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Abstract—In this paper, we investigate the performance of the
point-to-point multiple-input-multiple-output (MIMO) s ystems in
the presence of a large but finite numbers of antennas at the
transmitters and/or receivers1. Considering the cases with and
without hybrid automatic repeat request (HARQ) feedback, we
determine the minimum numbers of the transmit/receive anten-
nas which are required to satisfy different outage probability
constraints. We study the effect of the spatial correlationbetween
the antennas on the system performance. Also, the required
number of antennas are obtained for different fading conditions.
Our results show that different outage requirements can be
satisfied with relatively few transmit/receive antennas.

I. I NTRODUCTION

The next generation of wireless networks must provide
high-rate data streams for everyone everywhere at any time.
To address the demands, the main strategy persuaded in the
last few years is the networkdensification[1]–[13]. One of
the promising techniques to densify the network is to use
many antennas at the transmit and/or receive terminals. This
approach is referred to as massive or large multiple-input-
multiple-output (MIMO) in the literature.

In general, the more antennas the transmitter and/or receiver
are equipped with, the better the data rate/link reliability. Thus,
the trend is towards asymptotically high number of antennas.
This is specially because millimeter wave communication [14],
which are indeed expected to be implemented in the next
generation of wireless networks, makes it possible to assemble
many antennas at the transmit/receive terminals. However,
large MIMO implies challenges such as hardware impairments
which may limit the number of antennas in practice. Also, one
of the bottlenecks of large MIMO is channel state information
(CSI) acquisition. Thus, it is interesting to use feedback
schemes such as hybrid automatic repeat request (HARQ)
whose overhead does not scale with the number of antennas.

The performance of HARQ protocols in MIMO systems
is studied in, e.g., [15]–[17]. MIMO transmission with many
antennas is advocated in [1], [2] where time-division duplex
(TDD)-based training is utilized for CSI feedback. Also, [3]–
[5] and [6]–[8] introduce TDD- and FDD-based (F: frequency)
schemes for large systems, respectively. Considering imperfect
CSI, [9] derives lower bounds for the uplink achievable rate
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Innovation Systems (VINNOVA) within the VINN Excellence Center Chase.
The work of M. -S. Alouini was supported by the Qatar NationalResearch
Fund (a member of Qatar Foundation) under NPRP Grant NPRP 5-250-2-087.
The statements made herein are solely the responsibility ofthe authors.

of MIMO setups with large but finite number of antennas.
Finally, [10] (resp. [11]) studies zero-forcing based TDD (resp.
TDD/FDD) systems under the assumption that the number of
transmit antennas and the single-antenna users are asymptot-
ically large while their ratio remains bounded (For detailed
review of the literature on massive MIMO, see [12], [13]).

To summarize, a large part of the literature on the point-to-
point and multi-user large MIMO is based on the assumption
of asymptotically many antennas. Then, a natural question
is how many transmit/receive antennas do we require in
practice to satisfy different quality-of-service requirements.
The interesting answer this paper establishes is relatively few,
for a large range of outage probabilities.

Here, we study the outage-limited performance of point-
to-point MIMO systems in the cases with large but finite
number of antennas. We derive closed-form expressions for the
required number of transmit and/or receive antennas satisfying
various outage probability requirements (Theorem 1). The
results are obtained for different fading conditions and in
the cases with or without HARQ. Furthermore, we analyze
the effect of the antennas spatial correlation on the system
performance (Section V.B).

As opposed to [15]–[17], we consider large MIMO setups
and determine the required number of antennas in outage-
limited conditions. Also, the paper is different from [1]–[13]
because we study the outage-limited scenarios in point-to-
point systems, implement HARQ and the number of antennas
is considered to be finite. The differences in the problem
formulation and the channel model makes the problem solved
in this paper completely different from the ones in [1]–[13],
[15]–[17], leading to different analytical/numerical results, as
well as to different conclusions.

Our analytical and numerical results indicate that different
quality-of-service requirements can be satisfied with relatively
few transmit/receive antennas. Also, the implementation of
HARQ reduces the required number of antennas significantly.
Finally, the spatial correlation between the antennas increases
the required number of antennas while, for a large range of
correlation conditions, the same scaling rules hold for the
uncorrelated and correlated fading scenarios.

II. SYSTEM MODEL

Consider a point-to-point MIMO setup withNt transmit
antennas andNr receive antennas. In this way, the received
signal is given by



Y = HX + Z,Z ∈ CNr×1, (1)

where H ∈ CNr×Nt is the fading matrix,X ∈ CNt×1 is the
transmitted signal andZ ∈ CNr×1 denotes the independent and
identically distributed (IID) complex Gaussian noise matrix.
The results are mainly given for IID Rayleigh-fading channels
where each element of the channel matrixH follows a complex
Gaussian distributionCN (0, 1) (To analyze the effect of the
antennas spatial correlation, see Fig. 4 and Section V.B). The
channel coefficients are assumed to be known at the receiver
which is an acceptable assumption in block-fading channels
[15]–[17]. On the other hand, there is no CSI available at the
transmitter except the HARQ feedback bits.

As the most promising HARQ approach [15]–[17], we
consider the incremental redundancy (INR) HARQ with a
maximum ofM retransmissions. Note that settingM = 1
represents the cases without HARQ, i.e., open-loop commu-
nication. Also, a packet is defined as the transmission of a
codeword along with all its possible retransmissions. We study
the system performance for three different fading conditions:

• Fast-fading. Here, a finite number of channel realizations
are experienced within each HARQ retransmission round.

• Slow-fading. In this model, the channel is supposed to
change between two successive retransmission rounds,
while it is fixed for the duration of each retransmission.

• Quasi-static. The channel is assumed to remain fixed
within a packet period.

Fast-fading is an appropriate model for fast-moving users [17].
On the other hand, slow-fading can properly model the cases
with users of moderate speeds or frequency-hopping schemes
[16], [17]. Finally, the quasi-static represents the scenarios
with slow-moving or stationary users [15], [17].

III. PROBLEM FORMULATION

Considering INR HARQ with a maximum ofM retrans-
missions,Q information nats are encoded into a codeword of
lengthML channel uses and the codeword is divided intoM

sub-codewords of lengthL. In each retransmission round, the
transmitter sends a new sub-codeword and the receiver com-
bines all signals received up to the end of that round. Thus, the
equivalent rate at the end of roundm is Q

mL
= R

m
npcu where

R denotes the initial transmission rate. The retransmissions
continue until the message is correctly decoded by the receiver
or the maximum permitted retransmission round is reached.

Let us denote the determinant and the Hermitian of the
matrix X by |X| and Xh, respectively. Assuming fast-fading
conditions withT independent fading realizationsH((m −
1)T + 1), . . . ,H(mT ) in the mth round and an isotropic
Gaussian input distribution over all transmit antennas, the
results of, e.g., [18, Chapter 15], can be used to find the outage
probability of the INR-based MIMO-HARQ scheme as
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Here,φ is the total transmission power andφ
Nt

is the transmis-
sion power per transmit antenna (in dB, we have10 log10 φ
which, because the noise variance is set to 1, represents the
signal-to-noise ratio (SNR) as well). Also,INr represents the
Nr ×Nr identity matrix.

ConsideringT = 1 in (2), the outage probability is
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in a slow-fading channel. Also, settingH(t) = H, ∀t =
1, . . . ,MT, outage probability in a quasi-static channel is

Pr(Outage)Quasi-static= Pr
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Using (2)-(4) for given initial transmission rate and SNR, the
problem formulation of the paper can be expressed as

{N̂t, N̂r} = argmin
Nt,Nr

{Pr(Outage) ≤ θ}. (5)

Here, θ denotes an outage probability constraint andN̂t, N̂r

are the minimum numbers of transmit/receive antennas that
are required to satisfy the outage probability constraint.In the
following, we study (5) in four distinct cases:

• Case 1:Nr is large butNt is given.
• Case 2:Nr is given butNt is large.
• Case 3: BothNt andNr are large and the transmission

SNR is low.
• Case 4: BothNt andNr are large and the transmission

SNR is high.
Note that Cases 1-3 are commonly of interest in large MIMO
systems. However, for the completeness of discussions, we
consider Case 4 as well. Moreover, in harmony with the liter-
ature [10], [11]2, we analyze Cases 3-4 under the assumption

Nt

Nr
= K, (6)

with K being a constant. However, it is straightforward to
extend the results of the paper to the cases with other relations
between the numbers of antennas.

IV. PERFORMANCEANALYSIS

To solve (5), let us first introduce Lemma 1. The lemma
is of interest because it represents the outage probabilityas
a function of the number of antennas, and simplifies the
performance analysis remarkably.

Lemma 1: Considering Cases 1-4, the outage probability of
the INR-based MIMO-HARQ system is given by
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(7)

2In [10], [11], which study multi-user MIMO setups,Nt and Nr are
supposed to follow (6) while, as opposed to our work, they areconsidered to
be asymptotically large.



whereQ(x) = 1√
2π

∫∞

x
e−

u2

2 du is the GaussianQ-function
and for different casesµ andσ are given in (8).

Proof. The proof is based on (2)-(4) and [19, Theorems 1-
3], where considering Cases 1-4 the random variableZ(t) =
log |INr+

φ
Nt

H(t)H(t)h| converges in distribution to a Gaussian
random variableY ∼ N (µ, σ2) which, depending on the
numbers of antennas, has the following characteristics
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In this way, from (2) and for different cases, the outage
probability in fast-fading condition is given by

Pr(Outage)Fast-fading= Pr

(

Z ≤ R
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where, becauseZ is the average ofMT independent Gaus-
sian random variablesY ∼ N (µ, σ2), we have Z ∼
N (µ, 1

MT
σ2). Consequently, using the cumulative distribution

function (CDF) of the Gaussian random variables, the outage
probability of the fast-fading condition is given by (7.i).The
same arguments can be applied to derive (7.ii-iii) in the slow-
fading and quasi-static conditions.

Using Lemma 1, the minimum numbers of antennas satis-
fying different outage probability constraints are determined
as stated in Theorem 1.

Theorem 1: The minimum numbers of the transmit/receive
antennas in an INR-based MIMO-HARQ system that satisfy
the outage probability constraintPr(Outage) ≤ θ are given by
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if the channel is fast-fading. Here,Q−1(x) andW (x) are the
inverseQ-function and the Lambert W function, respectively.
For the slow-fading and quasi-static conditions, the minimum
numbers of the antennas are obtained by (10) where the term
Q−1(θ)√

MT
is replaced byQ

−1(θ)√
M

andQ−1(θ), respectively.

Proof. The proof is based on the fact that, considering Lemma
1 and a fast-fading condition, (5) is rephrased as

{N̂t, N̂r}Fast-fading= arg
Nt,Nr

{

µ− R
M

σ
=

Q−1(θ)√
MT

}

. (11)

Then, implementing (8) into (11) for different cases leads to
(10). More detailed proof of the theorem is presented in the
extended version of the paper [20].

From Theorem 1, the following conclusions can be drawn:
1) Using the tight approximationW (ea+x) ≃ x+a−log(a+

x) in (10), the required number of receive antennas in
Case 1 is rephrased as
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where the last approximation holds for moderate/high
SNRs. Thus, at moderate/high SNRs, the required number
of receive antennas increases with(Q−1(θ))2 linearly. On
the other hand, the required number of receive antennas
is inversely proportional to the number of experienced
fading realizationsMT, the number of transmit antennas
Nt, and(log(φ))2. Interestingly, we can use (10.Case 2)
to show that at high SNRs the same scaling laws hold for
Cases 1 and 2. That is, in Case 2, the required number of
transmit antennas decreases (resp. increases) withMT,

Nt, and(log(φ))2 (resp.(Q−1(θ))2) linearly.
2) The same scaling laws are valid in Cases 3-4, i.e., when

the numbers of transmit and receive antennas increase
simultaneously. For instance, the required number of
antennas increases withQ−1(θ) and code rateR semi-
linearly3 (see (10.Cases 3-4)). At hard outage constraints,
i.e., small values ofθ, the required number of antennas
decreases with the number of retransmissions according
to 1√

M
. On the other hand, the number of antennas

decreases withM linearly when the outage constraint
is relaxed, i.e.,θ increases. The only difference between
Cases 3 and 4 is that in Case 3 (resp. Case 4) the number
of antennas decreases withφ (resp.log(φ)) linearly.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we verify the accuracy of the derived results,
and present the simulation results in spatially independent and
correlated fading conditions as follows.

3The variabley is semilinear withx if y = a+ bx for constantsa andb.



A. Performance Analysis in Spatially-independent Conditions

In Figs. 1-3, we verify the accuracy of the results in
Theorem 1 and derive the required number of transmit/receive
antennas in outage-limited conditions. SettingNr = 1 or 2,
Fig. 1 shows the required number of transmit antennas in Case
2 with largeNt and givenNr. Here, we consider quasi-static,
slow- and fast-fading conditions withθ = 10−4, T = 2,M =
2, φ = 15 dB. In Fig. 2, we verify the effect of HARQ on
the system performance. Here, assuming Case 1 (largeNr and
Nt = 1, 5), the required number of antennas is derived in the
scenarios with (M = 2) and without (M = 1) HARQ. The
results of the figure are given forφ = 5 dB andθ = 10−4.

Figure 3 studies the required number of antennas in Cases 3
and 4 with low and high SNRs, respectively, large number of
transmit and receive antennas, andNt

Nr
= K. Here, we consider

the quasi-static conditions,M = 1, and θ = 10−3. Note
that, to have the simulation results of Case 4 in reasonable
running time, we have stopped the simulations at moderate
initial transmission rates. For this reason, the simulation results
of Case 4, i.e., the red solid-line curves of Case 4 in Fig. 3, are
plotted for the moderate initial rates. According to the results,
the following conclusions can be drawn:

• For Cases 1-3 and different fading conditions, the analyt-
ical results of Theorem 1 are very tight for a broad range
of initial transmission rates, outage probability constraints
and SNRs (Figs. 1-3). Also, in Case 1 (resp. Case 2) the
tightness of the approximations increases with the number
of receive (resp. transmit) antennas (Figs. 1-2). For Case 4
(which is not of practical interest in large MIMO setups),
although the approximation is not tight, the curves still
follow the same trend as in the simulation results. For
instance, with the approximation approaches of Case 4,
the required number of antennas increases with the initial
rate linearly, in harmony with the simulation results (Fig.
3). Also, as shown in [20], we can improve the analytical
results of Theorem 1 in Case 4, such that the analytical
results match the simulation results with high accuracy
(Fig. 3). Finally, the scaling laws of Theorem 1 are valid
because, as demonstrated in Figs. 1-3, in all cases the
analytical and the simulation results follow the same
trends (see Theorem 1 and its following discussions).

• Fewer antennas are required when the number of fad-
ing realizations experienced during the HARQ packet
transmission increases. Intuitively, this is because more
diversity is exploited by HARQ in fast-fading (resp. slow-
fading) condition compared to slow-fading (resp. quasi-
static) conditions and, consequently, different outage
probability constraints are satisfied with fewer antennas
in the fast-fading (resp. slow-fading) conditions (Fig. 1).

• The HARQ reduces the required number of anten-
nas significantly (Fig. 2). For instance, consider the
quasi-static conditions, the outage probability constraint
Pr(Outage) ≤ 10−4, Nt = 5, φ = 5 dB and the code
rate20 npcu. Then, the implementation of HARQ with a
maximum ofM = 2 retransmissions reduces the required

number of receive antennas from95 without HARQ to
15 (Fig. 2). Moreover, the effect of HARQ increases with
the number of transmit/receive antennas (Fig. 2).

B. On the Effect of Spatial Correlation

Throughout the paper, we considered IID fading conditions
motivated by the fact that the millimeter-wave communication,
which will definitely be a part in the next generation of wire-
less networks, makes it possible to assemble many antennas
close together with negligible spatial correlations [14].How-
ever, it is still interesting to analyze the effect of the antennas
spatial correlation on the system performance. For this reason,
considering Case 2 withNr = 1, Fig. 4 demonstrates the
required number of antennas in spatially-correlated conditions
where, denoting the transpose operator by()T, the successive
elements of the channel vectorH = [h1, . . . , hNt ]

T follow

hi = βhi−1 +
√

1− β2̟,̟ ∼ CN (0, 1), h0 ∼ CN (0, 1).
(13)

Here,β is a correlation coefficient whereβ = 0 andβ = 1
corresponds to the uncorrelated and fully correlated conditions.

As shown in the figure, the effect of the antennas spatial
correlation on the required number of antennas is negligible
for correlation coefficients of, say,β . 0.4. Then, the
sensitivity to the spatial correlation increases for largevalues
of the correlation coefficients, and the required number of
antennas increases withβ. However, the important point is
that the curves follow the same trend, for a large range of
correlation coefficients (Fig. 4). Thus, with high accuracy, the
same scaling laws as in the IID scenario also hold for the
correlated conditions, as long as the correlation coefficient is
not impractically high. Also, we observe the same conclusions
in the other cases, although not demonstrated in the figure.

VI. CONCLUSION

This paper studied the required number of antennas sat-
isfying different outage probability constraints in largebut
finite MIMO setups. We showed that different quality-of-
service requirements can be satisfied with relatively few trans-
mit/receiver antennas. As demonstrated, the required number
of antennas decreases by the HARQ remarkably. The effect of
the antennas spatial correlation on the required number of an-
tennas is negligible for small/moderate correlation coefficients,
while its effect increases in highly correlated conditions. In
the extended paper [20], we analyze the effect of power
amplifiers imperfection, adaptive power allocation as wellas
the asymptotic performance analysis with large antennas.
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[20, Eq. (15)−(16)]
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Figure 3. The required number of transmit antennas vs the initial transmission
rate, Cases 3 and 4: (largeNt, Nr,

Nt
Nr

= K). Outage probability constraint
Pr(Outage) < θ with θ = 10−3, φ = −5 or 15 dB, ,M = 1, and quasi-
static conditions.
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Figure 4. The required number of antennas in spatially-correlated conditions.
Case 2: (largeNt, givenNr), outage probability constraintPr(Outage) < θ
with θ = 10−4, M = 1, quasi-static conditions, andNr = 1.
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