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Abstract

Helping is the most common mechanism to guarantee lock-freedom
in many concurrent data structures. An optimized helping strategy im-
proves the overall performance of a lock-free algorithm. In this paper,
we propose help-optimality, which essentially implies that no operation
step is accounted for exclusive helping in the lock-free synchronization
of concurrent operations. To describe the concept, we revisit the de-
signs of a lock-free linked-list and a lock-free binary search tree and
present improved algorithms. Our algorithms employ atomic single-
word compare-and-swap (CAS) primitives and are linearizable.

Additionally, we do not use a language/platform speci�c mecha-
nism to modulate helping, speci�cally, we use neither bit-stealing from
a pointer nor runtime type introspection of objects, making the algo-
rithms language-portable. Further, to optimize the amortized number
of steps per operation, if a CAS execution to modify a shared pointer
fails, we obtain a fresh set of thread-local variables without restarting
an operation from scratch.

We use several micro-benchmarks in both C/C++ and Java to val-
idate the e�ciency of our algorithms against existing state-of-the-art.
The experiments show that the algorithms are scalable. Our imple-
mentations perform on a par with highly optimized ones and in many
cases yield 10%-50% higher throughput.

Keywords: concurrent data structure, linked-list, binary search tree,

lock-free, linearizability, help, language-portable
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Abstract—Helping is the most common mechanism to guar-
antee lock-freedom in many concurrent data structures. An
optimized helping strategy improves the overall performance of
a lock-free algorithm. In this paper, we propose help-optimality,
which essentially implies that no operation step is accounted for
exclusive helping in the lock-free synchronization of concurrent
operations. To describe the concept, we revisit the designs of a
lock-free linked-list and a lock-free binary search tree and present
improved algorithms. Our algorithms employ atomic single-word
compare-and-swap (CAS) primitives and are linearizable.

Additionally, we do not use a language/platform specific
mechanism to modulate helping, specifically, we use neither bit-
stealing from a pointer nor runtime type introspection of objects,
making the algorithms language-portable. Further, to optimize the
amortized number of steps per operation, if a CAS execution to
modify a shared pointer fails, we obtain a fresh set of thread-local
variables without restarting an operation from scratch.

We use several micro-benchmarks in both C/C++ and Java to
validate the efficiency of our algorithms against existing state-of-
the-art. The experiments show that the algorithms are scalable.
Our implementations perform on a par with highly optimized
ones and in many cases yield 10%-50% higher throughput.

Index Terms—concurrent data structure; linked-list; binary
search tree; lock-free; linearizability; help; language-portable;

I. INTRODUCTION

A. Overview
With the ubiquity of multi-core processors, efficient concur-

rent data structures have become ever more important. Lock-
free concurrent data structures, which guarantee that some
non-faulty threads finish their operations in a finite number
of steps, provide robustness and better performance compared
to their blocking counterparts which are vulnerable to pitfalls
such as deadlocks, priority inversion and convoying in an
asynchronous shared memory system.

The literature on lock-free data structures has grown suffi-
ciently over the last decade [1]–[12]. Typically, practical lock-
free designs use single-word atomic compare-and-swap (CAS)
synchronization primitive (henceforth referred to as CAS)
to modify shared variables. Thus to implement a lock-free
version of a dynamic pointer-based data structure, in which
(multiple) mutable links (pointers) are shared among threads
in a concurrent set-up, either by design or due to necessity, one
or more CAS executions are performed to complete a modify
(add or remove) operation.

For example, in the lock-free linked-list of [1], two success-
ful CAS executions are required to complete a remove oper-
ation, whereas in [3] three successful CAS steps are required
for the same operation. In lock-free external binary search
trees (BST) - three successful CAS executions are necessary

to remove a node in [7], whereas in [4] and [8], four such
executions are required for the same purpose. Furthermore,
in [4] and [8], two successful CAS executions are required
to add a node. Naturally, concurrent operations which modify
overlapping sets of links, face each other at a stage where
they would have partially completed and would still need to
perform one or more CAS to complete. Generally, we call this
situation concurrent obstruction.

For operations on a concurrent data structure, linearizability
[13] is the most commonly used consistency framework.
Intuitively, a concurrent data structure is linearizable if every
execution provides time-points, called linearization points, be-
tween the invocation and response of each operation, where it
seems to take effect instantaneously. Thus, using a sequence of
seemingly instantaneous operations, described by the real-time
order of the linearization points, we perceive the concurrent
operations displaying their sequential behaviour.

In a lock-free algorithm, often a CAS step is taken as
the linearization point of an operation performing multiple
CAS. Such a CAS step may not necessarily be the last one.
Most commonly in a remove operation, on the success of the
CAS representing the linearization point, the target node is
considered logically removed, [1]–[5]. This results in each
traversal passing through a logically removed node and hence
extra read steps get counted in step complexity of operations.

A well-known methodology to deal with such situations is
helping. Helping essentially implies that if multiple operations
face concurrent obstruction, or need to perform extra read
while traversing over a transient deformation in form of a
logically removed node, then based on a pre-decided protocol,
the pending steps of one of the operations are completed by the
concurrent operations, before furthering their own course of
steps. This strategy ensures lock-freedom because an operation
of some non-faulty thread definitely progresses with the steps
performed by the thread.

In the prevalent research of lock-free data structure design,
the helping strategy now holds a center stage. In the lock-
free linked-lists of [1], [3], every concurrent operation offers
helping to a remove operation which successfully performs the
CAS to logically remove the target node and is yet to execute
one more CAS. Barnes [14] proposed a helping strategy called
cooperative technique. The cooperative technique applied to
a data structure requires a modify operation to atomically
write the description of planned steps in the node whose
links it targets to modify and thereby a concurrent obstructed



operation ensures completion of those steps in case the original
operation gets delayed. This method is applied in the BST of
[4], [8], where even add operations require helping.

In the lock-free BST of Natarajan et al. [7], the links
are used much in the same way as in the linked-lists of
[1], [3] to modulate helping, and surely the add operations
do not require help. In general, their design provides better
progress conditions for concurrent operations, as observed
experimentally in [7]. However, we can notice that they put
the linearization point of a remove operation at the very last
CAS step, which necessitates a concurrent remove operation to
help a pending remove operation of the same query key, even
though it does not change its return which is false. Clearly,
the number of helping steps are not minimized in this design.

In general, authors of lock-free data structure papers suggest
that one should avoid helping during traversal by an other-
wise unobstructed operation, which in case the obstructing
operation is not delayed, predominantly goes to wastage.
The works analysing experimental performance of concurrent
data structures [10], [11] further emphasise on the same.
Gibson et al. [15] showed that the amortized number of steps
per operation are asymptotically equivalent irrespective of
avoiding help by read operations. It becomes more pertinent
with multi-core processors offering an increasing number of
cores, and thus making it likely that enough threads accessing
a concurrent data structure, proceed without being pre-empted
by the operating system scheduler. Yet a design optimization
to reduce the number of helping steps by modify operations
at concurrent obstruction is largely unattempted.

Another noticeable characteristic of existing lock-free al-
gorithms is that the design descriptions are very close to the
programming language of the sample implementations used by
the authors to validate their claim of efficiency. For example,
in the linked-lists of [1], [3] and the BST of [7], the design is
described in terms of using unused bits from a pointer which
points to a memory-word aligned at a fixed boundary. This
technique is popularly known as bit-stealing in programming
parlance. The correctness proof thereof is inherently connected
to bit-stealing. The lock-free external BST designs of [4], [8]
use polymorphism, class inheritance and type introspection of
objects at runtime (also known as real-time-type-information
or RTTI), to describe their algorithm.

In Java toolkit [16], AtomicMarkableReference and
AtomicStampedReference classes are used to simulate
bit-stealing. In the lock-free skip-list implementation in Java
[17], Doug Lea uses extra splice nodes to simulate the pointers
masked with stolen bits. Such a node is identified with a
specific assignment of one of its fields, for example, the value
field of a marker node points to itself in [17]. A marker node
stores the original pointer in its next field enabling unmasking
of the bit-stolen pointer. Lea remarks that in spite of some
temporary extra nodes, this technique could still be faster for
a traversal with quick garbage collection of removed nodes
and is worth avoiding the overhead of extra type testing.

Usually, the lock-free implementations in C/C++, for exam-
ple in [11] or [6], use their own memory allocation and garbage
collection strategies to improve performance. Obviously, these

implementation environments of C/C++ very much resemble
one in Java and yet they entail each traversal step to unmask
a pointer off a possible stolen bit. This underlies a motivation
to present lock-free algorithms that utilize temporary splice
nodes and thereby achieving language portability. However,
the efficiency of such an implementation in C/C++ remains
still unexplored for the research community.

In literature, the efficiency of a lock-free algorithm is also
presented in terms of the amortized step complexity per
operation [3], [8], [9]. Often in a lock-free data structure,
when a CAS execution in a modify operation returns false, the
local variables in the thread become unusable for a reattempt.
Hence, the thread needs to restart the operation from a clean
location to get a fresh set of local variables. Ordinarily, the
first sentinel node where an operation starts from (head of a
linked-list, root of a BST), is always clean. However, there
can be as many as c restarts per operation if c concurrent
threads access the data structure. Getting a pointer to backtrack
to a local clean location and restarting the operation from
there, improves the amortized number of steps per operation
(counting both read and write). It can be interesting to use
splice nodes to store a pointer to a node in a local clean
location and thus locally restart a modify operation.

The contributions of this work are the following:
1) We introduce the concept of help-optimality which es-

sentially revisits the lock-free algorithms to minimize the
number of CAS steps in helping at concurrent obstructions.

2) We describe help-optimal lock-free designs of a linked-list
and a BST to implement Set abstract data types (ADT)
which export linearizable ADD, REMOVE, and CONTAINS
operations. CONTAINS are wait-free for a finite key space.

3) Our algorithms do not use language specific constructs like
bit-stealing or type introspection of objects at runtime and
hence are language-portable for a programmer.

4) On a CAS failure at a conflict, the modify operations in
our algorithms restart locally to optimize the amortized step
complexity per operation

5) We implement the algorithms in both C++ and Java. Our
implementations perform on a par with highly optimized
implementations and outperform them in many cases.

B. Related Work
The first CAS-based lock-free linked-list was presented by

Valois [18]. He suggested to augment every node with an
auxiliary node to manage synchronization. Heller et al. [19]
were perhaps the first to suggest that the CONTAINS operations
in a concurrent linked-list must progress in a wait-free manner
for a finite key space. They presented lock-based linked-list,
called lazy list, to show that it favours performance. They
also recommended that the CONTAINS operations in Michael’s
lock-free linked-list [2] should not be involved in helping.
Subsequently, to the best of our knowledge, no concurrent
data structure was designed in which CONTAINS operations
are obstructed; interestingly, some researchers called it con-
servative helping, for example in [4]. In the lock-free internal
BSTs presented by Howley et al. [5], Chatterjee et al. [9]
and Ramachandran et al. [12] CONTAINS operations complete
without helping any concurrent operation.



1 class Node {K k; NdPtr lt, rt;};
//NdPtr: A pointer to a Node.

2 root := Node(∞1, Node(∞0).ref , Node(∞1).ref );
3 Dir(NdPtr par, K k) {return k < par.k ? L : R};
Child(NdPtr par, dir cD)

4 return cD == L ? par.lt : par.rt;
ChCAS(NdPtr par, NdPtr exp, NdPtr new, dir cD)

5 if (cD == L) and par.lt == exp then
6 return CAS(par.lt.ref , exp, new);
7 else if (cD == R) and par.rt == exp then
8 return CAS(par.rt.ref , exp, new);
9 else return false;

10 GetDead(K k) {n := Node(k); n.rt := n; return n;}
11 IsDead(NdPtr leaf ) {return leaf .rt == leaf ;}

Search(NdPtr par, NdPtr leaf , K k)
12 while leaf .lt 6= null do
13 par := leaf ; leaf := Child(par, Dir(par, k));

REMOVE(K k)
14 p := root.ref ; ` := root.lt;
15 while true do
16 Search(p.ref , `.ref , k); cD := Dir(p, k);
17 if `.k 6= k or IsDead(`) then return false;
18 if ChCAS(p, `, GetDead(k), cD) then
19 return true;
20 ` := Child(p, Dir(p, k));

CONTAINS(K k)
21 p := root.ref ; ` := root.lt;
22 Search(p.ref , `.ref , k); cD := Dir(p, k);
23 return `.k == k and !IsDead(`);

NewNod(NdPtr a, NdPtr b, K pKey)
24 left := (a.k < b.k ? a : b);
25 right := (a.k < b.k ? a : b);
26 return Node(pKey, left, right, null);

ADD(K k)
27 nd := Node(k).ref ;
28 p := root.ref ; ` := root.lt;
29 while true do
30 Search(p.ref , `.ref , k); cD := Dir(p, k);
31 if !IsDead(`) then
32 if `.k == k then return false;
33 n := NewNod(nd, `, max{k, `.k}).ref ;
34 if ChCAS(p, `, n, cD) then return true;
35 else if ChCAS(p, `, nd, cD) then return true;
36 ` := Child(p, Dir(p, k));

Algorithm 1. Basic Help-optimal Language-portable Lock-free Binary Search Tree

Roadmap: In section II, we present a simple lock-free
BST algorithm as a motivation for a help-optimal design. In
sections III and IV, we present efficient lock-free algorithms
of a linked-list and a BST, to describe the concept of help-
optimally used in practice. Having described it algorithmically,
we specify help-optimality more formally in section V. We dis-
cuss the experimental performance of the presented algorithms
in section VI. Section VII concludes the paper.

II. HELP-OPTIMALITY: MOTIVATION

Let us consider a very simple lock-free design of an external
BST to implement a Set ADT exporting ADD, REMOVE, and
CONTAINS operations as given in algorithm 1.

In this data structure, a node has two pointer fields lt and rt
in addition to a key field k, see line 1. Without ambiguity,
we shall use k to denote a node with key k. The pointer
fields lt and rt connect a node to its left and right children
respectively, which are null in a leaf (also called external)
node. In this BST, the external nodes are data-nodes and the
internal nodes are routing-nodes. There is a symmetric order of
node-arrangement - the nodes in the left subtree of a routing-
node k have keys less than k, whereas in its right subtree the
nodes have keys at least k. We denote the parent of a node k by
p(k) and there is a unique node called root s.t. p(root) = null.
Each parent is connected to its children via links (we indicate
the link emanating from k and incoming to l by k;l; we use
the terms pointer and link interchangeably). The other child
of p(k), i.e. sibling of k, is denoted by s(k).

Pseudo-code convention: N.ref represents the reference to a
variable N. Thus, f(N.ref ) indicates passing N by reference to
a method f. If x is a member of a class C then pc.x returns
field x of an instance of C pointed by pc. dir L and dir R
represent the left and right directions. CAS(A.ref , exp, new)
compares A with exp and updates to new in one atomic step
if A == exp and returns true; else it returns false without any
update at A.

We initialize the BST with a subtree consisting of an internal
node root with key ∞1 and two children with key ∞0 and
∞1, where ∞1>∞0>k ∀ key k, as its left- and right- child
respectively, see fig. 1 and line 2. The method Search, line 12
to 13, is used for traversal by a data structure operation.
Search takes variables par, cur and k as input which are two
node-pointers and a query key, respectively. At the invocation
of Search, cur points to the child of the node pointed by
par in the direction of the subtree which can contain k. At

the termination of Search, cur points to a leaf-node which
is identified by the lt field being null.

∞1

∞1∞0

Fig. 1: Sentinel

To perform REMOVE(k), line 14 to 20, we
use Search to arrive at a leaf-node pointed
by `. If k matches the key at `, we use a CAS
to replace ` with a special node with the same
key, but with its rt field pointing to itself, see
line 18. We call such special nodes Dead. See
method IsDead at line 11 which is used to identify a Dead
node. If the CAS succeeds, REMOVE returns true; if k was
not found or ` was already Dead, REMOVE returns false. For
ADD(k), line 27 to 36, arriving at ` using Search, we use a
CAS to replace ` with (i) a new leaf-node with key k, if ` was
Dead and (ii) a new internal node created using NewNod,
line 24 to 26, if ` was not Dead and k does not match at
`. If the CAS succeeds at line 34 or at line 35, ADD returns
true; if ` was not Dead and contained k, it returns false. A
CONTAINS (k), line 21 to 23, returns true if k is found at a
leaf-node which is not Dead, else it returns false.
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Fig. 2: Performance graph: Lock-Free Basic BST

The main idea of this algorithm is to discard the require-
ment of helping by not cleaning out a node in a REMOVE
operation, which otherwise uses multiple CAS executions.
Thus, a single successful CAS is required by both ADD and
REMOVE operations, much like a lock-free stack. We skip
the proofs of correctness and lock-freedom of this algorithm,
which are straightforward. An interested reader may take them
as a simple exercise. Please note that we have not used any
language specific construct to describe this algorithm.

We implemented algorithm 1 in Java and compared it
against the (author provided) implementation of lock-free BST
of [4] and the lock-free skip-list of Java library [17]. The
set-up and methodology of the experiments are described
in section VI. The throughput and memory usage by the
algorithms to implement a Set formed by at most 220 distinct
keys are plotted in fig. 2a and 2b, respectively.

We see that this simple lock-free BST handsomely outper-
forms state-of-the-art implementations of a skip-list and a BST.



1 class Node {K k; NdPtr nxt, bck;};
2 tailNxt := Node(∞1, null, null);
3 tail := Node(∞0, tailNxt.ref , null);
4 headNxt := Node(−∞0, tail.ref , null);
5 head := Node(−∞1, headNext.ref , null);
Search(NdPtr pre, NdPtr nex, NdPtr cur, NdPtr
suc, K k)

6 while cur.k < k do
7 if IsSp(suc) then cur := suc.nxt;
8 else pre := cur; nex := suc; cur := suc;
9 suc := cur.nxt;
BckTrck(NdPtr pre, NdPtr nex)

10 nex := pre.nxt;
11 while IsSp(nex) do
12 pre := nex.bck; nex := pre.nxt;
13 IsSp(NdPtr c) {return c.k == −∞2;}

14 ADD(K k)
15 p := head.ref ; n := headNxt.ref ;
16 c := headNxt.ref ; s := headNxt.nxt;
17 while true do
18 Search(p.ref , n.ref , c.ref , s.ref , k);
19 if IsSp(s) then
20 while IsSp(s) do
21 c := s.nxt; s := c.nxt;
22 else if c.k == k then return false;
23 if CAS(p.nxt.ref , n, Node(k, c, null)) then
24 return true;
25 BckTrck(p.ref , n.ref ); c := p; s := n;

CONTAINS(K k)
26 c := headNext.nxt;
27 while c.k < k do c := cur.nxt;
28 return c.k == k and !IsSp(c.nxt);

REMOVE(K k)
//Initialize the variables p,n,c,s.

29 r := null; spNd := null; mode := INIT;
30 while true do
31 Search(p.ref , n.ref , c.ref , s.ref , k);
32 if mode == INIT then
33 if c.k 6= k or IsSp(s) then return false;
34 spNd := Node(−∞2, s, p).ref ;
35 while true do
36 if CAS(c.nxt.ref , s, spNd) then
37 if CAS(p.nxt.ref , n, s) then return true;
38 r := s; mode := CLEAN; break;
39 s := c.nxt; if IsSp(s) then return false;
40 spNd.nxt := s;
41 else if s 6= spNd or CAS(p.nxt.ref , n, r) then
42 return true;
43 BckTrck(p.ref , n.ref ); c := p; s := n;

Algorithm 2. Help-optimal lock-free linked-list

However, on account of memory footprint, it performs poorly.
We get enough motivation to design lock-free data structures
which maximally reduces the number of CAS executions by
each ADT operation aided with optimal memory footprints.

III. HELP-OPTIMAL LOCK-FREE LINKED-LIST

A. Design
We implement a linked-list based Set ADT which exports

ADD, REMOVE and CONTAINS operations and in which nodes
are arranged in increasing order of unique keys. The pseudo-
code is given in Algorithm 2. A node has two pointer fields
nxt and bck in addition to the key field k. Without ambiguity,
we shall use k to denote a node with key k. The field nxt
points to the successor of k, denoted by s(k). We describe the
use of bck later; it is null in a regular node. The predecessor
of k is denoted by p(k). On initialization, the linked-list
consists of four sentinel nodes tailNxt, tail, headNxt and
head with keys∞1,∞0, −∞0 and −∞1, respectively, where
∞1>∞0>k ∀ key k. See line 2 to 5 and fig. 3.

−∞1 −∞0 ∞0 ∞1

Fig. 3: Sentinel Nodes

We aim to reduce
the number of CAS
steps for helping not
only during traversal, which is simple but also in the concur-
rent obstruction. In algorithm 1 we observed that obstruction
can be fully avoided in an external BST if REMOVE operations
do not try to clean out the removed nodes. However, that
strategy led to large memory footprint. So, the question we
ask - can we overcome the drawbacks? Observing carefully,
in a linked-list we can leverage the linear structure to connect
the predecessor of the leftmost node to the successor of the
rightmost node of a contiguous chunk of removed nodes by a
single CAS and thus solve the issue. We describe it below.

At the basic level, ADD(k) in a lock-free linked list com-
prises - finding p(k) and s(k) s.t. p(k).k<k<s(k).k, allocating
the node k s.t. k.nxt=s(k) and using a single CAS execution to
swing the p(k).nxt from s(k) to k. We have seen it in [1], [3].
Similarly, REMOVE(k) comprises - finding nodes p(k) and k,
logically removing k using a single CAS and then swing the
p(k).nxt from k to s(k) using a CAS.

However, our aimed implementation as described before
will require additional tricks over this basic idea. Firstly, in
order to make the algorithm language-portable, we shall go
the way of using splice nodes as Lea [17], instead of bit-
stealing like [1], [3]. Thus to logically remove k, we add a

splice node between k and s(k). We fix the key of a splice
node as −∞2, where ∞2>∞1, by which it can be identified,
see line 34 and the method IsSp at line 13.

Secondly, to avoid eager helping during traversal by a
modify operation and yet be able to clean out the logically
removed nodes (along with the splice nodes succeeding them),
we use two trailing node-pointers during traversal. This trick
is similar to [7] applied in BST. We use them to store the
address of the last node, which was not logically removed,
and its successor. Thus, at the termination of a traversal, we
can have reference to the predecessor, say p(k), of the leftmost
node of a contiguous chunk of logically removed nodes. Thus,
when we use a CAS to swing the nxt pointer of p(k) to connect
either to the new node k for ADD or to s(k) for REMOVE, zero
or more logically removed nodes are cleaned out.

p(k) k s(k)
−∞2

n(k)

p(k) n(k) k s(k)
(i)

(ii)

p(k) k s(k)
−∞2

n(k)
(iii)

Fig. 4: Steps of REMOVE in the linked-list.

And thirdly, to backtrack to a clean zone on CAS failures, we
use the idea of back-pointers as applied in [3]. When allocating
a splice node, we save the address of p(k) in its bck field
which is always null for a regular node. Thus, our approach
differs from [3] in the following ways - (a) We do not use
an extra CAS to fix (flagging) the pointer p(k).nxt. Given the
use of trailing pointers, we do not often travel a long chain of
back pointers. And (b) we do not set back-pointer of a regular
node and thus, save an extra atomic write of a shared pointer.
Indeed, a splice node in our algorithm splices two node paths.

The basic steps of REMOVE(k), are shown in the fig. 4.
The node n(k) denotes the first node of a possible contiguous
chunk of logically removed nodes before and adjacent to k. In
case there is no such chunk before k, n(k) coincides with it.

We perform traversal for a modify operation using the
method Search, line 6 to 9. We advance the variables pre
and nex only if suc is not a splice node, that is when cur is
not a logically removed node. Otherwise, we advance cur to
the node saved at the nxt of the splice node suc. In REMOVE
and ADD, at the first call of Search, the variable pre points



to head, nex, cur point to headNxt and suc points to the
successor of headNext, see lines 15 and 16. Thus, at the
termination of a traversal, when cur points to a node with
key not greater than k, pre points to the predecessor of the
first node of a possible contiguous chunk of logically removed
nodes and nex points to the first node of such a chunk.

To perform REMOVE(k), line 29 to 43, at the termination of
a traversal, we check the key at the node pointed by c, and if
k does not match at it or the node pointed by s is found splice
(indicating node pointed by c is already logically removed),
we return false, line 33. Otherwise, we perform a CAS to add
a splice node between c and s to logically remove c, line 36.
The steps taken up to this point are identified by a variable
mode with value INIT. After this step, mode changes to
CLEAN and we attempt to swing the p.nxt from n to s using
a CAS at line 37. If the CAS fails, we save s as r, and perform
a BckTrck at line 43 to find a fresh pair of p and n.

In the method BckTrck, line 10 to 12, we keep on
traversing the bck of splice nodes until we find the first node
which is not logically removed. If the call of BckTrck was
due to a CAS failure caused by an ADD of a new node, added
between pre and nex, then it is guaranteed that the chunk of
contiguous logically removed nodes must have been cleaned
out. We explain it in the next paragraph.

The operation ADD(k), line 15 to 25, performs a similar
traversal. At the termination of the traversal, we check if the
node pointed by c is logically removed by checking whether
s points to a splice node, line 19. If the node at c is not
logically removed and contains the query key k, we return
false; else, we find the first node succeeding it which is still
not logically removed, line 21, and attempt a CAS to add the
new node between p and c to return true. On a CAS failure,
we perform BckTrck as explained before and reattempt the
previous steps. Thus, on a successful ADD it cleans out a
complete chunk of contiguous logically removed nodes.

Note that, a modify operation in algorithm 2 differs from
one in [1], [3], in the sense that on a CAS failure at p(k).nxt,
we do not perform any help before reattempting rather selfishly
attempt the CAS from a fresh location. The operations are
essentially selfish in our algorithm.

A CONTAINS operation, line 26 to 28, traverses in a wait-
free manner and returns true only if the node at which it
terminates, the one pointed by c, is not logically removed and
contains the query key, else it returns false.
B. Correctness and Lock-freedom

It is easy to observe that the k field of a node is never
modified after initialization. Scanning through the pseudo-
code, we can observe that once a splice node is added at the
nxt of a node, no CAS is performed at it. Further, unless the
nxt of a node k is splice, it is not removed from the list. Thus,
we can show that a node p(k) is present in the list, when
we connect a new node k or successor s(k) of a removed
node k to it. And, we can observe that a traversal terminates
with c pointing to a node which has a key greater than or
equal to k in all the operations, which in turn shows that
we maintain the order of node arrangement in an ADD or
a REMOVE operation. At the initialization, the sentinel nodes

form a valid ordered list. Hence, using induction we can prove
that the ADT operations maintain a valid ordered list.

The linearization point for an unsuccessful ADD operation
and a successful CONTAINS operation is at line 9 during a
call of Search and at line 28, respectively, when we read
c.nxt. For a successful ADD or a REMOVE operation, the
linearization point lies at the first successful CAS execution to
add a new or a splice node. For an unsuccessful CONTAINS,
the linearization point is (a) just after that of the concurrent
REMOVE operation which (logically) removed k, if k existed
in the list at the invocation point and (b) at the invocation
point itself, if k was not present in the list at that point. The
linearization point of an unsuccessful REMOVE is determined
similarly to an unsuccessful CONTAINS operation.

We can observe that the CAS to add a splice node is
reattempted only if a new node is added at the nxt of k. Before
every reattempt of a CAS to swing the nxt pointer of p(k),
in both ADD and REMOVE, we perform a BckTrck and a
Search which guarantees that we have a fresh set of variables
for references of p(k) and n(k). Hence, it is guaranteed that
a modify operation can not take an infinite number of steps
without a modification in the data structure. It shows the lock-
freedom of the ADD and REMOVE operation. It is easy to
observe that a non-faulty CONTAINS always finishes in a finite
number of steps if the key space is finite and thus is wait-free.
C. Amortized Step Complexity

We can observe that the splice nodes are never adjacent.
Similar to [10], we do not perform help in a CONTAINS
operation. Additionally, in ADD and REMOVE as well, no step
is taken for helping during traversal. On a CAS failure to add
a splice node, we do not perform any traversal. On a CAS
failure to add a new node or to clean out a chunk of logically
removed nodes, we perform backtrack and do not start from
the head. Following the same method as [3], we can show
that the amortized number of steps per operation is O(n+cI),
where cI is the total number of concurrent operations between
invocation and response of o, called interval contention [20]
and n is the size of list at the invocation of o. In the light of
theorem 1 of [15], it is equivalent to O(n+cP ), where cP is
the maximum number of concurrent operations at any point
in the lifetime o, called point contention [21].

IV. HELP-OPTIMAL LOCK-FREE BST
Having described a simple lock-free BST and an improved

lock-free linked-list, where we do not spend any CAS execu-
tion for helping, we are ready to describe an efficient lock-free
BST, in which we introduce the notion of help-awareness.
A. Design

The pseudo-code of the design is given in algorithm 3. The
symmetric order of the BST is same as that in section II. We
borrow the notations from algorithm 1 along with the methods
Dir, Child, ChCAS, GetDead, IsDead and NewNod as
they are described there. We denote the parent of p(k) by g(k).

The main drawback of the lock-free BST of algorithm 1
was removing a node k by replacing it with a Dead node and
not cleaning the Dead node out. It caused memory-wastage.
Therefore, in algorithm 3 we make a REMOVE operation clean
out the added Dead node. Consequently, the ADD operations



1 class Node {K k; NdPtr lt, rt, bck;};
2 root := Node(∞1); grRoot := Node(∞0);
3 root.lt := Node(∞2).ref ; root.rt := Node(∞1).ref ;
4 grRoot.lt := root.ref ; grRoot.rt := Node(∞0).ref ;
Search(NdPtr gPar, NdPtr nex, NdPtr par, NdPtr
leaf , K k)

5 while leaf .lt 6= null do
6 if IsSp(leaf ) then par := leaf .rt;
7 else gPar := par; nex := leaf ; par := leaf ;
8 leaf := Child(par, Dir(par, k));

GetNxt(NdPtr leaf )
9 return IsSp(leaf ) ? leaf .rt : leaf ;

10 GetKey(NdPtr leaf ) {return GetNxt(leaf ).k;}
GetDeadBl(NdPtr gPar, K k)

11 n := GetDead(k); n.bck := gPar; return n;
GetSp(NdPtr gPar, NdPtr leaf )

12 if IsDead(leaf ) then
13 return GetDeadBl(gPar, leaf );
14 else return Node(−∞3, leaf .lt, leaf , gPar);

AddSp(NdPtr par, NdPtr gPar, dir sD)
15 while true do
16 sib := Child(par, sD);
17 if IsBl(sib) then return sib;
18 else if ChCAS(par, sib, GetSp(gPar, sib), sD) then
19 return sib;

20 IsSp(NdPtr leaf ) {return leaf .k == −∞3;}
REMOVE(K k)

21 g := grRoot.ref ; n := root.ref ;
22 p := root.ref ; ` := root.lt;
23 dNdBl := null; sib := null; mode := INIT;
24 while true do
25 Search(g.ref , n.ref , p.ref , `.ref , k);
26 cD := Dir(p, k); pD := Dir(g, k);
27 if mode == INIT then
28 if GetKey(`) 6= k or IsDead(`) then
29 return false;
30 dNd := GetDead(k);
31 if !IsSp(`) and p 6= g then
32 dNdBl := GetDeadBl(g, k);
33 if ChCAS(p, `, dNdBl, cD) then
34 sib := AddSp(p, g, !cD); mode := CLEAN;
35 if IsSp(sib) then return true;
36 else if IsDead(sib) then
37 ChCAS(g, n, dNd, pD); return true;
38 else if ChCAS(g, n, sib, pD) then return true;
39 else if ChCAS(g, n, dNd, pD) then return true;
40 else
41 if ` == dNdBl and p 6= g then
42 if ChCAS(g, n, sib, pD) then return true;
43 else return true;
44 BckTrck(g.ref , n.ref , k); p := g; ` := n;

BckTrck(NdPtr gPar, NdPtr nex, K k)
45 nex := Child(gPar, k);
46 while IsSp(nex) do
47 gPar := nex.bck; nex := Child(gPar, k);

48 IsBl(NdPtr leaf ) {return leaf .bck 6= null;}
ADD(K k)

49 g := grRoot.ref ; n := root.ref ;
50 p := root.ref ; ` := root.lt; nd := Node(k).ref ;
51 while true do
52 Search(g.ref , n.ref , p.ref , `.ref , k);
53 cD := Dir(p, k); pD := Dir(g, k);
54 if !IsDead(`) then
55 if GetKey(`) == k then return false;
56 nI := NewNod(nd, GetNxt(`), k+GetKey(`)

2 ).ref ;
57 if IsSp(`) then
58 if ChCAS(g, n, nI, pD) then return true;
59 else if ChCAS(p, `, nI, cD) then return true;
60 else
61 if IsBl(`) then
62 sib := AddSp(p, g, !cD);
63 if !IsDead(sib) then
64 nI := NewNod(nd, GetNxt(sib), k+p.k

2 ).ref ;
65 if ChCAS(g, n, nI, pD) then return true;
66 else if ChCAS(g, n, nd, pD) then return true;
67 else if ChCAS(p, `, nd, cD) then return true;
68 BckTrck(g.ref , n.ref , k); p := g; ` := n;

Algorithm 3. Help-optimal lock-free binary search tree

will have to be aligned with the REMOVE operations which
now make structural changes in the BST.

In a sequential set-up, removing a node k from an external
BST is a one step process of modifying the link g(k);p(k)
to connect s(k) to g(k). This process also cleans out the
removed node. It essentially removes the node p(k) from the
(unordered) linked-list described by the nodes on the path from
the root to s(k). Thus, to perform REMOVE(k) with cleaning
out k in a lock-free BST can be visualized as a two stage
process - (a) single CAS to logically remove k by replacing
it with a Dead node as in algorithm 1 and (b) two CAS
steps to remove p(k) - adding a splice node between p(k) and
s(k) to logically remove p(k) and then swinging the pointer
g(k);p(k) to connect s(k) to g(k), as in algorithm 2. Let us
call these stages LREMOVE and PREMOVE, respectively. This
understanding gives us the fundamental idea of algorithm 3.

∞1

∞1∞0

∞2

∞2

Fig. 5: Sentinel

LREMOVE is quite straightforward. Now,
to perform PREMOVE efficiently, along the
lines of algorithm 2, we carry two trailing
node-pointers during the traversal for a mod-
ify operation. Thus, the method Search in
algorithm 3, line 5 to 8, becomes a blend
of the same method in the previous two
algorithms. At the termination of Search, the variable gPar
points to the parent of the root of the sub-tree in which all the
nodes are logically removed. To avoid special cases arising in
placing the trailing node-pointers in an empty BST, we use a
set of sentinel nodes as shown in line 2 to 4 and fig. 5.

We assign key −∞3 for a splice node, such that
∞3>∞2>∞1>∞0>k ∀ key k. It ensures that at a splice
node a traversal always goes right. Hence, we connect s(k)
to rt of a splice node. We copy the lt field of s(k) to the
splice node that it connects to, which if null, indicates that
s(k) is a leaf node. Thus, a traversal may terminate at a splice
node. Considering that, we always use the method GetNxt to
access the actual leaf node, see line 9; and following that the
method GetKey gives the key at that leaf node, see line 10.

Also, to achieve local restart as in algorithm 2, we include a
bck pointer in the node structure to implement splice nodes
which can provide reference to a node in a local clean zone.

Now consider the following two cases:
(A) An ADD operation o just before performing its CAS step

gets pre-empted by the operating system scheduler. Let g be
the trailing node-pointer pointing to the last internal node of
the traversal path which is not logically removed. Suppose that,
by the time o wakes up, the BST changes in a way that both the
children of the node pointed by g are replaced by Dead nodes
and the node itself cleaned out of the BST. Consequently, o
will have no link to reach a clean zone except restarting from
the root of the BST, which we want to avoid. To tackle this
issue, we use the bck pointer of a Dead node, which replaces
a node k in a REMOVE operation, to store g. We call a Dead
node with a non-null bck field a DeadBl node.

(B) Two concurrent REMOVE operations o1 and o2, at the
end of their traversal, target to remove two leaf nodes k1 and
k2, which are children of the same internal node, say p. Also
suppose that o1 and o2 have same pair of trailing node-pointers
- g and n - in their thread-local memory and thus for both
o1 and o2 there is access to no link to backtrack above g
in the BST. Suppose that LREMOVE stage of both o1 and
o2 finished without contention, and thus after that both the
children of p are DeadBl. Therefore, after its PREMOVE, if
o1 successfully connects the DeadBl node k2 to g, o2 will
not get a node-pointer to reach a local clean zone to get a
fresh g. It becomes untenable to restart o2 in such a situation
without accessing root, which we want to avoid (it may well
be with o1 symmetrically). To tackle this issue, we let o2 fall
back to the approach of algorithm 1 and instead of cleaning
the DeadBl node out it adds a Dead node containing key k2
at g and gets out of the system to ensure progress. Therefore,
similar to algorithm 1, we make an ADD operation replace a
Dead node with a new leaf node, knowing that no REMOVE
operation takes step to clean out such a node.

With basics in place, we are ready to describe the pseudo-
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Fig. 6: Steps of REMOVE in the BST.

code of REMOVE and ADD operations of algorithm 3; a CON-
TAINS operation works absolutely same as that in algorithm 1.

The steps of a REMOVE(k) operation, line 21 to 44, are
shown in fig. 6. Let n(k) be the last logically removed internal
node in the traversal path obtained by a call of Search at
line 25, and g(k) be its parent as shown in fig. 6 (i). n(k)
coincides with p(k) in case there does not exist a chunk of
logically removed nodes above p(k) in the traversal path.
Replacing the target node k with a DeadBl node containing
same key, fig. 6 (ii), logically removes k, line 33. After that, we
add a splice node between p(k) and s(k) to logically remove
p(k) as shown in fig. 6 (iii). Finally, update the link g(k);n(k)
to connect s(k) to g(k) as shown in fig. 6 (iv). If all these CAS
executions are successful, we complete the REMOVE operation
with cleaning out the DeadBl node.

In the stage LREMOVE itself, if the leaf-node at which
traversal terminates, say `, does not contain k or is found
Dead (note that a DeadBl node is also Dead), REMOVE(k)
returns false, line 29. If ` is a splice node, it shows that the
actual node to remove is pointed by GetNxt(`) which is `.rt,
see line 9. To make a REMOVE operation selfish, we do not
perform any CAS to help the pending REMOVE. However, we
do not have a possibility for a local restart to get a fresh g(k)
after the completion of LREMOVE, similar to case (B) above.
Therefore, we replace the link g(k);n(k) by a Dead node
containing k, and return true if CAS succeeds, line 39.

In the stage PREMOVE, the first step is to add a splice node
between p(k) and s(k), line 34. We use the method AddSp,
line 15 to 19, to do that. In AddSp, if s(k), denoted by sib,
is found splice or DeadBl, indicated by non-null bck link,
we return it as it is, line 17, because both indicate that the
child-link of par indicated by sib is never updated ever after.
If sib is Dead, we perform a CAS, line 19, to replace it with a
DeadBl node connecting its bck field to gPar, done at line 13,
so that a concurrent ADD does not replace it directly.

If the method AddSp returns a splice node at line 34, it
indicates that a concurrent ADD operation is working selfishly
to progress (we describe it later) and we can safely allow the
remaining steps of REMOVE(k) to be assimilated in the steps
of ADD. Considering that, REMOVE(k) return true, line 35.
We call this behaviour of REMOVE(k) its help-awareness
which is a main component of a help-optimal implementation.

On the other hand, if AddSp returns a Dead or DeadBl

node, it indicates a scenario of case (B) and we handle it
accordingly, see line 37. Finally, if a regular leaf node is
returned as sib, we attempt a CAS to connect it to g(k) to
return true at line 38. If this CAS fails, it indicates that
g(k);n(k) has changed and therefore we perform a BckTrck
at line 44 similar to algorithm 2 and reattempt the CAS if
required, see line 42. Along the lines of algorithm 2, the steps
taken to add splice node between p(k) and s(k) are identified
by the value of a variable mode set as INIT and after that
mode is changed to CLEAN, line 34.

To add a new node in an external BST, we add a new sub-
tree. We use the following midpoint rule to determine the key
at the root of the new sub-tree.
Rule 1 (Midpoint rule). Let k be a query key and A be
the (partially ordered) set of keys stored in a sub-tree. Let
al≤a ∀ a∈A and au≥a ∀ a∈A. To add a new node at the
root of the sub-tree, assign a key kp at the root of the new
sub-tree such that kp= k+au

2 if k>au and kp= k+al
2 if k<al.

The mid-point rule maintains the symmetric order of the
BST. Intuitively, rule 1 optimizes the average hight of the BST.
We do not delve into an analytical discussion of this rule in the
present work. In experiments, we observed that this technique
improves the average throughput.

An ADD(k), line 49 to 68, performs a traversal using
Search to reach a leaf node `. If ` is neither Dead nor
DeadBl, we find the regular leaf node using GetNxt(`).
It calls the NewNod method to create a new internal node
pointed by nI. We apply rule 1 at line 56. If ` is a regular
node, it perform as in algorithm 1. However, if ` is a splice
node, it does not take steps to help the pending REMOVE
operation and behaves in a selfish manner to directly update
g(k);n(k) to nI using a CAS. If CAS succeeds, it not only
ensures success of ADD(k), but also guarantees the completion
of some pending REMOVE operations. If CAS to connect nI
at line 58 or 59 succeeds, we return true.

On the other hand, if ` is found Dead, ADD(k) behaves
along the lines of algorithm 1, see line 67. And finally, if ` is
DeadBl, to ensure progress, we first fix the sibling of ` using
the method AddSp, line 62, and then add either a new node,
line 66, or a new internal node, line 65, at g(k) in a selfish
fashion. The call of AddSp at line 62 may assimilate the
steps of a concurrent pending REMOVE operation, which being
help-aware, terminates immediately, as discussed before. Note
that, to apply rule 1 here, we use p.k instead of GetKey(sib)
because the latter may not provide the required bound of the
set of keys stored in the sub-tree rooted at sib.

On a CAS failure, we perform a BckTrck at line 68 to get
a fresh set of thread-local variables and reattempt.
B. Correctness and Lock-freedom

Proving that the modify operations maintain a valid ex-
ternal BST requires similar approach as that in algorithm 2.
Therefore, without repeating them, we mention that we derive
an induction based proof building on the arguments that the
sentinel nodes form a valid BST at the initialization and no
modify operation invalidates the symmetric order of the BST.

In this algorithm, the linearization points of a successful
ADD, REMOVE and CONTAINS operations and an unsuccess-



ful ADD operation are similar to their counterparts in algo-
rithm 2. A CONTAINS or a REMOVE operation returns false
also in case the node containing query key is found Dead,
in addition to the cases already discussed in algorithm 2. The
linearization point of such a CONTAINS or REMOVE operation
is taken at own invocation point.

Finally, we can prove the lock-freedom of algorithm 3 using
arguments which are parallel to those used in algorithm 2. Very
evidently, a CONTAINS is wait-free for a finite key universe.

V. HELP-OPTIMALITY: SPECIFICATION
We consider a shared memory system U comprising of a

finite set of threads Λ and a finite set of shared variables V .
At time t, the states of Λ and V are denoted by Λt and Vt,
respectively. Let Υ be a lock-free data structure formed by
variables v∈V . Let Oλ be the set of operations performed
by a λ∈Λ on Υ. A step s of an operation o∈Oλ comprises
local computations in λ and at most a single execution of
an atomic primitive a∈{read, write, CAS} on a shared
variable v∈V . A state Υt of Υ is formed by variables v∈Vt.
On execution of a step s, Υ can change from a state Υt to
another state Υt′ . We denote such a state change by ∆Υt,t′ .
Let So denote the set of steps to complete an operation o∈Oλ.

We call s∈So an altruistic step of o, if (a) it is executed
to apply a state change ∆Υt,t′ (b) ∆Υt,t′ is necessary for
completion of a concurrent operation o′∈Oλ′ and (c) ∆Υt,t′

is not necessary for completion of o. We call an operation o
selfish if no step s∈So is altruistic.

We call s∈So a wasted step of o, if (a) it is executed to apply
a state change ∆Υt,t′ (b) ∆Υt,t′ is necessary for completion
of o (c) ∆Υt,t′⊆∆Υt,t′′ (c) ∆Υt,t′′ has already been applied
by a set of steps {s′1, . . . , s′n}, where s′i∈So′i is a step of a
concurrent operation o′i∈Oλ′

i
. We call o∈Oλ help-aware if it

performs no more than one wasted step.
A lock-free data structure Υ is called help-optimal if every

operation o∈Oλ for each λ∈Λ is both selfish and help-aware.
In algorithms 1 to 3, we can observe that every operation sat-
isfies the requirements of both selfishness and help-awareness.
We skip a rigorous definitional discussion on selfishness, help-
awareness, and help-optimality to a future work.

Censor-Hillel et al. [22] defined help-freedom, which intu-
itively implies that an operation does not altruistically help
a concurrent (slow) operation to guarantee wait-freedom. In
contrast to that, in lock-free algorithms, help-optimality not
only implies an absence of altruistic helping but also indicates
that an operation is aware of intended modification getting
applied as a part of a modification by a concurrent operation.
Thereby, in a finite execution, the aggregate number of steps
is optimized. In this work, we do not delve into a formal
comparison between help-optimality and help-freedom.

VI. EXPERIMENTAL EVALUATION
A. Overview

In this section, we present a detailed performance analysis
of our implementations against a number of existing concur-
rent Set implementations both in C/C++ and Java.

We compare the following concurrent linked-lists:
1) HO-LL: An implementation of lock-free linked-list of [1],

where a CONTAINS does not clean out logically removed

nodes, which is an optimization over the original algorithm.
2) Lazy-LL: Lock-based linked-list of [19], in which logically

removed nodes are ignored during traversal. Operations
acquire locks attached to target nodes, then perform updates.

3) CWT-LL: Lock-free linked-list described in section III.
We compare the following lock-free binary search trees:

1) EFRB-BST: Lock-free external BST of [4], in which both
ADD and REMOVE require help to complete at a conflict.

2) LF-SKIPLIST: Concurrent skip-list implementation that is
part of the java.util.concurrent package [17].

3) NM-BST: Lock-free external BST of [7], in which multiple
nodes under REMOVE by different threads are cleaned out
together similar to algorithm 3. The modify operations
restart from root of the BST at each CAS failure.

4) CWT-BST: Lock-free BST described in section IV.
5) CWT-Simple-BST: Simple Lock-free BST of section II.
B. Experimental Set-up

We performed our evaluations on a dual-socket server with
a 3.4 GHz Intel (R) Xeon (R) E5-2687W-v2 having 16
physical cores (32 hardware threads), 16 GB of RAM, and runs
Ubuntu 13.04 Linux (Kernel version: 3.8.0-35-generic x86_64)
with Java HotSpot (TM) 64-Bit Server VM (build 25.60-b23,
mixed mode). We compiled all Java implementations with
javac version 1.8.0_60 and used the runtime flags -d64
-server. C/C++ implementations were compiled with g++
version 4.9.2, O3 optimization. We used Google’s TCMalloc
library [23] to reduce dynamic memory allocation overheads.

We compared the performance of various implementa-
tions measuring throughput as Million operations per second
(Mops/s). We measured the change in heap-size by comparing
the memory consumption of the JVM after loading the set
with initial elements and after execution of the workload.
We considered memory consumption value ascertained after
6 calls of System.gc() method, after which it usually
converges. Each experiment was run for 5 seconds, then the
average over 6 trials was taken under the following parameters:
1) Workload Distribution: Similar to [7], we considered three

workload distributions: (a) write-dominated: 0% search,
50% add and 50% remove. mixed: 70% search, 20% add
and 10% remove, and (c) read-dominated: 90% search, 9%
add and 1% remove.

2) Set Size:. The maximum set size depends on the range
of the keys. We consider the following key ranges for the
linked-lists: 27, 29, 210 and 212. For the BSTs we consider
the ranges: 210, 214, 217 and 220. In each experiment, the
set is pre-loaded with approximately half the keys in the
key range to ensure consistent results.

C/C++ and Java Implementations: As we pointed out in
section I, many concurrent data structures are designed with
language specific dependencies and as such offer varying
performance in different languages. Additionally, original im-
plementations of the algorithms are available either in Java or
C/C++. With this in mind, we implemented our new language-
portable lock-free algorithms in both C/C++ and Java.

To ensure a fair comparison, we implemented our C/C++
versions of the algorithms as part of the ASCYLIB library
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Fig. 7: Performance comparison of concurrent linked-list algorithms

[11], with SSMEM - a memory allocator with epoch-based
garbage collection. We used the same benchmarks which are
part thereof. HO-LL in Java employs RTTI. For locking, Lazy-
LL uses ReentrantLock in Java and a ticket lock in C/C++.
C. Performance Results and Discussion

Figure 7 depicts the comparative performance of linked-list-
based Set algorithms in Java (fig. 7a) and C/C++ (fig. 7b). At
low contention i.e. with read-dominated workloads and large
key space sizes, the lists scale with increasing thread count.
CWT-LL performs on a par with HO-LL in both Java and
C/C++. In the high contention cases, mainly write-dominated
and small key space sizes, Lazy-LL degrades significantly with
increasing thread count. This is mainly due to the increased
contention on the locks and cache misses resulting from the
lock migrations. Contention increases as the list gets shorter in
size with a smaller key space size. At high contention CWT-LL
outperforms HO-LL by 5% for Write-Dominated and 3%-6%
for Mixed workloads. This can be attributed to the local restart
and the ability to clean out multiple nodes in a single step.

In C/C++ we observe similar relative performance, however,
the list performance degrades significantly when the cores are
saturated with threads (most especially in the write-dominated
workload). The effect of oversubscribing the cores with more
threads is bigger in Lazy-LL than that in other algorithms as a
result of increased lock-contention. Performance degradation
due to NUMA effects is also more pronounced in the C/C++
implementation, however, the absolute throughput values are
still higher than those for the Java implementation.

Figure 8 shows the comparative performance of consid-
ered lock-free BST and skip-list algorithms in Java (8a)
and C/C++ (8b). We have not included CWT-Simple-BST
here considering its incomparable memory footprint. It is
clear that among the Java implementations, CWT-BST offers
the best throughput for all key space sizes and workloads.

CWT-Simple-BST outperforms EFRB-BST by 10%- 50% and
LF-SKIPLIST 20%-100% over Write-Dominated and Mixed
workloads. We further observe that all algorithms scale with
increasing thread count until it saturates the available cores.
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Fig. 9: Heap size change

With regards to C/C++, NM-
BST implementation outperforms
other implementations in the high
contention cases. This can be ex-
plained in terms of the advantage
of bit-stealing technique over ex-
plicit object allocations. Bit mask-
ing, unmasking and other bitwise
operations in C/C++ are incredibly simple and faster than
object creation, however not portable to other high-level pro-
gramming languages. On the other hand, as we increase the
key space size, CWT-BST offers performance similar to NM-
BST, especially in Mixed and Read-Dominated workloads,
even dominating in the low contention case with key space
(220) by 3%-15%. This can be attributed to a comparative
cost of object allocation but lowered cost of reading a pointer
without bit unmasking. It can be noted that although EFRB-
BST implementation is based on bit-stealing, CWT-BST out-
performs it in every considered scenario by 10%-50%.

Memory Management and Garbage Collection: With
each REMOVE operation requiring an extra splice node the
load on garbage collector definitely increases. However, as
illustrated by fig. 9, in a garbage collected environment,
CWT-BST experiences no unexpected growth in heap-memory
usage. In fact, on this account, it fares better than EFRB-BST.
Though the figure presents a case for one workload setting, we
observed similar relative memory usage with every workload
settings. Nevertheless, We do have to caution that these
techniques should not be used without memory reclamation.
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Fig. 8: Performance comparison of lock-Free BST algorithms

VII. CONCLUSION AND FUTURE WORK
In this paper, we introduced the notion of help-optimality in

a lock-free algorithm. Intuitively, in a lock-free data structure
satisfying help-optimality, at a conflict over modification of a
shared variable, we avoid both offer and acceptance of help
in form of a step comprising an atomic primitive execution.
Help-optimality consists of the notions of selfishness and help-
awareness. Selfishness implies optimization of the count of
steps of CAS executions by an obstructed operation, whereas
help-awareness implies the same for an obstructing operation.

The present work is mostly experimental in nature to
demonstrate the utility of the concept of help-optimality in a
lock-free linked-list and a BST. In future, we plan to develop
formal specifications of the introduced notions.

Following a state-of-the-art implementation of lock-free
skip-list in Java library, in this paper, we designed the lock-free
data structures to provide a language-portable implementation.
We experimentally showed that such an implementation per-
forms on a par with highly optimized implementations in C++
which use the technique of bit-stealing. The Go programming
language, which reasonably focuses on concurrency, provides
pointers without pointer-arithmetic and does not provide type-
inheritance. We believe that with growing popularity of such
languages, designing language-portable lock-free data struc-
tures will be increasingly significant.
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