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We propose theory for a reversible quantum transducer connecting superconducting qubits and optical photons
using acoustic waves in piezoelectrics. The proposed device consists of an integrated acousto-optic resonator
that utilizes stimulated Brillouin scattering for phonon-photon conversion and piezoelectric effect for coupling
of phonons to qubits. We evaluate the phonon-photon coupling rate and show that the required power of the
optical pump as well as the other device parameters providing full and faithful quantum conversion is feasible
for implementation with the state-of-the-art integrated acousto-optics.
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I. INTRODUCTION

A network of superconducting qubits interconnected and
measured with microwave photons constitutes a c-QED
(circuit quantum electrodynamics) architecture of a quantum
processor [1]. This architecture demonstrated performance
of basic quantum algorithms with up to nine qubits on a
chip [2–5]; the number of qubits is expected to further
increase. However, the microwave photons are not suitable for
long-distance quantum communication; the optical channels
are required in order to connect remote qubit clusters [6,7].
Development of microwave to optic quantum interfaces is a
vital step towards large scale quantum networks. Also, the
transferring to the optical domain of complex nonclassical
photonic states produced by c-QED technology might be
attractive for quantum metrology [8].

The problem of interfacing the c-QED network and optical
photons is challenging. It has been extensively discussed
theoretically [9], and a number of solutions involving nonlinear
optomechanical interfaces have been proposed [7,10–12] and
experimentally tested [13,14].

In a parallel development, a strong piezoelectric coupling
of a superconducting qubit to propagating surface acoustic
waves (SAWs) was experimentally demonstrated [15,16],
the coupling rate being comparable to the one in the c-
QED devices. In another experiment [17] a SAW resonator
demonstrated a high-quality factor, Q ∼ 105, comparable
to the microwave resonators. These experiments suggest
a possibility of using GHz-frequency phonons for on-chip
quantum communication (circuit quantum acousto-dynamics,
c-QAD) [18,19]. An attractive feature of c-QAD architecture
is a possibility of efficient coupling of phonons to optical
photons, thus providing means for long-distance quantum
communication.

In this paper we propose and theoretically investigate a
quantum acousto-optic transducer that utilizes the mechanism
of stimulated Brillouin scattering (SBS) [20] as a tool for
reversible phonon-photon conversion.

SBS is a fundamental physical effect of inelastic scattering
of light by acoustic waves in the presence of a strong resonant
optical field [21]. SBS is observed in a variety of liquid and
solid media, and widely used in acousto-optic devices [22–24].
Under SBS the wave vectors of the resonant optical and
acoustic modes have comparable values, which allows for
efficient conversion of telecom optical photons and acoustic

phonons in the GHz-frequency range compatible with the
c-QAD technology.

The questions we raise and answer in this paper are (i)
how strong is the phonon-photon coupling provided by SBS,
and (ii) can full phonon-photon conversion be achieved with
realistic intensity of an optical pump?

Stimulation of acousto-optic interaction by a strong reso-
nant field under SBS can be understood as a peculiar hybrid
form of a nondegenerate parametric resonance, which couples
physically different fields. Similar to purely electromag-
netic nondegenerate parametric resonance in c-QED cavities
[25–28], SBS appears as either amplification of optical and
acoustic modes or mode hybridization and Rabi oscilla-
tion [29,30]. At cryogenic temperatures relevant for operation
of superconducting qubits, the Rabi oscillation regime main-
tains full coherence because of small acoustic attenuation. This
regime is proposed for the quantum acousto-optic conversion.

The physical interaction underlying Brillouin scattering is
a nonlinear photo-elastic effect—a change of the dielectric
constant of the resonator material under elastic deformation.
This is a common effect for all materials, resulting in many
cases in dominant optical nonlinearity [21]. In resonators,
the variation of the dielectric constant produces an effect
similar to the optomechanical effect of displacement of
cavity boundaries [31,32]. Furthermore, a reciprocal to the
photoelastic effect is a force exerted by the gradient of the light
energy on the elastic medium. Thus the photoelastic effect can
be understood as a distributed bulk analog of the physically
similar boundary effect in optomechanics.

The purpose of this paper is to formulate a quantum theory
of SBS in an integrated acousto-optic resonator and identify
conditions for the full reversible phonon-photon conversion.

II. ACOUSTO-OPTIC RESONATOR

The envisioned device is illustrated in Fig. 1. The device
in Fig. 1(a) is an extension of the setup of the transmon-SAW
experiment [16]. It consists of a high-quality SAW resonator
defined on a surface of a piezoelectric crystal by Bragg
mirrors. The acoustic signal is excited by a SAW interdigital
transducer (IDT) that simultaneously serves as a capacitance
for the transmon qubit and is connected to a microwave line.
The SAW resonator is integrated with a high-quality optical
resonator consisting of a one-dimensional (1D) waveguide
loop defined on the surface of the piezoelectric. The optical
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FIG. 1. Acousto-optic transducer. (a) SAW resonator confined by
the Bragg mirrors and integrated with the optical resonator (red line)
defined at the surface of the piezoelectric and evanescently coupled
to a fiber; the transmon qubit capacitor acts as IDT that couples
the microwave field to the SAW; Cc is a coupling capacitor to the
external microwave line (MW) [16,17]. (b) Integrated SAW-optical
ring resonator made with a piezoelectric film [33].

field is injected into and extracted from the resonator by
evanescent coupling to a fiber. The optical and acoustic waves
coexist in this integrated resonator and interact due to the SBS
mechanism. In Fig. 1(b) an integrated acousto-optic resonator
with the ring geometry is shown, inspired by the design of
existing optomechanical devices [33]. The transducer can also
be realized with optomechanical crystals [34] fabricated with
piezoelectric materials [13,35].

A. Classical theory of SBS

Within the classical theory of SBS [21,36,37], the pho-
toelastic interaction is introduced through variation of the
dielectric constant εαβ under elastic deformation uδ,γ , δεαβ =
γαβγ δuδ,γ , and the interaction strength is quantified with
the photo-elastic coefficient tensor γαβγ δ [indices denote
spatial coordinates (x,y,z), the index after the coma indicates
differentiation over the respective variable, and convention is
used for summation over repeated indices].

The equations of classical theory of SBS extended to
piezoelectric materials read

D̈α + c2 (rotrot E)α = 0, Dα,α = 0, (1)

ρüγ = cαβγ δuα,βδ + eαβγ Eα,β − γαβγ δ

8π
(EαEβ),δ, (2)

Dα = εαβEβ − 4πeαβγ uβ,γ + γαβγ δ Eβuγ,δ, (3)

where eαβγ is a piezoelectric tensor [38], ρ is a mass density,
and cαβγ δ is a stiffness tensor. These equations follow from a

general Lagrangian for the acousto-optic system [39],

L = 1

2

∫
dV

[
E2 − H 2

4π
+ ϕ Pα,α + 1

c
AαṖα

+ u̇2
α − cαβγ δuα,βuγ,δ

]
, (4)

by computing variations over electromagnetic potentials, Aα

and ϕ, and displacement uα . Here Pα = χαβEβ − 2eαβγ uβ,γ +
(1/4π )γαβγ δEβuγ,δ is a macroscopic polarization vector and
χαβ is an electric susceptibility. The details of the derivation
are presented in the Appendix.

The last nonlinear term in the elasticity equation (2)
describes the pressure exerted by the electromagnetic field on
the elastic medium. This nonlinear term generates a mixture of
optical modes, which may propagate with the speed of sound
allowing for strong resonant interaction between acoustic
and optical fields. This interaction is supported by resonant
scattering of light in Eq. (1) by spatiotemporal grating formed
by the sound. This is the classical wave picture of the Brillouin
scattering.

Dynamics of the acousto-optic system, Eqs. (1)–(3), con-
sists of two different time scales associated with different
propagation velocities of the light and the sound. These time
scales are resolved by separating the fast transverse (optical)
component of the electric field, Et

α = −(1/c)Ȧα , Et
α,α = 0,

εαβÄβ − c2 �Aα + γαβγ δ ∂t (Ȧβuγ,δ) = 0, (5)

and the slow longitudinal piezoelectric component, El
α =

−ϕ,α , rot El
α = 0, coupled to the elastic field:

ρüγ − cαβγ δuα,βδ − eαβγ ϕ,αβ + γαβγ δ

8πc2
(ȦαȦβ),δ = 0,

(6)
εαβ ϕ,αβ + 4πeαβγ uβ,γ α = 0,

where the bar indicates averaging over fast optical oscillation.
In Eq. (6) a nonlinear term containing small piezoelectric
potential was omitted (for the details of derivation see the
Appendix). The shortened equations (5) and (6) are associated
with the Lagrangian, which we divide into the free field part,
L0, and the photoelastic interaction part, Lint:

L = L0 + Lint,

L0 = 1

2

∫
dV

{
1

4πc2
εαβȦαȦβ − 1

4π
Aα,βAα,β + ρu̇2

α

− cαβγ δ uα,βuγ,δ + 2eαβγ uβ,γ ϕ,α + 1

4π
εαβ ϕ,αϕ,β

}
,

Lint = 1

2

∫
dV

1

4πc2
γαβγ δ uγ,δȦαȦβ . (7)

B. Ring resonator

The SBS equations are formulated for a boundless con-
tinuous medium. To consider fields confined in a resonator,
we focus for certainty on the ring resonator geometry of
Fig. 1(b), with the ring circumference much larger than the
wavelength, L � λ. The eigenmodes of such a resonator
can be approximated with the ones of a 1D waveguide with
the periodic boundary condition along the x direction. We
expand the fields over the eigenmodes of the noninteracting
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resonator:

Aα(r,t) = (1/
√

L)
∑
k,n

An(k,t)eikxψn
α (r⊥,k), (8)

uα(r,t) = (1/
√

L)
∑
q,m

um(q,t)eiqx φm
α (r⊥,q), (9)

were the normalized eigenfunctions, ψn
α (r⊥,k) and φm

α (r⊥,q),
describe the transverse confinement of the respective fields,
indices n,m count the transverse eigenmodes.

The exact form of the transverse eigenfunctions is dictated
by particular geometry of the wave guide. Computing these
functions analytically is particularly difficult for the acoustic
modes, the difficulty results from the material anisotropy that
mixes field components even in the bulk, but is further com-
plicated by the boundary conditionsn [38,39]. Some analytical
solutions are only available for isotropic and nonpiezoelectric
wave guides [40]. For our purposes, however, no explicit
form of the eigenfunctions is needed but rather their general
properties are needed.

Restricting ourselves for simplicity to optically isotropic
materials, the optical eigenfunctions are found from the
equation

[�⊥ − k2]ψn
α (r⊥,k) = −[

εω2
n(k)/c2

]
ψn

α (r⊥,k), (10)

complemented with appropriate boundary conditions; ωn(k) is
the frequency of the nth mode.

The equation for the acoustic eigenmodes is derived by
eliminating piezoelectric potential using the second equation
in Eq. (6), yielding

D̂αγ [q]φm
γ (r⊥,q) = −ρ �2

m(q)φm
α (r⊥,q), (11)

where

D̂αγ [q] =
[
cαβγ δ − 4πeλμαeβγ δ

ε
∂λ∂μ(�⊥ − q2)−1

]
∂β∂δ

is a nonlocal operator with ∂x = iq, and �m(q) is the frequency
of the mth transverse mode. The solutions are generally
complex and obey the symmetry relation, φm

α (r⊥, − q) =
[φm

α (r⊥,q)]∗.
Within the eigenmode representation, the free field part of

the Lagrangian in Eq. (7) has the form

L0 = ε

8πc2

∑
k,n

{
Ȧn(k)Ȧn(−k) − ω2

n(k)An(k)An(−k)
}

+ ρ

2

∑
n,q

{
u̇n(q)u̇n(−q) − �2

n(q)un(q)un(−q)
}
, (12)

while the Lagrangian of the photoelastic interaction reads

Lint = 1

8πc2

∑
nn′m
kk′q

Mkk′q
nn′m Ȧn(k)Ȧn′(k′)um(q), (13)

Mkk′q
nn′m = γαβγ δ

∫
dV√
L3

ψn
α (r⊥,k)ψn′

β (r⊥,k′)

× ei(k+k′)x(φm
γ (r⊥,q)eiqx

)
,δ
. (14)

The major contribution to the interaction is given by the
resonant wave triads selected by the resonance conditions,

ωn′ (k′) − ωn(k) = �m(q) and k′ − k = q. These equations
define the scattering geometry with the optical modes prop-
agating in opposite directions and having wave vectors,
k′ ≈ −k = (q/2)[1 + O(�/ω)], � 	 ω; the acoustic mode
propagates along the direction of the optical mode with
larger frequency. Truncated to the resonant subspace, the
Lagrangian (13) reduces to the sum over resonant triads,
each contribution having the form of the resonant three-wave
interaction:

Lint ∼ An(k)A∗
n′(k′)um(q) + A∗

n(k)An′(k′)u∗
m(q). (15)

This interaction is generally known in theory of nonlinear
waves [41], and it describes scattering between two optical
modes with emission and absorption of the acoustic mode. We
note that the frequencies of the optical modes in Eq. (15) obey
the inequality ωn′k′ > ωnk .

C. SBS in the quantum regime

To proceed with the quantum description of SBS, we
consider one of the optical modes to have much larger
amplitude than the other and treat this pumping mode as
a classical coherent state characterized by the number Np

of pumping photons, Ap ∝ √
Npe−iωpt . Then we apply the

quantization procedure to weak optical and acoustic modes.
The quantization is performed, first, by deriving the Hamil-

tonian in the mode representation using Eqs. (12) and (13);
then complex dimensionless quadratures are introduced via
canonical transformation,

An(k) =
√

2π�c2/εωn(k) (ank + a∗
n(−k)),

(16)
um(q) =

√
�/2ρ�m(q)(bmq + b∗

m(−q)),

and the canonical commutation relations are imposed on these
quadratures, [ank,a

†
nk] = 1, and [bmq,b

†
mq] = 1.

Selection of the pumping mode leads to the two different
types of quantum Hamiltonians depending on whether the
frequency of the pumping mode is smaller or larger than the
frequency of the optical signal mode. In the first case, ωp =
ωs − � [pumping mode is An(k) in Eq. (15)], the scattering
occurs with absorption of the phonon into a blue-shifted
(anti-Stokes) sideband. This process results in the coherent
phonon-photon conversion and is described with the beam
splitter type Hamiltonian:

HSBS = −�

√
Np(g0e

−iωpt a†b + g∗
0e

iωpt ab†). (17)

In the second case, ωp = ωs + � [mode An′(k′) is chosen
as the pump], the scattering occurs with emission of phonon
to a red-shifted (Stokes) sideband. In this case, the SBS
Hamiltonian takes the form of a parametric amplifier,

HSBS = −�

√
Np(g0e

−iωpt a†b† + g∗
0e

−iωpt ab), (18)

and describes the amplification and two-mode squeezing of
the optical and acoustic modes [42].

In both cases, the acousto-optic coupling is given by the
vacuum phonon-photon coupling rate, g0,

g0 = M
√

�ωpωs�

32ε2ρs2
, (19)
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enhanced by the pumping field. Here M is the overlap integral
in Eq. (14) truncated to the resonant subspace,

M = γαβγ δ√
L

∫
dV⊥ψp

α (r⊥,q/2)ψβ (r⊥,q/2)

× (∂δ/q + iδδx)φγ (r⊥,q), (20)

where superscript p indicates the pumping mode. For an
optimal design of the resonator, M is estimated,

M ∼ γ /
√

V , (21)

where γ is a representative value of the photoelastic tensor,
and V is the resonator volume.

For piezoelectric materials with relatively large photoelastic
interaction, such as LiNbO3 and GaAs, the vacuum coupling
rate is estimated, g0 ∼ 1.7 MHz/

√
V [μ3] (LiNbO3), and g0 >

6 MHz/
√

V [μ3] (GaAs), while for AlN it is below 100 KHz
due to a small photoelastic constant.

Our estimate for the vacuum coupling rate is solely
based on the consideration of the photoelastic interaction. In
literature an additional mechanism of acousto-optic coupling
is considered stemming from the displacement of resonator
boundaries [34,43,44]. Although this effect is described with
a similar nonlinear three-wave interaction to the one in
Eq. (15) [31,32], the underlying physics is different in both
cases: The photoelastic effect affects the light velocity, while
the boundary displacement changes geometric quantization
of the cavity modes. Furthermore the boundary effect in its
generic form [31,45] assumes a sharp stepwise boundary the
displacement of which results in a large change of the dielectric
constant that cannot be described with the photoelastic effect.
However, in practice the boundaries of integrated solid-state
waveguides are smooth on the scale of the zero-point acoustic
displacement, hence variation of the dielectric constant under
elastic deformation is small. This justifies the photoelastic
approximation not only in the bulk but also at the boundary,
while the optomechanical boundary effect does not play a
separate role.

D. Conversion efficiency

To evaluate the fidelity and efficiency of the phonon-photon
conversion, we assume the qubit is well detuned from the
acoustic resonance and consider the transducer as a four-port
device having optical and microwave input and output ports.
For the optical ports, the input-output relation has conventional
form [46], aout = ain − i

√
2κ0 a, where κ0 is a coupling

rate to the optical fiber. Considering the microwave ports,
we introduce the microwave field operators in the external
transmission line, cin and cout, and write the input-output
relation taking advantage of the linear piezoelectric coupling
of microwave and acoustic fields, cout = cin − i

√
2�0 b, where

�0 includes the coupling rates of the IDT and the capacitive
connection, Cc, to the transmission line, Fig. 1.

The intracavity field operators satisfy the Langevin equa-
tions, associated with Hamiltonian (17), which have the form
in the interaction representation

iȧ + (δω + iκ)a + g0

√
Npb =

√
2κ0 ain,

(22)
iḃ + (δ� + i�)b + g∗

0

√
Npa =

√
2�0 cin.

Here we introduced detunings of the input optical signal,
δω, and acoustic signal, δ�, from the respective resonances,
that satisfy the relation δω − δ� = 2δ, with 2δ referring to
detuning of the pump, ωp = ωs − � + 2δ; κ and � denote
total optical and acoustic damping rates, respectively.

Solving these equations and substituting into the input-
output relations, we compute the scattering matrix and evaluate
the transmission and reflection amplitudes:

S11 = 1 − 2iκ0(δ� + i�)/D,

S22 = 1 − 2i�0(δω + iκ)/D, (23)

S12 = −2ig0

√
Npκ0�0/D,

where D = (δω + iκ)(δ� + i�) − |g0|2Np.
In the limit of negligibly small internal losses, κ − κ0 	 κ0,

and � − �0 	 �0, the scattering matrix acquires a unitary
form with |S11| = |S22|, and |S12| = |S21| = 1 − |S11|2, thus
providing reversibility of phonon-photon conversion.

Furthermore, a full conversion indicated by absence of the
reflection, |S11| = |S22| = 0, is achieved for

|g0|2Np � κ0�0, (24)

the equality occurring at the exact resonance, δω = δ� = 0,
as illustrated in Fig. 2. This equation defines the minimum
pump strength required for the full phonon-photon conversion.
For realistic Q-factor values, Qopt = ωs/κ ∼ 105 and Qac =
�/� ∼ 104, the corresponding pump photon density is esti-
mated, Np/V ∼ 104 photons/μ3, for LiNbO3. It is interesting
that this minimum value coincides with the threshold of para-
metric oscillation in the Stokes scattering channel, where the
amplified phonon-photon vacuum noise reaches its maximum
value [28,47]. Above the threshold, the full conversion can be
achieved for finite detunings, δω = κ0(|g|2/κ0�0 − 1)1/2, and
δ� = (�0/κ0)δω.

For the purpose of faithful single quantum phonon-photon
conversion, the Stokes scattering is an undesirable process,
since it generates spurious phonon-photon pairs out of the
vacuum fluctuations. The Stokes scattering can be suppressed
by making the Stokes sideband frequency well detuned
from the cavity resonance. This imposes a constraint on

FIG. 2. Conversion efficiency as a function of normalized pump-
ing strength, ε = |g0|2Np/κ0�0, for different pump and signal detun-
ings; internal losses are neglected. Solid (red) line: exact resonance,
δ = δωs = δ� = 0. Dash-dotted (green) line: δωs = κ0, δ� = �0,
δ = (κ0 − �0)/2. Dashed (blue) line: δ = 0, δ� = δωs = �0.
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FIG. 3. Frequency diagram of the SBS: the scattering occurs into
two sidebands symmetrically shifted from the pump frequency by
±�; the blue triangle indicates broadening of the cavity resonance,
κ0 < 2�.

the resonance width, κ < 2�, corresponding to the resolved
sideband regime, as illustrated in Fig. 3. Accordingly the
optical Q factor has a lower bound, Qopt > ωs/2� ∼ 2 × 104.
Additional possibility for suppressing the Stokes scattering
exists in the ring resonator of Fig. 1(b): taking advantage of
the asymmetry of the Brillouin scattering, one may implement
asymmetric IDT to selectively emit and absorb acoustic
waves moving in the direction only supporting the anti-Stokes
scattering.

III. PRACTICAL IMPLEMENTATION

The transducer performance—fidelity and efficiency of the
phonon-photon conversion—depends on a number of material
and device parameters. The most important limitation on
these parameters is imposed by the requirement of minimum
heating effect of the pump losses, which is damaging for a
fragile cryogenic environment of c-QED devices. This implies
minimization of the pump power, Eq. (24), required for
the full conversion. This is achieved by reducing external
optical and acoustic losses, and choosing materials with
large phonon-photon vacuum coupling rate. However, the
engineered external losses cannot be made arbitrarily small—
they must significantly exceed the internal losses in order to
maintain the unitarity of the conversion, Eq. (23). For the
optical internal damping at the level of ∼0.1 κ0 ∼ 1 GHz, the
estimated dissipated power density within the resonator would
be ∼1 μW/μ3 (for LiNbO3).

Furthermore, to maximally reduce the heating effect, it is
desirable to confine the losses to the interaction volume within
the resonator, while keeping low pump power in the feeding
fiber. To achieve this one needs to engineer additional narrow
resonance at the pump frequency; then estimated pump power
would be within the range of 10 μW. The resonator with
two tightly spaced and resolved optical resonances could be
realized using the method of coupled cavities [48].

The value of the vacuum coupling rate, Eq. (19), is essen-
tially defined by the photoelastic coefficient and the resonator
volume. The photoelastic interaction is quantified in literature
with the Pockel coefficient p, related to our coefficient,
γ = pn4, where n is the refractive index. For piezoelectric
materials of interest, the largest Pockel coefficients vary
from p = 0.02, in AlN, to p > 0.16, in GaAs and LiNbO3.
Correspondingly, the variation of γ is in the range 0.3–20.

Since the minimum pump power is proportional to the squared
photoelastic coefficient, the required pump power may differ
by up to three orders of magnitude depending on the choice of
material.

The cavity volume is to be reduced to maximize the vacuum
coupling rate. In this respect, the optomechanical crystal
resonators [13,34,35] seem to provide an ultimate solution,
having the volume of a few cubic wavelengths. The integrated
ring resonator depicted in Fig. 1(b) is more favorable compared
to the planar SAW device in Fig. 1(a) since it may have small
transverse dimensions comparable to the wavelength, while
the width of the planar SAW resonator is of the order of tens
wavelengths (although this can be reduced by using focusing
mirrors). Furthermore, the planar resonator has a large length,
up to 1000 wavelengths [17], due to weak localization effect
of metallic fingers of the Bragg mirrors that induce very small
modulation of the SAW velocity [49].

IV. CONCLUSION

We proposed and performed theoretical analysis of a
reversible quantum transducer for coupling microwave and op-
tical photons. The transducer employs acoustic phonons in the
GHz-frequency range as an intermediate agent and consists of
an integrated acousto-optic cavity fabricated with piezoelectric
material. The phonon-optical photon conversion is provided
by the mechanism of stimulated Brillouin scattering (SBS),
while the phonon-microwave photon conversion is due to the
piezoelectric effect. We find that the SBS induced vacuum
coupling rate is in the range of a few MHz per μ3 cavity vol-
ume, and the full phonon-photon conversion can be achieved
at pump power of tens of μW. Our analysis of the material and
device parameters that would provide full and faithful quantum
phonon-photon conversion is feasible for implementation with
the state-of-the-art integrated acousto-optics.
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APPENDIX: DERIVATION OF CLASSICAL
SBS EQUATIONS

The starting point is the macroscopic action for an acousto-
optic medium consisting of electromagnetic and elastic parts:

S =
∫

dt L,

L = 1

2

∫
dV

(
E2 − H 2

4π
+ ϕPα,α

+ 1

c
AαṖα + ρu̇2 − cαβγ δuα,βuγ,δ

)
. (A1)

Macroscopic polarization, Pα = χαβEβ − 2eαβγ uβ,γ +
(1/4π )γαβγ δEβuγ,β , contains piezoelectric and photoelastic
interaction terms, Eα = −ϕ,α − (1/c)Ȧα , Hα = (rot A)α;
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magnetic effects are not included in this calculation. The tensor
coefficients entering the Lagrangian possess symmetries:

eαβγ = eαγβ, γαβγ δ = γγ δαβ = γβαγ δ = γαβδγ ,

cαβγ δ = cγ δαβ = cβαγ δ = cαβδγ . (A2)

Variation of the electromagnetic part of the Lagrangian is
conveniently done in two steps. First we compute variation
over variable Eα , that explicitly enters the Lagrangian:

δLE = 1

4π

∫
dV [(εαβ − 2πχαβ + γαβγ δuγ,δ)Eβ]δEα,

(A3)
εαβ = δαβ + 4πχαβ.

Then we express this variation in the terms of variations of
electromagnetic potentials:

δLE = 1

4π

∫
dV

{(
εαβĖβ − 2πχαβĖβ

+ 1

2
γαβγ δ∂t (uγ,δEβ)

)
1

c
δAα

+
(

εαβEβ,α − 2πχαβEβ,α + 1

2
γαβγ δ(uγ,δEβ),α

)
δϕ

}
.

(A4)

The next step is to compute the variation due to explicitly
entering Eq. (A1) variables Aα and ϕ:

δLA,ϕ = 1

4π

∫
dV

{
1

c

(
2πχαβĖβ − 4πeαβγ u̇β,γ

+ 1

2
γαβγ δ ∂t (Eβuγ,δ) − c(rotH )α

)
δAα

+
(

2πχαβEβ,α − 4πeαβγ uβ,γ α

+ 1

2
γαβγ δ(Eβuγ,δ)

)
,α δϕ

}
. (A5)

The total variation of the electromagnetic part of the La-
grangian consists of the sum of these two parts, δLEm =
δLE + δLA,ϕ :

δLEm = 1

4π

∫
dV

{(
1

c
Ḋα − (rot H)α

)
δAα + Dα,αδϕ

}
,

(A6)

conveniently written through the electric displacement defined
by the equation

Dα = εαβEβ − 4πeαβγ uβ,γ + γαβγ δ Eβuγ,β . (A7)

Variation of the Lagrangian over elastic displacement yields

δLEl =
∫

dV

{
−ρüγ + cαβγ δuα,βδ + eαβγ Eα,β

− 1

8π
γαβγ δ(EαEβ),δ

}
δuγ . (A8)

From Eqs. (A6) and (A8) we extract equations of motion:

Ḋα = c (rot H)α, c (rotE)α = − Ḣα, Dα,α = 0, (A9)

ρüγ = cαβγ δuα,βδ + eαβγ Eα,β − 1

8π
γαβγ δ(EαEβ),δ, (A10)

which are presented in the main text, Eqs. (1)–(3).
Equations of motion can be significantly simplified due to

the fact that the optical field has much larger phase velocity
than the acoustic field. For comparable wave vectors of both
fields this implies that the time variation of the transverse
optical field, Aα , is much faster than the time variation of the
acoustic field, uα , and the related longitudinal piezoelectric
field, ϕ. Therefore one may omit small terms in Eq. (A9)
proportional to the time derivatives of uα , and ϕ, giving

εαβÄβ − c2

μ
�Aα + γαβγ δ Äβuγ,δ = 0. (A11)

Averaging over fast temporal oscillation in Eqs. (A7)
and (A10) eliminates the linear terms proportional to Aα , but
retains the quadratic term essential for the SBS:

ρüγ − cαβγ δuα,βδ + eαβγ ϕ,αβ

+ 1

8πc2
γαβγ δ(ȦαȦβ),δ + 1

8π
γαβγ δ(ϕ,αϕ,β),δ = 0

− εαβϕ,βα − 4πeαβγ uβ,γ α − γαβγ δ(ϕ,βuγ,δ),α = 0.

(A12)

Finally, bearing in mind that under SBS only the optical
field contains a large amplitude component, while piezoelastic
fields are weak, we omit the last nonlinear terms in both lines
of Eq. (A12). The resulting equations are presented in the main
text, Eqs. (5) and (6).
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