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RESEARCH ARTICLE Open Access

Statistical evaluation of methods for
identification of differentially abundant
genes in comparative metagenomics
Viktor Jonsson* , Tobias Österlund, Olle Nerman and Erik Kristiansson*

Abstract

Background: Metagenomics is the study of microbial communities by sequencing of genetic material directly from
environmental or clinical samples. The genes present in the metagenomes are quantified by annotating and
counting the generated DNA fragments. Identification of differentially abundant genes between metagenomes can
provide important information about differences in community structure, diversity and biological function.
Metagenomic data is however high-dimensional, contain high levels of biological and technical noise and have
typically few biological replicates. The statistical analysis is therefore challenging and many approaches have been
suggested to date.

Results: In this article we perform a comprehensive evaluation of 14 methods for identification of differentially
abundant genes between metagenomes. The methods are compared based on the power to detect differentially
abundant genes and their ability to correctly estimate the type I error rate and the false discovery rate. We show
that sample size, effect size, and gene abundance greatly affect the performance of all methods. Several of the
methods also show non-optimal model assumptions and biased false discovery rate estimates, which can result in
too large numbers of false positives. We also demonstrate that the performance of several of the methods differs
substantially between metagenomic data sequenced by different technologies.

Conclusions: Two methods, primarily designed for the analysis of RNA sequencing data (edgeR and DESeq2)
together with a generalized linear model based on an overdispersed Poisson distribution were found to have best
overall performance. The results presented in this study may serve as a guide for selecting suitable statistical
methods for identification of differentially abundant genes in metagenomes.

Keywords: Environmental sequencing, Next generation sequencing, Categorical data analysis, Differential
abundance, Receiver operating characteristic, False discovery rate

Background
Metagenomics is the study of microorganisms by se-
quencing random pieces of their genomes directly from
environmental and clinical samples [1, 2]. In contrast to
many traditional methods in microbiology, metage-
nomics require no prior cultivation of individual isolates
and entire communities can therefore be studied directly
in their natural state [3]. The recent development of
cost-efficient high-throughput DNA sequencing tech-
nologies has greatly increased the popularity and

potential of metagenomics and it has become a key
technique for the analysis of the human microbiome, its
composition and connection to disease [4–6]. Environ-
mental microbial communities are also extensively stud-
ied using metagenomics in order to assess their structure
and diversity [7–9].
Metagenomics are often analyzed in a gene-centric

approach where the individual genes are quantified in a
process called binning [10]. After quality assessment of
the raw sequence data, each fragment is matched against
a reference database which typically consists of anno-
tated genomes, contigs or a catalogue of genes. The rela-
tive abundance of each gene (bin) is then estimated by
counting the number of matching fragments in relation
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to a reference value such as the total number of frag-
ments in the sample. By comparing gene abundance
between metagenomes, important differences in com-
munity structure, diversity and biological function can
be identified. The identification of differentially abun-
dant genes between metagenomes is however complex.
Most metagenomes contain a high diversity of microor-
ganisms which carries a vast number of different genes.
The resulting count data is therefore high-dimensional
with many thousands of genes quantified in a single
sample. Metagenomic data is also plagued by high levels
of biological and technical variability and the number of
samples is often low (<10) [11–14]. Most metagenomes
are also vastly undersampled and genes can therefore be
represented by only a few, or even zero, DNA fragments.
Thus, methods for statistical inference of metagenomic
count data need to be robust to noise and have a high
power to identify the truly differentially abundant genes.
In addition, the high dimensionality can result in a large
number of false positives and controlling the type I error
as well as unbiased estimation of the false discovery rate
is therefore vital.
A wide range of methods have been developed for

identification of differentially abundant genes in
metagenomic count data. XIPE-TOTEC, one of the
first methods developed for this purpose, uses a
permutation-based approach to estimate the median
difference for each gene. Significance is calculated by
comparing the estimated median to a null distribution
generated by pooling the metagenomic samples [15].
Another early metagenome analysis tool was IMG/M
which performs a test of the relative gene abundances
using a Gaussian approximation under the null hy-
pothesis [16, 17]. ShotgunFunctionalizeR is a software
package for R containing several methods but has a
focus on regression type approaches using generalized
linear models [18]. MetaStats is based on a t-test
where the p-values are derived from an empiric null
distribution calculated by permuting the samples [19].
STAMP focuses on comparisons of pairs of metagen-
omes using Fisher’s exact test, but have recently been
updated to also include other statistical procedures
such as Welch’s t-test and the resampled t-statistic of
MetaStats [20, 21]. LEfSe applies the non-parametric
Kruskal-Wallis and Wilcoxon-Mann–Whitney tests to
assess differences in gene abundance between groups
and subgroups of metagenomes [22]. Another package
for analysis of gene abundances is FANTOM which
implements several parametric and non-parametric
standard tests together with an easy-to-use graphical
interface [23]. The more recently developed metagen-
omeSeq which uses a zero inflated Gaussian model to
correct for bias caused by undersampling in combin-
ation of inference using the empirical Bayesian model

implemented in Limma [24, 25]. Metagenomic data shows
similarities to sequence-based transcriptomics and
methods originally developed for analysis of RNA sequen-
cing (RNA-seq) data have therefore been applied to iden-
tify differentially abundant genes, in particular edgeR [26,
27], DESeq2 [28, 29] and voom [30, 31]. Even though a
wide range of methods have been suggested for the ana-
lysis of metagenomic data, there exists no comprehensive
evaluation that investigates their performance and statis-
tical properties under realistic settings.
In this paper we present a comparison of 14 methods

for statistical analysis of metagenomic gene count data.
Each method was assessed based on its statistical power
to identify differentially abundant genes, its model as-
sumptions and ability to control the false discovery rate.
The methods were evaluated on data created by resam-
pling and downsampling of real metagenomes which, in
contrast to simulations from parametric distributions,
results in more realistic settings where the structures of
true gene count data are preserved. Our results revealed
large differences in performance between the methods.
The sample size, effect size and gene abundance greatly
affected the ability to identify differentially abundant
genes. Most methods showed skewed p-value distribu-
tions under the null hypothesis indicating non-adequate
model assumptions. Most methods were able to control
the false discovery rate but showed differences in the
number of true positives detected. We conclude that no
single method is optimal for all types of metagenomics
datasets. The results presented in this study can there-
fore serve as a guide for selection of proper statistical
methods for the analysis of metagenomic data.

Results
Sample size, effect size and gene abundance have a large
impact on performance
Fourteen methods for identification of differentially
abundant genes were evaluated on groups of metagen-
omes created by resampling from two datasets, one
based on Illumina sequencing (Qin) and one from mas-
sively parallel pyrosequencing (Yatsunenko). Effects were
introduced to 10 % of the genes using downsampling of
fragments and the gene ranking performance was com-
pared using receiver operating characteristics (ROC)
curves and their corresponding area under curve up to a
false positive rate of 0.05 (denoted AUC0.05, see
Methods). Our results showed that the group size had a
positive impact on the accuracy of gene ranking and the
performance increased substantially when more samples
were included (fold-change fixed to 5) (Table 1, Fig. 1,
Additional file 1: Table S1). For the Qin dataset, no sin-
gle method had the best performance for all investigated
group sizes (Fig. 1a-c). At a group size of 3 + 3, DESeq2
had the highest performance with an AUC0.05 of 0.70
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Table 1 The gene ranking performance at different group sizes for all 14 methods

AUC0.05 Data set 1: (Qin 2010) Data set 2: (Yatsunenko 2012)

Group Size 3 + 3 6 + 6 10 + 10 3 + 3 6 + 6 10 + 10

edgeR 0.64 0.77 0.85 0.55 0.80 0.92

DESeq2 0.70 0.80 0.86 0.53 0.78 0.90

OGLM 0.64 0.83 0.90 0.44 0.73 0.88

MetagenomeSeq 0.29 0.68 0.87 0.41 0.70 0.86

Metastats 0.19 0.74 0.79 0.18 0.66 0.84

Voom 0.63 0.74 0.78 0.48 0.70 0.83

Sqrt t-test 0.62 0.78 0.85 0.43 0.70 0.86

Log t-test 0.63 0.76 0.79 0.44 0.69 0.84

t-test 0.56 0.77 0.85 0.38 0.67 0.84

Welch t-test 0.47 0.74 0.83 0.32 0.62 0.82

WMW ——— 0.75 0.83 ——— 0.66 0.84

Binomial 0.40 0.46 0.48 0.33 0.51 0.67

GLM 0.32 0.35 0.36 0.34 0.52 0.68

Fisher’s exact test 0.32 0.35 0.36 0.33 0.51 0.67

Each listed value is the normalized area under curve up until a false positive rate of 0.05. Higher values represent higher gene ranking performance. The results
are calculated based on 100 resampled metagenomes. The Wilcoxon-Mann–Whitney test was not evaluated at the smallest sample size (3 + 3) due to lack of
samples. The full area under curve (AUC) measurements are available in Additional file 1: Table S1

Fig. 1 The performance of detecting differentially abundant genes increases for large group sizes. For each method, the receiver operating
characteristics curve shows the true positive rate (y-axis) and the false positive rate (x-axis) at each position in the gene ranking list. Panels a-c
show results for the Qin dataset and panels d-f show results for the Yatsunenko dataset. Group sizes of 3 + 3, 6 + 6 and 10 + 10 were included in
the comparison and the effect size was fixed at a fold-change of 5. Each curve is based 100 resampled metagenomes. The methods included are
edgeR, DESeq2, the overdispersed generalized linear model (oGLM), metagenomeSeq (mSeq), metastats and voom (see Additional file 2: Figure
S1 for the additional eight methods)
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followed by edgeR (AUC0.05 of 0.64) and the overdis-
persed generalized linear model (OGLM) (AUC0.05 of
0.64) (Table 1). At larger group sizes, OGLM had the
best performance with an AUC0.05 of 0.83 and 0.90 for
6 + 6 and 10 + 10 respectively. The corresponding num-
bers for DESeq2 were 0.80 and 0.86 and for edgeR 0.77
and 0.85. MetagenomeSeq had a low AUC0.05 at small
group sizes (0.29 and 0.68 at 3 + 3 and 6 + 6 respect-
ively), but at the largest group size the performance was
second best after OGLM (AUC0.05 of 0.87). Voom and
Metastats, which are both based on normal approxima-
tions, showed similar performances except at the smal-
lest group size where Metastats performed poorly.
The performance of the methods was more consistent

across group sizes when evaluated on metagenomes
resampled from the Yatsunenko dataset (Fig. 1d-f )
(Table 1). Here, edgeR had the highest performance in
all group sizes with an AUC0.05 of 0.55, 0.80 and 0.92 for
3 + 3, 6 + 6 and 10 + 10 respectively. DESeq2 was a close
second followed by OGLM and metagenomeSeq (mSeq).
Voom was the third best at 3 + 3 but had the lowest per-
formance of all method at 10 + 10. Metastats again per-
formed poorly at low sample sizes but was close to the
top performing methods at 10 + 10.
The ordinary Student’s t-test using a square-root vari-

ance stabilizing transform had a surprisingly high per-
formance with an AUC0.05 of 0.86 for the Yatsunenko
dataset and 0.85 for the Qin dataset at a group size of
10 + 10 (Table 1, Additional file 2: Figure S1). Interest-
ingly, when the square-root transform was replaced with
a log-transform, the performance decreased for most
group sizes on both datasets. The non-parametric
Wilcoxon-Mann–Whitney test showed a lower perform-
ance than the t-test. Finally, the Poisson generalized lin-
ear model, the Fisher’s exact test and the binomial test
all had a consistently poor performance for all group
sizes and datasets.
Next, the impact of the effect size was investigated for a

fold-change of 3, 5 and 7. As expected, all methods
performed better at larger effect sizes (Additional file 3:
Figure S2, Additional file 4: Figure S3, Additional file 5:
Table S2, Additional file 6: Table S3). For the Qin datasets,
the best method (OGLM) had an AUC0.05 of 0.74, 0.83
and 0.86 for effect sizes 3, 5 and 7 respectively (group size
fixed to 6 + 6). For the Yatsunenko datasets, edgeR had the
highest performance with an AUC0.05 of 0.63, 0.80 and
0.87 for the three effect sizes. Altering the effect size did
not substantially change the relative performance of the
methods.
The power to identify differentially abundant genes is

dependent on the number of observed DNA fragments.
To investigate this effect, the genes were stratified into
three roughly equally sized groups based on their aver-
age number of fragments (see Methods). This showed

that the gene abundance had a considerable impact on
the gene ranking performance. For the Qin dataset, all
methods showed a poor ranking performance for genes
with a low abundance (<500), where DESeq2 had the
highest and metagenomeSeq the lowest AUC0.05, 0.31
and 0.05 respectively (Fig. 2a, effect and group size were
fixed to 5 and 6 + 6 respectively). The ranking perform-
ance increased substantially for genes with higher
abundance (500–5000 fragments, Fig. 2b, Additional file 7:
Figure S4) where OGLM had the highest AUC0.05 at 0.93.
At the highest abundance group (>5000 fragments), all
methods generated excellent ranking of the differentially
abundant genes with the only exception of the generalized
linear model, the Fisher’s exact test and the binomial test
(Table 2, Fig. 2c, Additional file 7: Figure S4, Additional
file 8: Table S4). Analogously to the Qin dataset, all
methods had a poor performance for the low abundant
genes in the Yatsunenko dataset (<50 fragments) which
increased substantially at higher abundance (50–500 and
>500) (Fig. 2d-f). EdgeR was the best method in all three
categories with an AUC0.05 of 0.58, 0.90 and 0.99
(Table 2). MetagenomeSeq (mSeq) showed again a poor
performance for low abundant genes (AUC0.05 of 0.40 at
<50 fragments) but was the third best method when the
abundance increased (AUC0.05 of 0.97 at >500 frag-
ments). For the low abundant genes, all methods showed
a lower performance for the Qin dataset compared to
the Yatsunenko dataset, even though the cutoff was ten-
fold higher (<500 and <50 for Qin and Yatsunenko
respectively).
Most methods accurately estimated the effect size in

the Qin dataset (See Additional file 9: Figure S5). For
the Yatsunenko dataset however, several methods, in-
cluding DESeq2, metagenomeSeq, MetaStats and voom,
showed underestimated effect sizes. This was in contrast
to edgeR and OGLM which both produced unbiased
estimates for both datasets. The standard deviation of
the estimated effect size decreased, as expected, for all
method as the group size increased.

Most methods have a biased p-value distribution under
the null hypothesis
Unbiased estimation of p-values under the null hypoth-
esis is essential to control the type I error rate. We
therefore used resampled metagenomes without added
effects to investigate the p-value distributions for all 14
methods (see Methods). The majority of the methods
showed biased p-values with distributions skewed to-
wards either low or high values (Figs. 3 and 4, Additional
file 10: Figure S6 and Additional file 11: Figure S7).
EdgeR and DESeq2 both had conservative p-values
(Figs. 3a, b, 4a, b) while the p-values for OGLM were
too optimistic (Figs. 3c, 4c). These trends were consistent
between the two datasets. MetagenomeSeq demonstrated

Jonsson et al. BMC Genomics  (2016) 17:78 Page 4 of 14



too optimistic p-value distribution and this bias was more
pronounced for the Qin datasets where a large proportion
of the genes had very small p-values (Figs. 3d, 4d). Meta-
stats had the most uniform p-value distribution (Fig. 3e,
4e) while voom exhibited slightly conservative p-values for
the Qin dataset (Fig. 3f) but had too optimistic p-values
for the Yatsunenko dataset (Fig. 4f). All tests based on
t-statistics showed a unimodal p-value distribution where
the variant using the square-root transformation was most
uniform (Additional file 10: Figure S6, Additional file 11:
Figure S7). Finally, the Poisson generalized linear
model, the Fisher’s exact test and the binomial test all
had extremely optimistic p-values indicating that
these methods will likely produce a high number of
false positives.

Several methods are able to control the FDR but their
power differ
The ability to control the false discovery rate (FDR) was
analyzed for each method by counting the number of
true and false positives at an estimated FDR of 0.05.

(Fig. 5, Additional file 12: Figure S8). For the Qin data-
set, metagenomeSeq detected the highest number of true
positives (123) in median, followed by DESeq2 (112),
OGLM (112) and edgeR (104) (effect and group size
fixed to 5 and 6 + 6 respectively) (Fig. 5a). However,
metagenomeSeq produced a high number of false posi-
tives (37) while the numbers were substantially lower for
DESeq2 (5), OGLM (4) and edgeR (5). Consequently,
metagenomeSeq failed to control the false discovery rate
and at an estimated FDR of 0.05 the true median FDR
was 0.22. DESeq2, OGLM and edgeR were able to
control the false discovery rate and at the 0.05 cut-off,
the estimated FDR were 0.044, 0.035 and 0.040 respect-
ively. For the Yatsunenko dataset, edgeR and DESeq2
identified the highest number of true positives (100)
followed metagenomeSeq (86) and OGLM (80) (Fig. 5d).
All these methods maintained a low number of false
positives (4–5) (Fig. 5e) resulting in a true FDR at or
below 0.05 for all methods (Fig. 5f ). The t-statistics
showed a slightly conservative FDR estimated for both
the Qin and Yatsunenko datasets (Additional file 13:

Fig. 2 Gene abundance had a large impact on the performance to identify differentially abundant genes. For each method, the receiver
operating characteristics curve shows the true positive rate (y-axis) and the false positive rate (x-axis) at each position in the gene ranking list.
Panels (a-c) show results for the Qin dataset and panels (d-e) show results for the Yatsunenko dataset. The genes were stratified into three parts
based on the average number of DNA fragments, i) ≤500, ii) 500–5000 and iii) >5000 for the Qin dataset and i) ≤10, ii) 10–50 and iii) >50 for the
Yatsunenko dataset. The effect size was set to a fold-change of 5 and the group size fixed at 6 + 6 samples. Each curve is based 100 resampled
metagenomes. The methods included are edgeR, DESeq2, the overdispersed generalized linear model (oGLM), metagenomeSeq (mSeq),
metastats and voom (see Additional file 7: Figure S4 for the additional eight methods)
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Table S5). The Poisson generalized linear model, the
Fisher’s exact test and binomial test completely failed to
control the false discovery rate with a too high propor-
tion of false positives.

Discussion
In this study, we evaluated the performance of 14
methods for the identification of differentially abundant
genes between two groups of metagenomes. The statis-
tical power, the uniformity of the p-values under the null
hypothesis and the ability to control the false discovery
rate were investigated using resampling of two large hu-
man gut metagenomic datasets, one based on Illumina
sequencing (Qin) and on massively parallel pyrosequenc-
ing (Yatsunenko). Our results showed that the group
size, effect size and gene abundance all had a large im-
pact on the gene ranking performance of all methods.
DESeq2, edgeR and the overdispersed Poisson GLM
(OGLM) had the best overall performance, but their re-
sults differed between the investigated data sets and
conditions. DESeq2 and OGLM had the highest per-
formance on the Illumina dataset while edgeR was the
best method on the dataset sequenced by massively
parallel pyrosequencing. In addition, edgeR and OGLM
had the most accurate estimation of the effect size, while
DESeq2 produced biased estimates for the Yatsunenko
dataset. DESeq2 and edgeR were originally developed for
identification of differentially expressed genes in RNA-
seq data. Both methods apply a negative binomial distri-
bution where the gene-specific overdispersion is robustly
calculated by a shrinkage estimator modelled by an

empirical Bayes approach [26, 28]. For RNA-seq data,
this has been shown to be highly advantageous when
few samples are available and our evaluation shows that
this is also true for metagenomic counts [32, 33]. How-
ever, at larger group sizes in the Qin dataset, OGLM had
a higher performance than both DESeq2 and edgeR. In
contrast, OGLM is a quasi-likelihood based method that
assumes a Poisson distribution where the gene-specific
overdispersion is introduced by scaling the gene abun-
dance [18, 34]. Even though OGLM does not use any
shrinkage approach to estimate the gene-specific over-
dispersion, it still had the highest performance for group
sizes 6 + 6 and 10 + 10. This suggest that the underlying
empirical Bayes models of DESeq2 and edgeR may not
be fully optimal for all forms of count data in metage-
nomics and thus not always the preferable choice for
identification of differentially abundant genes.
Another method that overall performed satisfactorily

was metagenomeSeq, which is specifically developed for
handling the high number of zero observations encoun-
tered in metagenomic data. MetagenomeSeq uses a log-
transformation (log2(yij + 1)) followed by correction for
zero-inflation based on a Gaussian mixture model [24].
Inference is done after transformation using a normal-
inverse gamma empirical Bayes model which moderates
the gene-specific variance estimates [25]. Interestingly,
our results show that the t-test using an identical log-
transform had a higher performance in many of the
testing conditions, especially for low abundant genes
and small group sizes. This suggests that the correction
for zero-inflation applied in metagenomeSeq may be

Table 2 The gene ranking performance at different gene abundances for all 14 methods

AUC0.05 Data set 1: (Qin 2010) Data set 2: (Yatsunenko 2012)

Mean Abundance: <500 500–5000 >5000 <10 10–50 >50

edgeR 0.15 0.89 1.00 0.58 0.90 0.99

DESeq2 0.31 0.91 1.00 0.54 0.89 0.98

OGLM 0.28 0.93 1.00 0.51 0.83 0.96

MetagenomeSeq 0.05 0.92 1.00 0.40 0.83 0.97

Metastats 0.17 0.82 0.97 0.45 0.75 0.91

Voom 0.12 0.84 1.00 0.49 0.80 0.94

Sqrt t-test 0.21 0.88 1.00 0.48 0.80 0.95

Log t-test 0.17 0.86 1.00 0.45 0.80 0.95

t-test 0.23 0.86 0.99 0.43 0.77 0.94

Welch t-test 0.20 0.81 0.98 0.39 0.72 0.91

WMW 0.21 0.84 0.97 0.43 0.75 0.92

binomial 0.15 0.56 0.60 0.31 0.68 0.82

GLM 0.15 0.48 0.31 0.32 0.68 0.82

Fisher’s exact test 0.15 0.48 0.31 0.31 0.68 0.82

Each listed value is the normalized area under curve up until a false positive rate of 0.05. Higher values represent higher gene ranking performance. The results
are calculated based on 100 resampled metagenomes. The Wilcoxon-Mann–Whitney test was not evaluated at the smallest sample size (3 + 3) due to lack of
samples. The full area under curve (AUC) measurements are available in Additional file 8: Table S4
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disadvantageous under certain conditions and thus not
recommended. However, it should be underlined that
metagenomeSeq was primarily designed for inference of
taxonomic composition using counts from amplicon se-
quencing (e.g. 16 s RNA) where the average number of
counts and the number of samples typically is higher
[24]. This is also confirmed by our results which show
that metagenomeSeq has a substantially higher perform-
ance for genes with high abundance and at larger group
sizes.
Gene count distributions have a non-trivial depend-

ence between their mean and variance. This can nega-
tively affect methods that do not specifically describe
this dependence, such as methods based on Gaussian
approximations. Variance stabilizing transformations can
be used to decouple this dependence [35] and thereby
increase the gene ranking performance significantly. The
choice of variance stabilizing transformation is however
dependent on the underlying distributional assumptions

which are, for high-dimensional data, often hard to as-
sess. We therefore evaluated the performance for two
common transformations (square-root and log) and our
results showed that the area under curve was higher for
the square-root transformation than for the log-
transformation for both investigated datasets. In fact, for
large group sizes in the Qin dataset, applying a log-
transform actually resulted in worse performance in
comparison to non-transformed data. Thus, selecting an
appropriate transformation has large impact on the stat-
istical power of finding differentially abundant genes.
Furthermore, the t-test with the square-root transform
had a higher performance than the non-parametric
Wilcoxon-Mann–Whitney test, even at a group size of
10 + 10. In contrast to the t-test, the Wilcoxon-Mann–
Whitney test is less dependent on the underlying distri-
butional assumptions but is vulnerable to ties [36]. Since
observations with zero counts are common in metage-
nomic data it may explain the surprisingly low power

Fig. 3 Most methods have a biased p-value distribution under the null hypothesis. The p-value distributions on the Qin dataset with no added
effect and a group size of 6 + 6 averaged over 100 resampled data sets. For the quantile-quantile-plots, each grey line represent a resampled
metagenome, the solid black line represents the average value and the dotted line the line with slope one corresponding to a uniform p-value
distribution. The panels correspond to edgeR (a), DESeq2 (b), overdispersed Poisson GLM (c), metagenomeSeq (d), metastats (e) and voom (f).
(See Additional file 10: Figure S6 for the additional eight methods)
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[24]. Moreover, the Poisson generalized linear model,
the Fisher’s exact test and the binomial test exhibited
the worst performance under all tested conditions.
These methods use, explicitly or implicitly, the group-
wise pooled counts for inference without any estimate of
the between sample variability. The low performance of
these methods is thus due to their inability to correctly
discriminate between overdispersion and effect. This fur-
ther underlines the importance of proper modelling and
estimation of the gene-specific variability for achieving a
high statistical power in metagenomic analysis.
The p-values for non-differentially abundant genes

should ideally be uniformly distributed between zero
and one [37]. Deviation from the uniform distribution is
an indication of wrong model assumptions and can re-
sult in too many false positives and incorrectly estimated
false discovery rates. When applied to resampled meta-
genomes where all genes satisfied the null hypothesis of
not being differentially abundant, most methods showed

skewed p-value distributions with either too optimistic
or too conservative values. MetaStats, which estimates
the significance using permutations, was the only
method able to produce in average unbiased p-values.
This demonstrates the advantage of using empirically
derived null distributions for controlling the type I error
rate. In contrast, metagenomeSeq, generated highly
biased p-values under the null hypothesis which resulted
in a large number of false positives and a too optimistic
false discovery rate. This is also in line with a recent
evaluation of metagenomeSeq on count data of oper-
ational taxonomic units which demonstrated a high false
positive rate [38]. Furthermore, the variability between
individually resampled metagenomes was substantial and
all methods produced both over- and under-estimated
p-values for both datasets. This suggest a data hetero-
geneity where individual samples have substantial distri-
butional differences that none of the methods can
describe satisfactorily. Modelling of the sample-specific

Fig. 4 Quantile-quantile plots and histograms for the second data set under the null hypothesis. The p-value distributions on the Yatsunenko
dataset with no added effect and a group size of 6 + 6 averaged over 100 resampled metagenomes. For the quantile-quantile-plots, each
grey line represent a resampled metagenome, the solid black line represents the average value and the dotted line the line with slope one
corresponding to a uniform p-value distribution. The panels correspond to edgeR (a), DESeq2 (b), overdispersed Poisson GLM (c), metagenome-
Seq (d), metastats (e) and voom (f). (See Additional file 11: Figure S7 for the additional eight methods)
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variability and between-sample correlations in large-
scale transcriptomics have previously been shown to
substantially reduce the bias of p-values under the null
hypotheses and analogous models should be pursued in
metagenomics in order to ensure a reliable estimation of
the type I error rate [39, 40].
Calculation of the FDR is a common way to control

the error rate in multiple testing of high-dimensional
data [41]. Correct and unbiased estimation of the FDR is
dependent on the model assumptions under both the
null and alternative hypotheses and is vital for reliable
downstream biological interpretation [42]. The majority
of methods in this study were able to control the true
FDR at the specified estimated FDR cut-off. This was
however not true for metagenomeSeq which exhibited a
too high proportion of false positives. The Poisson gen-
eralized linear model, the Fisher’s exact test and the
binomial test were completely unable to control the
FDR and returned a large number of false positives. Ap-
plying these methods to metagenomic data is thus not
recommended and may lead to erroneous biological
conclusions.
Two independent datasets were used as a basis for the

evaluation; one generated using the Illumina platform

(Qin) and one using massively parallel pyrosequencing
(Yatsunenko). All methods had a slightly higher gene
ranking performance for the Qin dataset, partially due to
the substantially higher sequencing depth. However, all
methods also showed a reduced performance for the low
abundant genes in Qin dataset compared to the Yatsu-
nenko dataset. This difference was substantial (Table 2),
especially considering that the cut-off for the lowest
abundant genes was ten-fold higher (<500 for Qin and
<50 for Yatsunenko). The discrepancy for the low abun-
dant genes in the two datasets can be partially explained
by the higher variability caused by the large proportion
of genes with zero counts available in the Qin dataset
(Additional file 14: Figure S9). This is likely a conse-
quence of the binning process typically applied for short
read data where the reference database is first assembled
de novo. Genes represented by a low number of frag-
ments are often hard to assemble and may therefore be
completely missing from the reference database, result-
ing in observations with zero fragments. Zero-inflation
is known to result in overestimation gene-specific
variability and will thus cause in an overall reduction in
the power for identification of differentially abundant
genes. Refined binning strategies using comprehensive

Fig. 5 Most methods can control the false discovery rate at predefined level. The figure shows boxplots of the number of true positives (panel
a, d), the number of false positives (panel b, e) and achieved true FDR (panel c, f) at a cutoff of 0.05 estimated FDR. Panels (a-c) show results for
the Qin dataset and panels (d-f) show results for the Yatsunenko dataset. The group sizes were set to 6 + 6 and the effect size to 5. The results
were based on 100 resampled metagenomes. The included methods are edgeR, DESeq2, the overdispersed generalized linear model (oGLM),
metagenomeSeq (mSeq), metastats and voom (see Additional file 12: Figure S8 for the additional eight methods)
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reference databases, such as gene catalogue or fully se-
quenced genomes from a large collection of isolates,
may result in a more accurate representation of the
metagenome and thereby reduce the number of zero
count observations [43, 44]. However, these strategies
are only be applicable to well-studied microbial commu-
nities such as the human microbiome. Thus, develop-
ment of new statistical methods that show a higher
robustness against zero-inflation will be vital in order to
maintain a high statistical performance in all forms of
metagenomic studies.
Simulated metagenomes are dependent on the under-

lying assumptions and the specific parametric distribu-
tion used to draw gene counts. Comparisons using
simulated data are therefore, in essence, subjective and
may greatly favor methods with assumptions close to
those used for the data generation. In this study, the per-
formance of the statistical methods was evaluated on
artificial datasets created by resampling of two real
metagenomic datasets. In contrast to simulation from
parametric distributions, resampling preserve many of
the features of real metagenomic data, such as the
underlying read distributions with its technical and bio-
logical variability and the gene-gene correlation which
can have a large impact on estimation of the false dis-
covery rate [45]. Effects were introduced in the data by a
downsampling strategy where individual DNA fragments
were randomly and independently removed from the
dataset. It should be noted that our resampling approach
works similar to an experimental randomization proced-
ure in the sense that the effects added by downsampling
are not systematically co-varying with other non-
modeled factors for example, host age, life style or genet-
ics. In a real experimental setup factors may covariate
making inference even harder. However, we still argue
that in contrast to simulating from a parametric distri-
bution, our setup with resampled artificial metagenomes
generates more realistic count data which leads to a
more objective comparison of the statistical methods.
Furthermore, the methods included in this study were
run using their recommended normalization techniques
(see Methods). However, normalization of metagenomic
data has previously been shown to have a substantial im-
pact on the analysis [38, 46] and a wide range of differ-
ent techniques has so far been developed [24, 47, 48].
Since the methods included in this study are based on
different distributional assumption is it also likely that
they perform optimally in combination with different
types of normalization. Further studies are therefore
needed to identify which normalization strategies that
should be combined with the different statistical
methods in order to achieve maximum performance for
identification of differentially abundant genes in metage-
nomic data.

Conclusions
Statistical inference in metagenomics is challenging due
to high levels of biological and technical variability in
combination with high dimensionality of the count data
and the few samples that are typically present. In this
study 14 methods for identification of differentially
abundant genes were evaluated. Our results showed that
group size, effect size and gene abundance greatly af-
fected the performance and no single method was best
under all investigated conditions. DESeq2, the overdis-
persed Poisson generalized linear model and edgeR had
all an overall satisfactory performance and are therefore
suitable methods for inference of metagenomic gene
count data. Our results also showed that methods that
do not correctly capture the between-sample variability
have a very low performance and should be avoided.
The results presented in this paper may thus serve as a
guide for the design of future metagenomic experiments
and as suggestions for appropriate statistical methods to
use in the analysis of gene count data.

Methods
Included methods
We assume that the metagenomic data is organized in a
table of counts with n rows and m columns. The n rows
correspond to bins, which typically represents gene fam-
ilies, functional groups or single genes. For consistency,
we will in this paper use the word gene to represent all
these possibilities. The m=m1 +m2 columns represent
metagenomes from two conditions containing m1 and
m2 samples respectively.
Fourteen methods for identification of differentially

abundant genes in metagenomics were selected to be in-
cluded in the evaluation. MetagenomeSeq version 1.6
was applied to the data using default parameters [24].
MetaStats from the metagenomeSeq R-package 1.6 were
run with the number of permutations increased from
the default 1000 to 10000 [19]. EdgeR, from version
3.6.8 of the edgeR package, and voom, implemented in
the limma R-package version 3.20.9, were run with de-
fault parameters [30, 49, 50]. DESeq2 version 1.4.5 was
applied with the filters for outliers and genes with low
abundance disabled [28].
The Poisson generalized linear model (GLM) and the

overdispersed Poisson generalized linear model (OGLM)
was implemented according to the R-package shotgun-
FunctionalizeR version 1.2-9 [18]. The Fisher’s exact test
was implemented as a gene-specific 2 × 2 contingency
table pooling fragments from the samples within each
group. The table was constructed from the number of
fragments matching and not matching the gene (rows)
for the two groups (columns) [21] and the p-values were
calculated using the fisher.test() function in R 3.1.1 [51].
The two-sided binomial test was implemented as
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described in [18]. Student’s and Welch’s t-test were im-
plemented using the t.test() function in R. The t-tests
were applied to the normalized counts with and without
two common used variance stabilizing transforms, i) y1/2

and ii) log(y + 1) [35]. The Wilcoxon-Mann–Whitney
test (WMW) was implemented using the wilcox.test()
function in R. The p-values were derived based on
permutations when no ties were present and on normal
approximations when ties were present [52].
Each method was run with it’s recommended between

sample normalization technique. MetagenomeSeq and
metaStats used cumulative sum scaling [24], EdgeR and
voom used TMM (Trimmed mean of M-values) [53]
and DESeq2 used the median of rations [54]. The
remaining methods all used the total number of binned
fragments per sample as normalization factors, either by
dividing the observed counts by the column total or
providing the column totals as scaling factors.

Resampling of gene count data
The statistical methods were evaluated on data created
by resampling two large metagenomic datasets. The first
dataset (Qin) consists of the fecal metagenomes from
124 individuals [55] and was sequenced using the Illu-
mina platform resulting in a read length of 75 bases and,
in average, 62.5 million reads per sample. The raw reads
for 124 samples and individual-specific assembled con-
tigs were retrieved from http://gutmeta.genomics.org.cn/
. The contigs were annotated based on the TIGRFAM
database, release 13.0 [56] using HMMER 3 [57] with a
domain E-value cutoff of 10−10. The raw reads were
binned and quantified against the assembled contigs
using Tentacle v0.1 [58] using FASTX Toolkit v 0.0.13.2
for quality control (fastq_quality_filter, "-q 10 -p 50";
fastq_quality_trimmer "-t 1 -l 0") and pBLAT v.35 for
read mapping [59] ("-threads 32 -minIdentity 90 -out =
blast8"). Samples from the same individual were pooled
after binning. Four individuals (MH0028, MH0037,
MH0081, V1.CD.8) were excluded due to the low total
counts. The second dataset (Yatsunenko) consists of 110
fecal metagenomes and was sequenced using massively
parallel pyrosequencing resulting in an average read
length of 341 bases and an average number of reads
155,890 [5]. The data was retrieved from the MG-RAST
database [60], http://metagenomics.anl.gov/linkin.cgi?
project=98. The reads were binned by translating them
in the six possible frames and aligning the peptide
sequences directly to gene models in the TIGRFAM
database [56] using HMMER 3 [57] with an e-value cut-
off of 10−10.
Resampled metagenomic data was created as follows.

First two equally sized groups were randomly selected
from one of the datasets (Qin or Yatsunenko) without
replacement. All individuals, rather than a homogenous

subset, were used in the resampling in order to capture
the full variability present in the datasets. Next, 10 % of
the genes were randomly selected to be differentially
abundant and an effect was added by down-sampling of
the reads. For these genes, the observed counts yij within
one group (randomly selected) were replaced with new
values y*ij sampled a binomial distribution with parame-
ters yij and 1/q where q is the effect size parameter
(fold-change). Downsampling can only be applied to a
gene with non-zero counts and genes with i) zeros in
more than 75 % of the samples or ii) an average abun-
dance <3 in the sampled metagenomes were therefore
excluded from the analysis. The average number of
genes in the resampled datasets was after filtering 3029
and 2150 for the Qin and Yatsunenko datasets respect-
ively. To assess the effect on the filtering, we performed
an analysis on unfiltered data (effect size 5, group size
6 + 6) which is available in Table S6, Additional file 15.
Evaluation of the performance for low, intermediate

and high abundant genes was done by stratifying the
resampled data into three disjoint parts based on the
average number of fragments. For the Qin dataset, these
parts were defined as i) average abundance <500 frag-
ments, ii) average abundance between 500 and 5000 and
iii) average abundance >5000. For the Yatsunenko data-
set the parts were defined as i) average abundance <50,
ii) average abundance between 50 and 500 and iii) aver-
age abundance >500. The stratification was performed
independently for each resampled dataset prior to add-
ing effects. Each method was applied to the full data set
but the results were compared within each abundance
category.

Ranking genes based on differential abundance
Receiver operating characteristic (ROC) curves [61] were
used to visualize the performance of the methods. Each
method was applied to each resampled dataset creating
gene lists sorted according to increasing p-values. At
each gene rank, the true positive rate (TPR) and false
positive rate (FPR) were calculated for genes above that
rank. The procedure was repeated 100 times and a con-
sensus ROC curve was calculated using point-wise verti-
cal averaging for fixed FPR values. Area under curve
(AUC) was used to summarize the overall performance.
In addition, the AUC up to a false positive rate cutoff of
0.05 (AUC0.05) was calculated focusing especially on the
performance of the top of the ranking lists. The AUC0.05

was normalized by 0.05 to generate a value between 0
and 1. All AUC estimates were calculated using the
trapezoid integral under the corresponding ROC curve.

Distribution of p-values under null and FDR estimation
The distribution of method specific nominal p-values
under the null hypotheses was examined using
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histograms and quantile-quantile plots (qq-plots). The
qq-plots were created by first generating 100 resampled
metagenomic datasets without adding differentially
abundant genes. Each resampled dataset was down-
sampled by randomly selecting exactly 1500 genes to
make them comparable and an average qq-line was then
calculated by taking the mean across each quantile.
The p-value histograms were generated by pooling the
p-values from the resampled datasets.
The estimated FDR was calculated by the Benjamini

and Hochberg estimator,

FDR̂ kð Þ ¼ np kð Þ
k

;

where p(k) is the p-value at rank k and n is the total
number of genes (using p.adjust in R 3.1.1) [41]. The
true FDR was calculated from the rankings of each
method, i.e.

FDRðkÞ ¼ Number of false calls up until k
k

;

where k is the gene rank. The estimated and true FDR
was calculated based on 1500 randomly selected genes
to make them comparable between different resampled
datasets.

Additional files

Additional file 1: Table S1. The full area under curve estimates at
different group sizes for all 14 methods. Higher values represent higher
gene ranking performance. The results are calculated based on 100
resampled metagenomes. The Wilcoxon-Mann–Whitney test was not
evaluated at the smallest sample size (3 + 3) due to lack of samples.
(DOCX 14 kb)

Additional file 2: Figure S1. Ranking performance at increasing group
size for the remaining methods. For each method, the receiver operating
characteristics curve shows the true positive rate (y-axis) and the false
positive rate (x-axis) at each position in the gene ranking list. Panels a-c
show results for the Qin dataset and panels d-f show results for the
Yatsunenko dataset. Group sizes of 3 + 3, 6 + 6 and 10 + 10 were included
in the comparison and the effect size was fixed at a fold-change of 5.
Each curve is based 100 resampled metagenomes. The methods included
are the t-test using the square root transform (sqrtT), the t-test using log
transform (logT), the non-transformed pooled t-test (tTest), Welch’s test
(Welch), Wilcoxon-Mann–Whitney test (WMW), the binomial test
(binomial), the non-overdispersed Poisson generalized linear model
(GLM) and Fisher’s exact test (Fisher). (PDF 134 kb)

Additional file 3: Figure S2. Ranking performance at increasing effect
size for the main methods. The effect size (fold change) influences the
ability to identify differentially abundant genes but has no considerable
effect on the relative performance between the methods. The effect size
varied from 3, 5 to 7 and the group sizes were fixed at 6 + 6. Panels a-c
show results for the first data set and panels d-f show results for the
second data set. The receiver operating characteristic curves were
averaged over 100 realizations of resampled data. The included methods
are edgeR, DESeq2, the overdispersed generalized linear model (OGLM),
metagenomeSeq (mSeq), metastats and voom. For the results of the
remaining methods see Figure S3. (PDF 131 kb)

Additional File 4: Figure S3. Ranking performance at increasing effect
size for the remaining methods. The effect size varies from 3, 5 to 7 and

the group size is fixed at 6 + 6. Panels a-c show results for the first data
set and panels d-f show results for the second data set. The receiver
operating characteristic curves are averaged over 100 realizations of
resampled data. The included methods are the t-test using the square
root transform (sqrtT), the t-test using log transform (logT), the
non-transformed pooled t-test (tTest), Welch’s test (Welch), Wilcoxon-
Mann–Whitney test (WMW), the binomial test (binomial), the non-
overdispersed Poisson generalized linear model (GLM) and Fisher’s
exact test (Fisher). (PDF 135 kb)

Additional file 5: Table S2. The gene ranking performance at different
effect sizes for all 14 methods. Each listed value is the normalized area
under curve up until a false positive rate of 0.05. Higher values represent
higher gene ranking performance. The results are calculated based on
100 resampled metagenomes. The Wilcoxon-Mann–Whitney test was not
evaluated at the smallest sample size (3 + 3) due to lack of samples. The
full area under curve (AUC) is available in Table S3. (DOCX 13 kb)

Additional file 6: Table S3. The full area under curve estimates at
different effect sizes for all 14 methods. Higher values represent higher
gene ranking performance. The results are calculated based on 100
resampled metagenomes. The Wilcoxon-Mann–Whitney test was not
evaluated at the smallest sample size (3 + 3) due to lack of samples.
(DOCX 12 kb)

Additional file 7: Figure S4. Ranking performance at increasing
abundance for the remaining methods. For each method, the receiver
operating characteristics curve shows the true positive rate (y-axis) and
the false positive rate (x-axis) at each position in the gene ranking list.
Panels a-c show results for the Qin dataset and panels d-f show results
for the Yatsunenko dataset. The genes were stratified into three parts
based on the average number of DNA fragments, i) ≤500, ii) 500–5000
and iii) >5000 for the Qin dataset and e i) ≤10, ii) 10–50 and iii) >50 for
the Yatsunenko dataset. The effect size was set to a fold-change of 5 and
the group size fixed at 6 + 6 samples. Each curve is based 100 resampled
metagenomes. The methods included are the t-test using the square root
transform (sqrtT), the t-test using log transform (logT), the non-
transformed pooled t-test (tTest), Welch’s test (Welch), Wilcoxon-Mann–
Whitney test (WMW), the binomial test (binomial), the non-overdispersed
Poisson generalized linear model (GLM) and Fisher’s exact test (Fisher).
(PDF 133 kb)

Additional file 8: Table S4. The full area under curve estimates at
different gene abundances for all 14 methods. Higher values represent
higher gene ranking performance. The results are calculated based on
100 resampled metagenomes. The Wilcoxon-Mann–Whitney test was not
evaluated at the smallest sample size (3 + 3) due to lack of samples.
(DOCX 12 kb)

Additional file 9: Figure S5. Accuracy of effect estimates. Panels a-c
show results for the Qin dataset and panels d-f show results for the
Yatsunenko dataset. The non-overdispersed Poisson generalized linear
model (GLM) has identical effect estimates to the OGLM and is not
shown in the figure. Group sizes of 3 + 3, 6 + 6 and 10 + 10 were included
in the comparison and the effect size was fixed at a fold-change of 5.
Each plot is based 100 resampled metagenomes. (PDF 108 kb)

Additional file 10: Figure S6. The p-value distributions for the Qin
dataset for the remaining methods. For the quantile-quantile-plots, each
grey line represent a resampled metagenome, the solid black line
represents the average value and the dotted line the line with slope one
corresponding to a uniform p-value distribution. The p-value distributions
were created based on 100 resampled metagenomes with no added
effect and a group size of 6 + 6. (PDF 2375 kb)

Additional file 11: Figure S7. The p-value distributions for the
Yatsunenko dataset for the remaining methods. For the quantile-quantile-
plots, each grey line represent a resampled metagenome, the solid black
line represents the average value and the dotted line the line with slope
one corresponding to a uniform p-value distribution. The p-value
distributions were created based on 100 resampled metagenomes with
no added effect and a group size of 6 + 6. (PDF 3526 kb)

Additional file 12: Figure S8. The ability to control the false discovery
rate for the remaining methods. The figure shows boxplots of the
number of true positives (panel a, d), the number of false positives (panel
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b, e) and achieved true FDR (panel c, f) at a cutoff of 0.05 estimated FDR.
Panels a-c show results for the Qin dataset and panels d-f show results
for the Yatsunenko dataset. The group sizes were set to 6 + 6 and the
effect size to 5. The results were based on 100 resampled metagenomes.
The included methods are the t-test using the square root transform
(sqrtT), the t-test using log transform (logT), the non-transformed pooled
t-test (tTest), Welch’s test (Welch), Wilcoxon-Mann–Whitney test (WMW),
the binomial test (binomial), the non-overdispersed Poisson generalized
linear model (GLM) and Fisher’s exact test (Fisher). (PDF 117 kb)

Additional file 13: Table S5. Summary of results from the FDR analysis.
The median value for the number of true positives detected, the number
of false positives detected and achieved true FDR at a cutoff of 0.05
estimated FDR for both data sets. The group sizes were set to 6 + 6 and
the effect size to 5. The results were based on 100 resampled
metagenomes. (DOCX 15 kb)

Additional file 14: Figure S9. The abundance of zeroes averaged over
resampled data sets. There is a large difference in the number of zeros for
the low abundant genes but small differences for the more highly
abundant genes. The cutoffs in average number of DNA fragments were
the same as used in previous results, i) ≤500, ii) 500–5000 and iii) >5000 for
the Qin dataset and e i) ≤10, ii) 10–50 and iii) >50 for the Yatsunenko
dataset. The group size was fixed to 6 + 6. Error bars indicate the 95 %
confidence interval for the mean between resampled data sets. (PDF 19 kb)

Additional file 15: Table S6. Area under curve estimates on unfiltered
data for all 14 methods. Higher values represent higher gene ranking
performance. The results are calculated based on 100 resampled
metagenomes. The Group size was 6 + 6 and the effect fixed to 5.
(DOCX 12 kb)
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