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In all living organisms, the phosphorylation of proteins modulates various aspects of their

functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling,

gene expression, and differentiation. Protein phosphorylation is also involved in the global

control of DNA replication during the cell cycle, as well as in the mechanisms that cope

with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type

kinases and phosphatases for signal transduction, and protein phosphorylation is

involved in numerous cellular processes. However, it remains unclear whether protein

phosphorylation in bacteria can also regulate the activity of proteins involved in

DNA-mediated processes such as DNA replication or repair. Accumulating evidence

supported by functional and biochemical studies suggests that phospho-regulatory

mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics

and interactomics studies identified numerous phosphoproteins involved in various

aspect of DNAmetabolism strongly supporting the existence of such level of regulation in

bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms

for kinase activation and signaling. This review reports the current knowledge on the

phosphorylation of proteins involved in the maintenance of genome integrity and the

regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes.
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INTRODUCTION

In all living cells, many cellular processes are controlled through the reversible phosphorylation of
proteins on serine, threonine and tyrosine (Ser/Thr/Tyr) which results from the opposing action
of kinases and phosphatases. While the role of Ser/Thr and Tyr -protein kinases (STYKs) and
phosphatases in cellular regulations is extensively documented in eukaryotes, the Ser/Thr/Tyr
signaling network in bacteria has a more recent history (Hunter, 2000; Pereira et al., 2011; Dworkin,
2015; Kalantari et al., 2015; Manuse et al., 2015). Analysis of microbial genomes revealed that
Hanks-type Ser/Thr kinases (eSTKs) and phosphatases (eSTPs) are also widespread in bacteria
(Zhang et al., 2007; Zhu et al., 2014). However, prokaryotic Tyr phosphorylation is carried out
by a different family of enzymes, the bacterial tyrosine kinases or BY-kinases, which do not share
the structural homology with eukaryotic STYKs. Instead, BY-kinases possess structural features
characteristic of P-loop ATPases. BY-kinases as well as eSTKs have been shown to regulate cell-cycle
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events, cell adaptation to environmental cues, and virulence
in many species (Wright and Ulijasz, 2014; Zhu et al., 2014;
Kalantari et al., 2015).

Phosphorylation provides a sensitive and dynamic way to
regulate protein activity, stability, protein interaction and sub-
cellular localization. Global regulators are often targeted by more
than one kinase, altering the expression of many genes. The
phosphorylation of the transition state transcription regulator
AbrB of Bacillus subtilis by three Ser/Thr kinases, PrkC, PrkD,
and YabT, leads to the deregulation of numerous target genes
during the transition of vegetative to stationary growth (Kobir
et al., 2014). In the human pathogen bacteria Staphylococcus
aureus, the phosphorylation of the global regulator MgrA
also modulates gene expression in a growth phase-dependent
manner (Truong-Bolduc et al., 2008). By adding a local negative
charge, phosphorylation can positively or negatively affect the
DNA binding of transcriptional factors to their regulatory
sequences, thus participating in eliciting the cellular response.
A recent example of tyrosine phosphorylation-mediated positive
regulation is illustrated by the regulator SalA, which undergoes
a conformational change upon phosphorylation at tyrosine 327
that enhances its DNA binding affinity for scoC upstream
regulatory sequences (Derouiche et al., 2015a). Conversely,
phosphorylation of the virulence regulator SarA of S. aureus
at serine 75 within the HTH-DNA binding region negatively
modulates its ability to bind DNA leading to the negative
regulation of gene expression (Didier et al., 2010).

It was also observed that modulation by phosphorylation
of the DNA binding of transcriptional factors plays a role
in the regulation of chromosomal replication. The two
component regulators MtrA of Mycobacterium tuberculosis
and CtrA of Caulobacter Crescentus are illustrative examples
that phosphorylation acts to temporally restrain access of the
replication initiator protein DnaA to the origin DNA sequence
oriC (Didier et al., 2010; Pini et al., 2015). A similar strategy was
proposed to account for the role of the master regulator Spo0A
in negatively controlling DNA replication initiation by inhibiting
the DnaA-dependent DNA duplex unwinding during sporulation
in Bacillus subtilis (Castilla-Llorente et al., 2006; Xenopoulos and
Piggot, 2011; Boonstra et al., 2013). Hence, taking advantage of
the versatility of transcription factors combined with the limited
time frame during which they contact their regulatory sequence,
bacterial cells have evolved multifunctional regulatory proteins
able to act in both gene expression and replication initiation
control.

However, little is known about the role of phosphorylation in
directly regulating the DNA-binding activity of proteins involved
in other DNA-mediated processes. Large-scale phosphoproteome
studies have been conducted in bacteria, covering gram-negative
as well as gram positive species (Macek et al., 2007, 2008; Voisin
et al., 2007; Soufi et al., 2008; Ravichandran et al., 2009; Prisic
et al., 2010; Schmidl et al., 2010; Ge et al., 2011; Manteca et al.,
2011; Misra et al., 2011; Bai and Ji, 2012; Elsholz et al., 2012;
Esser et al., 2012; Hansen et al., 2013; Soares et al., 2013; Yang
et al., 2013; Kennelly, 2014; Ortega et al., 2014; Ravikumar et al.,
2014; Nakedi et al., 2015; Pan et al., 2015). These databases reveal
an increasing number of bacterial proteins phosphorylated on

Ser/Thr/Tyr, involved in a variety of cellular processes related to
DNA metabolism (Pan et al., 2015). Recently, a protein-protein
interaction (PPI) network centered on B. subtilis S/T/Y protein
kinases and phosphatases emerged as a powerful tool in bacterial
signal transduction research, highlighting the existence of many
regulatory pathways controlled by phosphorylation during DNA
replication, chromosomal segregation and cytokinesis (Shi et al.,
2014b). As with transcription factors, we can anticipate that
phosphorylation could modulate protein-binding properties to
DNA as well as to other proteins. Therefore, a great challenge
is now to understand the role of protein phosphorylation in
the coordination and integration of the different DNA processes
during the bacterial cell cycle. In this review we will focus
on novel aspects of regulation in bacteria that resemble those
taking place in eukaryotes. We will highlight the growing
evidence for phosphorylation of proteins involved in many
DNA-related processes and the existence of scaffold proteins
that act as signaling integrators by facilitating interaction and
co-localization of kinases and their targets.

IDENTIFICATION OF PHOSPHO-PROTEINS
INVOLVED IN DNA-RELATED PROCESSES
IN BACTERIA

In living cells, the genome is continuously exposed to
endogenous and exogenous damaging agents. If not repaired,
the replication of damaged chromosomes can cause fork stalling
or collapse and subsequent genome instability and possibly
cell death (De Septenville et al., 2012; Merrikh et al., 2012;
Cortez, 2015; Dungrawala et al., 2015). Sensing and repairing
DNA damage is therefore necessary to ensure chromosome
integrity. Upon detection of damage, eukaryotic cells relay
information through signal transduction cascades to coordinate
a biological response including cell cycle arrests and DNA
repair pathways (Iyer and Rhind, 2013). These signaling cascades
generally involve the successive activation of protein kinases,
punctuated by the phosphorylation of protein effectors of
DNA damage checkpoint and processing (Subramanian and
Hochwagen, 2014). These checkpoints involve sensor proteins
that identify DNA-related disorders, converting them into
phosphorylation events that modulate the functions of specific
target proteins. In eukaryotes, the evolutionary conserved ATM
(ataxia-telangiectasia mutated) and ATR (ATM and Rad 3-
related) Ser/Thr kinases are considered a paradigm for such
transduction cascades (Cimprich and Cortez, 2008). These two
master regulators act in response to double strand breaks (ATM),
as well as in replication initiation control and repair of damaged
forks (ATR) to coordinate cell cycle, repair, and replication
(Shechter et al., 2004a,b; Cimprich and Cortez, 2008; Lee et al.,
2015).

In most bacteria, the replication of the circular chromosome
requires the coordinated action of conserved proteins to perform
the initiation, elongation and termination steps (Langston and
O’Donnell, 2006; Langston et al., 2009). Initiation is mediated by
the replication initiator protein DnaA, which binds to specific
origin sequences. This forms a nucleoprotein-structure leading
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to the unwinding of the duplex DNA for subsequent loading of
the replication machinery or replisome. A bacterial replisome is
usually composed of a type III DNA polymerase, a DNA helicase,
and a sliding clamp with an associated clamp loading protein
complex. During elongation, the replication factory encounters
numerous road blocks or damage that can cause fork arrests
(Pomerantz and O’Donnell, 2010; Mettrick and Grainge, 2015).
As in eukaryotes, mechanisms are required to repair and/or
restart the ongoing replication fork to preserve genomic integrity
(Merrikh et al., 2012). In all living organisms, chromosome
replication must be coordinated with other cellular pathways
(Sclafani and Holzen, 2007).

In bacteria, however, whether phosphorylation events
play a role in sensing replication stresses remains to be
ascertained. Recent studies highlight kinase activation by cross-
phosphorylation in B. subtilis and M. tuberculosis, suggesting
the existence of bacterial signaling cascades comparable to
those found in eukaryotes (Baer et al., 2014; Shi et al., 2014a).
Although the complement of proteins targeted by these potential
regulatory cascades are not yet known, increasing numbers of
large scale mass spectrometry-based proteomics studies find
that proteins involved in various DNA-related processes are also
phosphorylated in bacteria (Macek et al., 2007, 2008; Voisin
et al., 2007; Soufi et al., 2008; Ravichandran et al., 2009; Prisic
et al., 2010; Schmidl et al., 2010; Ge et al., 2011; Manteca et al.,
2011; Misra et al., 2011; Bai and Ji, 2012; Elsholz et al., 2012; Esser
et al., 2012; Hansen et al., 2013; Soares et al., 2013; Yang et al.,
2013; Kennelly, 2014; Ortega et al., 2014; Ravikumar et al., 2014;
Nakedi et al., 2015; Pan et al., 2015; Table 1). Another approach,
based on yeast two-hybrid detection of protein binding partners
of B. subtilis protein kinase and phosphatase, identifies numerous
potential DNA-binding protein substrates, some of them already
characterized as phosphoproteins in other studies, or further
validated in vivo and/or in vitro (Shi et al., 2014b; Table 2,
Figure 1). This study lays the foundation for investigating the
role of phosphorylation in modulating DNA-related processes in
this bacteria.

An example of phosphorylated multifunctional protein
playing a role in various DNA processes is the single-stranded
DNA-binding protein SSB (Mijakovic et al., 2006; Vujaklija and
Macek, 2012). In bacteria, SSB proteins assemble onto DNA as
homodimers or tetramers, each unit composed of an N-terminal
DNA binding domain and a C-terminal intrinsically disordered
tail that mediates interaction with numerous proteins (Kozlov
et al., 2015). The bacterial SSB proteins aremainly associated with
the replication machinery at the replicating forks and serve as
central hubs to coordinate DNA replication and repair (Lecointe
et al., 2007; Costes et al., 2010; Antony et al., 2013; Bentchikou
et al., 2015). As in bacteria, the eukaryotic single strand binding
protein RPA has multiple roles in protecting ssDNA, sensing and
promoting repair of DNA damage via PPIs (Oakley and Patrick,
2010; Maréchal and Zou, 2015). In particular, phosphorylation
of RPA negatively regulates its binding to DNA as well as
its interaction with protein partners (Binz et al., 2003; Oakley
et al., 2003). B. subtilis possesses two single strand binding
proteins SSBA and B, respectively phosphorylated at a tyrosine,
identified as Tyr82 in SSBA (Mijakovic et al., 2006). Additionally,

a phospho-site at Thr52 was also identified in SSBB (Table 1; Jers
et al., 2010; Elsholz et al., 2012). Examination of the 3D- structure
of the SSB/DNA complex shows that Tyr82 (as well as the Thr52
neighbor residue Trp54) are involved in stacking with DNA
(Yadav et al., 2012). This strongly supports the observation that
phosphorylation of SSBA at residue Tyr82 negatively modulates
its binding onto DNA in vitro and regulates the cell response to
DNA damage (Mijakovic et al., 2006). Therefore, the role of SSB
protein phosphorylation in modulating the cellular DNA damage
response might be evolutionarily conserved in eukaryotes and in
prokaryotes.

Another strong case was made for the interaction of the DNA
replicative helicase DnaC by the Ser/Thr kinase PrkD, validated
by in vitro assays and high correlation of co-expressions (Shi
et al., 2014b). Phosphorylation of numerous components of the
DNA replication machinery, as well as of proteins involved in the
different steps of the replication cycle, have been identified in one
or more bacteria among Escherichia, Pseudomonas, Helicobacter,
Camplylobacter, Listeria, Bacillus, Mycoplasma, Clostridium,
Deinoccocus, Synechoccus, and Streptococcus genus (Tables 1,
2). Orthologs of the highly conserved DNA polymerase PolA,
DNA helicase DnaC and single stranded binding protein SSB
were found phosphorylated, potentially reflecting the existence
of generic regulatory mechanisms to control their activity across
species.

The conservation of phosphorylation within protein domain
families is indicative of proteins with high regulatory potential
(Maathuis, 2008). Remarkably, several phosphoproteomic
analyses have reported phosphorylation of the two largest
subunits β and β’ of the RNA polymerase machinery at serine,
threonine or tyrosine, in seven bacterial species (Table 1). In
eukaryotes, the recruitment of factors to the elongating RNAPII
is regulated by the differential and dynamic phosphorylation of
serine, threonine and tyrosine residues within the C-terminal
domain of the Rpb1 large subunit during the transcription
cycle (Heidemann et al., 2013). Although the existence
of phosphorylation of the main components of the RNA
polymerase in both bacteria and eukaryotic cells does not imply
similar regulatory mechanisms, it does suggest that evolutionary
constraints on regulating gene expression led to targeting the
transcription machinery for modulating its activity and its ability
to interact with other factors.

BIOLOGICAL ROLE OF
PHOSPHO-PROTEINS IN COORDINATING
DNA- METABOLISM WITH TRANSITION
STATE AND CELLULAR DEVELOPMENT IN
B. SUBTILIS

A large panel of proteins involved in various DNA replication and
repair pathways are identified with phospho-sites, suggesting that
phosphorylation could play a role in coordinating the different
cellular responses to DNA damage and integrity of the replicating
chromosome (Table 1). Regulation by phosphorylation of DNA-
related processes has been documented in B. subtilis. One process
involves the DNA recombinase RecA, a multifunctional protein
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TABLE 1 | Phosphorylation of proteins involved in DNA-dependent machineries and processes in bacteria.

Pathway Target KO Function Tyr-P Ser/Thr-P

D
N
A
re
p
a
ir
a
n
d
re
c
o
m
b
in
a
tio

n

MUTL K03572 DNA Mismatch repair factor MUTL_BACSU; B1XQB2_SYNP2 B1XQB2_SYNP2

MUTS K03555 DNA Mismatch repair protein B1XM45_SYNP2

MUTM K10563 FPG/DNA-N glycosylase B1XQB2_SYNP2 B1XQB2_SYNP2

UVRB K03702 UvrABC system protein B UVRB_STRP2

UVRD K03657 ATP-dep. DNA helicase (PcrA) PCRA_BACSU; O26013_HELPY O26013_HELPY; Q3K0V8_STRA1

RUVX K07447 Holliday junction resolvase RUVX_ECO57

RECA K03553 SOS repair/DNA processing RECA_BACSU; RECA_ECO57 RECA_BACSU; RECA_THET8

RECG K03655 ATP-dependent DNA helicase RECG_MYCTO

MFD K03723 Transcription-repair factor B1XL29_SYNP2 Q04N58_STRP2; B1XL29_SYNP2

RECQ K03654 ATP-dependent DNA helicase B1XQJ2_SYNP2

REP K03656 ATP dependent DNA helicase Q3K4P8_PSEPF

DINI K12149 DNA-damage-inducible DINI_ECO57

RECT K07455 DNA-Binding protein RECT_ECOLI

EX1 K01141 Exodeoxyribonuclease I (sbsB) Q8X8T9_ECO57; Q9HW85_PSEAE Q9HW85_PSEAE

EX3 K01142 Exodeoxyribonuclease III EX3_ECOLI

EX7L K03601 Exodeoxyribonuclease VII (A) EX7L_THETN

EX7S K03602 Exodeoxyribonuclease VII (B) EX7S_STRA1

RADA K04485 DNA repair protein (radA, sms) Q8XB28_ECO57, B1XJC1_SYNP2 B1XJC1_SYNP2

SSBB Single-stand binding protein B SSBB_BACSU

D
N
A
re
p
lic
a
tio

n

SSBA K03111 Single-stand binding protein A SSBA_BACSU; Q04JK9_STRP2; SSBA_BACSU

DPO1 K02335 DNA polymerase I DPO1_BACSU; B1XL22_SYNP2 B1XL22_SYNP2; DPO1_ECOLI

LIGA K01972 DNA ligase A DNLJ_LISMO; DNLJ_ECOLI

DNAA K02313 DNA replication initiator DNAA_STRCO

DPO3 K02337 Replicative DNA polymerase PolC HOLE_ECO57

DNAB K02314 Replicative DNA helicase B1XQ85_SYNP2 B1XQ85_SYNP2; DNAC_BACSU

DPO3A K02337 DNA polymerase III (θ su) HOLE_ECO57

TUS K10748 DNA replication terminus protein TUS_ECO57

N
u
c
le
o
id

st
ru
c
tu
re

a
n
d

D
N
A
c
o
n
d
e
n
sa

tio
n

GYRB K02470 DNA gyrase β subunit GYRB_ECO57 GYRB_BACSU

TOP1 K03168 DNA topoisomerase 1 TOP1_MYCTO; Q8X7C5_ECO57 TOP1_MYCPN

PARC K02621 DNA topoisomerase 4 suA PARC_PSEAE

NAP K09747 Nucleoid associated protein B1XLF8_SYNP2;

DBH1 K03530 DNA-binding protein HupA DBH1_BACSU; Q92A74_LISMO;

DBH1_STRCO; B1XQQ7_SYNP2

DPS K04047 DNA protection during starvation DPS_ECOLI; DPS_ECO57 DPS_ECOLI; DPS_CAMJE; DPS_LISMO;

Q3K7V3_PSEPF

DBHB K03530 DNA-binding protein HupB DBHB_ECOLI; Q6N5M1_RHOPA

HNS K03746 DNA-binding protein H-NS HNS_ECOLI; HNS_ECO57 HNS_ECOLI

STPA K11685 DNA-binding protein StpA CNU_ECO57, STPA_ECOLI

SMC K03529 Chromosome partition protein Q84EC7_SYNP2; SMC_MYCTO

C
h
ro
m
.

se
g
re
g
a
tio

n PARA K03496 ATPase, ParA-family B1XQR5_SYNP2

FTSK K03466 DNA translocase FtsK FTSK_ECO57; FTSK_ECOLI FTSK_MYCTO

R
e
st
ric

tio
n

m
o
d
ifi
c
a
tio

n

B1XQZ6 K01156 Type III R/M-Helicase B1XQZ6_SYNP2

ECO57IR K00571 Type IIS R/M-methyltransferase O26046_HELPY Q04K98_STRP2

HSDM K03427 Type I restriction enzymeM O25953_HELPY O33298_MYCTU

D
N
A
tr
a
n
sc

rip
tio

n RPOB K03043 RNA polymerase β subunit RPOB_BACSU; RPOB_ECO57 RPOB_ECOLI; RPOB_MYCTO RPOB_CLOAB;

RPOB_STRP2; RPOB_BACSU

RPOC K03046 RNA polymerase β’ subunit RPOC_BACSU; RPOC_ECO57 RPOC2_SYNP2; RPOC_CLOAB;

RPOC_BACSU; C4WZY6_KLEPN

RPOC_CLOAB; RPOC_STRP2

(Continued)

Frontiers in Microbiology | www.frontiersin.org 4 February 2016 | Volume 7 | Article 184

http://www.genome.jp/dbget-bin/www_bget?ko:K03572
http://www.uniprot.org/uniprot/B1XQB2_SYNP2
http://www.uniprot.org/uniprot/B1XQB2_SYNP2
http://www.genome.jp/dbget-bin/www_bget?ko:K03555
http://www.uniprot.org/uniprot/B1XM45_SYNP2
http://www.genome.jp/dbget-bin/www_bget?ko:K10563
http://www.uniprot.org/uniprot/B1XQB2_SYNP2
http://www.uniprot.org/uniprot/B1XQB2_SYNP2
http://www.genome.jp/dbget-bin/www_bget?ko:K03702
http://www.uniprot.org/uniprot/UVRB_STRP2
http://www.genome.jp/dbget-bin/www_bget?ko:K03657
http://www.uniprot.org/uniprot/O26013_HELPY
http://www.uniprot.org/uniprot/O26013_HELPY
http://www.uniprot.org/uniprot/Q3K0V8_STRA1
http://www.genome.jp/dbget-bin/www_bget?ko:K07447
http://www.uniprot.org/uniprot/RUVX_ECO57
http://www.genome.jp/dbget-bin/www_bget?ko:K03553
http://www.uniprot.org/uniprot/RECA_ECO57
http://www.uniprot.org/uniprot/RECA_BACSU
http://www.uniprot.org/uniprot/RECA_THET8
http://www.genome.jp/dbget-bin/www_bget?ko:K03655
http://www.uniprot.org/uniprot/RECG_MYCTO
http://www.genome.jp/dbget-bin/www_bget?ko:K03723
http://www.uniprot.org/uniprot/B1XL29_SYNP2
http://www.uniprot.org/uniprot/Q04N58_STRP2
http://www.uniprot.org/uniprot/B1XL29_SYNP2
http://www.genome.jp/dbget-bin/www_bget?ko+K03654
http://www.uniprot.org/uniprot/B1XQJ2_SYNP2
http://www.genome.jp/dbget-bin/www_bget?ko:K03656
http://www.uniprot.org/uniprot/Q3K4P8_PSEPF
http://www.genome.jp/dbget-bin/www_bget?ko:K12149
http://www.genome.jp/dbget-bin/www_bget?ko:K12149
http://www.uniprot.org/uniprot/DINI_ECO57
http://www.genome.jp/dbget-bin/www_bget?ko:K07455
http://www.uniprot.org/uniprot/RECT_ECOLI
http://www.genome.jp/dbget-bin/www_bget?ko:K01141
http://www.uniprot.org/uniprot/Q8X8T9_ECO57
http://www.uniprot.org/uniprot/Q9HW85_PSEAE
http://www.uniprot.org/uniprot/Q9HW85_PSEAE
http://www.genome.jp/dbget-bin/www_bget?ko:K01142
http://www.uniprot.org/uniprot/EX3_ECOLI
http://www.genome.jp/dbget-bin/www_bget?ko:K03601
http://www.uniprot.org/uniprot/EX7L_THETN
http://www.genome.jp/dbget-bin/www_bget?ko:K03602
http://www.uniprot.org/uniprot/EX7S_STRA1
http://www.genome.jp/dbget-bin/www_bget?ko:K04485
http://www.uniprot.org/uniprot/Q8XB28_ECO57
http://www.uniprot.org/uniprot/B1XJC1_SYNP2
http://www.uniprot.org/uniprot/B1XJC1_SYNP2
http://www.uniprot.org/uniprot/SSBB_BACSU
http://www.genome.jp/dbget-bin/www_bget?ko:K03111
http://www.uniprot.org/uniprot/SSBA_BACSU
http://www.uniprot.org/uniprot/Q04JK9_STRP2
http://www.uniprot.org/uniprot/SSBA_BACSU
http://www.genome.jp/dbget-bin/www_bget?ko:K02335
http://www.uniprot.org/uniprot/B1XL22_SYNP2
http://www.uniprot.org/uniprot/B1XL22_SYNP2
http://www.uniprot.org/uniprot/DPO1_ECOLI
http://www.genome.jp/dbget-bin/www_bget?ko:K01972
http://www.uniprot.org/uniprot/DNLJ_LISMO
http://www.uniprot.org/uniprot/DNLJ_ECOLI
http://www.genome.jp/dbget-bin/www_bget?ko:K02313
http://www.uniprot.org/uniprot/DNAA_STRCO
http://www.genome.jp/dbget-bin/www_bget?ko:K02337
http://www.uniprot.org/uniprot/HOLE_ECO57
http://www.genome.jp/dbget-bin/www_bget?ko:K02314
http://www.uniprot.org/uniprot/B1XQ85_SYNP2
http://www.uniprot.org/uniprot/B1XQ85_SYNP2
http://www.genome.jp/dbget-bin/www_bget?ko:K02337
http://www.uniprot.org/uniprot/HOLE_ECO57
http://www.genome.jp/dbget-bin/www_bget?ko:K10748
http://www.uniprot.org/uniprot/TUS_ECO57
http://www.genome.jp/dbget-bin/www_bget?ko:K02470
http://www.uniprot.org/uniprot/GYRB_ECO57
http://www.uniprot.org/uniprot/GYRB_BACSU
http://www.genome.jp/dbget-bin/www_bget?ko:K03168
http://www.uniprot.org/uniprot/TOP1_MYCTO
http://www.uniprot.org/uniprot/Q8X7C5_ECO57
http://www.uniprot.org/uniprot/TOP1_MYCPN
http://www.genome.jp/dbget-bin/www_bget?ko:K02621
http://www.uniprot.org/uniprot/PARC_PSEAE
http://www.genome.jp/dbget-bin/www_bget?ko:K09747
http://www.uniprot.org/uniprot/B1XLF8_SYNP2
http://www.genome.jp/dbget-bin/www_bget?ko:K03530
http://www.uniprot.org/uniprot/DBH1_BACSU
http://www.uniprot.org/uniprot/Q92A74_LISMO
http://www.uniprot.org/uniprot/DBH1_STRCO
http://www.uniprot.org/uniprot/B1XQQ7_SYNP2
http://www.genome.jp/dbget-bin/www_bget?ko:K04047
http://www.uniprot.org/uniprot/DPS_ECOLI
http://www.uniprot.org/uniprot/DPS_ECO57
http://www.uniprot.org/uniprot/DPS_ECOLI
http://www.uniprot.org/uniprot/DPS_CAMJE
http://www.uniprot.org/uniprot/DPS_LISMO
http://www.uniprot.org/uniprot/Q3K7V3_PSEPF
http://www.genome.jp/dbget-bin/www_bget?ko:K03530
http://www.uniprot.org/uniprot/DBHB_ECOLI
http://www.uniprot.org/uniprot/Q6N5M1_RHOPA
http://www.genome.jp/dbget-bin/www_bget?ko:K03746
http://www.uniprot.org/uniprot/HNS_ECOLI
http://www.uniprot.org/uniprot/HNS_ECO57
http://www.uniprot.org/uniprot/HNS_ECOLI
http://www.genome.jp/dbget-bin/www_bget?ko:K11685
http://www.uniprot.org/uniprot/CNU_ECO57
http://www.uniprot.org/uniprot/STPA_ECOLI
http://www.genome.jp/dbget-bin/www_bget?ko:K03529
http://www.uniprot.org/uniprot/Q84EC7_SYNP2
http://www.uniprot.org/uniprot/SMC_MYCTO
http://www.genome.jp/dbget-bin/www_bget?ko:K03496
http://www.uniprot.org/uniprot/B1XQR5_SYNP2
http://www.genome.jp/dbget-bin/www_bget?ko:K03466
http://www.uniprot.org/uniprot/FTSK_ECO57
http://www.uniprot.org/uniprot/FTSK_ECOLI
http://www.uniprot.org/uniprot/FTSK_MYCTO
http://www.genome.jp/dbget-bin/www_bget?ko:K01156
http://www.uniprot.org/uniprot/B1XQZ6_SYNP2
http://www.genome.jp/dbget-bin/www_bget?ko:K00571
http://www.uniprot.org/uniprot/O26046_HELPY
http://www.uniprot.org/uniprot/Q04K98_STRP2
http://www.genome.jp/dbget-bin/www_bget?ko:K03427
http://www.uniprot.org/uniprot/O25953_HELPY
http://www.uniprot.org/uniprot/O33298_MYCTU
http://www.genome.jp/dbget-bin/www_bget?ko:K03043
http://www.uniprot.org/uniprot/RPOB_BACSU
http://www.uniprot.org/uniprot/RPOB_ECO57
http://www.uniprot.org/uniprot/RPOB_ECOLI
http://www.uniprot.org/uniprot/RPOB_MYCTO
http://www.uniprot.org/uniprot/RPOB_CLOAB
http://www.uniprot.org/uniprot/RPOB_STRP2
http://www.uniprot.org/uniprot/RPOB_BACSU
http://www.genome.jp/dbget-bin/www_bget?ko:K03046
http://www.uniprot.org/uniprot/RPOC_BACSU
http://www.uniprot.org/uniprot/RPOC_ECO57
http://www.uniprot.org/uniprot/RPOC2_SYNP2
http://www.uniprot.org/uniprot/RPOC_CLOAB
http://www.uniprot.org/uniprot/RPOC_BACSU
http://www.uniprot.org/uniprot/C4WZY6_KLEPN
http://www.uniprot.org/uniprot/RPOC_CLOAB
http://www.uniprot.org/uniprot/RPOC_STRP2
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Garcia-Garcia et al. Phosphosignaling and Bacterial Cell Cycle

TABLE 1 | Continued

Pathway Target KO Function Tyr-P Ser/Thr-P

RPOBC K13797 RPOBC_HELPY; RPOBC_HELPY

RPOA K03040 RNA polymerase α subunit RPOA_ECO57; RPOA_ECOLI;

C4X0R2_KLEPN

RPOA_STRP2;

RPOA_CLOAB

RPOE K03088 RNA polymerase σ factor H RPOE_MYCPN; SIGH_MYCBO; SIGH_MYCTO

O
th
e
r

K03722 DnaQ exonuclease/DinG helicase Q04L99_STRP2

Putative helicase B1XR86_SYNP2

K03578 ATP dependent helicase HrpA Q3KGE3_PSEPF

K04763 Putative DNA

integrase/recombinase

B1XQW1_SYNP2

Escherichia coli K12 and O157:H7 species (ECOLI and ECO57:H7) (Macek et al., 2008; Hansen et al., 2013; Soares et al., 2013), Helicobacter pylori (HELPY) (Ge et al.,

2011), Campylocacter jejuni (CAMJE) (Voisin et al., 2007), Bacillus subtilis (BACSU) (Macek et al., 2007; Jers et al., 2010; Elsholz et al., 2012; Shi et al., 2014b), Clostridium

acetobutilicum (CLOAB) (Bai and Ji, 2012), Listeria Monocytogenes (LISMO) (Misra et al., 2011), Pseudomonas fluorescens Pf0-1 (PSEPF) (Ravichandran et al., 2009), Streptococcus

agalactiae serotype 1a (STRA1) (Burnside et al., 2011), Streptococcus pneumoniae serotype 2 (STREP2) (Sun et al., 2010), Streptococcus coelicolor (STREPCO) (Manteca et al.,

2011), Thermus thermophilus HB8 (THET8) (Takahata et al., 2012), Thermoanaerobacter tengcongensis (THETN) (Lin et al., 2012), Mycobacterium tuberculosis (MYCTO and

MYCTU) (Prisic et al., 2010), Mycobacterioum bovis (MYCBO) (Nakedi et al., 2015), Mycoplasma pneumoniae (MYCPN) (Schmidl et al., 2010), Synechococcus sp. (SYNP2) (Yang

et al., 2013). http://dbpsp.biocuckoo.org/browse.php (Pan et al., 2015). Protein target names are given according to HAMAP standard (http://hamap.expasy.org) and UniProtKB

(http://www.uniprot.org/uniprot). Phosphoproteins provided with links to the dbPSP database (http://dbpsp.biocuckoo.org/) are labeled in blue. Phosphoproteins identified by other

approaches are indicated in black. KO identifiers are provided for each family of proteins with links to the Kegg database for functional information (Kanehisa et al., 2012).

TABLE 2 | DNA-binding proteins targeted for phosphorylation in B. subtilis.

Acc Name Function PK PP P-sites Val Orth References

TYROSINE PHOSPHORYLATION

P23477 ADDB ATP-dependent deoxyribonuclease (B) PtkB – 1

P49850 MUTL DNA mismatch repair factor PtkB PtpZ a,d Y 1

O34996 DPO1 DNA polymerase I PtkB PtpZ a,d T 1

O34580 UVRD ATP-dependent DNA helicase (PcrA) PtkB d Y,S,T 1

P16971 RECA SOS repair factor/DNA processing PtkA b#,d Y 1,2,3

P37870 RPOB RNA polymerase β subunit PtkB PtpZ Y695 a,c,d Y,S,T 1,4

P37871 RPOC RNA polymerase β’ subunit Y338 D 4

P37455 SSBA Single-Stand Binding protein A PtkA Y82 b*#,c,d S 5,6

O31903 YORK Putative SPBc2 ss-DNA exonuclease PtkA Y3/11/168/220/368/473 d 6,7

SERINE/THREONINE PHOSPHORYLATION

P17867 CISA Site-specific DNA recombinase YabT SpoIIE a 1

P16971 RECA SOS repair factor/DNA processing YabT SpoIIE S2 a,b,c,d Y 1,2,3

P45870 RACA Chromosome-anchoring protein YabT SpoIIE a, b# 1

O08455 SBCE DSB repair YabT SpoIIE a 1

P46344 YQFF Putative Phosphodiesterase YabT SpoIIE a 1

P37469 DNAC Replicative DNA helicase DnaB-like PrkD b#,d Y 1

P08821 DBH1 DNA-binding protein HU-1 T4, T65, S74 c,d S,T 6

P05652 GYRB DNA gyrase subunit B S400 c,d Y 2

P94590 SSBB Single-stand DNA binding protein B PtkA Y82,T52 c,d S 4

P37871 RPOB RNA polymerase β subunit S314 c,d S,T,Y 4

P37871 RPOC RNA polymerase β’ subunit S339 c 4

Validation (Val) is provided by (a) ability to interact with both a protein kinase (PK) and a cognate protein phosphatase (PP), (b) phosphorylation confirmed in vivo (*) and/or in vitro (# ),

(c) identified phosphosite(s), and (d) existence of phosphorylation at tyrosine (Y) serine (S) or threonine (T) in other bacterial orthologs (orth). 1 (Shi et al., 2014b); 2 (Soufi et al., 2008); 3

(Bidnenko et al., 2013); 4 (Elsholz et al., 2012); 5 (Mijakovic et al., 2006); 6 (Macek et al., 2007); 7 (Jers et al., 2010).

playing important roles in homologous recombination and repair
of DNA double-strand breaks, as well as initiating the cellular
SOS response to DNA damage in bacteria (Kuzminov, 2001;
Chen et al., 2008; Butala et al., 2009). Recently, RecA was
described as playing a role in monitoring and maintaining

chromosome integrity at the onset of spore development
(Bidnenko et al., 2013). This novel activity is regulated
by phosphorylation by the ssDNA-dependent Ser/Thr kinase
YabT, expressed during sporulation. Although the molecular
mechanism underlying this activity is not yet understood, RecA
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FIGURE 1 | PPI network centered on ser/thr (yellow nodes, bleu edges) and tyr (red nodes, black edges) kinases, phosphatases and modulators of

B. subtilis reveals potential regulations by phosphorylation of various DNA-related pathways. Proteins are represented as nodes connected by edges.

Potential substrates, defined as connected by both a kinase and cognate phosphatase, are represented by diamonds. HTH-containing proteins, connected by more

than one kinase, are represented by squares; In vitro characterized phospho-proteins are labeled in red. Proteins found phosphorylated in other bacteria are indicated

by an asterix. Other interactions between the proteins are illustrated by light gray edges (from Marchadier et al., 2011; Shi et al., 2014b). In vitro validated

kinase-substrate phosphorylation is indicated by dashed lines.

phosphorylation at the N-terminal S2 plays a role in temporarily
restraining sporulation furtherance upon encountering DNA
damages. From the recent finding that RecA is also subjected
to tyrosine phosphorylation by PtkA, we can anticipate a more
complex picture for the regulation of its activities in B. subtilis
(Shi et al., 2014b).

The DNA-binding developmental protein RacA illustrates
a prospective role of phosphorylation in coordinating
chromosome segregation with the asymmetric division taking
place during sporulation in B. subtilis. During sporulation,
RacA anchors the segregating chromosome at the cell pole of
the forespore in a DivIVA-dependent manner (Ben-Yehuda
et al., 2003; Wu and Errington, 2003; Ben-Yehuda et al., 2005;
Perry and Edwards, 2006). In the B. subtilis PPI network, RacA
is connected by both the Ser/Thr kinase YabT and cognate
phosphatase SpoIIE, suggesting it may be a substrate of both (Shi
et al., 2014b). This assumption, further confirmed in vitro, was
also supported by the existence of a high positive correlation

of expression of racA and spoIIE genes across numerous
physiological conditions, indicating they are part of the same
biological processes.

Nucleoid associated proteins (NAPs) are histone-like
proteins involved in modifying the structural organization of
chromosomes by changing its topology at a global or local level
(Dillon and Dorman, 2010). As a consequence of their DNA-
binding properties, NAP proteins are found tomodulate different
DNA-processes and act as global regulators of gene expression
(Dorman, 2013). NAP proteins are diverse and present in all
living cells (Dillon and Dorman, 2010; Dorman, 2013). The
examination of phosphoproteomics data in the database of
Phosphorylation Sites in Prokaryotes dbPSP reveals that many
representatives of this class of proteins are phosphorylated,
including HupA, HupB, H-NS (and H-NS like StpA), Dps and
structural maintenance chromosome (SMC) proteins (Table 1).
A particular feature of this class of proteins is the occurrence
of phospho-sites across a broad spectrum of bacterial orthologs
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(Table 1), suggesting that they could be functionally regulated
by phosphorylation. The recent discovery that phosphorylation
of the histone-like protein HupB by STKPs kinases negatively
modulates its ability to bind DNA in M. tuberculosis supports
this assumption (Gupta et al., 2014). The phosphorylation state
of the HupB protein correlates with the expression of pknE and
pknF kinases. Their expression is high during the exponential
growth phase and low when reaching the stationary phase. This
differential phosphorylation strongly points to a potential mode
of regulation ofHupB which favors interaction with DNA during
the stationary phase to promote compaction of the chromosome.

MinD, A SIGNALING SCAFFOLD-LIKE
PROTEIN

Kinases are regulated by forming specific associations with arrays
of different proteins, including kinase inhibitors and activators,
as well as scaffold and anchoring proteins that target the kinase-
complexes to specific subcellular sites. Scaffold proteins are
versatile hubs that spatially and temporally tether signaling
components in eukaryotic cells. Interactome-based research in
yeast provides a definition of classical signaling scaffold proteins
as (i) having an active role in signaling while being itself devoid
of catalytic activity relevant for signaling, and (ii) being able
to promote the interaction of multiple components of signaling
cascades at a particular cellular location to regulate their activity
(Zeke et al., 2009). A eukaryotic scaffold protein paradigm is the
Ste5 protein of the mitogen-activated protein kinase (MAPK)
pathway in yeast, which insulates three protein kinasesMAPKKK
Ste11, MAPKK Ste7, and MAPK Fus3 to promote a signaling
cascade (Good et al., 2009).

Recent report of a yeast two-hybrid based PPI network
centered on tyrosine-kinase in B. subtilis provide a 2D
map of potential BY-kinase interacting partners (Shi et al.,
2014b). Numerous protein partners are contacted by cognate
kinase/phosphatase pairs, supporting the hypothesis that they
are substrates. However, there are exception to this rule. The
bacterial cell division regulator MinD is contacted by both the
tyrosine kinase PtkA and tyrosine phosphatase PtpZ in the PPI
network, but not targeted for phosphorylation by PtkA (Shi et al.,
2014b). Strikingly, PtkA has been found to phosphorylate the
septum site selection protein DivIVA, which recruits MinD at
the cell poles via MinJ. Subcellular localization studies reveal
that PtkA localizes at the cell pole in a MinD-dependent fashion.
Septum defect phenotypes are observed in absence of PtkA and
aggravated in a zapA deficient background, strongly suggesting
that PtkA could play a role during cell division. All these
observations support the hypothesis that B. subtilis MinD, in
addition to its characterized role in recruiting the FtsZ-negative
regulator MinC to prevent the formation of a Z-ring at the cell
poles (Gregory et al., 2008), also acts as an intracellular organizer
of signaling components involved in the regulation of cytokinesis
(Shi et al., 2014b).

MinD belongs to the class of ParA-like AAA+ ATPases
and bears structural homology to PtkA (Derouiche et al.,
2015b). However, it lacks the tyrosine cluster determinant for

autophosphorylation and is thus not a catalytically active kinase.
Importantly, similar to TkmA, the transmembrane and cognate
modulator of PtkA, necessary for the general activation of the
kinase in the cell, MinD binds to and activates PtkA. In the
PPI network, MinD is also found to interact with the second
B. subtilis BY-kinase PktB, the Ser/Thr Hanks kinase YabT
and a phosphatase (PtpZ), suggesting a potential ability to
bring various components of tyrosine, but also serine/threonine
phosphorylation pathways in close proximity (Figure 2). In
many ways, MinD fulfills the definition of a signaling protein
scaffold that allows several actors belonging to different pathways
to co-localize at the cell poles. Remarkably, in the B. subtilis
PPI phosphotyrosine network, MinD exhibits an interacting
landscape similar to that of TkmA (Shi et al., 2014b; Figure 2).
As a transmembrane protein, TkmA is classified as a receptor
protein, activating PtkA upon sensing external inputs, while
MinD perfectly matches with the definition of a classical scaffold,
enforcing the proximity of kinase/phosphatase and substrate at a
specific time and location during the bacteria cell cycle. However,
the potential ability of TkmA to contact more than one kinase,
a phosphatase and various PtkA substrates suggests that this
receptor could also act as a docking platform to activate tyrosine
kinase signaling events (Jers et al., 2010).

MinD acting as a scaffold is therefore proposed to promote
PtkA-mediated phosphorylation of DivIVA in B. subtilis (Shi
et al., 2014b). Phosphorylation of DivIVA and other homologs
by Ser/Thr kinases is described as playing a role in regulating
apical growth and cell polarity in Actinobateria, as well as well
as orchestrating peptidoglycan synthesis during cell elongation
in streptococci (Fleurie et al., 2012; Hempel et al., 2012; Fleurie
et al., 2014; Pompeo et al., 2015). A real question about the role of
phosphorylation of DivIVA at tyrosine in regulating its dynamic
from the cell poles to the future septum is now addressed in
B. subtilis. In this bacterium, PtkA could modulate DivIVA at
the cell pole through landing/activation by MinD. The potential
presence of other signaling components, such as the phosphatase
PtpZ, would also add to the fine-tuning of such regulations. The
interaction of the sporulation YabT Ser/Thr kinase with MinD

FIGURE 2 | PPI profile similarities between the protein modulators

TkmA (anchor) and MinD (scaffold) in B. subtilis. Tyr and Ser/Thr

phosphorylation pathways are filled in red and yellow, respectively. Cell division

pathway is indicated in green.
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might also provide a clue toward understanding how DivVIA
switches from a MinCD(J)-mediated control of FtsZ assembly
during vegetative growth, to a RacA mediated chromosome
anchorage to the pole of the fore spore compartment at the onset
of sporulation (Ben-Yehuda et al., 2003;Wu and Errington, 2003;
Ben-Yehuda et al., 2005; Perry and Edwards, 2006; Bramkamp
et al., 2008). This novel function of MinD as a signaling scaffold
is thus expected to participate in coordinating cytokinesis, the
terminal step of the cell cycle, with other pathways during the
different Bacillus life-styles.

MinD/ParA-like proteins are widely found distributed among
bacteria. They are not only involved in different aspects of
regulation of cell division and chromosome segregation, but
also in polar localization of cellular machineries, such as those
directing conjugative transfer or chemotaxis, as well as those
organizing the polar positioning of Type IV pili (Kirkpatrick and
Viollier, 2012; Lutkenhaus, 2012; Treuner-Lange and Søgaard-
Andersen, 2014). ParA/MinD-like proteins are often described
as protein-hubs responsible for the architectural and spatial
organization of necessary components driving these processes
(Lutkenhaus, 2012). In the asymmetrically dividing bacterium
C. crescentus, the mechanisms underlying the segregation of
the cell fate determinants to the two structurally distinct cell
poles also requires MinD/ParA-like proteins to achieve polar
localization of chromosomes and cell division (Thanbichler
and Shapiro, 2006). The MinD-like ATPase MipZ forms a
dynamic complex with the DNA partitioning protein ParB
at the chromosomal origin of replication, and also negatively
regulates the polymerization of FtsZ (Du and Lutkenhaus, 2012;
Kiekebusch et al., 2012). Through ATP hydrolysis, MipZ acts as
a molecular switch to couple chromosome segregation with the
control of mid-cell positioning of the FtsZ ring in C. crescentus
(Thanbichler and Shapiro, 2006). Although its role in signaling
scaffold is not proven, recent studies highlight the importance of
ParB phosphorylation in the localization and function of proteins
involved in chromosome segregation in mycobacteria (Baronian
et al., 2015). Lastly, the discovery that the ParA-like BY-kinase
CspD, encoded by the cps capsular operon in S. pneumoniae,
which plays a role in coordinating capsular polysaccharide with
chromosome segregation through interaction with ParB, leads
to the hypothesis that this kinase could act as molecular scaffold
(Nourikyan et al., 2015). Although no proteins have so far been
found to be phosphorylated by CpsD, ATP hydrolysis leading
to CpsD autophosphorylation plays a major role in regulating
the dynamic of localization of the ParB proteins bound to the
chromosomal replication origin, and provides a molecular switch
to couple the cell cycle with cell elongation (Nourikyan et al.,
2015).

CONCLUSIONS

Large-scale profiling of phosphoproteins and phospho-
sites by mass spectrometry-based proteomics, differential
phosphoproteomics across physiological conditions and
kinase-related phosphoproteomes are helpful to identify kinase-
specific substrates and understand the functional dynamics

of phosphorylation networks. Additionally, interactomics
identifies kinase-protein interactions revealing not only
potential substrates, but also anchors and modulators. Hence,
phosphoproteomics and interactomics are powerfull and
complementary approaches to provide a blueprint of kinase and
phosphatase-centered signaling networks. The ever growing
data from large scale phosphoproteome studies in bacteria,
coupled with identification of kinase, phosphatase, substrates,
and modulators provides important insights into cellular
regulations. It also provides a unique opportunity to understand
how phosphorylation participates in the regulation of protein
activities, their interactions with other proteins, and their
localizations in the bacterial cell.

In many bacteria, phosphorylation of proteins involved in
various DNA-related processes, together with biological evidence
of their role during cell cycle, suggests the existence of checkpoint
regulations akin to eukaryotes. In all living organisms, cell
cycle events involve the temporal and spatial coordination of
chromosome replication and segregation with cytokinesis, the
entire process being also coordinated with cell growth. In
eukaryotes, the existence of highly intricate signaling networks
is ensured by quality control and checkpoint proteins that
coordinate these sequential events and trigger cell cycle arrests
when things go wrong. In bacteria, the different processes are
more interwoven. Consequently, the accurate execution of each
step relative to others in time and space is crucial and involves
strict regulatory mechanisms. The finding, in B. subtilis, that
cell division MinD may act as a signaling hub to reinforce
the proximity of various components of the Tyr and Ser/Thr
phosphorylation pathway, along with the septum site protein
DivIA, again hints at the existence of scaffold-mediated signal
transduction in bacteria. In addition, the recent discovery that
bacterial kinase are themselves able to tune their activities
through phosphorylation add to the complexity of the picture
(Shi et al., 2014a). However, it also suggests that, just as in
eukaryotes, such bacterial scaffolds could offer versatile strategies
to dynamically coordinate cell processes via signaling.
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