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InP1-xBix epilayers with bismuth (Bi) concentration x= 1.0% were grown on InP by

gas source molecular beam epitaxy (GS-MBE) at low temperature (LT). Bi incorpo-

ration decreased the intrinsic free electron concentration of low temperature grown

InP indicated by hall analysis. It is concluded that deep level center was introduced

by Bi. Influence of Si doping on the InP1-xBix films Photoluminescence (PL) was

investigated. N-type doping in the InP1-xBix epilayers was found to be effective at PL

enhancement. Blue shift of InPBi PL emissionwavelengthwas observed as the Si dop-

ing concentration increasing. Two independent peakswere fitted and their temperature

dependence behavior was observed to be distinct obviously. Two individual radiative

recombination processes were expected to be involved. C 2015 Author(s). All article

content, except where otherwise noted, is licensed under a Creative Commons

Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4937412]

INTRODUCTION

III–V dilute bismuth (Bi) compound semiconductors have been attracting great attention for their

promising potentials in the applications for near and mid infrared emitters and detectors.1–4 Incorpo-

ration of Bi atoms at anion sites was proved to introduce distinct band gap reduction and enhanced

spin-orbit (SO) splitting. In this way, more flexibility is achieved in band gap engineering for opto-

electronic device application and the commonly fronted Auger recombination involving holes on the

SO and the valence bands is expected to be suppressed effectively.5Moreover, temperature insensitive

optical emission was detected in dilute InGaAsBi,6 which is beneficial for telecom lasers. Bismuth,

which has a much large atomic radius, introduces localized states close to the valance bandmaximum

(VBM) and a valance band anti-crossing (VBAC) model has been utilized to describe influence of

the Bi Incorporation on the band edges of the host III–V compound.7 Much effort has been put into

epitaxial growth and material properties of GaAsBi and GaSbBi. Light emission diodes (LEDs) and

electrically injected lasers have been demonstrated using GaAsBi as an active layer.8,9

As an important material candidate for optoelectronic devices, group III phosphides have been

extensively researched for decades.10,11 Structural properties of Bi-bearing semiconductor alloys

including InPBi, InAsBi and InSbBi have been theoretically investigated by Berding et al. and InPBi

was found to be the most difficult to synthesize.12 Besides the remarkable band gap shrink, Bi incor-

poration into InP is also expected to suppress above-mentioned Auger recombination and inter va-

lance band absorption (IVBA) processes.6 Early researches have been focused on the isoelectronic

impurity state of InP:Bi at a doping level.13,14 We have demonstrated the first successful fabrication

of InPBi single crystals with Bi composition far beyond the theoretically predicted solubility limit

and InGaPBi lattice matching with InP by gas source molecular beam epitaxy (GS-MBE)15,16 and
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found 56 meV/Bi% reduction of band gap from optical absorption. It is worth noting that broad and

strong photoluminescence (PL) signal is observed at room temperaturewith emission energy centered

around 0.9 eV which is significantly lower than the measured InPBi band gap. Deep level radiative

recombination centers introduced by Bi incorporation are supposed to be responsible for this PL

emission. It is significant to figure out more properties of the deep level centers to understand the

nature of InPBi.

In this work, InPBi single crystals with Bi component up to 1.0%were grown at low temperature

on SI InP substrates by GS-MBE. Properties of the Bi related deep level center were investigated by

analyzing Hall result of as grown InPBi and PL spectra of Si doped n-type InPBi. The compensation

effect of Bi to the background free electron concentration was intensified at low temperature, which

confirmed the fact that Bi incorporation has introduced deep level centers instead of shallow ones.

N-type doping in the InPBi epilayers revealed to be productive at Photoluminescence wavelength

blue-shift and intensity enhancement of the InPBi films. The radiative recombination process of LT

grown InPBi was identified to be conduction band related. Temperature dependence behavior of LT

grown InPBi PL emission was discussed.

EXPERIMENT

InP0.99Bi0.01 samples were grown on semi-insulating InP (100) substrates using a VG V90 GS-

MBE. The InP substrates were first deoxidized at 480◦C. As to InPBi growth, the substrate tempera-

ture was decreased significantly to 300◦C for efficient Bi incorporation. All the growth temperatures

were measured by a thermocouple (TC). Samples with in-situ n-type doping (Si for n-type doping) of

varied electron concentrationswere designed. The thickness of the InPBi epi-layerwas fixed at around

360 nm. A reference InP sample was prepared under the same growth condition for comparison.

In terms of material characterization, Hall measures were first carried out in a van der Pauw

geometry. The structural qualities were characterized by a Philips X’pert MRD high-resolution x-ray

diffractometer (HRXRD) equippedwith a four-crystal Ge (220)monochromator usingCu Kα1X-ray.

The diffraction of (004) planeswasmeasured usingω-2θ scans. Photoluminescence (PL) spectrawere

measured with a Nicolet Magna 860 Fourier transform infrared (FTIR) spectrometer from Thermo

Fisher Scientific Inc. A liquid-nitrogen cooled InSb detector and a CaF2 beam splitter were equipped.

Samples were excited by a diode-pumped solid state (DPSS) laser (λ = 532nm) and the doublemodu-

lation mode was used to eliminate the mid-infrared background radiation over 2µm. Low temperature

PL measurements were carried out by mounting samples into a continuous-flow helium cryostat, and

a Lake Shore 330 temperature controller was used to adjust the temperature form 20 to 270 K.

RESULTS AND DISCUSSIONS

Table I shows carrier concentration and electron mobility of InPBi samples as well as the refer-

ence InP sample. A free electron concentration of 3.3 × 1018 cm−3 was observed from the InP refer-

ence sample at RT. Use of a low growth temperature will introduce extra antisite defects PIn which

TABLE I. Summary of Hall measurement results.

List Samples Doping type carrier concentration (cm−3) Mobility (cm2 /V• s)

1 InP reference / -3.3× 1018 1000

-3.2× 1018 (77K) 940 (77K)

2 InPBi / -1.2× 1018 1100

-0.84× 1018 (77K) 837 (77K)

3 InPBi n (Si) -3.0× 1018 1100

4 InPBi n (Si) -5.0× 1018 1000

5 InPBi n (Si) -1.0× 1019 890� � � � � � � � � � � � 	 
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act as donor centers, leading to the n-type conduction.17 Auto-ionization of the first ionization state

of PIn, above the conduction band minimum (CBM), generates free electrons in LT grown InP. Un-

doped InPBi sample also reveals to be n-type but with an electron concentration of 1.2 × 1018 cm−3,

about one third of that found in the InP reference sample. Two possible reasons were expected for the

decrease of free carrier concentration. First, Bi incorporation has introduced additional acceptor-like

centers compensating the n-type background of the LT grown InP. Second, the stochiometry of the LT

grown InP is improved by Bi incorporation leading to a significant reduction of antisite defects PIn. As

auto-ionization process is temperature insensitive, free electron concentration generated from PIn is

also expected to be less temperature dependent, which was revealed by the 77KHall test of LT grown

InP shown in Table I. A significant decrease of the free electron concentration was observed in InPBi

at 77K as shown in Table I and this indicates the second assumption indefensible. Two compensating

mechanisms of the free electrons are anticipated: neutralization by shallow level acceptor centers and

bound of free electrons by Bi induced deep level centers. In the former case, free hole concentra-

tion decreases at 77K compared with that at RT. The corresponding compensation effect would be

enhanced at RT, which is opposite to the experimental findings. This can be an indirect evidence for

the existence of deep level centers introduced by Bi incorporation. The ability of deep levels to bound

free electrons decreases with increasing temperature, leading to less compensation at RT than at 77K.

Detailed temperature dependent Hall test result also supports the above standpoint.

Electron mobility of InPBi is 10% higher than that of InP at RT, possibly due to the lower elect-

ron density in InPBi thus the reduction of the electron-electron scattering. The electron mobility of

the LT InP decreases by 6% while the electron concentration remains almost the same from RT to

77K, indicating that the ionized impurity scattering can be important in this temperature range. This

is reasonable since the density of such auto-ionized impurities is on the order of 1018 cm−3. How-

ever, the electron mobility of InPBi decreases by 24% from RT to 77K. Extra scattering mechanism

due to the Bi incorporation must be functioning. One possibility is the alloy scattering as a result of

non-uniformity induced by Bi clusters. Si doping in InPBi has increased the electron concentration

from3.0 × 1018 cm−3 up to 1.0 × 1019 cm−3 and electronmobility decreased by 19%meanwhile due to

the enhancement of electron-electron scattering. We have tried Be doping in InPBi but fail to achieve

p-type in spite of that it leads to p-type conduction in the LT InP reference sample. We suspect that

Be tends to form complex with Bi and lose its acceptor nature.

Crystal quality of InPBi epi-layers was examined by HRXRD with results shown in Figure 1.

Besides sharp peaks of the InP (100) substrate, all samples show obvious InPBi diffraction peaks

indicating the strict growth orientation inheriting form the InP substrate. All the InPBi samples have

positive mismatching with the InP substrate demonstrating the extended lattice constant by Bi incor-

poration. The peak position is indicated by the dashed line and the full width at a half maximum

(FWHM) are nearly unchanged with increasing Si doping concentration, implying little influence of

the Si doping on the structural quality of InPBi. It is worth to mention that little strain relaxation has

taken place because of the small mismatch between epi-layers and substrates.

Doping of InPBi provides us more access to perspective into the nature of InPBi PL emission.

Figure 2 shows RT PL spectra of n-type doped InPBi films. A broad asymmetric emission band

centered around 0.9 eV is observed for all InPBi samples. Peak blue-shift introduced by n-type doping

is shown with the dash line arrow. PL intensity of PL emission peaks is enhanced by n-type doping

up to 5 × 1018 cm −3 and further doping up to 1×1019 cm−3 inverts the tendency.

In n-type semiconductors, the radiative recombination rate is proportional to free electron con-

centration n when the recombination process is related to the conduction band. Thus, higher radiative

recombination efficiency is expected as Si doping concentration increasing. PL emission intensity is

plotted as a function of electron concentration of InPBi in the inset of Figure 3, in which linear depen-

dence followed with significant reduction behavior was consistent with above discussion. The PL

intensity reduction might be a result of free carrier absorption or Si doping introduced non-radiative

recombination centers. Figure 3 shows PL peak energy as a function of Si doping concentration by

black squares. An approximate linear blue-shift of peak energy is observed, which can be ascribed to

Burstein-Moss effect.18N-type doping lifts the electron Fermi level in the conduction band increasing

the electrons filling level and results in increasing of photon energy in radiative recombination. We� � � � � � � � � � � � 	 
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FIG. 1. HRXRD (004) rocking curves of InPBi with varied n-type doping concentrations.

FIG. 2. RT PL spectra of as grown and Si doped InPBi samples.� � � � � � � � � � � � 	 
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FIG. 3. PL peak energy and intensity (inset) as a function of Si doping concentration. The black square dots are measured

data while the blue dots are the estimated results.

have reported that PL emission of InPBi is related to the Bi induced deep level center.19 Our prelim-

inary result of deep level transient spectroscopy (DLTS) test indicates existence of the Bi induced

acceptor like deep level center (not shown here). From this point of view, we can ascribe PL emission

of InPBi to radiative recombination between electrons in conduction band and holes bounded at the

deep level introduced by Bi incorporation.

Magnitude of the Burstein-Moss shift (∆BM), under free-electron theory, is defined as

∆BM =
}
2

2m∗

 

3π2ne
�2/3

.

∆BM is inversely proportional to reduced effective mass m∗, which can be derived from valance and

conduction band effective, m∗

v and m
∗

c, according to 1/m
∗ = 1/m∗

v + 1/m
∗

c, and proportional to (ne)
2/3,

where ne is the electron concentration. In general, Burstein-Moss shift refers to band to band transi-

tion. As the effective mass of hole m∗

v is much larger than the effective electron mass m∗

c, ∆BM most

comes from electrons filling of conduction band. Therefore, we have still carried out the calculation

using parameters of InP, which was presented by blue squares and the dash line in Figure 3. A good

fitting of the simulation to the experiment results is revealed within the marginal error, confirming

the fact that the PL emission blue-shift originates from the conduction band filling effect. A relatively

distinct discrepancy is revealed for the InPBi sample with electron concentration up to 1 × 1019 cm−3.

One possible reason is difference in effective mass between InP and InPBi.

Band gap renormalization, which is considered as a result of mutual exchange and Coulomb

interactions between the added free electrons and electron-impurity scattering, was also taken into

account.20 Specific behavior of band-gap renormalization was the low energy side widening of PL

spectra with electron concentration increasing, as shown in Figure 2. N-type doping introduces band

tailing below the conduction band minimum (CBM), which result in radiative recombination spread-

ing to the low-energy side.21� � � � � � � � � � � � 	 
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FIG. 4. (a) temperature dependent PL spectra of as grown InPBi sample. (b) double peaks fitting of 20K PL spectra.

Temperature dependent PL was detected for all InPBi samples and PL spectra of the undoped

InPBi sample are shownFigure 4(a). As can be seen, PL intensity increases dramaticallywith decreas-

ing temperature and the PL shape changes simultaneously. The PL spectra reveal obviously asym-

metric and two independent peaks and are fitted using Gaussian function as shown in Figure 4(b).

Temperature dependent behavior of the two fitted peaks is anticipated to be distinct from each other.

We have extracted the variation trend as a function of temperature for both peaks respectively. In terms

of peak energy, two distinct temperature dependent behaviors are observed as shown in Fig. 5(a). As

temperature increasing, peak energy red shifted consistently for peak 1. Semi-empirical Varshni‘s

formula with form as

Eg = E0
g −
αT2

T + β

in which E0
g is the band-gap energy at 0 K, has indicated that bandgap energy is reduced with temper-

ature increasing as a result of crystal lattice thermal expansion, which leads to the red shift of peak 1.

In spite of the fact that PL emission did not originate from band-to-band recombination, we still make

a fitting using the same form of Varshni‘s formula with E0
∆
replacing E0

g plotted with the blue dash

line in Figure 5(a). Experiment result was mainly matched to the fitting curve which can be regarded

as an evidence for uniform band-gap shrinkage with temperature increasing. Fitting result of the

parameters for Varshni‘s formula were listed: E0
∆
= 0.852eV, α = 6.73 × 10−4, β = 611. The fitted

parameters have great difference with that of InP, which is due to basic properties variation of InPBi

compared with InP. Temperature dependent trend of peak 2 revealed to be quite different from peak

1 and no notable shift was observed. Temperature dependence of emission intensity for both peaks

was also presented in figure 5(b). Emission intensity of peak 2 dropped more dramatically than that

FIG. 5. Temperature dependence of emission energy (a) and intensity (b) for as grown InPBi sample.� � � � � � � � � � � � 	 
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of peak 1 and evolved from the stronger to the slightly weaker one as temperature increasing. Distinct

temperature dependent behavior of two emissions indicated that two different radiative recombination

processes were involved in the PL of LT grown InPBi. The increasing nonradiative recombination

transition rate as temperature rising weaken the peak 2 related radiative transition more dramatically

as shown in figure 5(b).We have carried out cross-sectional scanning tunnelingmicroscopy (X-STM)

of Bi atoms in InPBi to investigate Bi distribution at lattice (not shown here). Bi cluster was observed

besides Bi uniform incorporation into the zinc-blende lattice. The distribution nonuniformity of Bi

incorporation might be the origination of non-monolithic radiative recombination processes in LT

grown InPBi. We have also analyzed the temperature dependent spectra of Si doped InPBi, quite

different evolution behavior is observed which will be discussed in detail elsewhere.

As a summary, InPBi films with 1% Bi concentration were grown by GSMBE at LT. Bi incor-

poration has introduced additional deep level acceptor centers trapping free electrons and compen-

sating the background n-type conductivity of low temperature grown InP, which was indicated by

hall analysis. N-type doping with Si impurity into InPBi films with varied doping concentration was

carried out. PL test results indicated that n-type doping in the InPBi films lead to emission wave-

length blue-shift and dramatic enhancement of the emission intensity, which can be explained with

conduction band filling effect. The radiative recombination process was confirmed to be conduc-

tion band related. LT PL spectrum of as grown InPBi revealed two individual emission peaks with

distinct temperature dependent behavior. Two different radiative recombination transition processes

were expected to be involved.
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