
T-TST-SPI-07-2015-00173 
 

1

 
Abstract—We present a study of the noise and the gain of 

MgB2 hot-electron bolometer mixers with different critical 
temperatures (Tc) and at various operation temperatures. At a 
Local Oscillator (LO) frequency of 1.63THz the minimum input 
receiver noise temperature (Tr) was 700K with a gain of -18dB 
for a device with a Tc of 8.5K. For a device with a Tc of 22.5K the 
corresponding values were 1700K and -19dB. For the latter 
device the Tr was 2150K at a bath temperature of 12K, which is 
not achievable with Nb-compound based HEB mixers. We 
present and compare different methods for measurements of the 
HEB mixer gain and the output noise. 
 

Index Terms—HEB, THz mixer, sub-mm astronomy, 
bolometer, conversion gain, noise temperature, MgB2. 
 

I. INTRODUCTION AND BACKGROUND 

ot-electron bolometer (HEB) mixers have been proven to 
be a class of highly sensitive terahertz (THz) detection 

elements (from 1.3THz to 5.3THz) employed in many 
receivers for astronomical and atmospheric science 
observation programs launched in recent years, including RLT 
[1], APEX [2], [3], Herschel [4], [5], TELIS [6], [7], SOFIA 
[8], [9]. They are also chosen for different programs under 
development, such as ASTE [10], DATE5 [11]. 

Until recently, the state-of-the-art phonon-cooled HEBs 
were fabricated using either NbN or NbTiN superconducting 
ultrathin films providing a low Double Sideband (DSB) 
receiver noise temperature (Tr) at Intermediate Frequencies 
(IF) less than 2 GHz: from 300K (corrected for optical losses) 
at 1.3THz local oscillator (LO) [11] to 1150K  (in a vacuum 
setup) at 5.3THz LO [12]. It has been shown that at 
frequencies over 3THz the quantum noise term starts “to take 
over” other terms and becomes dominant at higher frequencies 
[13], [14]. 

Due to a limited electron temperature relaxation rate in thin 
NbN and NbTiN films, HEB mixers have a gain bandwidth 
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(GBW) <4GHz. As a result, a Tr increases towards higher IFs 
and doubles already at IF of 4-5GHz. Therefore, the number 
of scientific tasks in radio astronomy that can be performed 
with HEB mixers becomes limited. Furthermore, a 
superconducting critical temperature (Tc) of 8-11K limits the 
NbN and NbTiN HEB mixer operation to liquid helium (LHe) 
temperatures (≤4.2K). 4K cryocoolers qualified for space 
application are rarae aves, which necessitates utilization of 
LHe and leads to the reduction of the spaceborn mission 
lifetime. The discovery of superconductivity in MgB2 [15] 
with the highest Tc among intermetallic compounds (bulk Tc = 
39K) and recent progress in ultrathin film deposition [16], [17] 
opened new opportunities in HEB development [18]–[23]. 

In previously published work there have been two main 
goals in MgB2 HEB mixer development: a large GBW and a 
low Tr. A GBW of 2-3 GHz was reported both for thicker 
films with a higher Tc (20nm, 20K) and for thin films with a 
much lower Tc (10nm, 9K) [18], [19]. A possibility of 
achieving a GBW of 8-10GHz with HEB mixers made from 
thin films with a high Tc was also suggested in [20], which 
was recently confirmed in experimental work by Cunnane et 
al. [22]. In that paper a GBW of 7 GHz (at 9K) and 8GHz (at 
25K) was demonstrated for a device made from a 15nm thick 
MgB2 film with a Tc of 33 K. A feasibility of achievement of a 
low Tr was already demonstrated in the first publications on 
the MgB2 HEB mixers, which allowed for measurements of 
the mixer noise bandwidth (NBW), as a more appropriate 
criterion for the HEB mixer performance assessment. At the 
moment the state-of-the-art Tr for MgB2 devices is 600K at a 
600GHz LO [19], and 1150K at a 1.63THz LO [21]. Both 
figures were reported for devices made from 10nm films with 
a Tc of 9K and a NBW of 3GHz. For devices with a higher Tc, 

a higher Tr was observed (e.g. 1800K in [20]), but a NBW was 
more superior (6-7GHz). For the device with a Tc of 33K a Tr 
of 3900K was measured [22]. 

So far very few studies have been performed to understand 
how HEB mixers would operate at temperatures higher than 
LHe or how mixer performance depends on the bath 
temperature. A low Tc for NbN thin films (8-10K for 3-10nm 
films) does not facilitate studying HEB mixer operation at 
higher temperatures [24]. However, MgB2 HEB mixers offer 
such a possibility. In [20], it was shown at a 600GHz LO that 
for MgB2 HEB mixers the Tr remained constant up to 11K ( Tc 
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= 15K). However, no further details were provided. 
Currently, the highest Tc of our MgB2 films is about 22-24K 

for 20nm. In this paper, we present an experimental 
investigation and analysis of the noise temperature, the NBW, 
and the conversion gain at a 1.63THz LO with different bath 
temperatures for devices made from two films with either a 
8.5K or a 22.5K Tc. We used three methods to obtain the 
mixer gain, which gave very similar results. Moreover, we 
present a study of how the most important mixer 
characteristics, such as the noise temperature and the 
conversion gain, vary when both the Tc and the film thickness 
alter over a wide range. 

II. DEVICE FABRICATION AND DC CHARACTERIZATION 

Two batches of the HEBs were fabricated using MgB2 films 
that are 10nm and 20nm thick. Films were deposited on a c-
cut sapphire substrate by molecular-beam epitaxy (MBE) and 
covered in-situ with a 20nm gold layer to prevent film 
degradation and to reduce contact resistance between the 
MgB2 film and the metal layers deposited later. The HEBs 
were fabricated using e-beam lithography and argon ion beam 
milling in several steps. Each substrate held 8 HEBs of various 
dimensions. For the 20nm film all devices survived during the 
processing and the dicing, but for the 10nm film the yield was 
quite low and only several devices were usable. For radiation 
coupling into the bolometer, a broadband planar spiral antenna 

was made from 270nm gold film in the same process. Devices 
were passivated with a 40nm SiNx for protection from 
degradation due to both oxidation and exposure to water [25]. 
One device from the each batch was chosen for tests. The 
criteria for device selection were: the small size and low 
critical current density (to fulfil LO power requirement with 
the available source), and a DC resistance close to 100Ω (the 
designed impedance of spiral antenna). HEB#1 discussed 
below, was 10nm thick and 1x1µm2 in size, with a Tc of 8.5K, 
a transition width of 2.5K, and a room temperature resistance 
of 160Ω. HEB#2 was 20nm thick and 1x0.2µm2 in size, with a 
Tc of 22.5K, a transition width of 0.6K, and a room 
temperature resistance of 330Ω. R-T curves measured in a 
dip-stick for both HEBs are presented in Fig. 1. The presence 
of the double transition in the R-T curve for HEB#2 (Fig. 1) 
suggests that the electrical contact between MgB2 and Au was 
quite good. 

I-V curves of HEB#1 at 4.2K (with and without LO 
pumping) and the corresponding IF response versus the bias 
voltage (at a 295K load) are presented in Fig. 2. An LO power 
required to reach the minimum Tr (LO3 curve in Fig. 2a) was 
70nW as was calculated using an isothermal method with an 
assumption that both the direct current (DC) and the LO 
power have the same effect on the bolometer resistance [26]. 
The optimal LO power is in the same order of magnitude as 
that reported for NbN HEB mixers.  

 
Fig. 1.  Resistance versus temperature dependence for the tested devices. 

TABLE I 
MGB2 HEB SIZE (WXL), THICKNESS (D), CRITICAL TEMPERATURE 

(TC), TRANSITION WIDTH (ΔTC), RESISTANCE AT 300K (R300K), 
SHEET RESISTANCE (RS), RESISTIVITY (Ρ), CRITICAL CURRENT AT 

4.2K (IC) AND CRITICAL CURRENT DENSITY (JC). 

# WxL(µm2) D(nm) Tc(K) ΔTc(K) R300K(Ω) 

1 1x1 10 8.5 2.5 160 

2 1x0.2 20 22.5 0.6 330 

      

# RS(Ω/□) 
ρ 

(10-6Ω cm) 
Ic(10-6A) 
@4.2K 

Jc 
(106A/cm2) 

1 160 160 70 0.7 

2 1650 3300 1000 5 

      

 
Fig. 2. (a) I-V curves for HEB#1 under different LO (1.63THz) power at 
4.2K bath temperature, optimal operation points marked with a black 
ellipse and (b) the corresponding IF response at 295K load at 1.8GHz IF.
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I-V curves of HEB#2 at 4.2K and 12K (with and without 
LO pumping) are presented in Fig. 3. At a bath temperature of 
about 12K the HEB critical current (0.5mA) was around half 
of its value at 4.2K (1mA). The LO power calculated using the 
isothermal method was either 2.6µW for 4.2K bath 
temperature or 1.7µW for 12K. DC parameters of HEB#1 and 
HEB#2 are summarized in Table I.  

III. MEASUREMENT SETUP AND EXPERIMENTAL TECHNIQUE 

The HEBs were mounted in mixer blocks with Si lenses and 
placed on the cold plate of a LHe cryostat sealed with a HDPE 
window. A Zitex™ IR filter was placed on the 4K shield of 
the cryostat. Losses in the optical path from the hot/cold loads 
to the mixer and equivalent noise temperatures of the 
corresponding elements are presented in Table II. Reflection 
loss of the Si lens (1dB) was not included in the list and it was 
not accounted for. Therefore, for a specific frequency, both the 
Tr and conversion gain can be further reduced/increased by 
application of a proper designed AR layer for the Si lens [27]. 
In our case, Si lens reflection loss was treated as a part of the 
mixer conversion gain (Gm). A bias-T followed the mixer 
block to apply the voltage bias to the device and to separate 
the intermediate frequency (IF) response. Three cascaded 
amplifiers were used in the IF chain to measure the IF 
response: a 2-4GHz InP low-noise amplifier mounted on the 
cryostats’ cold plate, a 2-4GHz GaAs low-noise amplifier at 

room temperature outside the cryostat, and a broadband (0.1-
10GHz) amplifier at the end. A 3dB attenuator was placed 
between the cryostat and the first room temperature LNA to 
reduce standing waves in the long IF cable. The amplified 
signal was measured through a tunable (1-9 GHz) YIG-filter 
(50MHz bandwidth) with a power meter. Mylar® beam 
splitters (BS) (of either 12µm or 3µm thick) were used to 
combine the LO and the signal (from the hot/cold loads) 
beams. Noise measurements were performed with a 1.6THz 
LO (a far-infrared (FIR) gas laser) at bath temperatures of 
4.2K, 2.7K (achieved by helium vapour pumping) and 12K 
(achieved by use of a resistive heater mounted on the mixer 
block). A Golay cell connected to the oscilloscope was placed 
behind the beam splitter to monitor the FIR gas laser emission 
power during experiments. 

For measurements of the Tr the standard Y-factor technique 
(295K/77K loads) was used. In order to obtain the mixer 
conversion gain and the mixer output noise temperature, a U-
factor technique was applied as described in [21], [29]. In this 
case, the receiver conversion gain can be calculated as: 

 
  2952

/
TT

TTU
LGG

rec

REFLNA
optmtot 


            (1) 

where Lopt is the optical loss (2.4dB in our case), TLNA is the IF 
chain noise temperature. TREF is the reference temperature that 
depends on the state chosen as the reference to measure the U-
factor. For the superconducting state TREF is equal to TLNA, 
because in this state the HEB acts as a microwave short and 
hence it reflects the power coming from the IF chain. For the 
normal state, achieved by pumping with all available LO 
power (e.g. using a mirror instead of a BS), the noise does not 
depend on the bias point (LO1 curve on Fig. 2) and it is 
defined by the Johnson noise of the HEB, so TREF is equal to 
the HEB electron temperature determined from the R-T curve 
by DC resistance. The factor “2” in the equation comes from 
the DSB operation of the mixer with an assumption that the 
sideband ratio is 1. As follows from (1), the mixer output 
noise temperature Tout can be calculated as: 

    RFtottotLNAREFLNAout TGKTGTTTUT 22952    (2) 

where TRF is the noise contribution of optical components 
(137K in our case, see Table II). 

Another method to obtain the mixer conversion gain and the 
mixer output noise temperature is from the output noise of the 
HEB mixer (PIF) at the operation point and an accurate 
measurements of the IF chain gain, GIF : 

  2952/ TTBkGPG recBIFIFtot            (3) 

  RFtottotLNABIFIFout TGKTGTBkGPT 229522/     (4) 

where kB is Boltzmann constant, and B is the bandwidth of 
the IF filter (see above in this Section). 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

For HEB#1, the Tr (corrected for optical losses, as in Table 
II) versus the intermediate frequency at the 4.2K bath 
temperature is presented in Fig. 4 (circles). 

Equation (5) is usually used to define the receiver NBW 
[28]: 

 
Fig. 3.  I-V curves for HEB#2 with and without LO power (1.63THz) at 
12K and 4.2K bath temperatures. 

TABLE II 
LOSSES (L) AND EQUIVALENT NOISE TEMPERATURES (TEQ) OF 

OPTICAL COMPONENTS ALONG THE BEAM PATH AT 1.63THZ 

REFERED TO THE INPUT OF THE CORRESPONDING COMPONENT. T 

IS THE PHYSICAL TEMPERATURE OF THE COMPONENT. 

Component T (K) L (dB) Teq (K) 

Air path (40 cm) 295 1 76.4 

Beam splitter (Mylar®) 295 0.1 7.0 

Cryostat’s window (1mm HDPE) 295 0.7 52.5 

IR filter (2 Zitex™ sheets) 4.2 0.6 0.6 

Total - 2.4 137 

    



T-TST-SPI-07-2015-00173 
 

4

    210 NIFmm ffTT               (5) 

where Tm(0) is the noise temperature at zero IF, and fN is the 
NBW. Fitting the measured Tr for HEB#1 to (5), both Tm(0) of 
1150 K and fN of 3.5 GHz were obtained. 

The Tr was also measured at a bath temperature of 2.7K. 
This resulted in a 30% increase in the HEB critical current 
(90µA) and a 40% reduction of the Tr (Fig. 4). The optimal 
operation region moved to slightly higher bias voltages. The 
required LO power calculated with the isothermal method was 
80nW. The Tr corrected for optical losses versus the IF for the 
optimal operation point at 2.7K is presented in Fig. 4 
(diamonds). Experimental points are fitted to (5) as was done 
for the data obtained at 4.2K. It provides the zero IF noise 
temperature of 700K and the NBW of 3.2GHz. 

The mixer conversion gain and the mixer output noise 
temperature were calculated as discussed in Section III using 
experimental data from Fig. 4 and Fig. 2b. The noise 
temperature of the IF chain is determined mostly by the noise 
temperature of the first amplifier in the chain i.e. by the cold 
LNA, which is mounted on the cryostat’s 4.2K plate. It has a 
gain of 30dB and a noise temperature of 2K. Therefore, the 
noise temperature of the whole IF chain was estimated as not 
to exceed 3K. The total gain of the entire IF chain, GIF was 
measured to be 77dB at 1.8GHz. Using an IF response at the 
optimal operation point (U0 = 0.8mV and I0 = 28µA) of -
29.4dBm, a U-factor of either 8.2dB (reference state is the 
superconducting state) or 4.7dB (reference state is the normal 
state), the Tr = 2500K, and the HEB temperature of TREF = 9K 
in the normal state, both the mixer conversion gain and the 
mixer output noise temperature were calculated at 4.2K with 
all three methods presented in Section III. 

At 2.7K, the input data for the calculation of the mixer 
conversion gain and the mixer output noise temperature (at an 
operation point of U0 = 1.3mV and I0 = 23µA) for HEB#1 
were: the IF response PIF = -30.4dBm, the U-factor was either 
7.2dB (reference state is the superconducting state) or 4.2dB 
(reference state is the normal state), the Tr = 1500K, and the 
HEB temperature TREF = 9.3K. 

As one can see from TABLE III the mixer conversion gain 
and the mixer output noise temperature obtained using three 
methods are quite close to each other, which we interpret as a 
confirmation that the methods are correct. As the mixer 
temperature is reduced from 4.2K to 2.7K, the mixer 

conversion gain is increased by approximately 1dB, whereas 
the output mixer noise temperature is decreased by 5-10K. It is 
of interest to compare these experimental data with physical 
modelling of the devices, however this will be a subject for a 
further publication. It is also interesting to compare results of 
HEB#1 with published data for NbN HEB mixers, since a Tc 
of NbN thin films (8-10K) is very close to the Tc of the MgB2 
film used for HEB#1. The reported conversion gain of NbN 
HEBs is approximately -12dB [29] with the mixer output 
noise temperature of approximately 40K at a 1.63THz LO. A 
lower gain and a lower output noise for the MgB2 HEB mixer 
(HEB #1) can be a result of a quite large superconducting 
transition width (see Fig. 1). The GBW of MgB2 HEB [20] 
also shows to be a factor of 1.5 smaller, as compared to the 
NbN HEB mixer from [28]. Therefore, for comparison of the 
gain and the output noise at 1.8GHz (approximately the 3dB 
gain roll-off frequency for HEB#1) about a +2dB correction 
has to be applied for the MgB2 mixer. Despite this, the Tr for 
both NbN and MgB2 HEB mixers falls within the same ball 
park. 

HEB#2 was tested using the same setup, except that it was 
mounted in a mixer block with a 5mm Si lens. The measured 
Tr spectrum across the 1-4GHz IF band for the bath 
temperature of 4.2K and a fit with (5) are presented in Fig. 5. 
At certain IFs the mixer response to the hot/cold loads was 
unstable which resulted in errors in the noise temperature 
measurements (e.g. at 1.9GHz and 2.9GHz). The fitted line 
corresponds to the zero IF noise temperature of 1700K and the 
NBW of 5GHz.  

The mixer conversion gain and the mixer output noise 
temperature were calculated using the U-factor technique with 
the normal state as a reference state.  Results are shown in Fig. 
6. Higher ripples for IF < 1.8GHz correspond to the IFs with a 
high LNA return loss. The mixer conversion gain was fitted 
with a single-pole Lorentzian Gm(fIF)=Gm(0)/[1+(fIF/fg)2], 
where Gm(0) is the mixer conversion gain at zero IF and fg is 
the mixer GBW (3dB gain roll-off frequency). The fit in Fig. 
6a corresponds to the zero IF mixer gain of -15.1dB and a 
GBW of 3.5 GHz. The same noise and gain measurements as 

TABLE III 
THE MIXER CONVERSION GAIN (Gm) AND THE OUTPUT NOISE 

TEMPERATURE (Tout) FOR HEB#1 CALCULATED: USING (1) 
AND (2) EITHER WITH THE SUPERCONDUCTING (i) OR THE 
NORMAL (ii) STATES AS THE REFERENCE STATE; USING (3) 
AND (4) (iii).  MEASUREMENTS WERE PERFORMED BOTH AT 

4.2K AND 2.7K BATH TEMPERATURES (Tbath).  fIF = 1.8GHz. 

 i ii iii 

Tbath 
(K) 

Gm 
(dB) 

Tout 
(K) 

Gm 
(dB) 

Tout 
(K) 

Gm 
(dB) 

Tout 
(K) 

4.2 -19.1 31 -19.6 27 -19.9 26 

2.7 -18.2 21 -18.1 22 -18.9 18 

       

Fig. 4.  The DSB receiver noise temperatures (corrected for optical 
losses) for the HEB#1. The bias points are U0 = 0.8mV I0 = 28µA and U0 
= 1.3mV I0 = 23µA at 4.2K and 2.7K bath temperatures, respectively. 
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at 4.2K were conducted at 12K. Results are shown in Fig. 5 
and Fig. 6. The fitted zero IF noise temperature, the NBW, the 
mixer conversion gain and the GBW are 2150K, 5GHz, -
14.7dB and 3.4GHz, respectively. These data show that both 
the conversion gain and the GBW stays almost the same at 
both bath temperatures, but the output noise at a higher bath 

temperature is higher, similar to the behaviour observed for 
the “low” Tc HEB mixer, which results in a higher Tr. The 
acquired parameters of both HEBs are summarised in Table 
IV together with values for an NbN HEB mixer [29] for 
comparison. 

Two tested HEB mixers differed, not only in terms of the 
critical temperature, but also MgB2 film thickness. As it 
follows from the HEB mixer theory, and some experiments 
with NbTiN HEB mixers [10], the film thickness affects the 
GBW and NBW of the device due to a longer phonon escape 
time. However, it should not affect the noise temperature (at 
IF << GBW) unduly. Our experimental data shows that this is 
also the case for MgB2 HEB mixers.  

V. CONCLUSION 

This study shows that for superconducting films with a 
higher Tc both the output noise temperature and the conversion 
gain of HEB mixers increase as compared to the films with a 
lower Tc. This is valid for the optimal operation conditions. At 
the same time films with a higher Tc provide a broader NBW, 
as has been discussed in previous works. Already having 
reached a Tc of 22K, the HEB mixer can operate above 12K 
with only a 25% increase of the receiver noise  temperature, 
compared to that at 4.2K. Achieving the HEB mixers with a Tc 
> 30-35K will push the HEB operation temperature above 20K 
with no or very small sensitivity reduction. In addition, we 
have demonstrated that the quality of MgB2 is not critically 
important to achieving low noise temperature in the 2-4K 
temperature range and IF < 2GHz.  

In this work we achieved a mixer noise temperature and a 
noise bandwidth comparable to NbN HEBs using quite low 
quality MgB2 thin films with a ”low” Tc (compared to a Tc of 
39K for the bulk MgB2 or 33-38K for the high quality MgB2 
films). The required LO power in this case is approximately 
100nW, which can be easily realized with the available source 
technologies for frequencies, even above 2THz. Fabricated 
devices demonstrated high robustness and did not lose their 
properties after 1.5 years of storage in a nitrogen atmosphere. 
However, more specific tests would be required for space 
application. 

Three different methods were applied to estimate  the mixer 

 
Fig. 6.  The measured mixer gain (open diamonds) and output mixer 
noise temperature (squares) of HEB#2 versus IF at a 1.63THz LO at (a) 
4.2K, U0 = 1.6mV I0 = 180uA and (b) 12K, U0 = 1.8mV, I0 = 200µA.

TABLE IV 
THE DSB RECEIVER NOISE TEMPERATURE (TR), THE NOISE BANDWIDTH (FN), 

THE MIXER CONVERSION GAIN (GM), THE GAIN BANDWIDTH (FG) AND THE 

OUTPUT MIXER NOISE TEMPERATURE (TOUT) FOR MIXERS HEB#1, HEB#2 AND 

NBN HEB MIXER[29] 

 HEB#1 HEB#2 
NbN 

HEB[29] 

 @2.7K @4.2K @4.2K @12K @4.2K 

Tr, K 700 1150 1700 2150 800 

fN, GHz 3.2 3.5 5 5 - 

Gm, dB -18 -19 -15 -15 -12.3 

fg, GHz - - 3.5 3.4 - 

Tout,K 22 27 80 115 40 

      
Fig. 5.  The DSB receiver noise temperatures (corrected for optical 
losses) at 4.2K (diamonds) and 12K (circles) bath temperatures at a 
1.63THz LO for HEB#2. The bias points are U0=1.8mV I0=200µA and 
U0=1.6mV I0=180µA, respectively. 
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conversion gain of the same HEB mixer. Good agreement 
with an error margin of ±0.5dB (which is within the accuracy 
of these measurements) between methods, indicates that the 
obtained mixer gain values are correct. 
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