
Agave: A Benchmark Suite for Exploring the
Complexities of the Android Software Stack

Martin K. Brown1, Zachary Yannes1, Michael Lustig1, Mazdak Sanati2,
Sally A. McKee2, Gary S. Tyson1, and Steven K. Reinhardt3

1Florida State University (mbrown@cs.fsu.edu), 2Chalmers University of Technology, 3AMD Research

I. INTRODUCTION

A 2015 GlobalWebIndex survey showed that 80% of
internet users own a smartphone, almost half own a tablet,
and the majority of these almost two trillion mobile devices
run the Android Operating System. In spite of Android’s
popularity, the compiler and architecture communities have
lacked a standard benchmark suite for designing and opti-
mizing Android systems. To address this need, we propose
Agave1, a suite of full applications representing commonly
executed activities and utilizing the diverse components of the
Android software stack. Agave follows the spirit of and builds
on several earlier Android benchmark suites to create a unified
resource consisting of entirely open-source programs.

We begin by defining requirements. A good Android
benchmark suite requires real-world applications that can be
run within the Android execution environment on hardware
devices, emulators, or simulators, and their code should be
available under open-source licenses. Android applications
often support multiple modes of operation (e.g., an MP3 run
in the foreground as a user-facing application and in the
background as a service), and benchmarks should reflect this.
And although the majority of Android applications use the
Native Development Kit (NDK), many still rely on Java, and
so both native and Java applications should be represented.

Android is based on a Linux R© kernel, but it also includes
native libraries, a virtual machine runtime, and an application
framework with multiple components for managing resources.
All these interact to create a rich, complex software ecosphere.
The Android runtime creates many dynamic virtual memory
areas (VMAs), with most references to these VMAs generated
by system services. This virtual memory organization differs
dramatically from the typical C/Linux execution environment,
which has a relatively simple virtual memory layout and in
which most references come from application code. Android
applications also rely heavily on multiprocessing amongst sys-
tem support services and on internal multithreading in which
auxiliary threads often use more resources than main applica-
tion threads. This structure complicates application profiling,
but it also create opportunities to design hardware that better
supports Android applications and their underlying software
stack. Android benchmarks should thus exhibit diverse process,
thread, and memory behaviors.

1The name is a play on words: agave nectar is a sweet and increasingly
popular dessert ingredient, thus it seems appropriate to use it to describe a
companion to the dessert-named versions of the Android OS.

II. THE AGAVE SUITE

To meet these requirements, we are developing the Agave
benchmark suite for Android. Our initial version of the suite
consists of 12 popular applications spanning eight categories
(we assume that the number of Google Play downloads reflects
popularity). We create multiple versions of some applications,
e.g., to run in the foreground versus background or to process
different kinds of inputs. The resulting 19 applications are open
source, making Agave appropriate for activities ranging from
comparing product platforms and modeling new architectures
to studying optimizations at any level of the software stack. We
make Agave freely available together with our toolchain, and
for ease of use we encapsulate the benchmarks in “plug-and-
play” virtual machines. Information on how to download and
use Agave is available at http://mobile.cs.fsu.edu/benchmarks.

III. EXPERIMENTS

We run Agave on top of Android 2.3.7, “Gingerbread” and
Linux kernel 2.6.35 within the gem5 simulator [1]. We modify
gem5 and the OS kernel to generate virtual memory statistics
on all processes and threads, and we run gem5’s atomic CPU
model without caches to quickly generate these statistics. We
compare Agave application behaviors with those of a selection
of SPEC R© CPU2006 [2] to illustrate how Android applications
differ from traditional C benchmarks.

Virtual Memory Layout. Android applications have a
richer virtual memory layout. Figure 1 shows a breakdown of
code regions for Agave versus SPEC CPU2006. The Android
applications use instructions from over 65 different regions,
and the majority of these references are to mspace (for
buffering pixel operations) and libdvm.so (for executing
the Dalvik Virtual Machine). In contrast, the vast majority
of instructions executed by the SPEC applications are from
the application binary or the OS kernel. Figure 2 shows
a similar breakdown for data references to virtual memory
regions. The Agave applications use almost 170 different data
regions, whereas the SPEC applications largely reference the
traditional text, stack, and heap regions. Note that Linux
uses the “anonymous” region for heap allocations exceeding
MMAP_THRESHOLD. Individual Agave applications use be-
tween 42-55 code regions and 32-104 data regions.

Multitasking and Multithreading. Android applications
consist of many concurrently executing processes. For in-
stance, it is typical for an Android application to use a
foreground process for its user interface and a background



10

20

30

40

50

60

70

80

90

100

%
 r

e
a
d

s
 t

o
 i
n

s
tr

u
c
ti
o

n
 r

e
g

io
n

mspace

libdvm.so

libskia.so

OS kernel

app binary

libstagefright.so

dalvik-jit-code-cache

libc.so

libcr3engine-3-1-1.so

other (63 items)

aa
rd

.m
ai

n

co
ol

re
ad

er
.e

pu
b.

vi
ew

co
un

td
ow

n.
m

ai
n

do
om

.m
ai

n

fro
ze

nb
ub

bl
e.

m
ai

n

ga
lle

ry
.m

p4
.v

ie
w

je
tb

oy
.m

ai
n

m
us

ic
.m

p3
.v

ie
w

m
us

ic
.m

p3
.v

ie
w
.b

kg

od
r.p

pt
.v

ie
w

od
r.t

xt
.v

ie
w

od
r.x

ls
.v

ie
w

os
m

an
d.

m
ap

.v
ie

w

os
m

an
d.

na
v.

vi
ew

pm
.a

pk
.v

ie
w

pm
.a

pk
.v

ie
w
.b

kg

vl
c.

m
p3

.v
ie

w

vl
c.

m
p3

.v
ie

w
.b

kg

vl
c.

m
p4

.v
ie

w
40

1.
bz

ip
2

42
9.

m
cf

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

99
9.

sp
ec

ra
nd

Fig. 1: Instruction references by VMA region

10

20

30

40

50

60

70

80

90

100

%
 r

e
fs

 t
o

 d
a
ta

 r
e

g
io

n

anonymous

heap

stack

OS kernel

gralloc-buffer

dalvik-heap

fb0 (frame buffer)

libdvm.so

dalvik-LinearAlloc

other (169 items)

aa
rd

.m
ai

n

co
ol

re
ad

er
.e

pu
b.

vi
ew

co
un

td
ow

n.
m

ai
n

do
om

.m
ai

n

fro
ze

nb
ub

bl
e.

m
ai

n

ga
lle

ry
.m

p4
.v

ie
w

je
tb

oy
.m

ai
n

m
us

ic
.m

p3
.v

ie
w

m
us

ic
.m

p3
.v

ie
w
.b

kg

od
r.p

pt
.v

ie
w

od
r.t

xt
.v

ie
w

od
r.x

ls
.v

ie
w

os
m

an
d.

m
ap

.v
ie

w

os
m

an
d.

na
v.

vi
ew

pm
.a

pk
.v

ie
w

pm
.a

pk
.v

ie
w
.b

kg

vl
c.

m
p3

.v
ie

w

vl
c.

m
p3

.v
ie

w
.b

kg

vl
c.

m
p4

.v
ie

w
40

1.
bz

ip
2

42
9.

m
cf

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

99
9.

sp
ec

ra
nd

Fig. 2: Data references by VMA region

10

20

30

40

50

60

70

80

90

100

%
 i
n

s
tr

u
c
ti
o
n

 r
e
a
d

s
 b

y
 p

ro
c
e
s
s

benchmark

system_server

mediaserver

app_process

ata_sff/0

ndroid.systemui

ndroid.launcher

dexopt

swapper

other (51 items)

aa
rd

.m
ai

n

co
ol

re
ad

er
.e

pu
b.

vi
ew

co
un

td
ow

n.
m

ai
n

do
om

.m
ai

n

fro
ze

nb
ub

bl
e.

m
ai

n

ga
lle

ry
.m

p4
.v

ie
w

je
tb

oy
.m

ai
n

m
us

ic
.m

p3
.v

ie
w

m
us

ic
.m

p3
.v

ie
w
.b

kg

od
r.p

pt
.v

ie
w

od
r.t

xt
.v

ie
w

od
r.x

ls
.v

ie
w

os
m

an
d.

m
ap

.v
ie

w

os
m

an
d.

na
v.

vi
ew

pm
.a

pk
.v

ie
w

pm
.a

pk
.v

ie
w
.b

kg

vl
c.

m
p3

.v
ie

w

vl
c.

m
p3

.v
ie

w
.b

kg

vl
c.

m
p4

.v
ie

w
40

1.
bz

ip
2

42
9.

m
cf

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

99
9.

sp
ec

ra
nd

Fig. 3: Instruction references by process

10

20

30

40

50

60

70

80

90

100

%
 d

a
ta

 r
e

fs
 b

y
 p

ro
c
e

s
s

benchmark

system_server

mediaserver

app_process

ndroid.systemui

ndroid.launcher

swapper

dexopt

id.defcontainer

other (51 items)

aa
rd

.m
ai

n

co
ol

re
ad

er
.e

pu
b.

vi
ew

co
un

td
ow

n.
m

ai
n

do
om

.m
ai

n

fro
ze

nb
ub

bl
e.

m
ai

n

ga
lle

ry
.m

p4
.v

ie
w

je
tb

oy
.m

ai
n

m
us

ic
.m

p3
.v

ie
w

m
us

ic
.m

p3
.v

ie
w
.b

kg

od
r.p

pt
.v

ie
w

od
r.t

xt
.v

ie
w

od
r.x

ls
.v

ie
w

os
m

an
d.

m
ap

.v
ie

w

os
m

an
d.

na
v.

vi
ew

pm
.a

pk
.v

ie
w

pm
.a

pk
.v

ie
w
.b

kg

vl
c.

m
p3

.v
ie

w

vl
c.

m
p3

.v
ie

w
.b

kg

vl
c.

m
p4

.v
ie

w
40

1.
bz

ip
2

42
9.

m
cf

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

99
9.

sp
ec

ra
nd

Fig. 4: Data references by process

Thread % Total Memory References across Suite
SurfaceFlinger 43.4
Thread 8.0
AsyncTask 7.6
Compiler 7.1
AudioTrackThread 5.9
GC 5.3

TABLE I: Memory references from the most-executed threads

process for running its service. Figure 3 and Figure 4 show
the breakdown of Agave instruction and data references by
process. Agave applications run 20-34 processes, the most
heavily referenced of which are system_server (which
updates the display), mediaserver, and app_process
(one of which is forked for every other process the application
spawns). The application process is not always dominant:
for instance, in gallery.mp4.view (Gingerbread’s default
video player) mediaserver accounts for 81% and 77% of
instruction and data references, respectively. In contrast, the
single-threaded SPEC benchmarks compete mainly with the
ata_sff/0 system process that manages storage devices.

Table I shows threads ranked by contribution to total
memory references. Executing Agave applications spawns 32-
147 threads. Many references also come from system service
threads. For instance, the SurfaceFlinger thread that
updates the display accounts for 43.4% of all references.

IV. CONCLUSIONS

Traditional suites used for benchmarking high-performance
computing platforms or for architectural design space explo-
ration use much simpler virtual memory layouts and multitask-
ing/multithreading schemes, which means that they cannot be
used to study the complex interactions among the layers of
the Android software stack. To demonstrate this, we present
memory reference and concurrency data showing how Android
applications differ from traditional C benchmarks. We propose
the Agave suite of open-source applications as the basis for a
standard, multipurpose Android benchmark suite. We make all
sources and tools available in hopes that the community will
adopt and build on this initial version of Agave.

Note that execution profiles of some Android libraries
appear to be independent of who calls them. Static profiling
could thus prove more useful for studying Android application
behavior than it has for other types of applications in the past.

V. ACKNOWLEDGMENTS

Linux is a registered trademark of Linus Torvalds. SPEC is
a registered trademark of the Standard Performance Evaluation
Corporation.

REFERENCES

[1] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, pp. 1–7, Aug. 2011.

[2] Standard Performance Evaluation Corporation, “SPEC CPU benchmark
suite,” http://www.specbench.org/osg/cpu2006/, 2006.


	Introduction
	The Agave Suite
	Experiments
	Conclusions
	Acknowledgments
	References

