JOURNAL OF MATHEMATICAL PHYSICS 57, 022502 (2016)

A formalism for the calculus of variations with spinors
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We develop a frame and dyad gauge-independent formalism for the calculus of
variations of functionals involving spinorial objects. As a part of this formalism, we
define a modified variation operator which absorbs frame and spin dyad gauge terms.
This formalism is applicable to both the standard spacetime (i.e., SL(2,C)) 2-spinors
as well as to space (i.e., SU(2,C)) 2-spinors. We compute expressions for the
variations of the connection and the curvature spinors. © 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4939562]

. INTRODUCTION

Variational ideas play an important role in various areas of mathematical general relativity—
e.g., in the ADM (Arnowitt, Deser, Misner) formalism,! in the analysis of Penrose-like inequalities,8
or in the analysis of area-angular momentum inequalities® to mention some. Similarly, spinorial
methods constitute a powerful tool for the analysis and manipulation of the Einstein field equa-
tions and their solutions—most notably the proof of the positivity of the mass by Witten'* and the
analysis of linearised gravity, see, e.g., Ref. 10.

To the best of our knowledge, all available treatments of calculus of variations and linerisations
in spinorial settings make use of computations in terms of components with respect to a dyad. It
is therefore of interest to have a setup for performing a dyad-independent calculus of variations
and computation of linearisations with spinors. The purpose of the present article is to develop
such a setup. We expect this formalism to be of great value in both the analysis of the notion of
non-Kerrness introduced in Refs. 3 and 4 and positivity of the mass in Ref. 5, as well as in a
covariant analysis of linearised gravity.

The transformation properties of tensors and spinors pose some conceptual subtleties which
have to be taken into account when computing variations of the basic tensorial and spinorial struc-
tures. It is possible to have variations of these structures which are pure gauge. This difficulty is
usually dealt with by a careful fixing of the gauge in some geometrically convenient manner. One
thus makes calculus of variations in a specific gauge and has to be careful in distinguishing between
properties which are specific to the particular gauge and those which are generic. This situation
becomes even more complicated as, in principle, both the tensorial and spinorial structures are
allowed to vary simultaneously.

In this article, it is shown that it is possible to define a modified variation operator which
absorbs gauge terms in the variation of spinorial fields and thus allows to perform covariant vari-
ations. The idea behind this modified variation operator is similar to that behind the derivative
operators in the GHP (Geroch, Held, Penrose) formalism which absorb terms associated to the
freedom in a NP (Newman, Penrose) tetrad—see Ref. 7. As a result of our analysis, we are able
to obtain expressions involving abstract tensors and spinors—thus, they are valid in any system
of coordinates, and therefore invariant under diffeomorphisms which are constant with respect to
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variations. However, linearisations of diffeomorphisms do affect our variational quantities. This is
discussed in Section IV C, where we also find that the diffeomorphism freedom can be controlled by
a gauge source function.

Finally, we point out that although our primary concern in this article is the construction of
a formalism for the calculus of variations of expressions involving spinors in a 4-dimensional
Lorentzian manifold, the methods can be adapted to a space-spinor formalism on 3-dimensional
Riemannian manifolds. This is briefly discussed in Section VI.

The calculations in this article have been carried out in the Mathematica based symbolic
differential geometry suite xAct,’ in particular, SymManipulator? developed by TB.

A. Notation and conventions

Throughout, we use abstract index notation to denote tensors and spinors. In particular, the
indices a,b,c,...and i, j,k,. .. are abstract spacetime and spatial tensor indices, respectively, while
A,B,C,. .. denote abstract spinorial indices. The boldface indices a,b,c,... and A,B,C,. .. will be
used as tensor frame indices and spinor frame indices, respectively. We follow the tensorial and
spinorial conventions of Penrose and Rindler.'

Our signature convention for 4-dimensional Lorentzian metrics is (+,—,—,—), and 3-dimen-
sional Riemannian metrics have signature (—,—,—).

The standard positions for the basic variations are §gu, 604, 08, Sw?y,, € p, Seas,
8yY4".. If any other index positions appear, this means that the indices are moved up or down with
8ab OF €4p after the variation. The definitions of the above objects will be given in the main text.

Il. BASIC SETUP

In this section, we discuss our basic geometric setup, which will be used in Section III to
perform calculus of variations.

A. Families of metrics

In what follows, let (M,g,,) denote a 4-dimensional Lorentzian manifold (spacetime). The
metric g,, will be known as the background metric. In what follows, in addition to g,, we
consider arbitrary families of Lorentzian metrics {g,[1]} over M with A € R a parameter such
that g,,[0] = g, Intuitively, a particular choice of family of metrics can be thought of as a curve
in the moduli space of Lorentzian metrics over M. The fact that we allow for arbitrary families of
metrics enables us to probe all possible directions of this space in a neighbourhood of g, and thus,
we can compute Fréchet derivatives of functionals depending on the metric—see Section IIT A.

In order to make possible the discussion of spinors, it will be assumed that the spacetimes
(M, gap[A]) for fixed A are orientable and time orientable and admit a spinorial structure.

Notational warning. In what follows, for the ease of the presentation, we often suppress the
dependence on A from the various objects. Thus, unless otherwise stated, all objects not tagged with
aring ( ") are assumed to depend on a parameter A.

B. Frames

In what follows, we assume that associated to each family of metrics {g,,}, one has a family
{ea?} of gu-orthonormal frames. Let {w?,} denote the family of associated cobases so that for
fixed A one has e,“w®, = 8,". Following the conventions of Sec. I A, we write é,* = €,%[0] and
W?, = w?*,[0]. By assumption, one has that

b b
8ab€a" €y = Tabs 8ab = NabW’ e p, (D

where, as usual, 77, = diag(1,-1,—1,-1).
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Remark 1. Observe that in view of relations (1), any family of frames and coframes {e,*} and
{w™,} related to {ey*} and {w?,} through a family of Lorentz transformations {A®y} give rise to
the same family of metrics {gu,} —see Appendix A 1.

C. Spinors

By assumption, the spacetimes (M, g,») are endowed with a spinorial structure. Accordingly,
we consider families of antisymmetric spinors {€45} such that for fixed A, the spinor €45 gives rise
to the spinor structure of (M, g,5). Moreover, we set €45 = €45[0].

Associated to the family {e4z}, one considers a family {ex“} of normalised spin dyads, that is,
one has that

0 1
eapen’ep® = eas, €AB = (—l 0). 2)

Let {4} denote the family of dual covariant bases for which the relation e*8e* 1€y = €A with

(eAB) = —(eap) ! holds. It follows that one has

A AB = (AB A B

B B A_B
64" = €x7€n", EAB = EABEA €B er"ep”.

Remark 2. As in the case of tensor frames, any family of dyads {el’xA} related to {ex?} through
a family of Lorentz transformations {A®g} gives rise to the same spinorial structures associated to
the family of antisymmetric spinors {eap} —see Appendix A 1.

D. Infeld-van der Waerden and soldering forms

The well-known correspondence between tensors and spinors is realised by the Infeld-van der
Waerden symbols 03" and 05 o-. Given an arbitrary v* € TM and B, € T*M, one has that

AA AA

v o A = PR AN Ba = Baar = Baoanr,

where for fixed A,
v =00, fa= Paea”

denote the components of v and B, with respect to the orthonormal basis e,*[ 2] of (M, gap[1]). In
more explicit terms, the correspondence can be written as

01,2 3, L S U oL Bo+ B3 Pr1—ip2
(U’U’U’U) \/E(Ul—il)z 1)0—1)3 ’(ﬂo’ﬁbﬁz’ﬁ.’t) \/E IBl+iﬂ2 ﬂo—ﬂ3 .

From the Infeld-van der Waerden symbols, we define the soldering form o,**" and the dual of
the soldering form 0“4 o by

’ ’ ’
oM = eatent WM, (3a)

Than = €4 gy ot p . (3b)
By direct calculation, we can then verify the relations

8ab = €péarp T PP (4a)

6ab = O'uBB,O'bBB/. (4b)

It is important to note that 04" and 0“4 4+ are tensor frame and spin dyad dependent, while
relations (4a) and (4b) are universal.

Following our approach, in the sequel, we consider families {o,*4’} and {o-“4 4/} of soldering
forms such that &,44" = 0-,A[0] and G“aar = 04 4[0] are the soldering forms associated to
(ao)bua éBA)-
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Remark 3. In this article, we adopt the point of view that the metric structure provided by
gap and the spinorial structure given by €,p are independent from each other. After a choice of
frame and spinor basis, these structures are linked to each other—in an, admittedly, arbitrary
manner—through the relations in (3a) and (4a).

Ill. CALCULUS OF VARIATIONS
A. Basic formalism

The main objective of our calculus of variations is to describe how real valued functionals
depend on their arguments—in particular, in the case, the arguments are covariant spinors. To moti-
vate our analysis, we first consider a real valued functional ¥ [w?,,£?], where £ is a vector field
and £ = w?,£4. Given a particular family of fields {w?,[1], £€*[1]} depending on a parameter A,
we define the variations {dw?,, 62} through the expressions

o, . 4
da la=o T da

In terms of the above fields over M, we define the Gdteux derivative of ¥ [w?,, 2] at {0, fa} in
the direction of the family {w?,[ 1], £*[1]} as

a _
6wa: .
=0

o d
S, T (0%, €% = ﬁ?"[waa[/l],fa[ﬁ]]

=0

d a 2
= a?‘[d’)au + 6w, E* + 26€7]

=0

Now, if 0yua, sF exists for any choice of family {w?,, £}, one then says that F[w?,,&%] is
Fréchet differentiable at {&?,, £2}. If this is the case, there exists a functional 6%, the Fréchet
derivative, from which §(a, s2}F can be computed if a particular choice of the family of the vari-
ations {dw?,, 6} is considered. For more details concerning the notions of Gateaux and Fréchet
derivative and their relation, see Ref. 12.

The functional F [w?,,&?] considered in the previous paragraph depends on the coframe and
components of a tensor field in terms of this basis. As the particular choice of frame involves
the specification of a gauge, instead of regarding the functional 6% as depending on the fields
[, &2, Sw?,, 6£7], it will be convenient to regard it as depending on [ €9, 6ty Tup, 6£%], Where
the field T, describes the frame gauge choice and

dgab
08ab = da la=0
where {g,} is a family of metrics over M such that for fixed A, the coframe &?, is g,p-orthonormal.

Next, we consider real valued functionals depending on spinors. For concreteness consider the
functional of the form F[gu, €*4,ka]. The Gateaux and Fréchet derivatives of this functional are
defined in the natural way by considering arbitrary families of fields {g.;, €*4, ko } depending on a
parameter A. The variations implied by this family of fields is then defined by

_dgw A L der 4 dka
08ab = da la=0 A= da la=0 oK dAa la=o

In analogy to the example considered in the previous paragraphs, it will be convenient to regard
the Fréchet derivative %, which in principle depends on [g.p, €2 o, R, 0gap €™ 4,0k A], as a func-
tional of the arguments [£p, €4, KA, 08ap, 0K 4, Tup, Sap] Where the field S4p describes the dyad gauge
choice. In this way one obtains a formalism that separates the tensor frame and spin dyad gauge in
the Fréchet derivatives. The main observation in the sequel is that is possible to obtain a modified
variation operator ¥ which absorbs the frame and dyad gauge terms so that the Fréchet derivative
depends on the parameters [gp, K 4,0 &gap, Tk 4.

Notational warning. In what follows, for ease of presentation, we mostly suppress the ring °
from the background quantities appearing in expressions involving variations. If an expression does
not involve variations, then it holds for both the background quantities and any other one in the
family.
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B. Basic formulae for frames
Consider first the expression for the metric g, in terms of the coframe {w?,}, namely,
b
Zab = NapW’ap.

Applying the variational operator ¢ to the above expression, using the Leibnitz rule, and that 7, are
constants, yields

88ab = Nab0W* ") + Napw? 46", )

In certain computations, it is useful to be able to express dw?, in terms of dg,,. In order to do this, it
is noticed that from (5), it follows that

08ab = 2Nabw* 0wy — 2T,
where
T = ncdwd[aéwcb].
It then follows that
8(w*) = en"n™08w — en"n™ T (6)

A formula for the variation of the inverse metric can be computed by taking variations of the
defining relation 84" = gacg*®. One finds that

5(8%) = —g“'8" 6 gup.

A formula for the variation of the frame vectors {e,?} in terms of the variation of §w€), is
obtained by computing the variation of the expression d,” = ¢,%wP,,. One finds that

5(ea?) = e e 5wy,

The previous expressions can be used to compute a formula for the variation of a covector &,.

Writing &, = &,0w?,, one obtains that
b b cd b cd
0&4 =W q6(ép) + %ec na0gap — e N éalup-

Remark 4. An interpretation of the tensor T, appearing in Equation (6) can be obtained by

considering a situation where 6g,, = 0. In that case, Equation (6) reduces to
6waa = _ebhnbaTab-

Writing T, = Tapw?,wP, where Ty, denote the components of T, with respect to the coframe
{w?,}, one has that

a d

b__ba c a ¢
ow?y = —ep 1" Tegw (" = T ",

where T2, = —r]daTcda)ca. Comparing with the discussion in Appendix A 1, one sees that T,, encodes
a rotation of the basis. With this observation, in what follows, we interpret the second term in
Equation (6) as a gauge term.

C. Basic formulae for spinors

The analysis in Sec. III B admits a straightforward spinorial analogue. Given a covariant
spinorial dyad {eA 4}, one can write

A B
€EAB = EABE A€ B.
Thus, one has that
0€xg = EABGBB(SGAA + eABeAA(SeBB

=2expedpdet 4 — 285,
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where

Sap = €AB€B(B5€AA).

The variation of the contravariant antisymmetric spinor e*?

can be computed from the above
formulae by first computing the variation of e;pe®¢ = =5, and then multiplying with €*P. We
obtain that

8(ePC) = —eMPeBCe .

As, de4p is antisymmetric we can fully express it in terms of its trace as deap = —%eA 50€€c.
Now, if one wants to compute & €? 4 in terms of §e45 one has that

6EAA = %GABEBBéfAB + €ABEBBSAB. @)

C

If we compute the variation of 64€ = €Ces® and multiply with ec? we get

5(ea) = —€a Be5€C5.
Now consider a covariant spinor ¢4 and expand it with respect to the spinor dyad {e* 5} as
b4 = Paeta.
A calculation using Equation (7) yields the expression

Spa = Opae s + pade s
= 5gaets + Soae?TepPSenp + pae T ep® Sup.

Using the identity eACprec? = €€B ¢ the variation 5¢ 4 can be reexpressed as
5¢a = (6¢a)e*s + 1(6€%0)a — Sa .

Remark 5. As in the case of Equation (6) and the tensor T, the spinor Sap admits the interpre-
tation of a rotation. Indeed, considering a situation where d€sp = 0, writing Sap = 2 1eB5SAp one
finds that

6€AA = €ABEBBSA3
ABg B P
=€"Vep € s€ BSPQ

A
= S%peb 4.

Comparing with Appendix A 1, we find that Sxp encodes a rotation of the spin dyad.

D. Variation of the soldering form

In the reminder of this article we will consider a more general setting in which both the metric
gap and the antisymmetric spinor €45 can be varied simultaneously. To analyse the relation between
the variations of these two structures it is convenient to consider the soldering form o-, 44",

To compute the variation of the soldering form, one starts by computing the variation of the
relation (3a). As we are treating the Infeld-van der Waerden symbols as constants, their variation
vanishes—that is, although both the metric and spinor structure may vary, the formal relation be-
tween tetrads and spin dyads will be preserved. A direct combination of the methods of Sections
III B and IIT C on formula (3a) lead, after a computation, to the expression
AA AN

BA’ AB’

+ %gbcégabo'c
= $4po Y = TPy MY ®)

’
00, = %66‘430'& + %(%A BT 4

—§A i A
The terms in the second line of the previous expression are identified as gauge terms. Observe that
in this case one has two types of gauge terms: one arising from the variation of the tensor frame and
one coming from the variation of the spin frame.

If we compute the variation of Equation (4b) and multiply with 04 4 we get

8 an) = ~6(0a B aaoP .
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Multiplying Equation (8) with g““o-.25" and splitting into irreducible parts, we get the relations
65w N 5B = %68(AB)(A,B,),

5O_a(A|B’|a_uB)B, —T4B _ 0§48,

6o_aB(A’0_|a|BB/) — TA’B/ _ 2§A’B”
(SO'aBB,O'aBB/ = %(SgBBB/B' + 6633 + 66_3/3/,
where we have defined
Tap =T aY g ar, 6gaBaB = 08w anc’ pp.

E. General variations of spinors

The formulae for the variations of the soldering form and its dual can now be used to compute
the variation of arbitrary spinors under variations of the metric and spinor structures. To this end,
consider spinors £44" and £4 4. Making use of the Leibnitz rule one obtains the expressions

O_aAAléé«a — 6(§AA,) _ él‘é‘eBBgAA/ _ %6€B,B’§AA, — %5gABA/B’§BB,

LA A A AB LA BTy gA L BA (9a)
T pAnbEqa = 6(Epnr) + 10€8 pEan + %553/3'&4/&' + %6gABA’B/fBB’
+%TA’B,§AB’ — S4B Enp + 3TAPépar— Sa®Epan, (9b)

where (% = 0%gp/l #5 and &, = o-aBB'f pp- We observe that both expressions contain a combina-
tion of gauge terms involving the spinors Typ and Syp.

In view of the discussion in the previous paragraph we introduce a general modified variation
operator.

Definition 1. The modified variation operator ¢ is for valence I spinors defined by
964 =604+ 166”504+ 3Ta"dp — Sap,
9¢" = 6¢" — 0€85¢" =TT 5¢" + 5% 54",
Dpar=6par + }1553/3/@\’ + %TA’B,(IEB’ - 545 ¢p,
96" =6 — 16€% pgY = ST p¢” + 345",
and extended to arbitrary valence spinors by the Leibnitz rule.
In particular, using the above definitions in expressions (9a) and (9b) one finds that
o ANELT = 9N %6gABA’B,§BB’,
TandE, = Oéan + 16845 4% Epp,

showing that #44” and 19 4 o are frame gauge independent. Moreover, a further calculation shows
that
Je AB = 0

so that the process of raising and lowering spinor indices commutes with the modified variation %
operator.

Remark 6. Expanding the ¢ 4 in terms of the spin dyad in the § ¢ 5 term in Definition 1 gives
H(a) = €246(dp) + 5Ta"¢5. (10)

Observe that the Syg and §€,p terms cancel out.
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IV. VARIATIONS AND THE COVARIANT DERIVATIVE

The purpose of this section is to analyse the relation between the variation operators § and
and the Levi-Civita connection V, of the metric g,.

A. Basic tensorial relations

Our analysis of the variations of expressions involving covariant derivatives is based on the
following basic assumption:

Assumption. For any scalar field f over M one has that
Vaof =06(Vaf). (11D
In what follows define the frame dependent tensor,
yabc = _ecbvawcc~

The tensor y,”. can be regarded as a convenient way of grouping the connection coefficients y,” of
the connection V,, with respect to the frame {e,“}. A calculation shows, indeed, that
Ya'e = Ve awcer”.
We can express all covariant derivatives of the cobasis and the basis in terms of vaPe via
Voo'e = o'y, Vaer” = e“yda.

Differentiating the orthonormality condition 72" = w?®.wP;g¢¢ and multiplying with e, ey, we get
the relation

7eg” =0 (12)
encoding the metric compatibility of V. The variation of this gives
8y =y tlogh.. (13)

Now, for any covector &,, its covariant derivative can be expanded in terms of the frame as

Vaép =~ ayapée + WV ke

Computing the variation of this last expression, and using the relations above, gives after some
straightforward calculations,

8(Vatp) = =0 bl + TeYabaé® — ToVacafS + 3Vac?08baé" + Ay 08caé® + €V aThe
—1EV,08pc + Vabép. (14)

In the previous calculation, Assumption (11) has been used. If we use relation (14) with &, =V, f,
antisymmetrize over a and b, and assume that the connection is torsion free, we get

0 = (T jabla + 268 Yiabla — Vialel) + ViaTple — 2V1a08b1c + T Yblea + ¥ialc*08p1a)VE £
Hence, the torsion free condition is encoded by
Vialelb] = Te"Viabla + 268 Viav1a + ViaTbie = 2V1a08b1c + Tia"Vbica + 3¥ialc/*08b1a.  (15)
Now, using the identity
OYabe = 6Y(alblc] = OY(alclb] + OYblalc] + OYVa(be) = O0Vblac) + OVc(ab),

we can use Equations (13) and (15) to compute

Yave = ~TeYava + Ty Yaca + 3Vac*08ba + 3¥ar"68ca = VaTve = 3Vb08ac + 3Vc0gas- (16)
It follows then that Equation (14) can therefore be simplified to

5(Vaép) = Va(6&p) — $8°U(Vadgpe + Vi0gac — Veogap)éa. (17)
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It is important to observe that this formula is a tensorial expression. Hence, it allows to define a
transition tensor

0pc = 19UV 0g84c + Vedgha — Vadgne) (18)

relating the connections V, and 6V,. This is not surprising as it is well known that the space
of covariant derivatives on a manifold is an affine space. Making use of the definition of Q,,
Equation (17) takes the suggestive form

8(Vap) = Va(6€b) = Qv ata. 19)
Furthermore, making use of the Leibnitz rule one finds that for an arbitrary vector v one has
8(Va0?) = Va(60°) + 0.l 0C.

The extension to higher valence tensors follows in a similar manner.

B. Spinorial expressions

In order to discuss the variations of the spinor covariant derivative V 4 4- associated to the Levi-
Civita connection V,, it is convenient to define a spinorial analogue of the tensor y,”.—namely

B _ By _C
Ya ¢ = —€c Va€ c.
: B . ; BB _. b . BB c .
The hybrid y,” ¢ isrelated to y,°° cc’ = V4 cOp" > 0 cc through the decomposition
BB’ B B, - B B
Yo" cc’=%Ya cOc’” +¥a cbc-

It follows then that

B : BB
Ya Cc = %’Yacbo—bCB’O—c . (20)
From this last expression, it can then be verified that

YaBC = YaCB-

The variational derivative of ¥, can be computed using Equation (20). One finds that

B _ 1 dBB’ _c 1 dBB’ _c 1 cBB’ __dD
0(va"c) = ZQach- 0 cp — ZQach- 0 cp — EYaCdSCDO- o

_%'yucdSBDO'CCBIO—dDB’ - 3V TPc. (21)

B’

In this last expression observe, in particular, the appearance of the gauge spinors Sqp and Typ. In
turn, Equation (21) can be used to compute the variation of the covariant derivative of an arbitrary
spinor « 4. Expanding k 4 in terms of the spin dyad and differentiating, we get

Vakg = €“5Vake — v, ke
It follows that the variation of this last expression is given by
5(VaKA) = Vu(sKA - %KBVQTAB + KBVaSAB + %KAVQ(SfBB
+%QachBo'bAA/O'CBA’ - %QachBo'bAA,‘TCBA’
=V, 9k — iéeBBVaKA + %TABVaKB — SypVak?
+iQachBO'bAAIO'CBA' - iQachBO'hAAIO'CBA'-

In order to write the spinorial derivative V44/kp (rather than V kp), it is convenient to define
the spinor,

— _1 b B _c
QaaBc = —50“an 0" 0 cQlbela- (22)
Theorem 1. The variation of the covariant derivative of a spinor is given by
HVankp) = Vaadkp +2aa8ckS — 168acas V" kg, (23a)

IV aakp) = VaadRg +TarapciS - 16gapacVE Ry (23b)
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Proof. Using the expressions in the previous paragraphs, one has that
S(Vankp) =Vaadkp +aapckS — 10€cVankp + 3TV ank® = SpcVank®
~60, B 0 gV cprkp
=Var9kp +2ackS — 16€CcVankp - %5€BIB’VAA’KB + 3TV ank®
~SpcVaakS + %TA’B'VAB/KB ~SapVaPkp+ 1TacVE akp
—SacVE€ arkp — %68ACA’B’VCB,KB-

Expressing the above formula in terms of the modified variation ¢, we get (23a). Equation (23b) is
given by complex conjugation. O

1. Decomposition of ¢pagc
Starting from the definition in Equation (22), a calculation yields

__1 _a b B _c 1 __a b B __c
QanBc =—30"aa0 " 0 cpVp08ac + 30 aa0" 8" 0 BV e08ab

= _%V(BBlégC)AB’A’-
The above expression can be conveniently decomposed in irreducible terms. To this end, one defines
G =6g°c, Gapa'p = 08(AB)A'B)-
If we also decompose 24pc4’ into irreducible parts, we get
QAABC = _%V(AB,GBC)A’B’ + eaVoaG - %EA(BVDB’GC)DA’B“ (24)

For future use, we notice the following relations which follow from the decomposition in
irreducible components of Equation (24) and the reality of 6gapa’s”:

’

B 3 1 B B
aaB= —75VaaG + ;VppGa~a”,
g? ans =2 aap,
VesGepa® =29 — 401 -1 VpyaG
BB'UCDA’ = 4YBA’'CD A’(C|A|€D)B — 7 €(C|B|YD)A'U,
B s B — 1=
VeaGa”pcr= Raapc — 17 1aB1€cha’ — 3€m14°V A1c)G.
We also define the field
AA’ _ ABA’B' _ 1wgAA’c B B’
F*% =Vppiog -5V 6878 B (25)
- VBB,GABA/B, _ %VAA/G-

In Sec. IV C, we will see that this can be interpreted as a gauge source function for the linearised
diffeomorphisms.

C. Diffeomorphism dependence

We will now briefly consider the dependence on diffeomorphisms. Let ¢, be a one parameter
group of diffeomorphisms generated by a vector field £ and such that g,[1] = ¢* ;8. The metrics
in this family have the same geometric content and one readily finds that

08ab = Le8ab = 2V (aép). (26)

Moreover, a further computation yields

Lape =—1V(BY — 3BV
aaBc =—2V«” Vpyp€anr— 2V c” Viaaépyp,

FAA/: VBB'VBB/SAA/ _ 6A§AA/+ Z(DABA,BlfBBI.
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Given a general family of metrics gu,[4], we can compute the field F AA” associated to the
family. Given any F44’, we can then solve the wave equation

fAA' _ FAA’ — —6A§AA, + 2cDABA’B,€:BB’ + VBB’VBB,é:AAI.

The solution £ = o A,{-‘AA/ to this equations will then give a one parameter group of diffeomor-

phisms ¢,, such that g,,[1] = ¢* ,ga5[4] has the same geometric content, but with corresponding

FAY_ With this observation, we can interpret (25) as a gauge source function for the linearised
diffeomorphisms.

V. VARIATION OF CURVATURE

The purpose of this section is to compute the variation of the various spinorial components
of the curvature tensor. As it will be seen below, the starting point of this computation is the
commutator of covariant derivatives.

We start by computing the variation of

OBKc) = V(AA,VBlA’\KC) = ~Wapcpk”
for an arbitrary spinor k4. A direct calculation using the Leibnitz rule for the modified operator
gives
Wapcok? + H(Papcp)kP = =V a Vg adie) + iGV(AA/VBmKC)
_%G(ADA,B,VBlA’VDB’\KC) + %G(ADA/B,V|DA/|VB|B'|KC)
+2u 8PV p arkcy + §A,(A|A'|B,VB|B/|KC)
_KDV(AAI9B|A’|C)D + %V(AA/GVB|A’|KC)
+%V(AA,GBD\A’B,VDB’\KC)
=Pupcp®? — ﬁG‘PABCDKD - KDV(AA,QBlA’lc)D

+%KDG(ABA/B,<DC)DA’B/'

The above expression holds for all x*, and therefore we can conclude that

I(Wascp) = —3G¥ascp — V(AA,QBlA’lc)D + %G(ABA,B,(DC)DA’B“

The symmetry of ¥4pcp can be used to simplify this last expression—the trace of the right hand side
can be shown to vanish due to the commutators.
If we compute the variation of

Dpaapk® = =V AV 48K,
we get

DpanpPk + 9 @paap)k™ = VXA Via0kp + GV AV a8k
_%GAC(A’C,VlAlB’)VCC’KB + %GAC(A'C/V|AC'VC|B')KB
+94 414 Ve ks + §(A’AB’)C/VAC’KB
—kAVC aRic1BnBA + %VA(A'GVM\B')KB
+3VA 4 Gia ) Veeks

= OpaapPk* + Gpaap Ak — LGOgpapk?

A

1 ~CD AgC
+3G" " ap¥pacpk” — k°V= (aRiciB)BA-

The last relation holds for all k4, and therefore we can obtain an expression for 44/ p:.
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Now, using the definition of ¢4pca’, commuting derivatives, and exploiting the irreducible
decomposition of the various fields involved, one gets

ca’
Vaa®™"p

_ 1 CA'B 1~ CA'B
=—3Gp Quacarp—3Ga Dpcap

+Veara® € + easVr e yep. (27)

If we compute the variation of
Aky = %V(AA Vjak®,
we get, after a lengthy computation, that
Ak a4 + ﬂ(A)KA = %KBVAA/QCA BC — ‘VAA’VB ’ﬂK + 57 GVAA/VB K
A B A’ B

papVat kP - _GBCA’B’VA Vc k% — EVAY GV pak
%VBA/VA ﬁK + 24GVBA/VA B + é‘:’B,AAfBIVBA’KB

7’ ’
L GacanVeEVENE + LV aakpVEVG = LBV aa B¢

+1g8

1
6

’ ’
—22anc Ve KP - lQBA'ACVC B+ LVApGpea® Ve kP
/ ’
BVCA + 12GBCA'B’V BVAAK

KB

+5 Vs Gaca
+]1_2GACA’B’VCB,VB
= AOka — LGAka + LGATY T Opeapk® + LBV 400N g
_lKBVCA/QAA,BC
= Akp — LGAka + SGENE Oy apicn — LeaVeanBY pC.
In the last equality, we have used relation (27) and the irreducible decomposition of G LCA'B

Opcarp. From here, we can deduce an expression for ¢A.
We summarise the discussion of this section in the following:

Theorem 2. The modified variation of the curvature spinors is given by

i A 1 A'B
Wapcp = —7G%¥aBcp — Va” 2B1a1cp) + 3GaB” © Pepyarss
9D =G A - ;GO +1GP 4 p ¥ —VE AR
aBa'B’ =Gapap ABA'B’ a8 ¥apcp (A9|C|B)AB>

A =—1GA + SGENEOpc g — LV 40P 5C.

Remark 7. For a pure gauge transformation (26), we get after a lengthy but straightforward
calculation using commutators that

F(A) = (L),
H D" E) = (Le®)ap? — € 2T AV % ccr — D€ WAV contp) P,
P(¥ascp) = (LeY)apep — WapcpV A Erar,
where'!
(LeD)ap? =€V et +20C (T AV b e,
(LV)asep = 7V Ea¥apen + 2% anc Vi) éFa.

In this last calculation, we have used the Bianchi identity in the form

V2 a¥acp = Via® @p)carp + €caVayaA.
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VL. VARIATIONS OF SPACE-SPINOR EXPRESSIONS

The analysis of Sections III-V can be adapted to consider variations of spinorial fields in
a space-spinor formalism. This formalism can be used to analyse variational problems in 3-
dimensional Riemannian manifolds.

A. Basic formalism

In what follows, let (S, h;) denote a 3-dimensional Riemannian manifold with negative-definite
metric. On (S, h;;), we assume the existence of a spinor structure with an antisymmetric spinor e4p.
In addition, we assume that the spinor structure is endowed with an Hermitian product. It follows
from this assumption that there exists an Hermitian spinor @ 4 4- such that given two spinors &4 and
n g the Hermitian inner product can be expressed as

Ean’ = waaV N

The spinor /4 defined by the above relation is called the Hermitian conjugate of 4.
Let ex!, w¥ denote, respectively, an orthonormal frame and coframe of (S, ;) and let rp
denote a normalised spin dyad such that the components of €45 and @ 4 4+ are given, respectively, by

(o 1 (1o
€EAB = -1 ol UAA/—O 1]

The transformations of the spin dyad respecting the above expressions is given by SU(2,C) matrices
0,5

The correspondence between spatial tensors and spinors is realised by the spatial Infeld-van
der Waerden symbols o8 and o sg. Given an arbitrary v* € TS and Sy € T*S, one has that

k AB k O'kAB

K
K vAB =y , Br > BaB = Bk AB;

where
k_ k k — k
V' =V Wk, ﬁk:,@ké'k.

In more explicit terms, the correspondence is

1 (-t —i0? v 1 [—B1+1i
@' 030 - ﬁ( 03 ol iv2>’ (B1, B2, B3) % ( ﬂlﬁs & By f3iﬂz)’
From these, we define the spatial soldering form to be
O'kAB = a)lkECAEDBO']CD, (293)
¥ ap = €€ 4P pe* o ep. (29b)

As we allow the spinor and tensor frames to be independent, the soldering form will therefore be
frame dependent. However, we will always have the universal relations

o Palcp =6, (30a)
hi = oo “Pecaeps. (30b)
The Hermitian conjugate of
ba = oe’s + d1€' A
is given by
$a=—¢re’s + dye' a.

It clearly follows that
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The Hermitian conjugation can be extended to higher valence space spinors by requiring that the
conjugate of a product equals the product of conjugates. We also get

2 k ~
IJAI---Ak = (_1) /’lAlmAk-
Furthermore, it is important to note

€Ap = €aB, 0%B = —0%%p. (31)

B. Basic variational formulae

As in the case of standard spacetime spinors, we can compute the variations of the frames and
the inverse metrics from the relations

S(ei') = —ef el 60"},
5(ea”) =—eaec” € s,
S(hKy = —(Shy)h™* n'!,
5(e°P) = —SeapeCeBP.
Likewise, from relation (30a), we get
(o' ag) = =X apo! c oo P

We can also split the variation of the coframes in terms of the variation of the metric and spin
metric and gauge pieces,

Sw™, = —en” A" T, + L en” A5 hyp,
5P 4 =—enP e Sup — %EHBeHP(SeAB,
where the tensor and spinor frame gauge fields are

Tup = heaw® 1000}, Sap = W (a0wCp)eCD.

A calculation following the same principles as for the spacetime version starting from relation (29a)
gives the variation of the spatial soldering form,

60'kAB = —TkIO',AB + %OJABéhk[ - 20'k(A|C|SB)C + o-k(A‘CléeB)C.

The irreducible parts are given by

oKD AB) — %6h(ABCD)’

o€ 5o MB = TAC _95AC,

o cpdofP = %6hCDCD + %6ecc,
where

Tap= T a0 se,
Shascp = 0 Ao cpShu.

We can now use this to see how the variation of vectors and covectors in space-spinor and
tensor form differ,

O_kAB(Sé«k — 6(§AB) _ %6ECC§AB _ %6hABCDé/CD + T(A‘Clé«B)C _ 2S(A|C|§B)C,
o  ap0éx = 6(Enp) + $0€€ céap + S0hapepeCP + TaSEpyc — 2854%Ep)c.

where (¥ = 0%cp€P and & = 03P ¢ p. This leads us to define a modified variation that cancels
the gauge terms and the variation of the spin metric.



022502-15 T. Backdahl and J. A. Valiente Kroon J. Math. Phys. 57, 022502 (2016)

Definition 2. For valence I space spinors, we define the modified variation operator 9 via
Hpa) =0(pa) + 106 sda + 3Ta b5 — Sa® b,
") =6(¢") - 6€” 5™ — 5T 56" + 5% 59"
These relations extend to higher valence spinors via the Leibnitz rule.

In the same way as for the spacetime variations, we get a relation between ¥ and spin frame
component variation,

994 = €°a5(dp) + 5Ta"¢5. (32)
The reality of T, and (31) gives
Tag = Typ.
Expanding the frame index in Equation (32) and taking Hermitian conjugate yields
94 = €' 46(y) — €46(d1) + 1TPdp
=€46(do) + €' 46(1) + 3T
=9($)a.

Hence, the operation of Hermitian conjugation and the modified variation # commute.

C. Variations of the spatial connection

Let Rapcp denote the space spinor version of the trace free Ricci tensor, and let R be the Ricci
scalar. Define

HABCD _ 57,(ABCD)
H = Shag",
apcp =—5 D’ Sh
ABCD = —51)(c” ONp)FAB,
F*® =-1D"®snPcp + Dcpsh*BP.
Similarly to the case of spacetime spinors, we can compute the variation of a covariant derivative.
Theorem 3. The variation of a covariant space-spinor derivative is given by
D DF
HDaskc) = Dagdkc + ascpk” — $6happrDP ke
We also get
c 1 1 cD
°a BCc =—gDapH + ;DcpHap™ ™,
1 CcD
Fap=—5DapH + DcpHpp~ ",

DprHapc™ =2%upc)p + 2€paB’ o)F + s€paDpo)H.

D. Diffeomorphism dependence

To analyse the dependence of the formalism on diffeomorphisms, we proceed in the same way
as in Section IV C. Accordingly, let ¢, be a one parameter group of diffeomorphisms generated by
a vector field £¢. Now, let A p[A] = ¢* /jzab. All members of the family A,,[A] will have the same
geometric content and we get

Ohgy, = Lg‘?hah = 2D(a§b)~ (33)
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Moreover, one has that
_ 1 F 1 F
?ascp =—5D«c” Dpyréas — 3D(c” D)aBiéD)F>
FAB _ DCDDCDfAB _ lRfAB _ RABCD§CD
= 3 .

Again, we see that FA8 can be interpreted as a gauge source function for the linearised diffeomor-
phisms, but this time one needs to solve an elliptic equation instead of a wave equation to obtain &%
from F4B,

E. Variations of the spatial curvature
By computing the variation of the commutator relations
Ria = 8D Dp)ck®, (34a)
Rascpk® = 2D P Dppikc), (34b)

we get, after calculations similar to those carried out in the spacetime case, the variation of the
curvature.

Theorem 4. The variation of the spatial curvature spinors are given by
HR) =—-2HR - H* P Rpcpr — 4Dcp?® 5P,

HRascp) =15 HasepR — YHRuapcp + 2Da g ricp) + sHas" " Repyrn.

Proof. Computing the variation of relation (34a) gives
ROk a + I (R)ka = —4DacDp Ik” + §HDacDpk® + 495" cpDa K + 4P DapeP 5c
—2HpcprDA"DPk® = 3DAPHDpck® — 4DpcD A9k
+3HDpcDAk® +494P cpDpC«® — 2HscprDp" D k®
+2DackpDPH — 4k D p2s“ 5° — 494c5pD Pk — 495 ap D Pk®
+2DarHpcp" DPk® + 2DgrHacp" DPk® + 2HpcprDPF DAk
+2HacprDP D i®
=Rk — YHRkp = 2HA P Rpcprk® + 4k Dap?“P pe
~4k®Dcp2a€ 5"
=RIkp — %HRKA — HBCPER ks — 4k aDep?PCpP.
Computing the variation of relation (34b) gives
Rapcpdk” + H(Rapcp)k” =2Du" Dy ipdkcy — HD" D pikc)
+H AP Dy pDruikcy — Ha? ™ Dipr\Dpjm ke
=204 5" Diprikc) = 294" p|" DpiFikc)
+2k”D(a" 2 F10)p — 1D(WPHDppikc)
~DaPHp\p"™ D ke
=Rapcp?&” — 15 HapcpRk® — $ HRapcpk”

+2k”Da"epiri0)p + 36" Has" " Reyprn.
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Remark 8. For pure gauge transformation (33), we get

HR) = LR,
N Rapcp) = LeRapep — Rias” " Depyérn — Ras™ ' Dipméc),
where
LRapcp =M DraRasep + 2Ras" " Depyérn.
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APPENDIX: ROTATIONS

The purpose of this appendix is to discuss some issues related to the gauge in the frame and
spin dyad formalisms.

1. Lorentz transformations

As it is well known, the metric g, is not determined in a unique way by the orthonormal
coframe w?,. Any other coframe related to w?, by means of a Lorentz transformation, i.e., a matrix
(A®p) such that

nabAacAbd = Ned- (A1)

It follows that &2, = A?%wP, is also orthonormal with respect to g, and one can write 8ab =
p 8

Nab?@Ps. The associated orthonormal frame is ;% = Az ep® with (Ay?) = (A%,)~! where the last
expression is a relation between matrices.

The discussion in the previous paragraph can be extended to include spinors. Making use of the
Infeld-van der Waerden symbols, Equation (A1) can be rewritten as

AA’ _ ABPB
eaBeas A" coA”” p = €cpecs

with A oo = 0, 0¢ceA%. Tt can be shown that the spinorial components AA ¢ can be
decomposed as

’ —_ ’
AM o = AAcAY e,

where (A%¢) is a SL(2,C) matrix. The latter naturally induces a change of spinorial basis via the
relations

et = Aalep?, &ty = AMely,
with (As®) = (A%g)7!. Crucially, one has that
€EAB — ACAADBGCDa EAB = ACAADBECD.

2. O(3)-rotations

Given a 3-dimensional negative-definite Riemannian metric 4;; and an associated orthonormal
coframe w'y, one has that

hij = —6ija)iiwjj.
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Any other coframe @'y related to the coframe w'; through the relation &' = Ojiwly, where (Oj)) is a
O(3)-matrix, gives rise to the same metric. The defining condition for (0 can be expressed as

8ij = 0O 0.

A direct calculation using the definition of the Hermitian product shows that the changes of
spin dyad preserving the Hermitian structure induced by the Hermitian spinor @ 4 4+ are of the form
éx? = 0ABep? where (05P) are SU(2,C) matrices. As SU(2,C) is a subgroup of SL(2,C), one
has that eag = OA€OgPecp. The matrices (Oji) and (0AP) are related to each other via the spatial
Infeld-van der Waerden symbols,

07 = oi*BoicpOACOx".
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