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Almost a decade ago, transformation optics established a geometrical perspective to describe the interaction
of light with structured matter, enhancing our understanding and control of light. However, despite their
huge technological relevance in applications such as optical circuitry, optical detection, and actuation,
guided electromagnetic waves along dielectric waveguides have not yet benefited from the flexibility and
conceptual simplicity of transformation optics. Indeed, transformation optics inherently imposes metamaterials
not only inside the waveguide’s core but also in the surrounding substrate and cladding. Here we restore
the two-dimensional nature of guided electromagnetic waves by introducing a thickness variation on an
anisotropic dielectric core according to alternative two-dimensional equivalence relations. Our waveguides
require metamaterials only inside the core with the additional advantage that the metamaterials need not be
magnetic and, hence, our purely dielectric waveguides are low loss. We verify the versatility of our theory with
full wave simulations of three crucial functionalities: beam bending, beam splitting, and lensing. Our method
opens up the toolbox of transformation optics to a plethora of waveguide-based devices.
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Geometrical reasoning played a crucial role in the historical
development of optics as a scientific discipline, and its
successes are associated with the names of great scientists
like Snell, de Fermat, Huygens, Newton, and others. To
this day, the design of many optical components, e.g.,
microscopes, displays, and fibers, is based on the ray picture
of light, valid for electromagnetic waves inside media with
slowly varying refractive index distributions [1]. Through the
advent of metamaterials and photonic crystals [2–8]—artificial
materials whose electromagnetic properties are determined
by subwavelength unit cells—light may be manipulated by
enhanced optical properties at the micro- and nanoscale. As
a result, there is a growing need for analytical tools to model
and design metamaterial devices that act upon the electric and
magnetic components of light [9].

With the design and experimental demonstration of
invisibility cloaks [10–14], transformation optics proved to
be an adequate geometrical tool to explore the full potential
of metamaterials. Succinctly, transformation optics relies on
the form invariance of Maxwell’s equations to determine
appropriate material properties, i.e., permittivity and
permeability distributions, that materialize unconventional
light flows based on the deformation of a coordinate system.
Using this geometrical perspective of the interaction of light
with structured matter, researchers have discovered and
reconsidered many optical phenomena in three-dimensional
metamaterials with regard to wave propagation [15–17],
subwavelength sensing [18], Cherenkov radiation [19],
effective gauges [20], and many more.

To enhance control on the propagation of surface waves
confined to a single interface [21–23], several research groups
successfully applied the existing framework of transformation
optics to surface waves along graphene-dielectric [24,25] and
metal-dielectric interfaces [26–30]. Indeed, at frequencies far
away from the surface plasmon resonance of a metal-dielectric
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interface, the evanescent tails of the surface plasmons extend
substantially into the dielectric material. As a result, surface
plasmons can be made to follow coordinate-based trajectories
if the dielectric is replaced by a metamaterial according to the
conventional recipe of transformation optics. Unfortunately,
the propagation range of surface plasmon polaritons is severely
limited by dissipative loss in the metallic substrate [31,32],
especially at infrared and optical frequencies. Therefore,
although a simple metal-dielectric interface is amenable to
transformation optics, it is not an ideal platform for long-range
processing of surface waves.

In this contribution, we introduce a radically different
formulation of transformation optics applicable to electromag-
netic waves confined to a purely dielectric slab waveguide. The
resulting low-loss metamaterial waveguides can mold the flow
of light in optical circuitry, optical detection, and actuation
applications [33–35]. In the first part of this contribution, we
apply a two-dimensional conformal coordinate transformation
to the symmetry plane of a slab waveguide [36]. These two-
dimensional transformations are naturally compatible with a
planar waveguide structure and automatically lead to nonmag-
netic metamaterial implementations according to our alterna-
tive equivalence relations. In the second part of this contribu-
tion, we discuss the effectiveness and versatility of our equiv-
alence relations with three proof-of-concept waveguide com-
ponents: a beam bender, a beam splitter, and a conformal lens.

I. TRANSFORMING TWO-DIMENSIONAL GUIDED
MODES

The main obstruction for the application of the conventional
framework of transformation optics is the following: in order
to implement a two-dimensional coordinate transformation
of light flows along the symmetry plane of the waveguide
[Figs. 1(a)–1(c)], the transformation optics recipe imposes
a bulky, magnetic, and lossy three-dimensional material
of infinite extent. Indeed, because the transformation is
insensitive to the spatial coordinate perpendicular to the
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FIG. 1. Our design uses a nonmagnetic uniaxial metamaterial
waveguide of varying thickness to impose two-dimensional flows of
light. (a) The symmetry plane of a slab waveguide is locally stretched
by a two-dimensional conformal coordinate transformation (b) so
that light bends over 90◦ as if it experiences a geometry γ (x,y) (c).
(d) Accordingly, the vector space of the incident guided mode with
propagation constant β (green) is stretched in the symmetry plane
(e). The total wave vectors lie respectively on elliptical (hyperbolic)
isofrequency contours of the wave equation in blue (red) inside
the core (outer) region. According to the traditional recipe of
transformation optics, the exponential tails (k1) and thickness a are
preserved because metamaterials are implemented in the core and
outer layers. (f) To preserve confinement and to impose a globally
stretched propagation vector without metamaterials in the outer
layers, a thickness variation ã ensures the continuity conditions at
the interfaces at the expense of changes in the exponential tails (k1).

waveguide, the material implementation of transformation
optics is also independent of this coordinate. Moreover,
the conventional application of transformation optics
requires impedance-matched magnetic metamaterials whose
implementation is inherently lossy [37,38]. Here, we
demonstrate that in the case of two-dimensional conformal
transformations, the transformed guided light flows can be
materialized inside nonmagnetic metamaterial cores of varying
thickness without the need for material implementations in
the surrounding regions. To this aim, we introduce a set of
two-dimensional equivalence relations.

Our analysis starts from the consideration that—instead of
the full Maxwell equations—only those equations that govern
guided waves are required to construct a two-dimensional
framework. In particular, the transverse-magnetic guided
modes of a slab waveguide with thickness 2a and dielectric
profile ε(z)—consisting of a high-index core layer εcore and
low-index outer layers εout—are determined by two scalar
equations: the Helmholtz equation, which governs the in-plane
propagation along the waveguide, and the dispersion relation,
which imposes the continuity of the confined mode profile at
the material interfaces. This concept is illustrated in Fig. 1, by
looking at our design process in the spatial [Figs. 1(a)–1(c)]
and reciprocal space [Figs. 1(d)–1(f)] of a guided mode.

For the initial isotropic, homogeneous waveguide
[Fig. 1(d)], the reciprocal space is completely determined by
the propagation constant β along the waveguide symmetry
plane and the angular frequency ω. Indeed, the guided

mode consists of a fixed confined transverse profile that is
characterized by a transversal wave vector component k2 inside
the core region and an exponential decay with extinction
coefficient k1 in the surrounding layers. These are defined in
terms of β, ω and the dielectric profile ε(z) by the Helmholtz
wave equation of the in-plane magnetic field

[
�xy ± k2

1,2 + εout,core
ω2

c2

]
H|| = 0, (1)

where �xy is the Laplacian associated with the waveguide
symmetry plane and the plus (minus) sign relates to k1 (k2).
In other words, the Helmholtz equation [Eq. (1)] constrains
the total wave vectors (β,k1,2) to a hyperbolic isofrequency
contour in the surrounding regions (red) and to an ellipsoidal
isofrequency contour (blue) inside the core. Although both
contours are compatible for a range of propagation constants
β in the green band, only one specific propagation constant
β of the incident mode—indicated by the green line—allows
for a continuous mode profile at the material interfaces z =
±a. Mathematically, the selected propagation constant β of a
transverse magnetic fundamental mode satisfies the following
dispersion relation:

tan[k2(ω,β)a] = εcore k1(ω,β)

εout k2(ω,β)
. (2)

To motivate our equivalence relations, we now consider the
effects of a two-dimensional conformal transformation on the
incident mode [Fig. 1(e)]. In the Supplemental Material [39],
we show that the Helmholtz wave equation, describing the
propagation along the waveguide with induced geometry
γ (x,y), is materialized by a nonmagnetic, uniaxial material
ε̃⊥ = γ (x,y)ε(z), ε̃|| = ε(z). To address the transformation in
reciprocal space, we emphasize that each two-dimensional
conformal transformation locally reduces to a constant stretch-
ing X of the symmetry plane. As a consequence, the transfor-
mation locally stretches the in-plane propagation vector of
the guided mode β̃ = Xβ and preserves the transverse mode
profiles characterized by the variables k1 and k2. According
to the conventional three-dimensional equivalence relations of
transformation optics, this global deformation of the in-plane
wave vector needs to be imposed by nontrivial materials both
inside the core and the surrounding regions of the waveguide,
leading to an inconvenient bulky design.

We now introduce the main idea of this paper: by modifica-
tion of the core region’s thickness, we preserve the transformed
in-plane solutions—identified by the in-plane propagation
constant β̃—without material implementations in the cladding
and substrate regions [Fig. 1(f)]. In other words, we only
implement the nonmagnetic, uniaxial medium inside the core
region, to preserve both the transverse wave vector k2 and
the desired propagation constant β̃, and we allow for changes
in the extinction coefficient k2

1 = γ (x,y)β2 − εout(ω2/c2). In
accordance with Eq. (2), the continuity of the fields at
the interfaces is restored by a variation of the thickness ã

[Fig. 1(f)],

ã = 1

k2
arctan

⎛
⎝εcore

√
γ (x,y)β2 − εout

ω2

c2

εout k2

⎞
⎠, (3)
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FIG. 2. Demonstration and numerical verification of the versatility of the two-dimensional equivalence relations for a beam bender (a)–(c),
beam splitter (d)–(e), and Möbius lens (f)–(g). In all these examples, both the anisotropy (visualized by surface coloring on the symmetry
plane of the waveguide) and the thickness variations of the core medium (visualized by the height of the floating surface representing the
upper interface z = ã) manipulate the in-plane magnetic fields in a desired way and correspond to technologically feasible parameters. Without
thickness variations (c), the in-plane magnetic fields cannot complete the bend.

which preserves the initial dispersion (β,ω) despite the modi-
fied extinction coefficient. The transformed wave equation and
the continuity of the tangential fields are thus imposed by the
anisotropic permittivity and the thickness variation of the core,
respectively.

II. NONMAGNETIC METAMATERIAL WAVEGUIDES

In the second part of this paper, we illustrate the versatility
and effectiveness of our nonmagnetic equivalence relations
using three conformal transformations: an exponential map
implementing a beam bender [Figs. 2(a)–2(c)], a curve-
factor Schwarz-Christoffel transformation implementing a
beam splitter [Figs. 2(d)–2(e)], and a Möbius transformation
implementing a lens [Figs. 2(f)–2(g)]. For each of these
examples we have visualized the upper half of our symmetric
waveguide, representing the anisotropy of the metamaterial
cores with a surface coloring on the waveguide symmetry
plane and the thickness variation of the upper interface at
z = ã with a floating surface. Furthermore, we note that
conformal transformations have a rich history in physics and
engineering [40,41]; e.g., they also contributed to several
three-dimensional transformation-optical devices [16], so that
a variety of two-dimensional conformal transformations are
available from literature.

As a first example we use a logarithmic map [16] to
design a beam bender [Figs. 2(a)–2(c)]. This two-dimensional
implementation requires modest thickness variations and
anisotropies, illustrated for a beamwidth w = 24a and outer
radius R = 82.7a in terms of the initial thickness 2a =
0.4 μm. Qualitatively, comparisons of in-plane magnetic fields
(Fig. 2(b) and Figs. S4–S7 of the Supplemental Material [39])
to the conventional transformation-optics implementation con-
firm that the combined variation of the anisotropy (ε⊥/ε||) =
γ (x,y) in the core and the thickness ã(x,y) lead to efficient

beam bends, although eventually the size of such a beam
bend will be limited by the Miller limit [42]. Moreover, as is
shown by Fig. 2(c), anisotropic beam bends without thickness
variations cannot preserve a global propagation constant due to
incompatible continuity conditions. Therefore, guided waves
cannot propagate without thickness variations.

To test the equivalence in a quantitative way, we determine
the throughput while reducing the outer radius R of the
bends at a fixed initial width w (Fig. 3). In this way, the
anisotropy of the core (ε⊥/ε||) increases with the benchmark
(w/R). Impressively, these throughputs range from 84% to
93% for microscale inner radii between 3.26 μm and 25.9 μm,
comparable to designs by three-dimensional transformation
optics (86% to 95%). However, when using an isotropic
medium ε̃core = γ (x,y)εcore together with the required thick-
ness variations, the throughputs fall considerably at radii close
to the effective incident wavelength λ = 1.5 μm, leading to
poor beam benders (Fig. 3 and Fig. S6). Indeed, isotropic
media do not preserve the incident polarization of the guided
mode so that the thickness variation only partially applies,
i.e., only to the transverse-magnetic part of the light. Thus,
we have established that anisotropy and thickness variations
are both indispensable to our equivalence on a qualitative and
quantitative level.

As a second example, we design a beam splitter in
Figs. 2(d)–2(e) that relies on a curve-factor Schwarz-
Christoffel transformation [41]. The coordinate lines and light
flows follow the outline of a polygon with parametrized
corners and curved boundaries specified by the curve factor
[Figs. 2(d)]. Our simulations confirm that the in-plane mag-
netic field splits successfully when it reaches the first vertex
[Fig. 2(e)]. To estimate the performance of the beam split-
ter, we calculate the splitting efficiency η = 1 − (Pin/Ptotal),
which compares the transmitted power inside the excluded
region (Pin) to the total power at the end facet of the splitter
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FIG. 3. The throughput of our beam bender is evaluated for
seven outer radii R at fixed beam width w, where increases in
anisotropy are represented by increases in the benchmark w

R
, as a

way to demonstrate the effectiveness of our equivalence relations. In
particular, we compare three implementations: the conventional de-
sign of transformation optics (red dots), our two-dimensional design
(purple squares), and an isotropic implementation with appropriate
thickness variation (blue triangles). The throughputs of our two-
dimensional metamaterial cores are impressive, lying close to those of
the three-dimensional implementation while isotropic metamaterial
cores cannot maintain their performance as inner radii approach
the free space wavelength λ = 1.5 μm. Mesh convergence studies
resulted in negligible error bars, although we suspect a systematic
error since the three-dimensional implementations represent the ideal
impedance-matched implementation corresponding to a theoretical
throughput of unity.

(Ptotal). The efficiency is adversely affected by the singularities
of a Schwarz-Christoffel transformation, associated to vertices
that impose vanishing rescalings X = 0. Indeed, rescalings
below a specific threshold (Fig. S2) lead to optically dilute
cores which cannot confine light. This is expressed mathemat-
ically by an imaginary extinction coefficient k1. Fortunately,
subcritical rescalings—crucial to some applications such as the
invisibility cloak [10–12]—can be eliminated by combining
embedded transformations and truncations with appropriate
global rescalings (Fig. S8). For example, our beam splitter
easily attains a splitting efficiency of 81%.

As a final example, we implement a two-dimensional lens
based on the Möbius transformation [16]. Our design in
Figs. 2(f)–2(g) requires realistic anisotropies and thickness
variations and connects continuously to the untransformed
waveguide behind the lens thanks to a suitable embedding
(Fig. S10). Figure 2(g) confirms that the embedding does not
affect the performance: the lens focuses in-plane magnetic
fields extremely well, and more importantly, behaves in the

FIG. 4. Instead of manipulating individual light modes with
numerous distinct fibers or waveguides, two-dimensional transfor-
mation optics manipulates an incident plane wave holistically by
combining beam splitters, beam benders, and lenses in an integrated
setup. Individual rays of an incident plane wave (yellow) are split
and bent by the geometry-induced anisotropic material (visualized
by surface coloring on the symmetry plane of the waveguide) and
the thickness variation (visualized by floating surface representing
the upper interface z = ã). The deformed coordinate grid is projected
both onto the waveguide’s symmetry plane and the core-cladding
interface.

same way as a three-dimensional transformation-optical lens
(Fig. S11). Indeed, the spot size (determined by 1

e
of the

maximal amplitude) is as small as 1.6λ0 with free space
wavelength λ0.

While this report is focused on a transformation optics
framework applicable to two-dimensional waveguides, we
want to briefly discuss the feasibility of the designs discussed
above. Each of the three devices requires only dielectric
response and no magnetic response. The ε|| component of
the permittivity tensor is constant over the entire structure
and can be chosen arbitrarily, and the anisotropies are fairly
small. Such structures can be fabricated using 3D printing
(direct laser writing) by using small subwavelength ellipsoids
as constituent elements [7,38,43], similar to how optical
ground-plane cloaks have been realized [43].

The beam bender, beam splitter, and conformal lens consti-
tute three independent examples that illustrate how our two-
dimensional equivalence relations allow for the manipulation
of guided waves in coordinate-designed waveguides with
realistic material parameters. Therefore, we envision that our
results open up the geometrical toolbox of transformation
optics for the manipulation of two-dimensional guided waves
on multifunctional optical chips (Fig. 4).
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