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ABSTRACT 2. RELATION TO PRIOR WORK

Coordination among mobile agents relies on communicatioModeling of multi-agent wireless channels was considered
over a wireless channel and can thus be improved by chain [9], where shadowing was modeled using a spatial loss
nel prediction. We present a Gaussian process framework field, integrated along a line between transmitter and vecei
learn channel parameters and predict the channel between &tediction of wireless channels between agents was studied
bitrary transmitter and receiver locations. We explicitty  in [10, 11], where [10] proposed a GP framework, while [11]
corporate location uncertainty in both learning and prigalic  investigated the impact of the underlying channel pararaete
phases. Simulation results show that if location uncefigain  on the spatial channel prediction variance. A common as-
not modeled appropriately, it has a degenerative effechen t sumption in [9—-11] was the presence of perfect location in-
prediction quality. formation. This assumption was partially removed in [12],
which extends [11] to quantify the effect of localization er
rors on spatial channel prediction. For the case of a fixed
transmitter location, [8] explicitly accounted for loaati un-
certainty at the receiver, but not at the transmitter, uaiGP
framework.

Index Terms— Multi-agent network, channel prediction,
Gaussian processes, location uncertainty

1. INTRODUCTION

When performing a task, mobile agents need to be aware of 3 MODEL AND PROBLEM STATEMENT
their own location and communicate with each other over the

wireless channel. Tasks can include formation control ang 1 channel Model
goal-seeking [1], which requires explicit communicatioa
connectivity maintenance. Prediction of channel gains cagve consider a TX and RX with locationgrx € R” and
improve connectivity and system performance [2]. The chanqry € RP, respectively, wher® is the dimensionality of the
nel gain in a wireless channel comprises three main compgpace. The transmitted power is fixed?g. Assuming mea-
nents: deterministic path-loss, random shadowing, and ragurements average out small-scale fading, either in tinea¢m
dom small-scale fading [3]. Small-scale fading decoresat surements taken over a time window) or frequency (measure-
over distances on the order of a few centimeters (and will bénents represent average power over a large frequency band),
considered averaged out in this study), whereas shadowinge received signal power in dBm can be expressed as [3]
decorrelates over 50—100 m outdoors [3] and 1-5 m indoors
[4, 5], with well-established shadowing correlation madel Prx(arx, arx) = Prx + Lo (1)
[6,7]. In this paper, we adapt the Gaussian process (GP)

. . o . llarx — qrx||
model of [8] to incorporate uncertain location informatiatn — 1071 logy, — + ¥ (qrx, qrx),
both communicating endpoints. Our framework is able to deal 0

with chgnnel measurgments_ recorded qt un.certain Iocati.o%nere constanf, captures antenna and other propagation
a}nd to incorporate this I_ocatlon uncertainty into the pu:egh gains,d, is a reference distance (here set to 1 mjienotes
tive distribution of the wireless channel at a given (pa§sib yhe hath-1oss exponent, and shadowing (in the dB domain) is
uncertain) test location. modeled through a zero-mean normal distribution with spati

_ . _ correlation [6,13] and channel reciprocity (i.&.(qrx, grx)
G e SRS P by e ety Resean AT (. ). For notational convenience, we will denote

i ; _ (T T T 2D
ing Network MULTI-POS (Multi-technology Positioning Pessionals) un-  the p_osmons of a TX-RX pair by = [q7x,qrx]” € R*”,
der Grant No. 316528. allowing us to writePrx (x).




3.2. Problem Statement

Based on the transmission from TX, RX obtains a noisy
measuremeny=Prx(x)+n, wheren ~ N, (0,02). The
locations of both, TX and RX, are known only statisti-

cally, through the probability density functions (pdfg}iTx )
Y
X

andp(qrx), which are assumed to be described by a finite
number of parametera (e.g., means and covariances of
both agents’ locations). We assume thtmeasurements
y = [y1,¥2,...,yn]T have been collected at different TX Fig. 1. lllustration of TX and RX displacement between two
and RX positions. We denote the corresponding locatiomrX-RX pairs: andj in R?. The TX displacement igrx =
parameterdJ = [uf,ug,...,uy]", whereinu; describes ||q; 1x — q;.1x|| and the RX displacementix = ||qi rx —
the distribution ofx;, i.e., the TX and RX pair of thé-th  q; gx||.

measuremeny;. We further consider a new location pair

distributionu, (e.g., a possible future location for a TX and

RX pair). We can now formulate the following problems: ~ sonable form of covariance function is [7]

(i) learn the parameters of the channel (8aio be specified N 2 -~ larx — arx|” 6
in the next section) from the datab&dd, y}, elx,x) = oy exp dv (©)
e p
(i) determine the predictive p@f Prx (u.)|y, U, u,; ). X exp (_w) + S} o
4. CHANNEL PREDICTION wheredp = 1 whenP = true and 0 otherwise; > 1, 02, cap-

) tures the variance of the shadowing proceg,s,C models any
In the following, we adaptthe GP framework of [8], called un-yhite noise not due to measurement noise (e.g., caused by
certain GP (uGP), for learning and prediction of the wirgles yernel mismatch), and. is the decorrelation distance. The
channel considering TX and RX location uncertainty. The resj st exponential in (6) corresponds to the TX displacement
ceived power at location pai (described by its distribution petweenxk andx’ and the second exponential to the RX dis-
parameters) is modeled as placement This is illustrated in Fig. 1. Wity = 1 we have
the model of [7], and if eithegrx = qfx Or qrx = qrx, We

!
Prx(u) ~ GP (p(w), k(u, w)). (2) get the Gudmundson model [6]. With= 2, it can be verified
For the mean function we select that whenx andx’ are Gaussian random variables (so that
andu’ describe the means and covariances of the two TX and
p(u) = Ex w {Prx(x)} (3) RXlocations)k(u, u’) can be computed in closed form (see

-~ also [15, App. C] and [16, Ch. 3.4]):
— Pry+ Lo — 107 Ex { loglow}, (@)

d — —
0 k(u,u’) = 5{u:u/}0§roc+ o2, |T7x| 1/2 ITrx| 12 (7)

while a suitable choice for the covariance function is 1 oop g 1 o g
exXp —ﬁATXFTX ATX exp _ﬁARXFRX ARX )

k(u,u’) = //c(x, xp(x)p(x’)dx dx’, (5) ‘ ‘

whereT'rx = (I+ d;?(Srx + Sgx) (1 — dfuzwy)), D1x =
in which ¢(x, x') is a covariance function under perfect loca- (I + dg?(Srx + Yrx) (1 = pu=wy))s Arx = z1x — 21,
tion information. Herex denotes the TX and RX locations @and Arx = zrx — Zgy, iN Which rx and Xry represent
of one link, andx’ the TX and RX locations of another link. the covariance of the location of the receiver of the first and
Note that the choices (3)—(5) imply that for the case of no loSecond link, respectively, angtx — zgy denotes the distance
cation uncertainw’ uGP reverts back to a classical GP (CGﬂ%etWeen the means of the location distribution of the RX of

approach, with classical mean and covariance functioris [10fIrSt and second link. Similar definitions hold for the TX. The
covariance function (7) explicitly includes the uncertgiof

the position of both the TX and RX of each link, so that highly
uncertain positions have reduced impact on the covariance.
We will assume that(u) can be expressed in closed fotm. Note that the definition of the covariance function now
For the covariance function, we first defingk,x’). Area-  accounts for the Gaussian nature of the shadowing as well as

4.1. Selection of Mean and Covariance Functions

IFor instance, withd = ||qtx — qrx||, @ polynomial expansion of 2The kernel (6) is a product of two kernels each using a subvedtthe
u(d) = Prx + Lo — 10 n log;q(d) combined with a Gaussian approx- input vector. This results in a valid kernel giving a postigemi-definite
imation ofp(d) can allow a closed-form expressionefu) [8]. covariance matrix [14, Ch. 6.2].
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Fig. 2. Impact of average location error standard deviatidin meters) on the model hyper-parameter estimation for a@&P
uGP. The errorbars indicate one standard deviation. Fréirtoleight: estimated decorrelation distanég estimated shadow
standard deviation constam, estimated process standard deviation modeling the kemsehatchoyroc.

the spatial correlation, but it does not capture the reciyo  p(Prx(u.)|y, U, u,;6) follows a normal distribution with
of the channel. mean and variance given by [14, Ch. 6.4], [17]

. o Prx(u:) = plu.) +kiK Yy —p(U)), (9)
4.2. Introducing Channel Reciprocity in uGP Varg(w,) = Fe — KTK 'k, (10)
With the definition of the input vector stated in uGP, an im-
plicit ordering has been introduced, which has the effeat th Wherek. = [k(ui,u.), k(ug, w.), ..., k(uy, u,)]" com-
channel reciprocity is not ensured by the uGP framework itPuted from (7). (U) = [p(u1), p(uz), ... , u(uy)] " computed
self. The incorporation of channel reciprocity into the uGPfrom (3), andk... = k(u.,u.) + o7.
framework can be done: (i) by applying an operator to the in-
put vector, (ii) by modifying the covariance function [L0hC 5. NUMERICAL EXAMPLE
4.2], (iii) by extending the database by its reciprocal detn
part. In this work, we have chosen the last approach, wherd/e present performance results for learning the hyper-
for every measuremenj, with associated;, we add its re- parameters and its impact on the prediction performance
ciprocal counterpart to the database (i.e., an additiomaye for cGP and uGP under location uncertainty.
with the same valug;, but where the role of TX and RX in
uy, are interchanged). 5.1. Setup

For convenience, we will ignore path-loss (so the field be-
4.3. Learning comes zero-mean), and consider a field over a one-dimeihsiona
(D = 1) space of 15 m lengthPrx (x) : [0, 15] x [0, 15] —
R. The field is generated using a 2-dimensional GP with (6),
settingp = 1, d. = 3, oy = 10, ando,, = 0.01. Reciprocity

The uGP model hyper-parameter vector is givenéby=
[0, Oprocs de, Lo, m, ow]T.  Learning refers to estimating

the hyper-parameter vectdt from the training database X .
. . is ensured by generating the field onl > and
(U,y}. Sincep(y|U,0) = N, (u(U),K), with [K],; = y g g Y igfx > drx

s os . g . then copying the values fefrx < qrx.> The field is sampled
k(ui, uy) + 07,0(i—j}, @ maximum likelihood estimator far iy o osolution o7.5 cm, leading to possible 40 TX and

'S . RX locations, and thus a total of 1600 samples. The training
0 =arg mé‘ixlogp(y|U,9). (8)  set containgV = 250 samples (including their reciprocal
. o i copies) randomly drawn from these 1600 samples and per-
In [15], it is stated that this likelihood function suffen®m ,heq" 1y jocation uncertainty. Similar to [8], we consider
many qual maxima and a Baye§|an lestlmator is re,comheterogeneous location errors with = 21, whereo; is
mended instead. Nevertheless, in this work we estimatgyayn from an exponential distribution with average lomati
the hyper-parameters using (8) similar to [8]. error standard deviation. The hyper-parameter vector is
0 = [dc,U\p,O'proc]Tv where we assumed the agents know
4.4. Prediction on. The cGP method uses the covariance function (6) with

Assume we are in the possession of a training database, \°t€ thatthis procedure is not possible for> 1, as there is no absolute
ordering of positions. In practice, this is irrelevant,cgrthe measurements

{U7}.’} anq hyper-par.ameter vecter Ff)r.a test TX-RX  \ould be obtained from real data, which will inherently sitithe reciprocity
location pair parametrized hy, , the predictive pdf condition.
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Fig. 3. Left: expected received powéix avg (in dBm) as a function of the expected positispn for one realization of the
spatially correlated shadowing field. Middle: reconstedcfield using cGP method. Right: reconstructed field usin® uG
method. Note that in all panels, the fields are symmetricgatbe diagonal. rx = z. rx), i.e., the channel is reciprocal.

p = 1 and uGP uses the expected covariance function (7)nean value ok, can be writtere. = [z, rx, z. rx| . Inthe
Simulation results are averaged o realizations of the left panel of Fig. 3, we plot one realization of the average tr

shadowing field. field Prx,avg for different mean locations of the transmitter
z, 7x and receiverz, gx. Note the symmetry of the field
5.2. Results along its diagonal, due to channel reciprocity. The middle

and right panel in Fig. 3 illustrate the predicted me2gx
Learning: In Fig. 2, the impact of location uncertainty in ysing cGP and uGP, respectively. We observe that due to our
the training set (parametrized by) on the model hyper- design, the channel reciprocity property holds. We clesely
parameter estimation for cGP and uGP is demonstrated. Fgiiat uGP provides a much better estimate of the true expected
cGP, we observe that the decorrelation distaficencreases field than cGP. The predicted mediyy using cGP varies
as A increases. At the same timeyroc, Which captures in-  significantly with small variations of the TX and RX loca-
put uncertainty, increases as well. As a consequemge, tion. In contrary to this, the predicted mean using uGP is a
decreases as the signal variance needs to be maintained.shooth function over the TX and RX location. Due to space
is given by the relatiowy, = o, — o7 — oo, Where the  |imitations, we did not include results where both training
variance of the received signal power is estimated from meaand test data were subject to uncertainty. However we expect
surementsy of the training set byg, = [y[|?/N. This  similar gains as in [8]. Finally, we expect that when the mean

behavior can be observed in the middle panel of Fig. 2. Ifunction is included, the gains of uGP over cGP will be even
the case of uGP, the estimated hyper-paramétetays al-  more pronounced.

most constant among different levels of location uncetyain
in the training set. The uGP method exploits the fact that
location uncertainty of théth training sample; is provided

by its distribution parametens;. Hence, there is no need 10 \ye presented a framework to incorporate transmitter and re-
increasel. with increasing since the kernel function (7) di- - cajver |ocation uncertainty for channel gain predictionaof

rectly works onu, in contrast tax; as is the case for cGP. The spatially correlated shadowing field, which can be utilibgd
hyper-parameterproc captures the kernel mismatch betweene_g_, cooperating agents to enable end-to-end commuoricati

kerne_l (6) used FO ggnerate the true field and_the UGP'kem%nnectivity. The proposed framework is based on Gaussian
function (7). This mismatch is constant and independent of o esses " where the input variable is the location distrib

A and is reflected by the estimated valuesrghe Shown in — yio of the agents, instead of the locations. This allowsous t
the “gh_t panel of Fig. 2. Furtherm_ore, for a present locatio explicitly account for varying levels of location uncertty
ungertalnty)\, a ConStanUP’OC |mplles also a constartt\l,.. during both training and testing. Simulation results iadic
This can be observed in the middle panel of the same f'g“reimproved performance when learning hyper-parameters and
Prediction: In Fig 3, we visualize the prediction perfor- predicting the received powers, as compared to methods that
mance for the case that only the test set has uncertain I®eglect location uncertainty. For future work, we plan tp-su
cation information (withc = 2), while training data had portour findings by experiments using different types ofoad

A = 0. The learned hyper-parameters can be extracted fro@@mmunication and positioning technologies and by includ-
Fig. 2. Similar to [8], the performance must be assessethd this channel prediction framework in control applicats.
with respect to the expected received povak avg(u.) =

[ Prx(x4)p(x4)dx., wherep(x,) = Nk, (z.,02I) and the

6. CONCLUSIONS
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