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Abstract—System designers and application programmers
must consider trade-offs between performance and energy.
Making energy-aware decisions when designing an appli-
cation or runtime system requires quantitative information
about power consumed by different processor components. We
present a methodology to model static and dynamic power
consumption of individual cores and the uncore components,
and we validate our power model for both sequential and
parallel benchmarks at different voltage-frequency pairs on
an Intel R©Haswell platform.

Our power models yield the following insights about energy-
efficient scaling. (1) We show that uncore energy accounts for
up to 74% of total energy. In particular, uncore static energy
can be as high as 61% of total energy, potentially making it
a major source of energy inefficiency. (2) We find that the
frequency at which an application expends the lowest energy
depends on how memory-bound it is. (3) We demonstrate that
even though using more cores may improve performance, the
energy consumed by stalled cores during serial portions of the
program can make using fewer cores more energy-efficient.

Keywords-Power Modeling; Static and Dynamic Power; En-
ergy Characterization.

I. INTRODUCTION

Modern systems from petascale supercomputers to hand-
held devices must balance performance and power consump-
tion. This often requires that the system have access to real-
time power information. Hypervisors, operating systems, and
runtime software can all use such information to execute
workloads more efficiently.

Software acquires power usage information either from
actual power meters or via estimation models implemented
in hardware or software. For instance, Intel Xeon R© chips can
use Node Manager R© [1] to measure power, but this off-die
infrastructure only provides information about processors,
main memory, and the system as a whole. It cannot report
on individual chip components, i.e., cores, functional units,
other microarchitectural components, or caches.

Model-based power estimation is a common alternative to
actual measurement. For instance, Intel’s Running Average
Power Limit (RAPL) [2], AMD’s Application Power Man-
agement (APM) [3], and NVIDIA’s Management Library
(NVML) [4] all implement energy estimation models in
hardware. These interfaces provide composite power values
for the entire chip but not for individual compute units.

RAPL provides separate aggregate values for the cores
versus the uncore, but it does not provide a power breakdown
for individual cores. The “uncore” is Intel’s term for the
CPU components that are outside but closely associated with
the cores (e.g., the last-level cache, memory controller, and
interconnect),

Implementing techniques like energy-aware scheduling
and software-controlled DVFS requires power information at
a finer granularity. Given the limited utility of power meters
in commodity hardware, many software power estimation
models have been proposed. These models strive to provide
detailed power estimation at granularities ranging from the
entire CPU [5]–[7] to individual cores [8]–[10], individual
microarchitectural components [11]–[13], or individual cores
plus the uncore [14]. To the best of our knowledge, none of
these models makes an explicit distinction between static
and dynamic power consumption.

Mair et al. [15] emphasize the importance of distin-
guishing between static and dynamic power due to the
fundamental differences in their impact and their parameters.
Both depend on supply voltage, but static power depends
on temperature and dynamic power depends on frequency.
These power components scale differently from one voltage-
frequency step to another, and accurate information on the
breakdown between them is critical for understanding energy
expenditure trends when applying DVFS.

Another reason to model static and dynamic power sep-
arately is to characterize system energy efficiency. Static
power consumption is due to leakage current in the transis-
tors, and hence it does not contribute towards performing
useful work. The static energy thus represents “wasted
energy” in the system. The ratio of static to total system
energy represents energy inefficiency of the system and can
be useful in making qualitative architectural comparisons.

We present a systematic methodology for deriving models
that calculate static and dynamic power consumption for the
uncore and the cores. We show how to isolate and quan-
tify power consumption of different processor components.
We validate our power models at four different voltage-
frequency steps for single-threaded and parallel benchmarks,
and show that our models estimate power with good accu-
racy (mean absolute error of 3.14%) across all benchmarks.



We use our models to characterize the energy efficiency
of scaling clock frequency and thread-level parallelism on
the Haswell processor. We find that uncore static energy
represents a significant portion of total system energy (up
to 61%), making it a major source of energy inefficiency.
We also show that running an application at lower fre-
quencies does not always expend less energy: the degree to
which an application is memory-bound must be considered
when choosing energy-efficient DVFS policies. Finally, we
demonstrate that the serial fraction of a parallel workload
determines the level of concurrency at which the least energy
is expended.

II. METHODOLOGY

We run experiments on an Intel Core
TM

i7 4770 (Haswell)
processor that has four physical cores with a maximum clock
frequency of 3.4 GHz. Each core has two eight-way 32 KB
private L1 caches (separate I and D), a 256 KB private L2
cache (combined I and D), and an 8 MB shared L3 cache,
with 16 GB of physical memory on board.

Since we want to focus on the CPU portion of the
chip, our experiments do not use the on-chip GPU and
eDRAM (which are power-gated and cannot affect results).
Power models for these components would be interesting
and useful, but deriving them is beyond the scope of the
work presented here. We disable hyper-threading and Turbo
Boost for all experiments. In the rest of our discussion, we
use chip and CPU interchangeably.

We measure power consumption at the ATX CPU power
rails using infrastructure that we built for previous work [10].
This infrastructure uses current transducers to convert mea-
sured current to voltage, which a data acquisition unit then
logs at high accuracy with high sampling rates. To minimize
interference, we log power measurements on a machine other
than the one under test.

We collect performance counter values using the pfmon
tool provided by the libpfm4 library. We use the Linux R©

kernel driver coretemp to read package temperatures via
the on-die Digital Temperature Sensor (DTS) [16].

Our models break total power into four components:
1) uncore dynamic power,
2) core dynamic power,
3) uncore static power, and
4) core static power.

We strive to develop models for each component in isolation
in order to prevent model estimation error of any component
from affecting the estimation accuracy of other components.

A. Uncore Dynamic Power Model

We break the uncore dynamic power into uncore idle
dynamic power and uncore active dynamic power. Our
experiments indicate that the uncore is neither clock-gated
nor power-gated when idle. Eq. 1 gives the formula for idle
uncore dynamic power consumption.

P (uncore)idle_dynamic = α ∗ C ∗ V 2 ∗ F (1)

where α = idle uncore activity factor
C = uncore capacitance
V = uncore supply voltage
F = uncore frequency

When idle, the uncore effective capacitance (αC in
Eq. 1) remains virtually constant across frequency changes
(we disregard the insignificant uncore activity caused by
OS housekeeping threads). Recall that uncore static power
depends on uncore voltage and package temperature. We
fix uncore voltage from the BIOS and measure idle chip
power at the same package temperature at different uncore
frequencies. We can thus safely assume that static power re-
mains constant across frequency changes. Any differences in
measured power must therefore be due to changes in uncore
dynamic power. We measure idle CPU power consumption
at frequencies F1 and F2 while making sure that the package
temperature is same across two readings. Then, the idle
CPU power at uncore frequency Fn can be calculated as
Pn = α ∗ C ∗ V 2 ∗ Fn + Pstatic. We then calculate αC for
the idle uncore using Eq. 2.

α ∗ C =
P2 − P1

V 2F2 − V 2F1
(2)

Eq. 3 shows the model we generate for uncore idle
dynamic power. We verify the value of αC by repeating
our measurements for different values of F1 and F2.

P (uncore)idle_dynamic = 1.41 ∗ 10−9 ∗ V 2 ∗ F (3)

where V = uncore supply voltage
F = uncore frequency

We next analyze the effects of L2 cache misses on
uncore dynamic power consumption. An L2 miss causes
activity on the ring interconnect and in the L3 last-level
cache. To measure the effects of L2 misses on CPU power
consumption, we create a microbenchmark that interleaves
memory accesses with enough integer and floating point
operations to hide L3 latency. We measure CPU power
consumption as we gradually increase the benchmark’s
working-set size such that core activity (micro-operations
executed per cycle) and L2 activity (L2 requests per cycle)
remain constant but the ratio of L2 misses to L2 requests
increases. We attribute differences in consumed power to
increases in uncore activity from the increased L2 misses.
We run linear regression on the L2 miss rate and increase
in power consumption to generate a model for the L2-miss
contribution to uncore dynamic power. Eq. 4 shows this



model, and Figure 1 shows its accuracy with respect to our
measured values. The R2 coefficient measuring the goodness
of the fit for the estimation model is 0.999.

P (uncore)L2_miss_dynamic = (3.043 ∗ 10−9 ∗ x2

+ 2.881 ∗ 10−9 ∗ x)
∗ V 2 ∗ F

(4)

where x = chip-wide L2 misses per uncore cycle
V = uncore supply voltage
F = uncore frequency
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Figure 1: Model Fitness for Power Consumed due to L2 Misses
at F=800 MHz and V=0.7V

We perform a similar experiment to measure effects of L3
misses on uncore power. For realistic L3 miss rates (≤ 50
MPKI), CPU power consumption increases negligibly even
though DRAM power consumption increases significantly.
Our models thus omit L3 misses, and we compute total
uncore dynamic power consumption as the sum of uncore
idle dynamic power and uncore power due to L2 misses.

B. Core Dynamic Power Model

To model core dynamic power consumption, we study
the effects of microarchitectural events like micro-operations
(uops) executed, L1 accesses, and L2 accesses. We start by
quantifying the effects of non-memory operations on core
dynamic power. We would prefer to analyze integer and
floating point operations separately, but the Haswell microar-
chitecture provides no performance counter for floating point
operations. We thus average over both instruction types.
We create microbenchmarks that loop over the following
instructions, alone and in combination:

• x87 floating point multiplications,
• x87 floating point additions,
• integer multiplications,
• integer additions,
• SIMD floating-point multiplications, and
• SIMD floating-point additions.

For each microbenchmark, we calculate αC using the
same technique as for calculating idle uncore power: we
fix uncore voltage, uncore frequency, and core voltage from
the BIOS. We then initiate microbenchmark execution on
all cores, measure power consumption, switch the cores to
a higher frequency, and measure again within 10 ms.

Since the uncore voltage, uncore frequency, and pack-
age temperature are stable across readings (assuming that
temperature change is insignificant within the very small
sampling period), the difference in measured power must
be due to changes in core dynamic power consumption.
αC can now be calculated using Eq. 2. We calculate αC
for multiple frequency pairs and take an average to reduce
estimation error. We follow this approach to calculate αC
for all microbenchmarks. We use linear regression to find the
best fit for estimating the impact of non-memory instructions
on core dynamic power. Eq. 5 shows the derived model,
and Figure 2 shows its fitness with respect to our measured
values. The R2 fitness coefficient is 0.801.

P (core)non−mem_dynamic =(2.448 ∗ 10−10 ∗ x+
1.1809 ∗ 10−9) ∗ V 2 ∗ F

(5)

where x = Non-memory instructions per cycle
V = core supply voltage
F = core frequency

0 1 2 3 4

UOPS Executed/Cycle 

    

0.0

0.2

0.4

0.6

0.8

1.0

P
o
w

e
r 

(W
)

Estimated

Measured 

Figure 2: Model Fitness for Power Consumed due to
Non-Memory Execution Units at F=800 MHz and V=0.7V

We next study effects of memory operations on core
dynamic power. We maintain constant activity on the non-
memory execution ports (ports 0, 1, 5, and 6) and gradually
increase it on the load/store units (ports 2, 3, 4, and 7).
We correlate increases in memory operations with growth in
core dynamic power to generate the model in Eq. 6. Figure 3
shows the model fitness. The R2 coefficient is 0.999.

P (core)mem_dynamic =(2.780 ∗ 10−10 ∗ x+
1.497 ∗ 10−10) ∗ V 2 ∗ F

(6)

where x = L1 accesses per cycle
V = core supply voltage
F = core frequency

To study the effects of L2 accesses on core dynamic
power consumption, we follow the same approach as for
studying the effects of L3 accesses. We again use our mi-
crobenchmark to increase the number of L2 accesses while
keeping core activity constant. We measure the increase in
CPU power consumption as we increase the L2 access rate.
We then run linear regression on the L2 access rate and
increase in power consumption to generate the model for the
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Figure 3: Model Fitness for Power consumed due to L1
Accesses at F=800 MHz and V=0.7V

L2-access contribution to core dynamic power consumption
shown in Eq. 7. Figure 4 shows the model fitness with
respect to our measured values. The R2 coefficient that
measures the goodness of the fit is 0.997.

P (core)L2_dynamic = 2.829 ∗ 10−9 ∗ x ∗ V 2 ∗ F (7)

where x = per-core L2 accesses per uncore cycle
V = uncore supply voltage
F = uncore frequency
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Figure 4: Model Fitness for Power Consumed due to L2
Accesses at F=800 MHz and V=0.7V

The total core dynamic power consumption can now be
expressed by Eq. 8.

P (core)dynamic = P (core)mem_dynamic+

P (core)non−mem_dynamic+

P (core)L2_dynamic

(8)

C. Uncore Static Power Model

The Haswell microarchitecture uses a deep-sleep C-state,
C7, when a core is idle. In the C7 state, the cores are power-
gated, and so they consume negligible power. In contrast, our
experiments show that the Haswell uncore is neither power-
gated nor clock-gated when the chip is idle. The idle power
consumption of the chip is thus almost entirely due to the
uncore. Chip idle power can be expressed by Eq. 9.

P (CPU)idle =P (uncore)idle_dynamic+

P (uncore)static
(9)

We use the model for P (uncore)idle_dynamic derived in
Section II-A to isolate P (uncore)static. Recall that static
power consumption depends on supply voltage and tem-
perature. We use CPU package temperature to approximate
average temperature across the uncore. To measure effects

of uncore voltage and uncore temperature on uncore static
power, we set the uncore voltage to values ranging from
0.7V to 1.0V with increments of 0.05V. At each voltage,
we vary CPU temperature using a hot-air gun, and we
measure power consumption at the granularity of one sample
per second. We subtract uncore idle dynamic power from
the measured values and run non-linear regression on this
difference, the voltage, and the temperature to create the
uncore static power model in Eq. 10. This equation uses
the Poole-Frenkel effect [17]. Figure 5 shows measured
versus estimated uncore static values at three voltage points.
We ran each experiment until temperature stopped dropping
(the figure shows time windows of 200 seconds for ease
of comparison — experiments that ran longer continued to
show high estimation accuracy during the time not shown).
The R2 coefficient for the estimation model is 0.999 across
all sample points.

P (uncore)static = 141.615 ∗ e−(−169.083+1202.02∗
√

V
273.15+T ) ∗ V 2

(10)

where V = uncore supply voltage
T = package temperature

D. Core Static Power Model

To generate a model for core static power, we force the
core to remain in state C0. In this state, the Linux kernel runs
a polling idle loop that consumes constant dynamic power.
We calculate this power with the same strategy we used to
calculate uncore idle dynamic power. We calculate αC for
idle cores in state C0 using Eq. 2. Eq. 11 shows the model
for per-core dynamic power in state C0. Eq. 12 uses Eq. 11
to isolate per-core static power consumption.

P (core)C0_dynamic = 1.28 ∗ 10−9 ∗ V 2 ∗ F (11)

where V = core supply voltage
F = core frequency

P (core)static =
1

4
∗ (P (CPU)C0 − P (uncore)idle_dynamic

− P (uncore)static − 4 ∗ P (core)C0_dynamic)
(12)

To create the core static power model we first measure
the effects of core voltage and temperature. We use package
temperature as an approximation for core temperature. We
fix cache voltage at 0.7V and frequency at 800 MHz from the
BIOS. We again incrementally increase core voltage from
0.7V to 1.05V in steps of 0.05V. At each voltage, we vary
package temperature using a hot-air gun, and we measure
changes in power consumption and temperature. We run
non-linear regression on collected data to create the core
static model in Eq. 13. Figure 6 shows measured versus



0 50 100 150 200

Time (s)

0

2

4

6

8
P

o
w

e
r 

(W
)

measured

estimated

0

20

40

60

80

T
e
m

p
e
ra

tu
re

 (C
)

temp

(a) V=0.70

0 50 100 150 200

Time (s)

0

2

4

6

8

P
o
w

e
r 

(W
)

0

20

40

60

80

T
e
m

p
e
ra

tu
re

 (C
)

(b) V=0.85

0 50 100 150 200

Time (s)

0

2

4

6

8

P
o
w

e
r 

(W
)

0

20

40

60

80

T
e
m

p
e
ra

tu
re

 (C
)

(c) V=1.0

Figure 5: Uncore Static Model Fitness
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Figure 6: Core Static Model Fitness

estimated core static values at three voltage points. The
estimated model fits measured values with an R2 coefficient
of 0.996.

P (core)static = 1525.07 ∗ e−( 1884.1+525.556∗
√

V
273.15+T ) ∗ V 2 (13)

where V = core supply voltage
T = package temperature

E. Total Chip Power Model

Based on our findings, we must consider two more com-
ponents in constructing a full-chip power model. First, our
measurements show that when core frequency is increased,
chip power consumption increases more than expected at
certain frequency steps. These increases appear to depend
on the number of active cores but not on core activity. We
believe this phenomenon is due to the core PLL switching
to higher supply voltages above certain frequencies. Sec-
ond, chip power consumption increases abruptly at higher
temperatures — by up to 0.5W per active core — but our
experiments and research have been unable to determine the
source of this phenomenon. These two power-consumption
components are difficult to model without more information
about their causes. We therefore construct an offline table of
empirically determined increases in power consumption due
to these factors, acknowledging that deeper understanding
is required to accurately predict their behavior. We rep-
resent these two components collectively with P (misc).

Our experiments indicate that P (misc) can amount to as
much as 10% of total chip power consumption, depending
on the level of core and uncore activity. Total chip power
consumption is then given as:

P (CPU) = P (uncore)dynamic + P (uncore)static

+ P (core)dynamic + P (core)static + P (misc)
(14)

III. VALIDATION

We validate our power models on the single-threaded
SPEC CPU2006 [18] benchmarks, NAS Parallel Bench-
marks [19], and multithreaded SPEC OMP2001 [20] appli-
cations in Table I. We omit bwaves from SPEC CPU2006
and art and fma3d from SPEC OMP2001 because they do
not run on our system. We use the NAS class B inputs, and
we omit IS because it does not run for long enough time
periods to gather reliable measurements. We run the parallel
applications with one, two, and four threads. Similarly, we
run one, two, and four concurrent instances of the sequential
applications. Once per second we read package temper-
ature and core voltage, and collect performance counter
as described in Section II. We measure processor power
every 1 ms and average the values over one second to sync
the power values with other parameters. To verify that our
model estimates power accurately across different voltage-
frequency steps, we validate it at four DVFS points: 800
MHz at 0.7V, 1500 MHz at 0.78V, 2400 MHz at 0.88V, and
3400 MHz at 1.01V. We again disable hyper-threading and
Turbo Boost.
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Figure 7: Validation of Total Chip Power

Suite Benchmarks
NAS SP, EP, BT, MG, DC, UA, CG

SPEC OMP2001 quake, swim, wupwise, ammp,
apsi, applu, mgrid

SPEC CPU2006

cactusADM, calculix, dealII, gamess,
GemsFDTD, gromacs, lbm, leslie3d, milc,

namd, povray, soplex, zeusmp, astar, bzip2,
gcc, gobmk, h264ref, hmmer, libquantum, mcf,

omnetpp, perlbench, sjeng, xalancbmk

Table I: Benchmarks Used for Validation

Figure 7 shows estimation error for our benchmark suites.
Mean absolute error (MAE) for all NAS benchmarks across
the four DVFS points is 3.19% for a single thread, 1.89%
for two threads, and 2.50% for four threads. MAE for
SPEC CPU2006 is 3.88% for single-instance runs, 2.74%
for double-instance runs, and 2.60% for quad-instance runs.
MAE for SPEC OMP2001 is 3.79% for a single thread,
2.87% for two threads, and 3.42% for four threads. Mean
absolute error across all sample points for all benchmarks
and voltage-frequency states is 3.14%, and the standard
deviation is 2.87%.

Our model predicts power estimation with good accuracy
for most benchmarks. For the benchmarks with rapid phase
changes (DC in NAS and ammp in SPEC OMP2001),
we had to re-run the validation experiments at the higher
measurement granularity of 100 ms to accurately estimate
their rapidly changing power consumption values.

We know that model error arises from at least two sources.
First, the Haswell microarchitecture provides no per-core
event to track executed floating point operations, which
prevents us from creating separate models for floating point
and integer instruction executions. This creates slight model
inaccuracies for compute-intensive phases. Second, values
in the offline table we create to account for P (misc) are
not always accurate, especially at higher frequencies during
periods of rapid phase change. Despite these known sources
of error, our model accurately predicts workload energy
trends when scaling both frequency and numbers of threads.

IV. ENERGY CHARACTERIZATION

Dynamic voltage-frequency scaling permits hardware or
software to adjust clock speed and/or voltage levels to try
increase performance or save power. The degree of paral-
lelism in a workload (i.e., the number of parallel threads)
can also be increased to try to improve performance, but such
scaling often comes at an energy cost. Finding the frequen-
cies or numbers of threads at which an application meets
performance goals while maintaining a given energy budget
is not necessarily straightforward. We use our power models
to characterize energy efficiency by showing how static and
dynamic energy from the core and uncore components scale
in conjunction with DVFS and thread-level parallelism.

We perform sensitivity analyses of energy consumption
at different voltage-frequency points and thread concurrency
levels. In these studies we employ a parameterized synthetic
workload that lets us we vary both memory-access intensity
and thread-level parallelism. We validate results from this
synthetic workload against those from real applications.

A. Energy Effects of DVFS

We first examine how voltage-frequency scaling affects
energy consumption. Conventional wisdom says that running
at higher frequencies boosts performance at the expense of
expending more energy [14] because dynamic power scales
quadratically with voltage (Eq. 1). But when we take into
account the effects of energy consumed by the uncore, we
find that running at a lower voltage-frequency step can
sometimes expend more energy. Figure 8 shows how energy
scales for our synthetic workload as we vary its memory
intensity and the frequency at which we execute. Energy
numbers are normalized to the energy expenditure at the
lowest frequency (800 MHz).

Figure 8(a) shows that a completely sequential, CPU-
bound application (which hence scales linearly with fre-
quency) running at the lowest frequency expends the highest
total energy, even though the core dynamic energy is lowest
at this frequency. This happens because the uncore energy
accounts for 74% of the total, but it contributes nothing



to application performance. Specifically, uncore static en-
ergy constitutes 61% of the total. When the frequency is
increased, core dynamic energy goes up. However, reducing
execution time drastically reduces uncore static energy,
which lowers overall energy. After a certain frequency, in-
creases in (core and uncore) dynamic energy dwarf decreases
in uncore static energy, causing total energy expenditure to
rise again.

The more memory-bound an application, the less per-
formance it gains from running at higher frequencies, and
so reductions in uncore static energy become less signif-
icant with increasing frequency. When the memory-bound
portion of a single-threaded application exceeds 40%, we
see the expected trend: increasing the frequency increases
energy expenditure. Figure 8(b) shows energy-scaling results
for a four-threaded workload. Uncore static energy is less
significant for multi-threaded, CPU-bound applications (we
measure 49% at two threads and 35% at four) because of
the increased ratio of core power to total chip power. As a
result, energy scaling correlates with frequency scaling when
a two-thread application is 30% memory-bound and a four-
thread application is 20% memory-bound (compared to 40%
for a single-threaded application). This analysis shows that
the extent to which an application is memory bound must
be taken into account when choosing a frequency at which
to run the application such that it expends the least energy.

B. Energy Effects of Scaling the Number of Threads

On a processor with ideal energy efficiency, performing
a given amount of work should expend roughly the same
amount of energy, regardless of the number of cores used.
But the sources of energy inefficiency in modern proces-
sors result in energy trends that differ from this “perfect”
scenario. We use our power models to analyze how scaling
concurrency levels affects total energy expenditure. Figure 9
shows energy scaling across different levels of parallelism
when we vary the proportion of serial code while keeping
the amount of work constant. Energy values are normalized
to the energy expenditure of a single-threaded run. When
the workload is completely parallel, using all available
cores expends the least energy, since increasing performance
reduces both uncore static and uncore idle dynamic energy.
Core static energy increases slightly due to higher package
temperatures when using more cores, but core dynamic
energy remains the same. At 3.4 GHz, going from one to
two threads expends 26% less energy, and going from one
to four threads expends 40% less.

As we increase the relative portion of serial execution,
core dynamic energy increases even though the amount of
work does not change. Even though the processor executes
the same number of instructions, total active core time grows
due to pipeline stalls from increased inter-core communica-
tion. This increases core idle dynamic energy. At 3.4 GHz
(Figure 9(a)), when the serial portion of the application

exceeds 20%, using two cores becomes more efficient than
four. When over 40% of the application is serial, running
a single thread becomes more energy-efficient than running
parallel threads, even though speedup when going from one
to four cores is close to 100%.

The ratio of uncore static energy to total energy is much
higher at 800 MHz (Figure 9(b)) than at 3.4 GHz, and thus
increasing the number of threads causes energy savings from
lower uncore static energy consumption to become more
prominent. At 800 MHz, running at four threads is still most
energy efficient, even when 30% of the application is serial
(compared to 20% at 3.4 GHz). A workload must be almost
70% serial before the serial version becomes more energy-
efficient than multithreading (compared to 40% at 3.4 GHz).

C. Benchmark Energy Scaling

To validate the energy trends predicted using our model’s
sensitivity analyses, we examine the energy expenditure of
six of the NAS benchmarks. Figure 10 shows the scaling of
energy expenditure and execution time for NAS benchmarks
at different frequencies and different levels of concurrency.
Please note that these are measured values.

EP, the Embarrassingly Parallel benchmark, is CPU
bound: it has a small working set with no serial sections.
Figure 10(a) shows that sequential runs consume maximum
energy at the lowest frequency, as we expect from the trends
in Figure 8(a). For the four-thread run, EP expends the most
energy at 3.4 GHz and the least at 1.5 GHz, which follows
the trends in Figure 8(b). Energy expenditure decreases when
scaling to more threads, which validates our analyses.

BT has a larger working-set than EP. For sequential exe-
cutions, the energy scaling trends in Figure 10(b) resemble
those of the 10% memory-bound workload in Figure 8(a).
At four threads, energy expenditures closely match trends
for the 10% memory-bound workload in Figure 8(b). Our
remaining benchmarks (CG, SP, MG, and LU) have even
larger working sets, and their energy scaling trends echo
those for the 20% memory-bound workload in Figure 8.

In terms of thread scaling, execution times of most of the
NAS benchmarks scale almost linearly, and energy expen-
ditures decrease with higher concurrency. One exception is
SP running at 3.4 GHz. Scaling from one to two threads
yields an almost linear speedup (48% less execution time),
but scaling from two to four threads reduces execution time
by just 36% percent due to pipeline stalls. Core dynamic
energy increases, making SP expend more total energy at
four threads than two, as our model predicts.

V. RELATED WORK

The difficulty of obtaining accurate, real-time power mea-
surements together with the growing emphasis on green
computing have sparked much research on power-estimation
models. An early effort by Tivari et al. [21] develops
a measurement-based approach to model instruction-level
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Figure 8: Effects of DVFS on Total Energy and Performance
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Figure 9: Effects of Thread Scaling on Total Energy
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Figure 10: Energy Scaling for NAS Benchmarks

power effects. They associate energy cost for each type of
instruction, instruction pairs and inter-instruction effects like
pipeline stalls and cache misses. Unlike us, they do not
distinguish between static and dynamic power components.
Their methodology requires forming the models separately
at each processor frequency.

More recent work increasingly relies on hardware perfor-
mance monitoring counters (PMCs) to build the processor
power model. Joseph and Martonosi [11] model power
consumption of individual microarchitectural components
by choosing performance counters that intuitively correlate
with component utilization and deriving weights for each
component’s activity factor. They run their experiments at
a single frequency (since DVFS was not common in 2001)
and make no distinction between static and dynamic power.

Singh et al. [8] estimate per-core power consumption for
an AMD Phenom [22] by running multiple linear regression
on just four PMCs (representing integer operations, floating
point operations, memory accesses, and pipeline stalls).
Singh [23] later incorporates temperature and frequency
scaling. Goel et al. [9] further refine and validate this general
approach, demonstrating consistently high model accuracy
across several architectures. Goel et al. [10] investigate the
impact of different power measurement infrastructures on
model accuracy.

Like us, Bertran et al. [13] develop a power model that
sums dynamic and static power. However, they define static
power as idle power and use regression on the values of their
chosen PMCs to derive both static (idle) and dynamic power.
Their power models disregard both voltage and temperature.

Spiliopoulos et al. [24] address static and dynamic power
separately in their approach to power estimation, but they
also define static power as idle power. They create a table

(offline) of idle power values at all frequency steps and
“typical core temperature ranges”. For the dynamic power
component in their models, they estimate the effective pro-
cessor activity factor based only on instructions retired. Our
experience indicates that models ignoring memory opera-
tions are prone to error on memory-bound workloads.

Su et al. [14] also address idle and dynamic power
separately. Like us, they use voltage and temperature to
develop a static power model, but they group idle dynamic
power into their static power model, which prevents them
from reflecting the true static power consumption of the core
and the northbridge (equivalent to the uncore in our models).
They use multiple linear regression on nine PMCs to derive
their dynamic power model, but relying on so many counters
requires time multiplexing, which sacrifices accuracy. They
conclude that their AMD FX-8320 R© chip always expends
least energy at the lowest voltage-frequency state, which our
Haswell findings contradict.

VI. CONCLUSIONS

Accurately estimating the power consumption of proces-
sor components is important for supporting better power-
aware resource management. We present a methodology to
estimate static and dynamic power consumption of the core
and the uncore processor components. The methodology
uses core and uncore voltage, package temperature, and
performance counters to create models that can estimate
power consumption for sequential and parallel applications
across all system frequencies. We validate our models
on benchmarks from NAS, SPEC CPU2006, and SPEC
OMP2001, and we show that our models can estimate power
with high accuracy (3.14% mean absolute error) across all
voltage-frequency pairs and different concurrency levels.



We use our power models to study the impact of DVFS
on energy consumption, showing that — contrary to conven-
tional wisdom — it is not always most energy efficient to run
applications at the lowest frequency. Uncore static energy
effects must be taken into consideration. The frequency at
which an application expends the lowest energy depends on
how memory bound it is and how many concurrent threads
it uses. We study the impact of thread scaling on energy
expenditure, showing that the relative serial portion of a
program influences the level of concurrency at which the
program will expend the least energy.
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