c Gaussian smearing related variables
common/gauss/imiddiff ,gaussianmag (jt ,kt),
gaussianmagcheck (jt , kt)

¢c— section 0 ———— initialization
entry modini

¢ Angular velocity of the rotation of the blades.
omega = 1.003d0 ! [rad/s]

c Gaussian smearing nodes

imiddiff=50

Wind turbine location
find imid, the i location of the wind turbine
do i=1,ni

if (xp(i,1,1).le.0.and.xp(i+1,1,1).ge.0) ii=i
end do

imid=ii
xpWT = 0.5%(xc(imid,1,1)+xc(imid —1,1,1)) ! streamwise position

C Rotor dimensions
jmin=2

¢ Find jmax from the defined mesh
hub=63.
do j=1,nj
if (yp(1,j,1).le.hub.and.yp(1,j+1,1).ge.hub) jj=j
end do
jmax=j]
kmin=2

kmid=nk /2

kmax=nkml

97

APPENDIX J. CALC PART OF ADM MOD.F FILE

The number of k positions that are averaged over.
avgk=kmax—kmin+1

Smearing function (convolution)
csmear = 2.0

Write the center locations of the nodes of the
open (unit =50, file ="controlNode.inp’, status="unknown’)
do j=jmin ,jmax
write (50 ,%)yp(1,j,1)
end do
close (50)

Number of nodes on the blad
nBladeNodes=jmax—jmin+1

Number of sections that the force should be applied on
nksec=nk—2

Approximation of pi Machin—like formulae
pi=4.x(4.xatan(1./5.) —atan (1./239.))

do j=jmin ,jmax
counterj=j—jmin+1
do k=kmin , kmax
Tangential velocity ,using polar coordinates conversion in y—z plane
Find Theta angle [rad]
if (yp(imid,j,k).gt.0.0) then

thetayz(j,k)=atan (zp(imid,j,k)/yp(imid,j, k))

else if (yp(imid,j,k).1t.0.0.and.zp(imid,j,k).ge.0.0) then
thetayz (j,k)=atan (zp (imid,j,k)/yp(imid,j,k))+pi

else if (yp(imid,j,k).1t.0.0.and.zp(imid,j,k).1t. 0 0) then
thetayz(j,k)=atan (zp(imid,j,k)/yp(imid,j, k))—

else if (yp(imid,j,k).eq.0.0.and.zp(imid,j k). gt 0 0) then

thetayz (j,k)=pi/2
else if (yp(imid,j,k).eq.0.0.and.zp(imid,j,k).1t.0.0) then
thetayz (j ,k)=—pi/2
else if (yp(imid,j,k).eq.0.0.and.zp(imid,j,k).eq.0.0) then
thetayz (j,k)=0.
write (6 ,%) Theta angle in mod.f is not defined at (0,0)’
end if
end do
end do

98

APPENDIX J. CALC PART OF ADM MOD.F FILE

The

aerodynamic characteristics of blade are read.

rSpan: number of blade spanwise section including airfpoil profile
cspan: local chord length [m]
tSpan: local twist [degree]

open(l, file = ’aeroData.inp’)
do i = 1, nSpanLoc
read (1,%) rSpan(i), cSpan(i), tSpan(i), temp
end do
close (1)

! The blade control points are read. (Blade spanwise discretization)
!
open(2, file = ’controlNode.inp’)
do i = 1, nBladeNodes
read (2,%) rNode(1i)
end do
close (2)
!
! The tabulated airfoil data, CL, CD and CM are read.

!

open (3, file = 'CLCDCMTable.inp’)
read (3 ,%)

read (3 ,x)

read (3 ,%)

read (3 ,%) NSPANB

read (3 ,%) NMACHB

write (6 ,%) modini NMACHB ,NMACHB
flush (6)

do k = 1, NMACHB
read (3,x) AMACHIB (k)

enddo
read (3 ,%)
do j = 1, NSPANB

read (3,%) RCB(j)
read (3 ,%) NANGB(j)

99

APPENDIX J. CALC PART OF ADM MOD.F FILE

read (3 ,%)
do i = 1, NANGB (j)
read (3,%x) AATB (j,i), (CLTB (j,k,i), CDIB (j,k,i),

1 CMIB (j,k,i), k=1, NMACHB)
end do

read (3 ,x)
end do

close (3)

counter = maxval (NANGB)

return
section 1 —————properties
section 2 ————convection
section 3 ——— u—velocity

entry modu

ACTUATOR DISK MODEL

(eI Ee NN e NN

Average the velocities at all the k levels because of the axisymmetry
convert u,v,w velocity components to axial and tangential components.
do j=jmin ,jmax
counterj=j—jmin-+1

phiavgu (counterj)=0. ! initialize
phiavgtheta(counterj)=0. ! initialize
phiavgr (counterj)=0. ! initialize

do k=kmin , kmax

Axial velocity
phiavgu(counterj)=phiavgu(counterj)+phi(imid,j, k,u)
Tangential velocity
phiavgtheta(counterj)=phiavgtheta(counterj)
—phi(imid,j ,k,v)*sin (thetayz(j,k))
+phi(imid ,j ,k,w)*cos(thetayz(j,k))

end do

100

APPENDIX J. CALC PART OF ADM MOD.F FILE

¢ The average over the k sections
phiavgu (counterj)=phiavgu(counterj)/avgk
phiavgtheta(counterj)=phiavgtheta(counterj)/avgk

end do

! This part calculates the aerodynamic forces.
!

do j = 1, nBladeNodes
counterj=jmin+4j—1

um = phiavgu(j)
wm = phiavgtheta(]j)
rcp = rNode(j)

! The ’interp’ subroutine calculate the local chord and twist
! by interpolation from the aerodymamic characteristic table.
call interp (nSpanLoc, rcp, rSpan, cSpan, tSpan, chord, twist)

AngleOfAttack=0.0
! The ’force’ subroutine calculates the axial and tangential force at
! each spanwise section [N/m2].
call force(um, wm, omega, nBlade, rho, rHub, rTip, soundSpeed,
1 pitch, rcp, twist, chord, counter, NSPANM, NMACHM, NANGM,NSPANB,
1 NMACHB, NANGB, RCB, AATB, AMACHIB, CLTB, CDTB, CMIB, axialForce ,
1 tangentForce , AngleOfAttack)

¢ Convert from circule to a regular polynom
axialForce=axialForcexpi/
(8. (1.4 ((2.)%%x(1./2.)))*((sin(pi/float (nksec)))**x2.))

tangentForce=tangentForcexpi/
(8. (1.4+((2.)%%x(1./2.)))*((sin(pi/float (nksec)))**x2.))

afa (j)=axialForce I [N/m2]
tfa(j)=tangentForce I [N/m2]

¢ Have the forces in [N] by multipling by the area sections

afa (j)=afa(j)xareaex (imid , counterj ,kmin) I [N]
tfa(j)=tfa(j)xareaex (imid, counterj ,kmin) I [N]

101

APPENDIX J. CALC PART OF ADM MOD.F FILE

end do

¢ Convert from tangential force to the v and w component.
do j=jmin ,jmax
counterj=j—jmin+1
do k=kmin , kmax

C v component
Fyadm(j ,k)=—tfa(counterj)xsin (thetayz(j,k))

C w component
Fzadm (j ,k)=tfa (counterj)*xcos(thetayz(j,k))

end do
end do

¢ Check that the Gaussian has a total value of one
do j=jmin ,jmax
counterj=j—jmin+1
do k=kmin , kmax
gaussianmag (counterj ,k)=0.
do i=imid—imiddiff ,imid4+imiddiff

xpl = 0.5%(xc(i,l,1)+xc(i—-1,1,1))
dx = xc(i,1,1)—xc(i—1,1,1)
c Streamwise distance to wind turbine
dstream = sqrt ((xpl-=xpWT)xx2)
¢ Epsilon
epsi = csmear*dx
¢ 1D Gaussian function
eta_eps = 1./(epsi*pi**0.5)xexp(—(dstream/epsi)*x2)
c Original magnitude of the local sum gaussian function

gaussianmag (counterj ,k)=gaussianmag (counterj ,k)+
eta_eps*dx

end do
end do

102

APPENDIX J. CALC PART OF ADM MOD.F FILE

end do

¢ Apply the force
fmax=0.
do j=jmin ,jmax
counterj=j—jmin+1
do k=kmin , kmax
gaussianmagcheck (counterj ,k)=0.
fsum=0.0
do i=imid—imiddiff ,imid+imiddiff

xpl = 0.5%(xc(i,1,1)+xc(i—1,1,1))
dx = xc(i,l,1)—xc(i—1,1,1)
c Streamwise distance to wind turbine
dstream = sqrt ((xpl-=xpWT)xx2)
¢ Epsilon
epsi = csmear*dx
c 1D Gaussian function
eta_eps = 1./(epsixpix*x0.5)*xexp(—(dstream/epsi)*x2)
¢ Axial force
fp = afa(counterj)
¢ Apply the gaussian and normalize to have a sum of 1
fdist = fpxeta_epsxdx/gaussianmag (counterj ,k)

su(i,j,k) = su(i,j,k) — fdist

c Sum gaussian function to ensure that the sum is one
gaussianmagcheck (counterj ,k)=gaussianmagcheck (counterj ,k)+
eta_epsx*dx/gaussianmag (counterj ,k)

end do
end do
end do

return

c— section 4 ——v—velocity

entry modv

103

APPENDIX J. CALC PART OF ADM MOD.F FILE

ACTUATOR DISK MODEL

fmax=0.

do j=jmin ,jmax
counterj=j—jmin+1

do k=kmin , kmax

gaussianmagcheck (counterj ,k)=0.

fsum=0.0

do i=imid—imiddiff imid+imiddiff

xpl = 0.5%(xc(i,1,1)+xc(i—-1,1,1))
dx = xc(i,1,1)—xc(i—-1,1,1)
c Streamwise distance to wind turbine
dstream = sqrt ((xpl-—=xpWT)xx2)
¢ Epsilon
epsi = csmearxdx
c 1D Gaussian function
eta_eps = 1./(epsixpi*x0.5)xexp(—(dstream/epsi)**2)
¢ v component of the tangential force
fp — Fyadm(j ,k)
¢ Apply the gaussian and normalize to have a sum of 1
fdist = fpxeta_eps*dx/gaussianmag (counterj ,k)
su(i,j,k) = su(i,j,k) — fdist
end do
end do
end do
return

c— section 5 ——

entry modw

—w—velocity

ACTUATOR DISK MODEL

104

APPENDIX J. CALC PART OF ADM MOD.F FILE

fmax=0.

do j=jmin ,jmax
counterj=j—jmin+1

do k=kmin , kmax

gaussianmagcheck (counterj ,k)=0.
fsum=0.0

do i=imid—imiddiff ,imid+imiddiff

xpl = 0.5%(xc(i,1,1)+xc(i—-1,1,1))
dx = xc(i,1,1)—xc(i—1,1,1)

Streamwise distance to wind turbine

dstream = sqrt ((xpl-=xpWT)xx2)
Epsilon
epsi = csmear*dx

1D Gaussian function
eta_eps = 1./(epsixpi*x0.5)xexp(—(dstream/epsi)**2)

w component of the tangential force
fp = Fzadm(j ,k)

Apply the gaussian and normalize to have a sum of 1
fdist = fpxeta_epsxdx/gaussianmag (counterj ,k)
su(i,j,k) = su(i,j,k) — fdist

end do

end do

end do

return

105

CALC ADM force.f file

subroutine force(u, w, rotVel, nb, airDen, hubRad, tipRad, snVel,
bPtc, rLoc, locTwist, locChord, maxCounter, nSpanG, nMachG,
nAngleG, nSpanTable, nMachTable, nAngleTable, rLocTable,

aoaTable , machTable, clTable, cdTable, cmTable, Fn, Ft, aoa)

implicit none

double precision , parameter :: nacelleDragCoeff = 0.50d0
integer :: nb, nSpanG, nMachG, nAngleG, nSpanTable, nMachTable,
maxCounter

integer , dimension (nSpanG) :: nAngleTable

double precision :: rotVel, airDen, hubRad, tipRad, snVel, bPtc,
rLoc, locTwist, locChord, Fn, Ft, u, w, CL, CD, CM, pi, criteria ,
flowAngle, aoa, liftCoeff, dragCoeff, normalCoeff, tangentCoeff ,
sigma, fTipCorr, fHubCorr, Ftip, Fhub, Ftot, alnd, aplnd, Vx, Vt,
VxUpdate, VtUpdate, deltaVx, deltaVt, vTotal2, machNumber,
alndUpdate, apIndUpdate, deltaalnd , deltaapInd,

acInd, Kalnd

double precision , dimension(nMachG) :: machTable

double precision, dimension(nSpanG) :: rLocTable

double precision, dimension(nAngleG) :: aoalnterp, cllnterp,
cdInterp, cmlnterp

double precision, dimension (nSpanG, nAngleG) :: aoaTable

double precision , dimension (nSpanG,nMachG,nAngleG)
clTable, cdTable, cmTable

Vx = u

106

APPENDIX K. CALC ADM FORCE.F FILE

!

[m/s], from Navier—Stokes solution , axial velocity perpendicular to
the rotor plane

Vt =w
[m/s], from Navier—Stokes solution , tangential velocity perpendicular

to the rotor plane
pi = 4.0d0 % atan(1.0d0)

if (rLoc .le. hubRad) then

Ft = 0.0d0
Fn = 0.50d0 * airDen % (u #x 2) % nacelleDragCoeff
goto 20

endif

For the radii smaller than hub radius, the constant drag coefficient
for the nacelle (Cd_nacelle=0.5) is considered. So, in that case,
only the axial force acts on the actuator disk.

The dimension of the Ft and Fn are [N/m2].

flowAngle = atand (Vx / abs(—rotVel % rLoc — Vt))
[degree], flow angle calculation based on the axial and tangential
velocities.

aoa = flowAngle — (locTwist + bPtc)
aoa [degree], angle of attack calculation by means of flow angle,
local twist and blade pitch angle.

Lift and drag coefficients based on the linear airfoil theory.

liftCoeff = 2.0d0 * pi * (aoa * pi / 180.0d0)
dragCoeff = 0.0d0

!

machNumber = sqrt ((Vx *x 2.0d0) + ((—rotVel % rLoc — Vt)
% 2.0d0)) / snVel

machNumber is the Mach number which is used when reading and

linterpolating airfoil data.

call aeroTable(rLoc, machNumber, rLocTable, machTable, aoaTable,
clTable , cdTable, cmTable, nSpanG, nMachG, nAngleG,
nSpanTable, nMachTable, nAngleTable, clIinterp, cdInterp,
cmInterp, aoalnterp)

call foil_clecdcm (aoa, maxCounter, nAngleG, aoalnterp,
clinterp, cdInterp, cmlnterp, CL, CD, CM)

107

APPENDIX K. CALC ADM FORCE.F FILE

These two subroutines calculate lift (CL) and drag (CD) coefficients
for each spanwise section.

liftCoeff = CL ! Lift coefficient for each spanwise section.
dragCoeff = CD ! Drag coefficient for each spanwise section.

normalCoeff = (liftCoeff % cosd(flowAngle))

: + (dragCoeff x sind (flowAngle))
normalCoeff is the projection of lift and drag coefficients into the
normal direction (perpendicular to the rotor plane, Axial direction)

tangentCoeff = (liftCoeff * sind(flowAngle))
— (dragCoeff % cosd(flowAngle))
tangentCoeff is the projection of lift and drag coefficients into the
tangential direction (tangential to the rotor plane)

vTotal2 = Vx %x 2.0d0 + (abs(—rotVel % rLoc — Vt)) %x 2.0d0
The magnitude of the total velocity is computed.

!

!

20

Fn = (1.0d0 / (2 % pi % rLoc)) % 0.50d0 % airDen * vTotal2
* locChord % nb % normalCoeff
[N/m2], The axial force (perpendicular to the rotor plane).
Ft = (1.0d0 / (2 % pi % rLoc)) * 0.50d0 % airDen % vTotal2
* locChord * nb * tangentCoeff
[N/m2], The tangential force (tangential to the rotor plane).

continue

return
end subroutine

108

CALC part of ALM mod.f file

subroutine modify
include 'COMMON

include ’'CASECOM’
include 'MOD.COM’

integer , parameter :: nSpanLoc = 19, nBlade = 3,

1 NSPANM = 30, NANGM = 365, NMACHM = 3

double precision , parameter :: rHub = 1.50d0, rTip = 63.00d0,
1 vInf = 8.0d0, rho = 1.225d0,

1 soundSpeed = 340.0d0, pitch = 0.0d0

double precision, dimension(nSpanLoc) :: rSpan, cSpan, tSpan
double precision, dimension(jt) :: rNode

double precision, dimension(jt,3) :: afa, tfa

double precision :: temp, um, wm, axialForce, tangentForce K omega
double precision :: rcp, twist, chord, AngleOfAttack, magcheck

integer :: NSPANB, NMACHB, counter

integer , dimension (NSPANM) :: NANGB

double precision , dimension (N\MACHM) :: AMACHIB

double precision , dimension (NSPANM) :: RCB

double precision , dimension (NSPANM, NANGM) :: AATB

double precision , dimension (NSPANM, NMACHM, NANGM) :: CLTB,CDTB,
1 CMIB

integer counterj

ADM varibale for mod. f
common /admmod/imid , jmin , jmax , kmin , kmax,xpl ,xpWT,

109

APPENDIX L. CALC PART OF ALM MOD.F FILE

csmear ,nksec ,avgk ,phiavgu(jt),phiavgtheta(jt),
thetayz(jt ,kt) ,Fyadm(jt ,kt),Fzadm(jt , kt),
testtheta ,vv,vw, testr ,testdiffrtheta ,
phiavgr(jt),diffphiavgrphiavgtheta(jt)

¢ ALM parameters
common/alm/tottime ,radturnedtot ,radturnedtotB(3),
lapturnedtotB (3) ,radturnedB (3),lapturnedB (3),
thetamesh , Theta2k (jt ,jt), AngBlade, flagkplane

integer , dimension (3) :: Bladek
integer :: Bladep
c Gaussian smearing related variables

common/gauss/imiddiff ,gaussianmag (it ,jt), gaussianmagcheck (it ,jt)

c Epsi avgerage parameters
common/epsiavgpar /epsiavgcounter ,epsiavgsum , epsiavg

c— section 0 ———— initialization
entry modini

¢ Angular velocity of the rotation of the blades.
omega = 1.003d0 ! [rad/s]

c Gaussian smearing nodes

imiddiff=50

Wind turbine location
find imid, the i location of the wind turbine
do i=1,ni

if (xp(i,1,1).le.0.and.xp(i+1,1,1).ge.0) ii=i
end do

imid=ii
xpWT = 0.5%(xc(imid,1,1)+xc(imid—1,1,1)) ! streamwise position

C Rotor dimensions
jmin=2

¢ Find jmax from the defined mesh
hub=63.

110

APPENDIX L. CALC PART OF ALM MOD.F FILE

do j=1,nj

if (yp(1,j,1).le.hub.and.yp(1,j+1,1).ge.hub) jj=j
end do
jmax=jj

kmin=2
kmid=nk /2

kmax=nkml

The number of k positions that are averaged over.
avgk=kmax—kmin+1

Smearing function (convolution)
csmear = 2.0

Write the center locations of the nodes of the
open (unit=50,file="controlNode.inp’, status="unknown’)
do j=jmin ,jmax
write (50 ,%x)yp(1,j,1)
end do
close (50)

Number of nodes on the blad
nBladeNodes=jmax—jmin+1

Number of sections that the force should be applied on
nksec=nk—2

Approximation of pi Machin—like formulae
pi=4.%(4.xatan(1./5.) —atan (1./239.))

do j=jmin ,jmax
counterj=j—jmin+1
do k=kmin , kmax
Tangential velocity ,using polar coordinates conversion in y—z plane
Find Theta angle [rad]
if (yp(imid,j,k).gt.0.0) then

thetayz(j,k)=atan (zp(imid,j,k)/yp(imid,j, k))

else if (yp(imid,j,k).1t.0.0.and.zp(imid,j,k).ge.0.0) then
thetayz (j,k)=atan (zp (imid,j,k)/yp(imid,j,k))+pi

else if (yp(imid,j,k).1t.0.0.and.zp(imid,j,k).1t.0.0) then

111

APPENDIX L. CALC PART OF ALM MOD.F FILE

thetayz(j,k)=atan (zp(imid,j,k)/yp(imid,j, k))—pi
else if (yp(imid,j,k).eq.0.0.and.zp(imid,j,k).gt.0.0) then
thetayz(j,k)=pi/2
else if (yp(imid,j,k).eq.0.0.and.zp(imid,j,k).1t.0.0) then
thetayz (j,k)=—pi/2
else if (yp(imid,j,k).eq.0.0.and.zp(imid,j,k).eq.0.0) then
thetayz(j,k)=0.
write (6,%) Theta angle in mod.f is not defined at (0,0)’
end if
end do
end do

The aerodynamic characteristics of blade are read.

rSpan: number of blade spanwise section including airfpoil profile
cspan: local chord length [m]

tSpan: local twist [degree]

open(l, file = ’aeroData.inp’)
do i = 1, nSpanLoc
read (1,%) rSpan(i), cSpan(i), tSpan(i), temp
end do
close (1)

! The blade control points are read. (Blade spanwise discretization)

open(2, file = ’controlNode.inp’)
do i = 1, nBladeNodes

read (2,%) rNode(1i)

end do

close (2)

!

! The tabulated airfoil data, CL, CD and CM are read.
!

open (3, file = CLCDCMTable.inp’)
read (3 ,%)

read (3 ,x)

read (3 ,%)

read (3 ,%) NSPANB

read (3 ,%) NMACHB

112

APPENDIX L. CALC PART OF ALM MOD.F FILE

write (6 ,%) modini NMACHB ,NMACHB
flush (6)

do k = 1, NMACHB
read (3,x) AMACHIB (k)
enddo

read (3 ,%)
do j = 1, NSPANB
read (3 ,x) RCB(j)
read (3 ,%) NANGB(j)

read (3 ,%)

do i = 1, NANGB (j)

read (3,%) AATB (j,i), (CLTB (j,k,i), CDIB (j,k,i),

1 CMIB (j,k,i), k=1, NMACHB)
end do

read (3 ,x)
end do

close (3)

counter = maxval (NANGB)
Tracing the blades
Mesh turning

thetamesh=2.0xpi/float (nksec)

¢ Matrix mapping thetamesh to k plane
do i=1,nksec

c Radians turned smaller than the k plane used
Theta2k (i,1)=ixthetamesh

¢ k plane correspond to radians turned smaller than
Theta2k (i,2)=i+1

end do

¢ Angle between the blades, here 3 blades
AngBlade=2.0%pi /3.0

return

c— section 1 ———— properties

113

APPENDIX L. CALC PART OF ALM MOD.F FILE

c— section 2 ——— convection

c— section 3 ———— u—velocity
entry modu

ACTUATOR LINE MODEL

¢ Blades turning
tottime=0.0
do locitstep=1,itstep
tottime=tottime+dt(locitstep)
end do

radturnedtot=omegaxtottime

¢ Find radians each blade has rotated whitin the lap
do k=1,3 ! 3 blades

radturnedtotB(k)=radturnedtot+(k—1)xAngBlade
lapturnedtotB (k)=radturnedtotB(k)/(2.0x* pi)

Floor rounds to greatest integer less than, to obtain
the full laps by the blades

lapturnedB (k)=FLOOR(real (lapturnedtotB (k)))

radturnedB (k)=radturnedtotB (k) —(2.0xpixlapturnedB(k))

end do

¢ Find the k plane location of the three blades
do k=1,3 ! Each blade
flagkplane=0
i=1
do while (i.le.nksec.and.flagkplane.eq.0)
if (radturnedB(k).1t.Theta2k(i,1)) then
Bladek (k)=Theta2k (i ,2)
flagkplane=1
end if
i=i+1
end do

114

APPENDIX L. CALC PART OF ALM MOD.F FILE

end do

! This part calculates the aerodynamic forces for the 3 blades

do k=1,3 ! 3 blades
do j = 1, nBladeNodes
counterj=jmin+4j—1

¢ Local axial velocity
um = phi(imid, counterj ,Bladek(k),u)

¢ Local tangential velocity
wm = —phi(imid , counterj , Bladek (k) ,v)
xsin (thetayz (counterj ,Bladek (k)))
+phi(imid , counterj , Bladek (k) ,w)
xcos (thetayz (counterj ,Bladek (k)))

rcp = rNode(j)

! The ’interp’ subroutine calculate the local chord and twist
! by interpolation from the aerodynamic characteristic table.
call interp(nSpanLoc, rcp, rSpan, cSpan, tSpan, chord, twist)

AngleOfAttack=0.0

! The ’force’ subroutine calculates the axial and tangential force at
! each spanwise section [N/m2].
call force(um, wm, omega, nBlade, rho, rHub, rTip, soundSpeed,
1 pitch, rcp, twist, chord, counter, NSPANM, NMACHM, NANGM,NSPANB,
1 NMACHB, NANGB, RCB, AATB, AMACHIB, CLTB, CDIB, CMIB, axialForce ,
1 tangentForce , AngleOfAttack)

afa (j ,k)=axialForce I' [N/m]
tfa(j,k)=tangentForce ! [N/m]

¢ Have the forces in [N] by multipling by delta r of the mesh
afa (j,k)=afa(j, k)
) *(yc(1l,counterj,l)—yc(1l,counterj—1,1))! [N]
tfa(j,k)=tfa(j, k)
) *(yc(1l,counterj,l)—yc(1l,counterj—1,1))! [N]

115

APPENDIX L. CALC PART OF ALM MOD.F FILE

end do
end do

Convert from tangential force to the v and w component.
do j=jmin ,jmax
counterj=j—jmin+1
do k=kmin ,kmax
do k=1,3

v component
Fyadm(j ,k)=—tfa (counterj ,k)*sin (thetayz(j,Bladek(k)))

w component
Fzadm (] ,k)=tfa (counterj ,k)*cos(thetayz(j,Bladek(k)))

end do
end do

Check that the Gaussian has a total value of one
epsiavgcounter=0.0

epsiavgsum =0.0

do Bladep=1,3

do j=jmin ,jmax

counterj=j—jmin+1

gaussianmag (Bladep , counterj)=0.0

do k=kmin , kmax

do i=imid—imiddiff ,imid4+imiddiff

xpl = 0.5%(xc(i,1,1)+xc(i—1,1,1))
dx = xc(i,1,1)—xc(i—1,1,1)

dr = yc(imid,j,1)—yc(imid,j—1,1)
drThetaloc = (2xpi/nksec)*xyp(imid,j, 1)
dRTheta = (2xpi/nksec)xhub

3D distance to wind turbine blade

dstream = sqrt ((xpl-—xpWT)*x2+
(yp(imid ,j ,Bladek (Bladep))—yp(imid,j ,k))**2+
(zp (imid ,j,Bladek (Bladep))—zp (imid,j ,k))*%2)

Epsilon
epsi = csmearxsqrt (dRThetax*2+dr*x24+dx**2)

116

APPENDIX L. CALC PART OF ALM MOD.F FILE

2D Gaussian function
eta_eps = 1./(epsi**2xpi)xexp(—(dstream/epsi)*x2)

Original magnitude of the local sum gaussian function
gaussianmag (Bladep , counterj)=gaussianmag (Bladep , counterj)+
eta_epsxdxxdrThetaloc

Average epsi used to define epsilon of the simulation
epsiavgcounter=epsiavgcounter+1.0
epsiavgsum=epsiavgsum-+tepsi

end do
end do
end do
end do

Averagaged espi value in the simulation
epsiavg=epsiavgsum /epsiavgcounter
if (itstep.eq.l.and.iter.eq.1l) then

write (6 ,%)’ Average epsilon value in the simulation is
,epsiavg

end if

Apply the force

do Bladep=1,3

fmax=0.

do j=jmin ,jmax

counterj=j—jmin+1

gaussianmagcheck (Bladep , counterj)=0.0
do k=kmin , kmax

fsum=0.0

do i=imid—imiddiff ,imid4+imiddiff

xpl = 0.5%(xc(i,1,1)+xc(i—-1,1,1))
dx = xc(i,1,1)—xc(i—-1,1,1)

dr = yc(imid,j,1)—yc(imid,j—1,1)
drThetaloc = (2xpi/nksec)*yp(imid,j,1)
dRTheta = (2xpi/nksec)xhub

3D distance to wind turbine blade

dstream = sqrt ((xpl-—xpWT)*x2+
(yp(imid ,j ,Bladek (Bladep))—yp(imid,j ,k))**2+
(zp (imid ,j,Bladek(Bladep))—zp (imid,j ,k))**2)

117

APPENDIX L. CALC PART OF ALM MOD.F FILE

¢ Epsilon
epsi = csmear*xsqrt (dRThetax*2+dr*x2+dx**2)
c 2D Gaussian function
eta_eps = 1./(epsi**2xpi)xexp(—(dstream/epsi)*x2)
¢ Axial force
fp = afa(counterj ,Bladep)
¢ Apply the gaussian and normalize to have a sum of one
fdist = fpxeta_epsxdxxdrThetaloc

/gaussianmag (Bladep , counterj)
su(i,j,Bladek(Bladep)) = su(i,j,Bladek(Bladep)) — fdist

c Sum gaussian function to ensure that the sum is one
gaussianmagcheck (Bladep , counterj)=
gaussianmagcheck (Bladep , counterj)+
eta_eps*dxxdrThetaloc
/gaussianmag (Bladep , counterj)

end do
end do
end do
end do

return

c— section 4 ———— v—velocity
entry modv

ACTUATOR LINE MODEL

do Bladep=1,3

fmax=0.

do j=jmin ,jmax

counterj=j—jmin+1

gaussianmagcheck (Bladep , counterj)=0.0
do k=kmin , kmax

fsum=0.0

118

APPENDIX L. CALC PART OF ALM MOD.F FILE

do i=imid—imiddiff imid+imiddiff

xpl = 0.5%(xc(i,1,1)+xc(i—-1,1,1))
dx = xc(i,1,1)—xc(i—-1,1,1)
dr = yc(imid,j,1)—yc(imid,j—1,1)
drThetaloc = (2xpi/nksec)*yp(imid,j,1)
dRTheta = (2xpi/nksec)xhub

c 3D distance to wind turbine blade
dstream = sqrt ((xpl-—xpWT)*x2+4

(yp(imid ,j ,Bladek (Bladep))—yp(imid,j ,k))**2+
(zp (imid ,j ,Bladek (Bladep))—zp (imid ,j ,k))**2)

¢ Epsilon
epsi = csmearkxsqrt (dRThetax«24+dr*«2+dx**2)
c 2D Gaussian function
eta_eps = 1./(epsix*x2xpi)xexp(—(dstream/epsi)**2)
¢ v component of the tangential force
fp = Fyadm(j , Bladep)
¢ Apply the gaussian and normalize to have a sum of one
fdist = fpxeta_eps*xdxxdrThetaloc

/gaussianmag (Bladep , counterj)
su(i,j,Bladek(Bladep)) = su(i,j,Bladek(Bladep)) — fdist

end do
end do
end do
end do

return

¢c— section 5 ———w—velocity
entry modw

ACTUATOR LINE MODEL

do Bladep=1,3

119

APPENDIX L. CALC PART OF ALM MOD.F FILE

fmax=0.

do j=jmin ,jmax

counterj=j—jmin+1

gaussianmagcheck (Bladep , counterj)=0.0
do k=kmin , kmax

fsum=0.0

do i=imid—imiddiff ,imid+imiddiff

xpl = 0.5%(xc(i,1,1)+xc(i—-1,1,1))
dx = xc(i,1,1)—xc(i—-1,1,1)

dr = yc(imid,j,1)—yc(imid,j—1,1)
drThetaloc = (2xpi/nksec)*xyp(imid,j, 1)
dRTheta = (2xpi/nksec)xhub

3D distance to wind turbine blade

dstream = sqrt ((xpl-—=pWT)**2+
(yp(imid ,j,Bladek(Bladep))—yp(imid,j , k))**x2+
(zp (imid ,j ,Bladek (Bladep))—zp (imid ,j ,k))**2)

Epsilon
epsi = csmearkxsqrt (dRThetax«2+dr*«2+dx**2)

2D Gaussian function
eta_eps = 1./(epsi**2xpi)sexp(—(dstream/epsi)*x2)

w component of the tangential force
fp = Fzadm (j , Bladep)

Apply the gaussian and normalize to have a sum of one
fdist = fpxeta_eps*xdxxdrThetaloc

/gaussianmag (Bladep , counterj)
su(i,j,Bladek(Bladep)) = su(i,j,Bladek(Bladep)) — fdist

end do
end do

end do
end do

return

120

CALC ALM force.f file

subroutine force(u, w, rotVel, nb, airDen, hubRad, tipRad, snVel,
bPtc, rLoc, locTwist, locChord, maxCounter, nSpanG, nMachG,
nAngleG, nSpanTable, nMachTable, nAngleTable, rLocTable,
aoaTable , machTable, clTable, cdTable, cmTable, Fn, Ft, aoa)

implicit none

el e e e

double precision , parameter :: nacelleDragCoeff = 0.50d0
integer :: nb, nSpanG, nMachG, nAngleG, nSpanTable, nMachTable,
maxCounter

integer , dimension (nSpanG) :: nAngleTable

double precision :: rotVel, airDen, hubRad, tipRad, snVel, bPtc,
rLoc, locTwist, locChord, Fn, Ft, u, w, CL, CD, CM, pi, criteria ,
flowAngle, aoa, liftCoeff, dragCoeff, normalCoeff, tangentCoeff ,
sigma, fTipCorr, fHubCorr, Ftip, Fhub, Ftot, alnd, aplnd, Vx, Vt,
VxUpdate, VtUpdate, deltaVx, deltaVt, vTotal2, machNumber,
alndUpdate, apIndUpdate, deltaalnd , deltaapInd,

acInd, Kalnd

double precision , dimension(nMachG) :: machTable

double precision, dimension(nSpanG) :: rLocTable

double precision, dimension(nAngleG) :: aoalnterp, cllnterp,
cdInterp, cmlnterp

double precision , dimension (nSpanG, nAngleG) :: aoaTable

double precision , dimension (nSpanG,nMachG,nAngleG)
clTable, cdTable, cmTable

Vx = u

121

APPENDIX M. CALC ALM FORCE.F FILE

!

[m/s], from Navier—Stokes solution , axial velocity perpendicular to
the rotor plane

Vt =w
[m/s], from Navier—Stokes solution , tangential velocity perpendicular

to the rotor plane
pi = 4.0d0 % atan(1.0d0)

if (rLoc .le. hubRad) then

Ft = 0.0d0
Fn = 0.50d0 * airDen % (u #x 2) % nacelleDragCoeff
goto 20

endif

For the radii smaller than hub radius, the constant drag coefficient
for the nacelle (Cd_nacelle=0.5) is considered. So, in that case,
only the axial force acts on the actuator disk.

The dimension of the Ft and Fn are [N/m2].

flowAngle = atand (Vx / abs(—rotVel % rLoc — Vt))
[degree], flow angle calculation based on the axial and tangential
velocities.

aoa = flowAngle — (locTwist + bPtc)
aoa [degree], angle of attack calculation by means of flow angle,
local twist and blade pitch angle.

Lift and drag coefficients based on the linear airfoil theory.

liftCoeff = 2.0d0 * pi * (aoa * pi / 180.0d0)
dragCoeff = 0.0d0

!

machNumber = sqrt ((Vx *x 2.0d0) + ((—rotVel % rLoc — Vt)
1 % 2.0d0)) / snVel

machNumber is the Mach number which is used when reading and

linterpolating airfoil data.

call aeroTable(rLoc, machNumber, rLocTable, machTable, aoaTable,

1 clTable , cdTable, cmTable, nSpanG, nMachG, nAngleG,
1 nSpanTable, nMachTable, nAngleTable, clIinterp, cdInterp,
1 cmInterp, aoalnterp)

call foil_clecdcm (aoa, maxCounter, nAngleG, aoalnterp,
1 clinterp, cdInterp, cmlnterp, CL, CD, CM)

122

APPENDIX M. CALC ALM FORCE.F FILE

These two subroutines calculate lift (CL) and drag (CD) coefficients
for each spanwise section.

liftCoeff = CL ! Lift coefficient for each spanwise section.
dragCoeff = CD ! Drag coefficient for each spanwise section.

normalCoeff = (liftCoeff % cosd(flowAngle))

1 + (dragCoeff x sind (flowAngle))
normalCoeff is the projection of lift and drag coefficients into the
normal direction (perpendicular to the rotor plane, Axial direction)

tangentCoeff = (liftCoeff * sind(flowAngle))
1 — (dragCoeff % cosd(flowAngle))
tangentCoeff is the projection of lift and drag coefficients into the
tangential direction (tangential to the rotor plane)

vTotal2 = Vx %x 2.0d0 + (abs(—rotVel % rLoc — Vt)) %x 2.0d0
The magnitude of the total velocity is computed.

!

20

Fn = 0.50d0 * airDen * vTotal2 % locChord * normalCoeff
[N/m], The axial force (perpendicular to the rotor plane).

Ft = 0.50d0 % airDen *x vTotal2 % locChord * tangentCoeff
[N/m], The tangential force (tangential to the rotor plane).

continue

return
end subroutine

123

	Trailing edge flow: implementation in CALC
	Geometry
	Finite Volume Coefficients
	No slip condition via source terms
	Derivatives of pressure close to the airfoil
	Multigrid
	Geometry
	Finite Volume Coefficients
	Prolongation

	Modifications needed for some turbulence models
	Distance to the airfoil
	Derivatives of close to the airfoil

	Trailing edge flow: validation
	Flat plate
	Laminar
	RANS
	Conclusions of flat plate cases

	Airfoil
	Computational domain
	Boundary conditions
	Inlet data
	RANS
	Conclusions of airfoil case

	Actuator turbine models
	Actuator disk model
	Gaussian function
	Implementation in CALC
	Validation

	Actuator line model
	Gaussian function
	Implementation in CALC
	Validation

	Conclusions

	Further work
	Appendices
	Appendix CALC part of init.f file including modifications
	Appendix CALC part of conv.f file including modifications
	Appendix CALC dpdyf.f file including modifications
	Appendix CALC part of peter_init.f file including modifications
	Appendix CALC part of peter_multi.f file including modifications
	Appendix CALC part of mg_2d.f file including modifications
	Appendix CALC part of peter_relax.f file including modifications
	Appendix CALC distance to airfoil calculation in the mod.f file
	Appendix CALC dphidy.f file including modifications
	Appendix CALC part of ADM mod.f file
	Appendix CALC ADM force.f file
	Appendix CALC part of ALM mod.f file
	Appendix CALC ALM force.f file

