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Doping-dependent intraband carrier dynamics in Landau-quantized graphene
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We investigate the intraband carrier dynamics in Landau-quantized graphene after an optical excitation
with low-energetic terahertz pulses. Based on a microscopic theory, we calculate time-dependent differential
transmission spectra reflecting the Landau-level dynamics. Our calculations reveal a strong dependence on the
Fermi energy EF of the graphene sample as well as on the applied magnetic field B. We find that the pump pulse
can lead to both absorption bleaching and absorption enhancement depending on B and the position of EF with
respect to the resonant Landau-level transition. As a result, positive and negative contributions in differential
transmission spectra appear, in good agreement with recent pump-probe measurements.
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I. INTRODUCTION

Applying a strong magnetic field perpendicular to a two-
dimensional electron gas causes a quantization of kinetic
degrees of freedom and creates a discrete energy spectrum
consisting of Landau levels (LLs) [1]. While for conventional
two-dimensional materials with a parabolic electronic band
structure the LL spacing is equidistant, graphene with its linear
dispersion exhibits nonequidistant LLs with ελn = λ�ωc

√
n.

Here, λ = ±1 denote the conduction and the valence bands,
respectively, ωc = ωc(B) stands for the cyclotron frequency,
and n describes the LL index. The optical selection rules [2–4]
of Landau-quantized graphene n → n′ = n ± 1 allow intra-
band transitions (λ = λ′) between consecutive LLs as well as
interband transitions (λ �= λ′) with �n = ±1. The nonequidis-
tant Landau-level spectrum and the optical selection rules of
Landau-quantized graphene allow the excitation of specific
inter-LL transitions using circularly polarized light. As a
result, one can track the path of excited electrons towards
a thermalized Fermi distribution [5–16].

In this paper, we present a theoretical study of the intraband
carrier dynamics in Landau-quantized graphene after excita-
tion with low-energy terahertz pulses. The applied microscopic
approach is based on the density matrix formalism, a well-
established method for modeling the many-particle-induced
carrier dynamics in graphene with and without the influence
of a magnetic field [9,15,17–19]. In accordance with a
recent pump-probe experiment [14], we consider terahertz
photons with an energy of 14 meV which is well below
the cyclotron energy �ωc � 36 meV

√
B at magnetic field

strengths of B = 1 T. In conventional semiconductors with an
equidistant Landau quantization, the absorption of low-energy
terahertz photons is generally strongly suppressed, unless the
cyclotron energy coincides with the photon energy. In contrast,
one can always find an approximately resonant transition
LLn → LLn+1 matching the photon energy in graphene due to
the nonequidistant Landau-level spacing (see Fig. 1). However,
these transitions can only be induced by optical pumping if
the involved levels LLn and LLn+1 are not fully occupied
or entirely empty. Hence, we expect the intraband carrier
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dynamics to be strongly dependent on the Fermi energy EF

for a given magnetic field B.
Figure 1(a) illustrates that resonances between the

fixed photon energy and inter-Landau-level transitions
LLn → LLn+1 occur at specific magnetic fields B (see the
yellow arrows), where the required B increases with the
LL index n. Furthermore, in order to resonantly absorb
the incident photons, the Fermi energy has to be located
in the gap between the involved LLn and LLn+1 [for low
temperatures and small LL broadenings; see Fig. 1(b)].
Interestingly, we observe a linear dependence between the
required Fermi energies and magnetic fields at the resonant
condition. Therefore, to obtain a considerable absorption of
low-energy photons in graphene, the Fermi energy has to lie
on a strip of constant slope when plotted against the magnetic
field [see gray region in Fig. 1(a)]. To calculate the slope of

FIG. 1. Optically allowed intraband Landau-level transitions at a
fixed terahertz excitation. (a) Energy of the energetically lowest LLs
depending on the magnetic field B. At specific B, optically allowed
inter-LL transitions are in resonance with the applied terahertz pulse
with a fixed energy of 14 meV (yellow arrows). Interestingly, the
arrows lie on a straight line, as indicated by the gray region. The
lower boundary of the gray region, the dashed black line, is given
by Eq. (3). (b) Sketch of the Landau-level spectrum for a magnetic
field of B = 2.1 T with the Dirac cone in the background. At this B

value, the inter-LL transition LL3 → LL4 is resonantly excited. This
allows efficient absorption of low-energy photons, provided that the
Fermi energy lies in the gap between LL3 and LL4. In this case, the
transitions LL2 → LL3 and LL4 → LL5 are not only off-resonant but
are also strongly suppressed due to Pauli blocking (see the crossed-out
arrows).
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this strip, we start with the resonance condition

εlight = ελn+1 − ελn = �ωc(B)[
√

n + 1 − √
n]. (1)

Solving for the Landau-level index n, we obtain a B-dependent
expression,

n(B) =
(

c2 − 1

2c

)2

, c = �ωc(B)

εlight
, (2)

that fulfills the resonance condition. Inserting this expression
into Eq. (1) yields the corresponding Fermi energy

EF = λ

(
�

2ω2
c (B)

2εlight
− εlight

2

)
= λ

(
�e0v

2
F

εlight
B − εlight

2

)
, (3)

with the cyclotron frequency ωc(B) =
√

2e0B

�
vF , where

vF = 1 nm fs−1 is the Fermi velocity [20]. As a result, it
is crucial to investigate the intraband dynamics of optically
excited charge carriers in Landau-quantized graphene as a
function of the magnetic field B and the Fermi energy EF .

II. THEORETICAL APPROACH

A. Semiconductor Bloch equations

To microscopically model the Landau-level dynamics, we
apply the Bloch equations of Landau-quantized graphene [15],

ρ̇i = −2
∑

l

Re[�ilpil] + S in
i (1 − ρi) − Sout

i ρi, (4)

ṗif = i

�
(εf − εi)pif − �∗

if (ρf − ρi) − γpif , (5)

describing the temporal evolution of the carrier occupation ρi

in the state i = {ξ,λn,m,s} and of the microscopic polarization
pif , which is a measure of the optical transition probability
between states i and f . The quantum numbers describing these
states contain the valley index ξ = ±1, the band index λ = ±1,
and the LL index n = 0,1,2, . . . , as well as the angular
momentum n − m = n,n − 1,n − 2, . . . and the spin s =
±1/2. To minimize the effect of an initial thermal excitation
of the system, a low temperature of T = 10 K is assumed,
corresponding to the value in the previous experimental inves-
tigation of the intraband carrier dynamics in Landau-quantized
graphene [14]. The appearing Rabi frequency �if contains the
optical excitation field as well as the optical matrix element,
which determines the optical selection rules. The rates S in/out

i

describe the phonon-induced scattering into and out of the
LLi , respectively. Here, we neglect the impact of carrier-carrier
interaction on the LL dynamics since the occupations of only
a small number of Landau levels around the Fermi energy
are changed by low-energy terahertz radiation. Consequently,
the energy-conserving carrier-carrier scattering channels are
strongly suppressed by Pauli blocking [9,21]. We have verified
the validity of this approximation by performing calculations
with and without taking into account the Coulomb interaction
in different regimes. Since the optical phonon energies are
much larger than the low-energy photons [15], the phonon-
induced relaxation should be also negligible [6]. However, to
account for the rather fast experimentally observed decay of
differential transmission [13,14], carrier-phonon scattering is
included on a phenomenological level.

The dephasing γ is assumed to be governed by the carrier-
impurity scattering. It is explicitly calculated by exploiting
the self-consistent Born approximation [9,15,22]. In good
approximation, it results in a Landau-level broadening of
�γ = vF

√
�e0B/Aimp that depends on the Fermi velocity,

the free-electron charge e0, the magnetic field B, and the
parameter Aimp determining the carrier-impurity interaction
strength [22]. We set Aimp = 165 to obtain a broadening of
2 meV at B = 1 T, corresponding to the values in a recent
pump-probe experiment [14]. According to the Fermi-Dirac
distribution, the initial values of the occupations depend on
the Fermi energy EF . As described in Ref. [13], EF in
Landau-quantized graphene is extracted from the Fermi energy
in the absence of a magnetic field using the assumption that the
carrier concentration does not change when a magnetic field
is switched on.

B. Differential transmission spectrum

The derived graphene Bloch equations allow microscopic
access to the time- and energy-resolved dynamics of optically
excited carriers. Having the knowledge of the temporal
evolution of the occupation probabilities, we can also calculate
the differential transmission spectrum (DTS) that is directly
accessible in pump-probe experiments. For a linearly polarized
probe pulse of the frequency ω that is incident with a temporal
delay of τ after the pump pulse (with the same energy and
polarization), we obtain [23]

DTS(ω,τ ) ∝ 1

ω

∑
λini ,λf nf

(
αni

αnf

)2(
δnf ,ni+1 + δnf ,ni−1

)

× [Δρf (τ ) − Δρi(τ )]
γif

Δω2
if + γ 2

if

, (6)

where Δωif = ω − (εf − εi)/� is the energy difference be-
tween the excitation pulse and the investigated inter-LL
transition i → f . Furthermore, Δρj (τ ) = ρj (τ ) − ρ0

j is the
occupation change induced by the pump pulse (compared
to the initial thermal carrier distribution ρ0

j ). The appearing
factor αn stems from the tight-binding wave functions and
reads αn=0 = √

2 for the zeroth LL and αn�=0 = 1 otherwise.
Inspecting Eq. (6), we observe that the DTS is determined by
the sum over pump-induced occupation changes in the final
and initial states of all optically allowed transitions. Here,
every transition is weighted by a Lorentzian centered around
the resonant frequency ω = (εf − εi)/�.

We apply a strong pump pulse to excite the carrier system
and calculate the differential transmission of a much weaker
probe pulse with the same energy. If the system absorbs a
fraction of the incoming radiation, the differential transmission
is expected to be positive since pumping increases the Pauli
blocking and leads to reduced absorption, i.e., increased
transmission, of the probe pulse. This statement is based on the
assumption that the same electronic transitions are pumped and
probed. However, if different transitions are addressed with the
pump and the probe pulse, the DTS can also be negative due
to absorption enhancement. This can be achieved, e.g., by
pumping and probing with light of different polarization [13]
or by using a two-color pump-probe setup.
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FIG. 2. Expected behavior in differential transmission spectra
(DTS) for different Fermi energies EF . (b) In the case of EF located
between the two Landau levels of the resonant transition, we expect (a)
a positive DTS due to absorption bleaching. If EF is located (d) above
or (f) below, the pump pulse excites off-resonant transitions (yellow
arrows), leading to an enhancement of the probe pulse absorption
(orange arrows) and hence (c) and (e) a negative DTS.

Remarkably, applying low-energy terahertz radiation, a
negative DTS can be obtained even if the pump and probe
pulse have the same energy and polarization. This is due to
the fact that absorption does not take place only for resonant
pumping; there are also off-resonant contributions that can
become crucial in certain situations. In Fig. 2, the expected
DTS for three different positions of the Fermi energy EF

with respect to the resonant LL transition LLn → LLn+1 is
shown. If EF is above the upper level of the resonant LL
transition [see Figs. 2(c) and 2(d)], the transition cannot be
pumped directly since the involved LLs are fully occupied and
the strong Pauli blocking suppresses any transitions between
these LLs. Instead, pumping induces the energetically closest
off-resonant transition LLn+1 → LLn+2 [see the yellow arrow
in Fig. 2(d)]. Thereby, the absorption of the probe pulse is
enhanced since the occupation of the final state LLn+1 is
reduced. In this situation, we expect a negative DTS. A similar
behavior is expected if the Fermi energy is located below the
resonant transition [see Figs. 2(e) and 2(f)]. Here, the initial
state of the probe pulse absorption becomes occupied through
the nonresonant pumping of the transition LLn−1 → LLn. This
results in an enhanced absorption and a negative DTS. Only
in the case where the Fermi energy lies in the gap of the
resonant LL transition is the excitation from the pump pulse
not blocked, and we expect an absorption bleaching resulting
in a positive DTS [see Figs. 2(a) and 2(b)].

The importance of off-resonant contributions crucially
depends on the magnitude of the energy mismatch and on
the broadening of the Landau levels. As can be seen in

FIG. 3. Calculated temporal evolution of differential transmis-
sion. A linearly polarized excitation pulse with an energy of 14 meV,
a pulse width of 10 ps (yellow area in the background), and a pump
fluence of 0.02 μJ cm−2 is applied. Furthermore, a magnetic field
of 2.1 T is used, at which the transition LL3 → LL4 is resonantly
excited (see Fig. 1). Here, we model the three representative cases
presented in Fig. 2: (a) Fermi energy EF = 100 meV between LL3

and LL4, (b) EF = 130 meV well above LL4, and (c) EF = 70 meV
well below LL3.

Fig. 1(a), the distance between neighboring LLs decreases
with the Landau-level index n, and so does the energy
mismatch between two consecutive transitions, LLn−1 → LLn

and LLn → LLn+1. The impact of off-resonant pumping with
low-energy radiation increases with the magnetic field since
then transitions involving LLs with a higher index n become
resonantly excited [see Fig. 1(a)]. This is further amplified
by the fact that also the impurity-induced Landau-level
broadening increases with the magnetic field [9,21,22].

III. RESULTS

A. Temporal evolution of differential transmission

Solving the coupled set of differential equations [Eqs. (4)
and (5)] and calculating the differential transmission according
to Eq. (6), we have access to the intraband Landau-level
dynamics. Figure 3 shows the differential transmission at a
constant magnetic field of 2.1 T for different Fermi energies
EF . The chosen magnetic field corresponds to the case
sketched in Fig. 1(b), at which a resonance between the photon
energy and the LL transition LL3 → LL4 is generated. The
Fermi energy in Fig. 3 lies either between LL3 and LL4 or
is located well above LL4 or well below LL3. In agreement
with the expectation from Fig. 2, we observe a positive DTS
for EF between the LLs of the resonant transition [Fig. 3(a)],
while a negative DTS is obtained for Fermi energies above and
below [Figs. 3(b) and 3(c)]. Furthermore, note that the absolute
value of the DTS strongly differs: Since the pump pulse in the
latter two cases can only induce off-resonant transitions due to
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FIG. 4. Differential transmission as a function of Fermi energy
EF and magnetic field B. Illustrations of appearing (a) maxima and
(b) minima in the DTS depending on the position of EF and the
strength of B. The lines represent the Landau-level energies, and
the yellow arrows indicate resonances with the radiation field [see
Fig. 1(a)]. The insets illustrate schematically the cascade pumping.

the entirely occupied LLs and the corresponding strong Pauli
blocking, the amplitude of the DTS is significantly suppressed.
Interestingly, in certain situations, the temporal evolution of the
differential transmission can have both negative and positive
parts (not shown).

B. Dependence of DTS on magnetic field and Fermi energy

The dependence of the DTS on the magnetic field and on
the Fermi energy is further illustrated in a surface plot that
exhibits clearly appearing maxima and minima in the DTS
(see Fig. 4). The maxima correspond to cases where resonant
absorption of low-energy radiation is possible. Here, the Fermi
energy lies between the two LLs of the resonant transition
[see Fig. 4(a)]. Figure 4(a) illustrates nicely the clear linear
dependence between the magnetic field and the Fermi energy
[see Eq. (3) and Fig. 1(a)]. The slope is 47 meV/T, which
agrees well with Eq. (3). Figure 4(b) shows the DTS minima
corresponding to the negative contributions that are present if
the Fermi energy lies above or below the resonant transition
[yellow arrows; see Figs. 2(b) and 2(c), respectively]. The
negative contributions of the DTS correspond to situations
where off-resonant pumping leads to an induced absorption of
the resonant probe pulse.

Interestingly, the minima are not located at the resonant
magnetic fields, but they are shifted to higher or lower
B. There is, e.g., a clear minimum around B ≈ 2.8 T with
a Fermi energy lying between LL+2 and LL+3, while the

energetically closest resonant transition (LL+3 → LL+4) can
be found at B ≈ 2.1 T. This shift away from the resonant
magnetic field results from cascade pumping of successive
inter-Landau-level transitions [see the inset in Fig. 4(b)]. To
elucidate this, let us compare the carrier dynamics at both
magnetic fields: At the resonance, the situation corresponds to
the sketch in Fig. 2(f) (with n = 3). Consequently, the pump
pulse off-resonantly excites electrons to LLn first, thereby
enhancing the resonant absorption of the probe pulse, hence the
negative DTS. However, if pumping is strong enough, excited
electrons in LLn are further excited to LLn+1. This results in a
positive DTS due to absorption bleaching. At higher magnetic
fields away from the resonance the LL spacings increase,
and the transition n → n + 1 no longer is in resonance with
the photons. Instead, the resonance shifts to higher LLs, as
shown in the inset of Fig. 4(b). In our example (at B ≈ 2.8 T)
the transition n + 1 → n + 2 is approximately in resonance.
Therefore, the second step in the cascade pumping n → n + 1
induces an absorption enhancement leading to a negative DTS.
All in all, a shift of the minima away from the resonances
indicates that cascade pumping takes place. Its magnitude is
a measure of the number of transitions that are involved in
the cascade, and it increases with the LL broadening, pump
fluence, and magnetic field, i.e., when off-resonant pumping
is enhanced. As a side effect of the increased impact of
off-resonant pumping at higher B, the amplitude of the DTS
decreases [see Figs. 4(a) and 4(b)] since positive and negative
contributions partly cancel each other.

Note that the pumping cascade moves not only up but
also down the LL ladder at the same time since pumping
an intraband transition n → n + 1 not only populates LLn+1

but also depopulates LLn, enabling pumping of the transition
n − 1 → n [see the inset in Fig. 4(a)]. As explained above, the
upward-moving cascade leads to a shift of the minima to higher
magnetic fields for Fermi energies lying below the resonant
transition. In close analogy, the downward-moving cascade
causes a shift to lower magnetic fields for Fermi energies
lying above the resonant transition. This case corresponds to
Fig. 2(d), where the transition n + 1 → n + 2 is pumped first,
before the transition n → n + 1 can be pumped, and so on.
Based on the concept of cascade pumping, we can also under-
stand the asymmetry between the two branches in Fig. 4(b):
Due to the decreasing energy difference between successive
LLs with n, the upward-moving cascade [corresponding to
the lower branch in Fig. 4(b)] generally evolves faster than
the downward-moving cascade (upper branch), which results
in a larger shift away from the resonance and in a broader
minimum, as is clearly visible in Fig. 4(b).

Since the magnitude of the shift of the minima away from
the respective resonant magnetic field depends on the Landau-
level broadening, an estimation of the broadening from the
position of the DTS minima is facilitated. Large Landau-level
broadenings are beneficial for off-resonant pumping. As a re-
sult, cascade pumping is accelerated, increasing the shift of the
DTS minima as a function of the magnetic field. Furthermore,
our findings demonstrate how to determine the Fermi energy or
the pump energy from differential transmission measurements.
A recent experiment by Mittendorff et al. [14] showed
negative and positive contributions in the differential trans-
mission, which is in line with our calculations. However, the
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measurements are performed on epitaxial graphene samples
where a large number of layers with different Fermi energies
are present. A direct comparison between experiment and
theory suggests that the Fermi energy within the highly doped
layers might be spatially inhomogeneous.

IV. CONCLUSION

In summary, we have presented a theoretical investigation of
the intraband carrier dynamics in Landau-quantized graphene
excited by low-energy terahertz radiation. Modeling pump-
probe experiments, we have found an interesting dependence
of the differential transmission on the Fermi energy and the
magnetic field. Our calculations have revealed a positive
DTS when the same transition is resonantly pumped and
probed. Interestingly, the resonance condition imposes a linear

dependence between Fermi energy and magnetic field, where
the constant of proportionality is defined by the energy of
the excitation field. In contrast, a negative DTS has been
found when the resonant transition is strongly Pauli blocked.
In this case, different transitions are effectively pumped and
probed, resulting in an absorption enhancement and a negative
DTS. The gained insights may be utilized in pump-probe
experiments to estimate the Landau-level broadening and the
Fermi energy of the investigated graphene sample.
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