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aDepartment of Applied Mechanics
Division on Material and Computational Mechanics

Chalmers University of Technology, Gothenburg, Sweden

Abstract

A major challenge for crash failure analysis of laminates is to find a mod-
elling approach which is both sufficiently accurate and computationally ef-
ficient. We suggest to adopt a traditional single-layer shell formulation due
to its cost effectiveness. In this contribution, we have therefore investigated
the potential of two different concepts for obtaining better prediction of the
through-the-thickness distribution of the transverse stresses; a crucial issue
since the accuracy for a single-layer approach in this respect is normally low.
The first concept is a multiscale approach in which the macroscopic shell
model is concurrently coupled to a mesoscopic 3D element representation of
the heterogeneous material structure on the laminate level. The second con-
cept is a stress recovery method based on integration of the 3D equilibrium
equations, with additional smoothing of the in-plane stresses.

The main conclusion drawn from the investigations is that, the adopted
multiscale concept, although similar to what has been previously reported in
the literature, is not a suitable approach to increase the level of accuracy of
the predicted transverse stress distributions. However, we conclude that the
proposed stress recovery method very well captures the through-the-thickness
stress variations in our presented examples.
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1. Introduction

Numerical finite element (FE) tools for the accurate prediction of the
crash response of vehicle structures in fibre reinforced plastics (FRP) are
crucial for structural composites to have a widespread use in future cars [1].
Traditionally, FE crash simulations are performed using shell element models,
which are well suited to model the thin-walled metal structures in automotive
bodies while at the same time being computationally cost effective compared
to continuum solid (3D) element models. However, a known drawback of
traditional shell element formulations is low accuracy of the through-the-
thickness variation of the transverse stress components [2]. Thus, to be able
to have a good level of predictability when simulating progressive crash failure
in FRPs (e.g. to capture delamination, driven by high transverse stresses),
better suited types of FE-models, than those traditionally used to model
metals, need to be adopted.

A major challenge for crash failure analysis of laminates is thereby to find
a modelling approach which is both sufficiently accurate and computationally
efficient – a challenge addressed in this paper. Seeking a good compromise,
we note that methods for simulating the structural behaviour of a laminated
structure in a FE-framework can, following Reddy [2], generally be divided
into two categories. Either layer-wise models (LWM), where each ply (or
ply interface) of the laminate is represented by separate degrees of freedom
(DoF)1, or equivalent single-layer models (ESLM) where one layer of shell el-
ements is used to represent the entire laminate. In the review by Carrera [3],
it was concluded that the accuracy of the transverse stresses in LWM were
superior compared to ESLM and that mixed formulations, where e.g. the
transverse stress components can be regarded as unknown DoF, showed su-
perior accuracy compared to traditional pure displacement type ones. Please
refer also the review on Reissner Mixed Variational Theorem (RMVT) by
Carrera [4], where a unified formulation is introduced, and the general re-
view on modelling of FRP laminates by Kreja [5]. On the other hand, ESLM
are more computationally efficient compared to LWM and if the accuracy of
the transverse stresses can be improved, they will be highly competitive.

The subject of improving the transverse stresses in ESLM have been ad-
dressed by many authors over the years. Recently the work by Carrera and

1This category includes the 3D element models and the stacked shell element models,
where each ply is modelled with at least one layer of elements in the thickness direction.
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co-workers was extended to construct an advanced locking-free finite element
based on the RMVT formulation [6]. Besides adopting such a priori assump-
tions like mixed formulations or Zig-Zag in the shell formulation (see e.g. the
historical review by Carrera [7]), a posteriori methods can be adopted [3].

All in all, and despite the conclusions made by Carrera [3] we suggest
to adopt an ESLM shell formulation due to its cost effectiveness compared
to LWM. The main argument for this is that LWM would for many real
laminates require a too large amount of DoF which would be directly inap-
propriate for crash or other large scale analyses.

Therefore, the main goal of this work has been to establish a robust
modelling method, which benefits from the cost efficiency of an ESLM, but
at the same time yields accurate predictions of the transverse stresses. As
an initial step, we will in this paper focus on the transverse shear stresses.

For this purpose, two methods have been implemented and assessed in
terms of accuracy of the transverse shear stress distribution. First, we have
investigated the potential of using a multiscale approach as a possible remedy
to the problem of using ESLM stated above. A long term idea of adopting
such an approach is to enable a model-adaptivity procedure, cf. e.g. Oden and
Vemaganti [8], where initially the model is build up as an ESLM. Based on
some measure, either a model error estimator or a failure initiation criterion,
a transition to a coupled multiscale approach could be made locally in critical
areas. In particular, we have adopted the multiscale concept introduced by
Larsson and Landervik [9] for simulating deformations of thin-walled porous
structures by coupling the macroscopic shell model to a mesoscopic 3D el-
ement representation of the heterogeneous material structure. Due to their
promising results, our intention in this paper has been to investigate if a simi-
lar procedure can be adopted for simulating progressive failure in a laminated
FRP plate. The main conclusion drawn from the investigations presented in
this paper is however that, the concept proposed in [9] is not a suitable ap-
proach to increase the level of accuracy of the predicted transverse stress
distributions.

As an alternative method, we have identified a suitable, and seemingly
robust, post-processing procedure which allows accurate predictions of the
transverse stress distribution to be made. This procedure is based on a
nodal recovery of the in-plane stress components, averaged over neighbouring
elements, followed by an integration of the transverse stress components using
the 3D equilibrium equations. These recovered stresses can then be used
in an initiation criterion for interlaminar crack nucleation, after which the
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delamination can be modelled using e.g. an appropriate cohesive formulation.

1.1. Outline of paper

First we set out to describe the adopted shell formulation in Section 2
together with a motivation of this particular choice. In Section 3, we con-
tinue by presenting the kinematics and choice of boundary conditions for
the mesoscopic model necessary as part of the multiscale approach. Then in
Section 4, our post-processing procedure is described and in Section 5 numer-
ical examples are presented, which compare results from both the multiscale
and the post-processing method. Detailed studies illustrating the effect from
choosing different boundary conditions and RVE sizes are presented for an
isotropic and a laminated cantilever beam. Finally, conclusions and discus-
sions thereon are presented in Section 6.

2. Shell formulation

In this section, we will describe the underlying shell element formulation
adopted in the current work, which is identical to what was proposed by Lars-
son and Landervik [9]. Thus, we adopt a solid-like ESLM shell formulation
based on first-order shear deformation theory (FSDT) with a second-order
expansion of the deformed configuration in the normal direction leading to a
7-parameter displacement formulation. The main ingredients of this formu-
lation is repeated below, where in the subsequent text we let Latin letters
denote the range from 1 to 3 and Greek letters denote the range from 1 to 2.

2.1. Reference and current shell geometry in terms of convected coordinates

As a staring point, the undeformed (reference) configuration B0 of the
shell is considered parametrised in terms of convected coordinates ξ as

B0 =

{
X := Φ(ξ) = Φ0(ξ0) + ξM (ξ0) : ξ0 ∈ A , ξ ∈ h0

2
[−1, 1]

}
(1)

where we introduced the compact notations ξ = (ξ1, ξ2, ξ3 = ξ) and ξ0 =
(ξ1, ξ2) and where the mapping Φ maps the inertial Cartesian frame into the
undeformed configuration as shown in Figure 1. In Eq. (1), the mapping
Φ is defined by the midsurface placement Φ0 and the outward unit normal
director field M . The coordinate ξ is associated with the normal director
field, h0 is the initial thickness of the shell and A is the midsurface area.
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Associated with the mapping Φ, we also have the covariant basis vectors Gi

in the reference configuration expressed as

Gi = Φ,i (2)

where •,i denotes the derivative of • with respect to ξi. From Eq. (1) Gi are
given as

Gα = Φ0,α + ξM ,α (3)

G3 = G3 = M . (4)

Similar to Eq. (1), the deformed (current) configuration B is described as

B =

{
x := ϕ(ξ) = ϕ0(ξ0) + ξm(ξ0) +

1

2
(ξ)2γ(ξ0)m(ξ0)

}
(5)

where the mapping ϕ is defined by the midsurface placement ϕ0, the spatial
director field m and an additional scalar thickness inhomogeneity strain γ,
cf. also Figure 1. As can be seen, the current configuration corresponds to
a second order Taylor expansion along the director field, involving the inho-
mogeneity strain γ, thereby describing inhomogeneous thickness deformation
effects of the shell. In this fashion we can avoid the pathological Poisson lock-
ing effect. If we consider a relative motion dx of the non-linear placement ϕ
as

dx =

(
ϕ0,α +m,α

(
ξ +

1

2
γξ2
)

+
1

2
γ,αξ

2m

)
dξα +m (1 + γξ) dξ, (6)

the covariant basis vectors gi = ϕ,i in the deformed configuration become

gα = ϕ0,α +

(
ξ +

1

2
γξ2
)
m,α +

1

2
γ,αξ

2m (7)

g3 = (1 + γξ)m. (8)

The pertinent deformation gradient F , to the adopted kinematics is ob-
tained as

dx = F · dX with F =
∂ x

∂ ξi
⊗ ∂ ξi

∂X
= gi ⊗Gi (9)

where the contravariant basis vectors in the reference configuration Gi are
obtained from the covariant basis vector by

Gj = GijGi, (10)
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Figure 1: Mappings of shell model defining undeformed and deformed shell configurations
relative to inertial Cartesian frame.

using the metric tensor defined as

Gij = Gi ·Gj and Gij = (Gij)
−1. (11)

This kinematic representation is then inserted in the (static) momentum
balance to obtain the resulting shell element formulation, cf. [9] for details.

3. Mesoscopic laminate model

In the multiscale modelling concept introduced by Larsson and Lan-
dervik [9], the momentum balance is set up as an initial boundary value
problem using a shell element formulation on the (component) macroscale.
The heterogenic mesoscopic (laminate) level is then explicitly accounted for
via nested FE analyses of a Representative Volume Element (RVE) modelled
using 3D elements (cf. e.g. Kouznetsova et al. [10]) providing the homogenised
stress resultants in each integration point of the shell surface. We acknowl-
edged that similar multiscale methods have been applied to FRP laminated
plates also by other authors, e.g. by Coenen et al. [11] and by Helfen and
Diebels [12], however the focus therein have been other than accuracy of the
through-the-thickness stress variation.

Emphasis in the current contribution is put on assessing the potential
of this method for obtaining accurate stress distributions in the laminate by
means of multiscale (or two-scale) modelling. For this purpose, we focus only
on the prolongation conditions, i.e. the link from the macroscale shell prob-
lem to the laminate level RVE analysis, which is detailed in the subsequent
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section. For further details about the associated homogenisation procedure
interested readers are referred to [9].

In the following, we denote quantities related to the macroscopic fields
by a superimposed bar, e.g. •.

3.1. Kinematic expansions of macroscopic fields in the RVE

In order to couple the macroscopic and the mesoscopic fields in the pro-
longation step to the RVE, Larsson and Landervik [9] suggest to use different
Taylor series expansions for the deformation map with respect to the tan-
gent plane and thickness direction of the shell. Hence, we express the finite
mesoscopic placement ∆x[X] (measured as the placement relative to the ex-
pansion point X) within the RVE in separate portions in the tangent- and
the thickness directions, denoted by ∆x= and ∆x⊥, respectively, cf. Figure 2.
Together with the mesoscopic displacement field uf , we express the relative
placement ∆x[X], following [9], as

∆x = ∆x= + ∆x⊥ + uf (12)

with a first order expansion in the tangent direction

∆x= = F |ξ ·∆X= = gα|ξ∆ξ
α with ∆X= = Gα∆ξα (13)

where the notation •|ξ implies that the expansion is made for a fixed value
of ξ. In the thickness direction, a second-order expansion is made about the
origin of the RVE

∆x⊥ = F |ξ=0 ·∆X⊥+
1

2

(
K |ξ=0 ·∆X⊥

)
·∆X⊥ = g3|ξ=0ξ+

1

2
g3,3|ξ=0

ξ2, (14)

which involves the second gradient K = (gi ⊗G
i
),j ⊗G

j
. Please note that

with this choice of expansion through the thickness, the shell curvature is
only partially accounted for. The consequence of this is discussed in relation
to the numerical examples below.

In view of the relations Eq. (12)-Eq. (14), we obtain the kinematics of
the RVE in terms of the generalised shell strain measures as

∆x = gα|ξ∆ξ
α +m(ξ +

1

2
γ(ξ)2) + uf [X]. (15)
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Figure 2: Sketch of midsection through the 12x13x13 (hexahedra) element RVE showing
the expansion point X and the placement vector ∆X in the reference configuration.

The mesoscopic deformation gradient d∆x = F · dX associated with this
kinematic description, while considering that ξ is fixed in Eq. (13), now finally
becomes

F =

(
gi +

∂uf
∂ξi

)
⊗Gi

= F +Hf with F = gi⊗G
i

and Hf =
∂uf

∂X
. (16)

In practical terms, the prolongation of the multiscale model is performed
by extracting the generalised strains, i.e. gα|ξ,m and γ, from the macroscopic
shell model such that the proper boundary displacements can be computed
and applied to the RVE via Eq. (15). We will in the next section describe
the RVE boundary conditions associated with this step.

As to the the size of the RVE, we note that its thickness is given by the
thickness of the plate, whereas the in-plane breadth and width of the RVE
should be chosen based on a balance between accuracy and computational
efficiency as exemplified later in the numerical section.

3.2. Application of boundary conditions

In [9] the prolongation from macroscopic to mesoscopic level was per-
formed using a combination of Dirichlet and Neumann boundary conditions.
More specifically, the in-plane surfaces of the RVE were prescribed to the
macroscopic generalised shell strain using a Dirichlet boundary conditions
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such that the fluctuation field uf is prescribed to vanish on these surfaces.
On the remaining top and bottom surfaces, Neumann (traction free) bound-
ary conditions were applied, cf. Figure 3a. This type of boundary conditions,
which we in the sequel will denote as Mixed boundary conditions, will result
in energy equivalence across the scales. However, since uf is unrestricted on
the top and bottom these boundary conditions do not guarantee that the av-
erage deformation is maintained. Concerns regarding this potential problem
will be raised in the following sections.

For comparison, we will also investigate boundary conditions that will
ensure deformation equivalence across the scales, e.g. the classical Dirichlet
boundary condition. This can be achieved using pure Dirichlet boundary
conditions, denoted Dirichlet in the sequel, where all six surfaces of the RVE
are subjected to the condition uf = 0, cf. Figure 3b. Clearly this is a more
constrained case and the assumption is that this choice of boundary con-
ditions will yield a solution much closer to what is obtained from a pure
shell analysis. As a final comparison, we will also investigate the response
obtained for a Taylor assumption, i.e. the case where the fluctuation field uf

is set to zero in the entire domain (denoted Taylor boundary conditions) as
shown in Figure 3c.

4. Stress recovery of transverse stresses

Over the years different methods to make a posteriori evaluation of the
transverse stresses in FE elements have been developed. These post-processing
methods are typically based on Hooke’s law, the 3D equilibrium equations,
simplifying assumptions [13] or predictor-corrections approaches [14], see e.g.
the reviews by Carrera [3] and Noor and Malik [15]. Although the recovery of
the transverse stresses from the 3D equilibrium equations is a rather simple
method2, both reviews concluded that, for mechanical loading, it provides
acceptable results. The fundamentals for this method, which can be found
in e.g. Kant and Manjunatha [16] or Park et al. [17], are described below.

2To the best of our knowledge, it dates back to (at least) the early work by Dmitrii
Ivanovich Zhuravskii who used it to derive the formula for shear stresses during bending
in 1855.
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Figure 3: Prescribtion of the fluctuation uf on the edges of the RVE according to the
Mixed (a), Dirichlet (b) and Taylor (c) boundary conditions.
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4.1. The proposed stress recovery method

The transverse stresses can be determined from the in-plane stresses by
using the 3D equilibrium equations

σij,j + fi = ρüi (17)

where σij are the Cauchy stress components, fi are the body forces, ρüi are
the inertia effects and •,j denotes the derivative with respect to local laminate
coordinate xj.

In the static case and for zero body forces, we can recover the transverse
stress components at the top interface of ply k (cf. Figure 4) by integration
from the bottom of the laminate as:

σ̂ki3 = −
k∑

n=1

xn3∫
xn−1
3

(σ1i,1 + σ2i,2) dx3 + Ci, (18)

where x3 is the the transverse direction and •̂ denotes recovered values.
In Eq. (18), the integration constants Ci are determined from the known
values of σi3 at either of the two boundaries at x3 = ±h

2
, see e.g. Kant and

Manjunatha [16]. Since the transverse normal stress σ̂33 is determined from
the in-plane gradients of the transverse shear components σα3,α, we perform
the recovery of the transverse stresses in two steps. First the transverse shear
stresses σ̂α3 are computed from the in-plane stress gradients σαβ,α. Then in a
second step the transverse normal stress σ̂33 is computed from the recovered
transverse shear stresses σ̂α3,α.

To perform the integration in Eq. (18), the gradient of the in-plane
stresses must first be extracted from the FE-solution. We choose to do this
by approximating the stress variation using a quadratic interpolation over
a wedge, cf. Figure 4. By performing a linear least square fit (LSF), based
on the known stress values in Gauss points of the current ply, we can deter-
mine the nodal values of the wedge interpolant. When the stress values at
each wedge node has been determined, the ply-by-ply integration across the
thickness in Eq. (18) can be performed by numerical integration. We do this
at all in-plane positions of the Gauss points of the element.

Please note that the stress recovery method presented above involves the
in-plane stress gradients, which must be properly evaluated in order to ob-
tain accurate results. With the chosen shell kinematics, the in-plane stress
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Ply 𝑘
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Ply Gauss points

Wedge interpolation nodes

Figure 4: Sketch of wedge interpolation element used to extract stress values from the ply
Gauss points to the ply wedge nodes using a least square fit.

components themselves are predicted with acceptable accuracy, as demon-
strated in the numerical examples in Section 5. However, as in the case of
any C0-continuous finite element, these stresses from the FE solution are not
continuous over element boundaries. Thus, it is not sufficient to construct
the stress interpolation individually within each element.

In order to improve the results, we introduce an intermediate smoothing
step to create a continuous stress field over the element boundaries. This
smoothing step can be done in several ways, e.g. simple stress averaging
across elements, adopting the well known super convergent patch recovery
method by Zienkiewicz and Zhu [18] or more recent methods given by Payen
and Bathe [19] and by Bush et al. [20]. In this work we use a method where
the stress values at each wedge node are average values obtained from the
adjacent wedge elements in each ply, cf. Figure 5.

5. Numerical examples

To asses the performance of the multiscale approach and the stress recov-
ery procedure, in terms of accuracy in the resulting stress distributions, we
present two numerical examples below. First in Subsection 5.2, we study an
isotropic laminate since this allows us to make comparisons with analytical
solutions. Then, in Subsection 5.3, we make an assessment using an angle-ply
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Ply 𝑘

Midplane

Figure 5: Sketch of stress extraction where the value of the wedge nodes are average values
of LSF from all neighbouring wedge interpolation elements connected to the specific node.

laminated plate. For the multiscale approach, we focus on investigating the
effects of varying the in-plane size of the mesoscopic RVE and the effects from
applying different types of boundary conditions in the prolongation phase,
as described in Section 3.2.

In all our numerical examples we consider a square plate, clamped along
one edge and subjected to a prescribed displacement of δ = 0.1 mm on the
opposite edge, cf. Figure 6.

60

3

𝛿 = 0.1𝑥1

[mm]

𝑥3

𝑥2

Figure 6: Sketch of the numerical example. NB: proportions not representative.

5.1. Preliminaries

As mentioned previously, we focus on the prolongation phase of the mul-
tiscale approach. Thus, the deformation of the plate (extracted from the
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macroscopic shell simulation) is applied to the RVE as described in Section 3
and we then solve for the stresses in the RVE. Furthermore, to avoid macro-
scopic boundary effects, we choose to evaluate the stresses at a point close
to the middle of the plate.

The (macroscopic) shell model consists of 450 isosceles right second order
triangle elements (4 mm mesh size, cf. Figure 7a), while the RVE is modelled
with cubic shaped linear hexahedron elements (0.25 mm mesh size giving 12
elements through the thickness).

The in-plane dimensions of the studied RVEs are varied in three steps
from 1.25 mm (5 elements) to 6.25 mm (25 elements), cf. Figure 8. In each
RVE, the stress profiles are extracted by taking the in-plane average of all
element integration points at each given ξ-level (thickness coordinate).

The obtained stress distributions are then compared to those obtained
from the stress recovery method and the pure shell model (using the proposed
7-parameter shell element), with a 3D continuum solid model as reference.
This 3D reference model is modelled using the same linear elements as in
the RVEs, resulting in 691,200 elements, to ensure mesh convergence, cf.
Figure 7b. Also note that, the shell model used for comparison is the same
as the one used to extract deformation quantities for the RVE analyses in
the examples.

To make a quantitative comparison of how well the stress results from
the different models can recreate the reference solution, we compute the
normalised average squared error between the longitudinal transverse shear
stress values from the reference σ̃13 and the model σ13 as

e =
1

ns

ns∑
k=1

(
σ̃13(x

k
3)− σ13(xk3)

|σ̃13|max

)2

(19)

where ns is the number sampling points through the thickness and |σ̃13|max

is the maximum absolute value of the reference.
In the following graphs, the resulting stresses are plotted as connecting

lines between the values at each Gauss point level and the values have been
normalised with respect to the (maximum) value of the reference 3D solution.

5.2. Isotropic cantilever beam

A first comparison between the stress components obtained using the
different models is made using an isotropic material with a Young’s modulus
of 70.7 GPa and a Poisson’s ratio of zero. We motivate the choice of setting
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(a) (b)

Figure 7: FE mesh for the shell model (a) and the reference 3D model (b).

(a) (b) (c)

Figure 8: 1.25 mm (a), 3.25 mm (b) and 6.25 mm (c) in-plane size of the mesoscopic RVE.
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Poisson’s ratio to zero by the fact that it allows us to make comparisons
with Euler-Bernoulli beam theory to which the reference 3D model, although
piecewise linear in σ13, as expected compares very well, cf. Figure 9.

5.2.1. Assessment of the multiscale method

Figure 9 shows results for the Mixed boundary conditions applied on
the RVE. The variations of the in-plane stress component σ11 through-the-
thickness are similar between the shell, solid and the RVE models. Fur-
thermore, the Mixed boundary condition on the RVEs fulfils the traction
free condition on the top and bottom surface. However, the through-the-
thickness variation of the σ13-component clearly differs between the models.
Consequently, although the shape of the variation of the σ13-component in
the RVE shows qualitative improvement with respect to the beam theory
as the size increases, an increasing RVE size does not lead to convergence
towards the reference model. Instead, the error measure e, as described in
Eq. (19), increase upon an increase in the RVE size, cf. Table 1. On the
other hand, smaller RVE sizes do converge, but towards the shell results.

The resulting bending moment and shear force can be obtained by in-
tegrating the stress components in Figure 9 over the thickness; these are
displayed in Figure 10 as a function of RVE size. As seen from the figure,
an increase in RVE size leads to a decrease in the resultant shear force. This
implies that for an increased RVE size, an increased deviation in the applied
shear deformation (on the RVE) is obtained compared to both the reference
3D and the shell model.

Based on the unsatisfying results obtained for Mixed boundary conditions
above,we find it interesting to investigate the effects from applying the more
constraining types of boundary conditions Dirichlet and Taylor. These results
are presented in Figure 11, where we take the 12x13x13 element sized RVE
as reference for all RVE sizes. As seen from the figure, Dirichlet or Taylor
boundary conditions results in stresses comparable to the shell analysis. Also,
by studying the resultant bending moment and shear force, displayed in
Figure 12, we can further confirm that by applying the Dirichlet or Taylor
boundary conditions the deformation mode of the shell is better captured
since the resultants very well match those obtained from the shell analysis.

5.2.2. Assessment of the stress recovery method

Shear stress values computed using the stress recovery method, intro-
duced in Section 4, are presented as bullets in Figure 9 and 11. The errors,
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Figure 9: Longitudinal in-plane normal (a) and out-of-plane shear (b) stress components
in the shell and reference 3D models and three different RVE sizes for isotropic material.
The black solid line represent the analytical beam solution and the • marks the interface
stress values computed using stress recovery.

according to Eq. (19), of the stress produced by this and the other models
compared to the analytical solution are summarised in Table 1. For this
example, the recovery method is clearly the most capable in reproducing the
through-the-thickness variation of the stress found in the analytical solution.

5.3. Laminated cantilever beam

Using the same geometry, mesh and load, as in the example above, we
have also studied a [±45◦]3S laminate, having one element per ply in the
thickness direction for the RVE and for the reference 3D model. The plies are
modelled as transversely isotropic, with material properties given in Table 2.

5.3.1. Assessment of the multiscale method

In Figure 13 and 14, the resulting in-plane (σ11, σ12) and out-of-plane
(σ13) stress components are plotted for the reference 3D model, the shell
model and three different RVE sizes using the Mixed boundary condition.

As can be seen in Figure 13, the results from the shell and the RVEs
show the same in-plane stress components as that of the reference 3D model.
However, as in the isotropic case, the through-the-thickness variation of the
out-of-plane shear stress σ13, displayed in Figure 14, become smoother as
the RVE size increases. Also, the results obtained with smaller RVE sizes
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Figure 10: Normalised resultant moment (a) and shear force (b) in the shell and reference
3D models and three different RVE sizes for isotropic material.
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Figure 11: Effect of boundary condition type on the longitudinal in-plane normal (a) and
out-of-plane shear (b) stress components in the RVE (isotropic material). The black solid
line represent the analytical beam solution and the • marks the interface stress values
computed using stress recovery.
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Figure 12: Normalised resultant moment (a) and shear force (b) for different boundary
conditions (isotropic material).

Table 1: Errors in σ13, according to Eq. (19), compared to the analytical solution of a
cantilever beam made of isotropic material.

Model e
3D-ref 0.003
Shell 0.157
RVE 12x5x5 Mixed 0.143
RVE 12x13x13 Mixed 0.187
RVE 12x13x13 Dirichlet 0.151
RVE 12x13x13 Taylor 0.151
RVE 12x25x25 Mixed 0.281
Stress recovery 0.000
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Table 2: Material properties for laminate model.

EL ET νLT νTT′ GLT GTT′

[GPa] [GPa] [GPa] [GPa]
100 10 0.25 0.25 5.0 4.0
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Figure 13: Relevant in-plane stress components in RVEs of different sizes compared to the
shell and reference 3D models when simulating with orthotropic material.

converge towards the shell results. The resulting moment and shear force,
displayed in Figure 15, confirm the conclusions drawn from the isotropic case,
i.e. that the deformation mode from the macroscopic shell is not maintained
in the RVE.

5.3.2. Assessment of the stress recovery method

Similar to the isotropic case, the interface shear stress values computed
using the stress recovery method show very good correlation with the ref-
erence solution, cf. Figure 14. This is confirmed by the error measure e
in Table 3 where, in particular, the error obtained with the stress recovery
method relative to the 3D reference solution is less than 0.000.

6. Conclusions

In this contribution we have investigated the potential of using two con-
cepts for obtaining a better prediction of the through-the-thickness distribu-
tion of the transverse (shear) stresses in equivalent single-layer shell analyses.
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Figure 14: Longitudinal out-of-plane shear stress component in RVEs of different sizes
compared to the shell and reference 3D models when simulating with orthotropic material.
The • marks the interface stress values computed using stress recovery.
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Figure 15: Normalised resultant moment (a) and shear force (b) in the shell and reference
3D models and three different RVE sizes for orthotropic material.
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Table 3: Errors in σ13, according to Eq. (19), compared to the 3D reference solution in an
angle-ply laminated cantilever beam.

Model e
Shell 0.112
RVE 12x5x5 Mixed 0.067
RVE 12x13x13 Mixed 0.060
RVE 12x25x25 Mixed 0.088
Stress recovery 0.000

As a first alternative, the multiscale (or rather two-scale) procedure intro-
duced by Larsson and Landervik [9] to model and simulate heterogeneous
material structures in thin-walled applications was investigated, where we
focused on the prolongation condition (cf. Section 3). Besides following the
procedure in [9], where a combination of Dirichlet and Neumann (Mixed)
boundary conditions were applied to the RVE, we have also considered pure
Dirchlet boundary conditions.

For the Mixed boundary condition, the results show, regardless of mate-
rial type, that as the size of the RVE increases the resulting through-the-
thickness stress variation becomes smoother. However, at the same time, the
magnitude is decreased compared to the reference model. In our numerical
examples this means that, although the shape better resembles the reference
3D model, the deformation mode of the RVE is diverging from the one on
the macroscale. Therefore we conclude that the problem with the proposed
type of expansion and boundary conditions, in that the average deformation
is not guaranteed across the scales, cannot be neglected even though energy
equivalence is maintained. We believe this to be an interesting finding since
similar boundary conditions have been adopted also by other authors, al-
though normally with in-plane Periodic Boundary Conditions (PBCs), cf.
[21, 22, 23]. We emphasise however that not even in the case of PCBs, defor-
mation equivalence across the scales can be guaranteed. The consequences of
this are uncertain since the mentioned papers do not discuss e.g. transverse
shear or the effect of a varying RVE-size.

To ensure deformation equivalence across the scales we also investigated
the effect of applying pure Dirichlet boundary conditions in the prolongation
phase. However, the results achieved from this correspond to what is obtained

22



in the shell analysis and no improvements, with respect to accuracy of stress
prediction, can be observed.

The conclusions drawn above were not an apparent problem in [9], where
porous material was analysed, however to directly apply their approach to
simulate laminated FRP plates is not straightforward. To obtain results
closer to the reference 3D model with the given method, deformation equiv-
alence across the scales is probably necessary. This would require the expan-
sion of the relative placement, described in Subsection 3.1, to be of higher
order.

On the positive side, we can conclude that the proposed stress recovery
method very well captures the through-the-thickness stress variation in our
presented examples, provided that the stress field is made continuous over
element boundaries. The stress recovery method is rather cheap, and if the
only goal is to improve the prediction of the transverse stresses in analyses
of laminated plates, we conclude it to be more suitable compared to a multi-
scale approach.

What we propose for future work on ESLM analysis of progressive failure
in laminates is thereby to adopt a post-processing procedure where the first
step is a smoothing of the in-plane stress components over neighbouring
elements, followed by an integration of the transverse stress components using
the 3D equilibrium equations. We conclude that it is then not a necessity to
use a very advanced layer-wise shell element formulation, or a very detailed
through-thickness spatial FE resolution, to obtain a sufficient accuracy of
stresses needed for the prediction of e.g. delamination initiation. Instead, a
rather low order shell element can be used if proper post-processing of the
stresses is made.

We consider these findings interesting in the sense that computational
efforts can be saved by using an ESLM approach with a less expensive shell
formulation. Indeed, the post-processing step would require additional com-
putational effort, but the interval at which it is done could be controlled. It
would for most applications be sufficient to perform the recovery at prede-
fined time instants, and not within every time increment. This is in contrast
to the adoption of a more advanced LWM, in which case the additional com-
putational effort is present throughout the simulation.

In the long perspective, we suggest to combine the stress recovery method
with e.g. the modelling concept based on the eXtended Finite Element Method
(XFEM) proposed by Brouzoulis and Fagerström [24], which is designed to
allow for the modelling of arbitrarily many delaminations within a single shell
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element. Thereby, the modelling would be based on a ESLM approach, us-
ing a less advanced shell element formulation for saving computational cost,
which is then dynamically enriched in areas where delamination initiation
(or propagation) is predicted by the suggested post-processing method. This
way any number of delaminations can be included in the simulation.
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