
ADistributed Publish/Subscribe System built on a DHT Substrate

Master of ScienceThesis in the Program Computer Systems and Networks

André Laszlo

Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden 2016

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish theWork electronically and in a non-commercial purposemake
it accessible on the Internet.
The Author warrants that he is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

A Distributed Publish/Subscribe System built on a DHT Substrate

André Laszlo

©André Laszlo, January 2016.

Examiner: Olaf Landsiedel

Cover: Vector graphics by the Author, 2014

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden January 2016

Acknowledgments

I would like to thankAndrius Kašėta, Kristin Alehammar,Martin Sylvesten and Per-ÅkeMin-
borg at Chilirec for providing the inspiration and setting for this thesis.

My managers at HiQ and Ericsson have been helpful and understanding during my work.
Thank you Ulrika Muchow Stenström, Simona Bamerlind, Andreas Sandberg and Torbjörn
Lundin, as well as Andreas Lindfalk, formerly at HiQ, who provided technical coaching ini-
tially. I am also grateful towards Andrej Lamov who helped me with proofreading and com-
ments.

I would also like to take the opportunity to expressmy gratitude towardsmy examinerOlaf
Landsiedel, for his excellent feedback and for pushingme in the right direction when I needed
it.

Finally, a special thanks is in order toNarjis Hachilif for her constant support and limitless
patience, as well as for proofreading and feedback.

André Laszlo, Gothenburg, January 2016

Abstract

Thepublish/subscribe pattern is commonly found inmessaging systems andmessage-oriented
middleware. When large numbers of processes are publishing messages in applications where
low latency and high throughput is needed, the performance of the messaging system is criti-
cal. Several solutions exist that provide high throughput and low latency to a high number of
concurrent processes, such as RabbitMQ and Kafka.

What happens to the performance of the system when each process also has a complex or
large set of subscriptions? This is the case when users of an internet radio application notify
each other of songs currently being played and the subscriptions of each user correspond to the
user’s wish list – a list of songs that the user is interested in recording.

This thesis examines how the popular messaging systems RabbitMQ and Kafka handle
this situation when topic-based message filtering is used to model subscriptions. A prototype
messaging system, Ingeborg, which is built on the key-value store Riak is also introduced and
its performance is examined and compared to the previously mentioned systems.

The results of the experimental study show that it is difficult to scale both RabbitMQ and
Kafka with regards to the number of topics used, but that RabbitMQ shows greater flexibility
in its configuration. Finally, the prototype system Ingeborg shows that it is possible to design
a messaging system from scratch based on a key-value store, allowing even greater flexibility in
prioritizing trade-offs and performance properties of a system.

Contents

1 Introduction 1
1.1 Motivation . 4
1.2 Problem statement . 5
1.3 Objective . 7

1.3.1 Scalability . 7
1.3.2 Throughput . 8
1.3.3 Event latency . 9
1.3.4 Message deduplication . 11

1.4 Outline . 12

2 Background 13
2.1 Publish-subscribe . 13
2.2 Distributed hash tables . 14
2.3 Dynamo and Riak . 16
2.4 Erlang/OTP . 17
2.5 Message brokers . 19
2.6 Data Distribution Service . 19
2.7 WebSockets . 21
2.8 Benchmarking pub/sub systems . 23

3 Related work 24
3.1 RabbitMQ . 24
3.2 Kafka . 26
3.3 RabbitMQ throughput record . 27
3.4 IoTCloud Message Brokers . 28

4 Design 30
4.1 System overview . 30
4.2 Client interface . 32
4.3 Client-endpoint protocol . 34

4.4 Design summary . 38

5 Implementation 40
5.1 Ingeborg: Pub/sub built on Riak . 40
5.2 Routing algorithm . 43
5.3 Riak integration . 44

6 Evaluation 47
6.1 Test metrics . 47

6.1.1 Primary metrics . 47
6.1.2 Additional metrics . 48

6.2 Test strategy . 48
6.2.1 Traffic models . 49
6.2.2 Acquiring metrics . 51
6.2.3 Benchmarking RabbitMQ . 52
6.2.4 Benchmarking Kafka . 52
6.2.5 Reference system . 53

6.3 Test platform . 54
6.4 Traffic benchmark results . 55

6.4.1 RabbitMQ . 55
6.4.2 Kafka . 57
6.4.3 Ingeborg . 57

6.5 Topics benchmark . 59
6.6 Topics benchmark result . 62
6.7 Summary . 63

7 Conclusion 65
7.1 Topic-based filtering . 65
7.2 Optimizing Ingeborg . 66
7.3 Concluding remarks . 67

Bibliography i

Glossary vii

List of Figures x

List of Tables xi

List of Code Listings xi

1
Introduction

The year 2014 marked an important milestone for the music industry. For the first time, rev-

enues from digital sales were as big as revenues from the sales of CDs and other physical for-

mats. Almost a quarter of digital revenues, reaching a total of 6.85 billion USD, came from

music subscription services. These services had an estimated 41 million users, 13 million more

than the year before.[1]

Meanwhile, music piracy, or the act of making unauthorized copies of music, is seen as an

enormous problem by the recording industry and other copyright holders world-wide. The

Recording Industry Association of America, RIAA, claims that billions of songs are being ille-

gally downloaded and that only a minority of all music acquired by U.S. consumers has been

paid for.[2]. The International Federation of the Phonographic Industry, IFPI, writes in their

annualDigital Music Report that 20% of all fixed line internet users are using services that of-

fer copyright infringing music and that 4 billion music downloads are being made through the

BitTorrent protocol.[1]

In Sweden, recording songs played on the radio is not considered copyright infringement,

as long as the recordings are onlymade for personal use. [3, §12, §§26 k-m]Artists are remuner-

ated through fees collected by national collective rights management organizations for music

copyright holders. There are several such organizations with distinct responsibilities, such as

1

CHAPTER 1. INTRODUCTION

Stim, Sami and CopySwede. Anyone who plays copyrighted music in public may be obligated

to pay licensing fees to Sami, representing artists, or to Stim, another organization that acts on

behalf of composers and other copyright holders. The organization CopySwede collects fees

covering loss of income due to copies made for personal use. The fees are currently covering a

wide range of devices, such as cassette tapes, mobile phones with digital storage, writable CDs,

and hard drives. The fee for an external hard drive, for example, is one Swedish krona (SEK)

perGB for devices smaller than 80GB and 80 SEK for larger hard drives. For smartphones the

fee is 3.5 SEK per GB, with no upper limit.[4]

Chilirec¹ was an application, developed by a company from Gothenburg with the same

name. The idea behind the application was that people should be able to find, record and

organize music from all the thousands of online radio stations available today. Music would be

free for the users, since they would record songs off the radio for personal use. Artists would at

the same time receivemoney from the radio stations through the collective rightsmanagement

organizations.

The first version of Chilirec was launched in 2007 and had a simple interface where the

user could start recording immediately after opening the site in their web browser. The actual

recordingwas done on the server, and several stationswere recorded at once. Songswere stored

in the user’s online music library. The powerful server downloading music concurrently from

multiple online radio stationswould quickly fill themusic library with songs. The landing page

of Chilirec’s web site at the time told visitors “After one day you have more than 50 000 songs”.

[5]

The music industry questioned the company’s interpretation of Swedish law, arguing that

the process was too automatic to constitute “copying for personal use”. The online storage

was also questioned, since the files would be stored on Chilirec’s servers and not on the user’s

¹http://www.chilirec.com

2

http://www.chilirec.com

CHAPTER 1. INTRODUCTION

computer². As a response to pressure from themusic industry, the web recorder was shut down

and development of a desktop version began.

The desktop application was launched in mid-September 2008. To reduce data traffic and

to eliminatemost of the criticized automatization, a wish list conceptwas introduced. The user

would add songs to the wish list and the server would listen to hundreds of stations at once,

alerting the desktop client whenever a song on the wishlist was being played. The application

would immediately connect to the station playing the song and start recording it.

After the launch in the fall of 2008, Chilirec gained thousands of users world-wide. User

growth was good initially but eventually slowed down, probably due to competition from

streaming services³ and music available through BitTorrent. This led the founders of Chilirec

to focus onother projects, while the servicewas left running. User growth and revenue fromthe

paid premium version were both small and in 2012 the idea and the remains of the application

were handed over to a team atChalmers School of Entrepreneurship, a combinedmaster’s pro-

gram and technology pre-incubator.

The new team started researching the market and got to work developing new business

models, prototypes and services, and also a new version of the application addressing some

of the technical limitations found in previous versions. The new application would be faster,

easier to use and have a new design, but most importantly it would not rely on a centralized

server for wishlist alerts. Instead, each client would listen to a few stations each and notify

other clients about new songs playing, using a peer-to-peer notification system. This would

reduce operational costs dramatically, since the server would go from constantly listening to

hundreds of radio stations, to not listening to any stations at all. Costs related to bandwidth

²This interpretation might sound strict today, but this took place a couple of years before “cloud storage”
became the norm. Dropbox was founded in 2007, for example, and did not officially launch until 2008.[6]

³Spotify, currently the biggest online music streaming service, was launched the month after the desktop
version of Chilirec.[7]

3

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

usage would be reduced dramatically, as well as the general server load in terms of processing

and storage.

The goal of this thesis was to create and evaluate a prototype that solves this problem. Two

clients in the system should be able to inform each other whenever online radio stations start

playing new songs. Each client has a “wish list”, a list of songs that they want to record. A client

does not have knowledge of the other clients in the system or of their wish lists. Instead, when

the client is listening to a station and a new song starts playing, it will send a notification to

the system about this event. Other clients that have this song in their wish lists will then, very

quickly, be notified of the event so that they can start recording the song.

1.1 Motivation

Publish/subscribe systems are “solving a vital problem pertaining to timely information dis-

semination and event delivery from publishers to subscribers”.[8, p. 1] Thanks to the useful-

ness and flexibility of this design pattern, publish-subscribe (pub/sub) systems are used in a

wide range of applications. They are used in GUIs for coupling the different interface widgets

to each other; in push systems where real-time content is sent to users; in targeted delivery

and information filtering systems; in signaling planes to ensure real-time delivery of messages

between components; in Service Oriented Architecture (SOA); in Complex Event Processing

(CEP), for example in algorithmic trading; in cloud computing; in Internet ofThings applica-

tions; and in online multiplayer games.[8, pp. 26-27]

Distributed Hash Tables (DHT) (see section 2.2) are sometimes used as a substrate for

distributed pub/sub systems. Scribe [9] is one example of such a system; it is a pub/sub system

built on top of the DHT Pastry [10]. A problem with these architectures is that reliability,

latency and throughput is largely dependent on the nodes that make up the overlay network,

4

1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

for example when broadcasting to the nodes in a multicast tree. Reliable delivery, in this case,

is hard to guarantee. Even more so for latency guarantees.

DHT clients are complex since they need tomaintain the overlay network and to perform

other book-keeping. This also means that look-up speeds can be unpredictable. One solution

could be to simplify producers and consumers and let them connect to a “centralized DHT”

– a distributed system of nodes participating in a DHT which connecting clients perceive as a

single service.

Pub/sub systems fall broadly into two categories, message queues with pub/sub routing

semantics, such as RabbitMQ; and peer-to-peer systems where the pub/sub mechanisms are

sometimes part of the protocol, such as in the Willow[11] protocol, and sometimes built on

top of it as in the Scribe[9] system. The first kind often has a maximum practical number of

topics or subscriptions and the second kind often has a combination of high latency and low

throughput.

While these systems are both very successful and useful, there are still many potential use-

cases for systems that promise unlimited topics and subscriptions as well as high throughput

and low latency.

1.2 Problem statement

Real-time meta data updates from tens of thousands of online radio stations should be distri-

buted to hundreds of thousands of clients in the system so that they can find the music they

are interested in. This thesis will focus on ways to solve the following issues:

• Decentralization. Monitoring tens of thousands of streaming servers in a centralized

system is expensive, mainly in terms of bandwidth. Therefore, an efficient way of decen-

tralizing the real-time metadata monitoring is needed.

5

1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

• Low latency. When a client connects to a streaming server, the stream will start in the

current position in the currently playing song. This means that, when a song starts play-

ing, clients need to receive a notification about the currently playing song and connect

very quickly in order not to miss any stream data.

• Message filtering. Together, the stations will generate a large amount of metadata, so the

metadata information needs to be filtered before it reaches the client. Otherwise, the

client will be overloaded with useless metadata and the system will be busy distributing

this metadata.

• Scalability. When the number of users grows, it should be possible to scale the system

horizontally by adding more nodes without increasing latency or other overhead too

much. See section 1.3.1.

The above problems taken together outlines a distributed system where data needs to be

collected, filtered anddistributed quickly. The solution presented by this thesis is built onRiak,

a form of DHT and is discussed further in section 2.2 and chapter 4. The hypothesis of this

thesis is that Riak will work well for the following purposes:

• As the basis for a distributed routing table, maintaining a big list of all the client sub-

scriptions.

• As a means of looking up a client when a message is to be sent to it.

• As a way to offer synchronization mechanisms for other parts of the system, such as

filtering duplicated messages.

The system should handle at least 100 000 concurrent users listening to 20 000 stations. In

practice, this means that the system should be able to handle at least 500 000 outgoing mes-

sages and 125 000 incoming messages per minute. If these messages are sent as uncompressed

6

1.3. OBJECTIVE CHAPTER 1. INTRODUCTION

JSON, over the WebSockets protocol, each message will be approximately 200 bytes and the

incoming traffic will be approximately 3 Mibit/s and the outgoing traffic 13 Mibit/s. The to-

tal throughput, therefore, will be less than 20 Mibit/s. Section 1.3.2 will go into more details

regarding throughput.

The latency requirements, further discussed in section 1.3.3, can be defined in terms of

percentiles and thenumber of clients that receives amessagewithin a time frame. The following

latency requirements should hold:

• At least 50% of all published events should be delivered to subscribers within 0.5 sec-

onds, to make sure that the average latency is low enough.

• At least 99% of all published events should be delivered to subscribers within two sec-

onds, to give the vast majority of clients a lowest common quality of service.

1.3 Objective

In this section, the objectives of the thesis relating to scalability, throughput and latency will

be discussed in further detail.

1.3.1 Scalability

One of the problems (section 1.2) is to achieve horizontal scalability: it should be possible to

keep adding nodes if the demand on the system grows. To find out how much the system can

grow, the point of maximum capacity needs to be found. In this case capacity is measured as

throughput.

7

1.3. OBJECTIVE CHAPTER 1. INTRODUCTION

1.3.2 Throughput

The smallest acceptable value for the maximum throughput of the system depends on several

factors. Assuming that the heaviest load that the system should be able to handle is defined by

the following metrics:

• 100 000 concurrent users

• 20 000 broadcasting stations

• The average user listens to five stations

• The average song is 4 minutes long

• The average song is on 100 users’ wish lists

The users will report all new events that they see, so they will generate 125 000 incoming

messages perminute. Of these events only about 4%areunique since there is a big overlap in the

stations that users are listening to, assuming a uniformdistributionof listeners over the stations.

100 users are subscribing to the topic for each song, on average, so the outgoing message rate

will be 500 000 messages per minute. Since the incoming and outgoing message rates differ in

this system, it is necessary to test both in order to understand which one of them is the worst

bottleneck.

Measured as a data rate, 625 000 messages per minute will add up to 16.7 megabits/s, as-

suming that the average message size is 200 bytes and that messages are sent uncompressed.

Presumably, bandwidth will not be a bottleneck, since the system’s bandwidth will probably

be in the order of hundreds of megabits/s or even gigabits/s.

The goal is for the maximum theoretical throughput to be at least 2 100 messages per sec-

ond for incoming traffic and 8 300 messages per second for outgoing traffic.

8

1.3. OBJECTIVE CHAPTER 1. INTRODUCTION

1.3.3 Event latency

In this system, the usefulness of a received event degrades significantly as time passes. The

metadata of a station changes every couple of minutes, on average, but it is only useful for a

second or two since a client that connects to the stream any later than that will not be able

to hear the beginning of a song. It is therefore necessary to minimize the processing time of a

message passing through the system.

This section will discuss how long a message is valuable and where it is delayed on the way

to its destination. Starting with latency, figure 1.1 describes the flow of information about a

track change. This information flow can be broken down into the following events, labeled t1

to t8:

t1 – The broadcaster (B) changes its currently playing track.

t2 – B notifies listeners about the track change by sending an update through its metadata

stream.

t3 – The listening client (Cl) receives the new metadata and processes it.

t4 – Cl sends information about the track change to the system.

t5 – The system receives the information about the track change and starts processing it.

t6 – A client that is subscribing to this type of event (Cs) is found and the system sends a

notification to it

t7 – Cs receives the event and requests the stream from B

t8 – B receives the request from Cs

9

1.3. OBJECTIVE CHAPTER 1. INTRODUCTION

Broadcaster
B

Listening
Client

Cl

System
Subscribing

Client
Cs

track
change publish

broadcast to
subscribers

request

Figure 1.1: The flow of information between broadcasters and clients in the system

The intervals t1 – t3 and t4 – t5 depend largely on network latency, therefore most of the

design effort should be focused on keeping the interval t5 – t6, the internal processing time,

acceptably small. The metadata processing time, t3 – t4, should also be taken into account.

What is a reasonable time for t1 – t8, the full time of the system and client to react and for

the server to respond? Servers that broadcast using the common Icecast protocol usually keep

a send buffer that contains around at least half a second of audio data. This means that if this

interval is smaller than the send buffer, the full song will actually be recorded in its entirety.

This would be the best case. The worst acceptable case, from a user perspective, is to not lose

more than one or two seconds of the beginning of a track. This is largely dependent on how the

track is mixed and other characteristics of the track, but in general a truncation of one second

should not be too noticeable.

The first goal is therefore to have at least 99% of all the metadata change events arrive at

their destination in less than two seconds. This will ensure that the system delivers a good

service to most users.

The second goal is, similarly, to have at least 50% of the events mentioned above arrive

within 0.5 seconds. This will enhance the perceived quality of the service, since at least half of

the songs will not be noticeably truncated.

10

1.3. OBJECTIVE CHAPTER 1. INTRODUCTION

1.3.4 Message deduplication

One required feature of this system ismessage deduplication. Thismeans that if two producers

sendmessageswith identical payload, only one of themessages should be delivered. In practice,

this means that if two clients are listening to the same station and they both report a track

change, a subscriber of that song will only get one event notification.

This concept is related to, but different from, the at-most-once semantics ofmessages queues

in Advanced Message Queuing Protocol (AMQP), see section 2.5. At-most-once means that

a specificmessage is guaranteed to only be delivered once. In this case, the concept is expanded

to include messages with the same payload, sent from different producers.

Since bothKafkaandRabbitMQlacknative support for this, some systemhas tobedevised

to perform deduplication. This will affect the results of the benchmarks, so their results can

not be generalized outside of this project. It is unfortunate but necessary since this application

requires duplicate messages to be dropped.

A generic solution is needed, which acts like a layer between producers and consumers

and filters duplicates. A message that is sent to RabbitMQ or Kafka should be put on a load-

balancing queue and consumedby adeduplicator. Since thededuplicators need to share knowl-

edge about messages that have passed through the system recently, some kind of shared, fast

cache should be used. For the cache, a system like Memcached⁴ or Redis⁵ may be used, prefer-

ably combined with a node-local cache for better speed. It is worth noting that Redis also has

a pub/sub implementation, that will not be used in this project.

⁴http://memcached.org/
⁵http://redis.io/

11

http://memcached.org/
http://redis.io/

1.4. OUTLINE CHAPTER 1. INTRODUCTION

1.4 Outline

The next section, Background, will go through some of the background needed to understand

modern pub/sub systems in general. It will also go into some details regardingDHTs, message

brokers and other technologies used in the Implementation section.

The Related work section goes further into detail on the inner workings of a number of

pub/sub systems and previous benchmarks.

An overview of the system is given in theDesign section. Theprotocols and interfaces used

are also defined.

The Implementation section outlines how the systems were built. The routing algorithm

will also be described, as well as how Riak is used to synchronize the endpoints in the system.

Theresults of theobservationsmadeduring thebenchmarks arepresented in theEvaluation

section, as well as how the test platform was implemented, and how it gathered its metrics.

Finally, in the Conclusion section, the results from the evaluation are discussed and put

into perspective. Also discussed in this section is whether the goals were met and where, and

where there is need for future work.

12

2
Background

2.1 Publish-subscribe

The general idea of the system described in chapter 4 and chapter 5 is that the system design

will use a classical pub/sub pattern. Pub/sub systems, at a generic level, consist of producers

that generate messages, and consumers that subscribe to topics that they are interested in. A

published message is associated with a topic and will eventually be delivered to some or all of

the consumers that are subscribing to the topic. This pattern can be implemented by message-

oriented middleware like the one pictured in figure 2.1.

Two common filtering mechanisms in pub/sub systems are named channels and content-

based filtering. When using named channels, each message is published to a specific topic and

in content-based filtering, the messages are filtered by the client according to their contents or

other attributes.[12]

Messages will be published very frequently and subscriptions will be largely static in the

system described in this thesis. This means that if the content filtering would be done on the

client side, the clients would spend a lot of resources filtering messages. Therefore, most fil-

tering should ideally be performed before messages reach a client. With the named channel

approach, the server keeps a record of which type of message each client is interested in. This

13

2.2. DISTRIBUTEDHASHTABLES CHAPTER 2. BACKGROUND

Publish

Publish-subscribe
middleware

Subscribe

Unsubscribe

Producer

Producer

Producer

Producer

Producer

Consumer

Consumer

Consumer

Consumer

Consumer

Su
bsc

rib
e

Un
sub

scr
ibe

Notify

Publish

Pu
bli
sh

Figure 2.1: A generalized pubsub system.

would be a more efficient option since the channel acts like a filter. Named channels are a little

bit less flexible than content-based filtering since support for things like wildcard matching is

usually limited or inefficient.

One requirement is that the system should support a very large range of filters, one for

every possible song in a wish list, so viewing the system as a set of named channels would result

in a number of channels equal to the number of songs known to the clients. However, most of

the channels would rarely see any messages. This makes quickly filtering messages and sending

them through the right channels more challenging than in a system with fewer channels.

2.2 Distributed hash tables

In the early 2000’s, peer-to-peer system researchers were looking for efficient ways to locate

data stored on a node in a peer-to-peer network. They were motivated by the realization that

the centralized lookup service was a single point of failure in current peer-to-peer applications,

such asNapster. TheoriginalDHTs: CAN[13],Chord [14], Pastry [10] andTapestry [15], all

published in 2001, solved this problem in similarways. LaterDHTs, such as the ones discussed

below, are built on the foundation that these protocols created. All these systems reduced the

14

2.2. DISTRIBUTEDHASHTABLES CHAPTER 2. BACKGROUND

problem above to the problem of mapping “keys” to “values” and provided a way to do this

efficiently, robustly on an Internet-scale – meaning millions of nodes joining and departing

from the network frequently.

It might be worth pointing out that the creator of CAN, Sylvia Ratnasamy, predicted that

DHTswouldbe the substrate of “Internet-scale facilities such as global file systems, application-

layer multicast, event notification, and chat services”[13], since the system described in this

thesis is an instance of using a DHT as a substrate for application-layer multicast.

DHTs evolved rapidly the following years. Kademlia [16], published in 2002, simplified

routing by introducing a XOR-based metric that defines a distance between two points in the

DHT key space as d(x, y) = x⊕y where x and y are DHT keys or node IDs, represented

as integers. This metric is similar to the one used in Pastry, but is used to build a more effi-

cient network topology. The XOR metric also helped the authors to formally verify parts of

the Kademlia protocol. Kademlia has been widely implemented; the DHT currently used by

BitTorrent is based on Kademlia [17].

Kademlia has four basic operations: PING, STORE, FIND_NODE and FIND_VALUE. All commu-

nication in the protocol uses these primitives. Having a small number of operations simplifies

the protocol and makes it easier to verify, but it also sets some limitations to what you can

achieve using it. Multicast, for example, is not possible in Kademlia. PastryStrings [18] ex-

tends Pastry with a distributed data structured called string trees, that allows for rich queries

on strings, such as prefix and suffix matching. It also allows a PastryStrings node to generate

and subscribe to events.

LightPS [19] and CAPS [20] are two systems that use a hash function called bit mapping

(BM) to build a content-based pub/sub on top of a DHT. A subscription in a content-based

system often specifies a range of interesting values for each dimension of an interesting event.

BM reduces the dimensions of an event to a single dimension in such a way that the range of

15

2.3. DYNAMOANDRIAK CHAPTER 2. BACKGROUND

interesting values can be expressed deterministically by the subscriber as a range of keys. The

systems also use a rendezvous mechanism, which in combination with BM allows multiple

sources for both subscriptions and events.

Willow [11] is a protocol published in 2005 that uses DHT routing much like Kademlia.

It introduces new support for both content- and topic-based pub/sub. Willow’s memory re-

quirements and latency grows withO(log n)with regards to the number of nodes. Routing is

done through logical groups of peers called peer domains. EachWillow node tries tomaintain

one connection to a peer in each peer domain. At regular intervals, a random peer in each peer

group is selected and the previous peer is disconnected if the new latency is lower, whichmakes

the protocol location-aware since shorter hops are preferred over longer ones.

Scribe [9] is a multicast infrastructure that is built on top of the early DHT Pastry [10]. A

Scribe node can create, join, leave and sendmessages to groups. Messages sent to a groupwill be

delivered, with a best-effort guarantee, to all of the group’s members. A group membership in

Scribe is therefore similar to a subscription to a topic in other pub/sub systems. The delivery of

a message to a group is accomplished using amulticast tree, where themessage is first delivered

to the root node, called the rendezvous node, which delivers it to its children, which are called

forwarder nodes, that deliver it to their children and so on.

2.3 Dynamo and Riak

Engineers at Amazon have described a DHT-like system called Dynamo[21], which has per-

formed well in several of Amazon’s production environments. Since Dynamo is proprietary

software, it is necessary to find a licensable or open-source implementation. Riak, released in

2009 and now inwide use, is an open source implementation of the ideas in theDynamopaper.

Riak, like most of the DHT:s described above, uses a simple key-value storage model and

is designed to provide availability, fault-tolerance, and scalability. To avoid key collisions, each

16

2.4. ERLANG/OTP CHAPTER 2. BACKGROUND

key-value pair in Riak goes into a bucket, which acts like a flat namespace. A key, which is a

simple binary object, is guaranteed to be unique in each bucket. An object in Riak uses vector

clocks for versioning and has a key, a value which is also a binary object and some meta data.

The two main interfaces to Riak are its REST and Protocol Buffers APIs[22].

2.4 Erlang/OTP

Erlang is a concurrent programming language designed for programming large-scale, distri-

buted, soft real-time applications.[23] The language was developed at Ericsson, originally for

telecom applications, from 1985 to 1998 when it became an open source project.[24] The

problems that the language was designed to solve– such as managing high levels of parallelism

and programming distributed systems (see table 2.1) – makes Erlang a good tool for building

distributed applications.

Erlang is still used by Ericsson in some products, such as the Serving GPRS Support Node

(SGSN) [25], and outside Ericsson in big open source projects such as the AMQP implemen-

tationRabbitMQ, described in detail in section 3.1, aswell as theweb server libraryMochiWeb

and the XMPP¹ server Ejabberd.[26]

Erlang has several interesting features that are not commonly found in other languages.

Most data structures are immutable by default, which suits the message-passing concurrency

paradigm embraced by the language. Message passing is made easy by special operators for

sending messages between processes and a rich syntax for pattern-matching any kind of data,

such as messages received from other processes. Erlang processes are very cheap in terms of

memory and CPU usage, since the Erlang virtual machine has its own scheduler.

¹Extensible Messaging and Presence Protocol, or XMPP, a communications protocol with several applica-
tions such as instant messaging

17

2.4. ERLANG/OTP CHAPTER 2. BACKGROUND

1 Continuous operation for many years

2 Handling a very large number of concurrent (parallel) activities

3 Interaction with hardware

4 Actions to be performed at a certain point of time or within a certain time

5 Software maintenance (reconfiguration, etc) without stopping the system

6 Stringent quality and reliability requirements

7 Fault tolerance both to hardware failures and software errors

8 Very large software systems

9 Systems distributed over several computers

10 Complex functionality such as feature management.
Table 2.1: Problems that Erlang was designed to solve [27]

Erlang’s standard library together with the distributed database Mnesia forms the

Open Telecom Platform (OTP). This platform also defines a set of design patterns, called be-

haviors, that act like interfaces andhelp programmers create reusable components andmodules

that interact well with other OTP modules. Two examples of common behaviors are the app-

lication behavior, which is a module that can be started and stopped as a single unit and be

re-used by other applications; and the gen_server behavior, that specifies how a process can

serve requests frommultiple clients. Custom behaviors can also be defined by the programmer

or by third-party applications.

When it comes to third-party code for Erlang, there is a rich set of modules, applications

and frameworks. The rest of this section will explore some applications relevant to this thesis.

Lager² is a logging framework created by Basho, the same company that created Riak (see

section 2.3). The framework allows several handlers to be defined for different logging levels.

Different logging modules can be used as well, such as console output or file system storage.

²https://github.com/basho/lager

18

https://github.com/basho/lager

2.5. MESSAGE BROKERS CHAPTER 2. BACKGROUND

Cowboy is another HTTP server with WebSocket support. The server was designed with

low latency and modularity in mind. An application that needs to communicate over HTTP

can do so by creating a module that implements a few specific callbacks.

Other convenient libraries are Jiffy³ and RiakC⁴. Jiffy is a JSON parser implemented as a

Native Implemented Function (NIF), a way to write performance-critical parts of Erlang ap-

plications in a language such as C or C++.. RiakC is the official Riak client for Erlang.

2.5 Message brokers

A message broker receives messages from producers, processes them and routes them to con-

sumers. The clients in this system act both as producers, when publishing information about

track changes; and as consumers, when receiving information about tracks in the wish list.

AMQP is an open standard for message oriented systems. The protocol consists of several

parts, such as a wire level protocol and a type system. It also defines how queuing, routing,

security and reliability should work. Both point-to-point and pub/sub routing is supported.

There are many implementations of AMQP. Some systems include support for AMQP as

well as other protocols. RabbitMQ is an open source message broker built on Erlang that, at

least partially, implements AMQP.

Twomessage brokers are discussed into further detail below, RabbitMQ in section 3.1 and

Kafka in section 3.2.

2.6 Data Distribution Service

TheObjectManagementGroup (OMG)has released a standard for pub/submiddleware called

Data Distribution Service for Real-Time System (DDS). It is a standardized model for data-

³https://github.com/davisp/jiffy
⁴https://github.com/basho/riak-erlang-client

19

https://github.com/davisp/jiffy
https://github.com/basho/riak-erlang-client

2.6. DATADISTRIBUTION SERVICE CHAPTER 2. BACKGROUND

1

*

1

*
*

1

*

*

QoSPolicy Listener* 0..1*

Subscriber

DataReader

Topic

DomainParticipant

DCPSEntity

Publisher

DataWriter

Domain

Figure 2.2: The DCPS model of DDS

centric pub/sub (DCPS), designed to enable efficient distribution of data in a distributed sys-

tem. [28]

The DDS model implements DCPS through the entities in figure 2.2. All entities, or

DomainParticipants, form a Domain, which is a conceptual grouping of the members in a

system. Entities can only communicate within a domain. The Publisher manages the Data-

Writers, which in turn publishesmessages or data to a typed Topic. The Subscribermanages

the DataReaders, in the sameway. All these entities are subclasses of the DCPSEntity base class,

which has an attached QoSPolicy, and the ability to be notified of events through Listener

objects.

Each topic defined in DDS is associated with a unique name, a data type and Quality of

Service (QoS) information. The type information marks a clear difference between DDS and

other systems like AMQP, that are not typed. The DDS type system, called DDS-XTypes is

similar to the type system in C and allows a topic to be associated with a primitive type like

integer, float, bool, byte or character; or with different kinds of combinations of the primitive

types, for example arrays, structs and enumerations.[29]

20

2.7. WEBSOCKETS CHAPTER 2. BACKGROUND

The typing, QoS, and the fact that each process needs to specify what kind of data it wants

to produce and consume in advance, makes it possible to optimize the implementation ofDDS

while keeping a predictable behavior.

The QoS policies can take several different forms. There is, for example, a deadline pol-

icy that DataReaders and DataWriters can use as a contract, saying that the reader expects an

update, and the writer commits to produce one at least once during every fixed interval. An-

other one is the latency budget, allowing a writer to collect and send information in batches, as

long as they arrive within a certain acceptable delay to the reader. Interestingly, content-based

filtering is also seen as a QoS policy in DDS.

The content-based filter is one of the filtering mechanisms built into DDS, the other two

are Topics in combination with a key, which is used to group data within a topic.

The performance and predictability of DDS makes it suitable for real-time applications.

However, the DDS has a significant overhead[28, p. 3] for topic propagation when a large

number of topics is used, so DDS-based systems do not scale well with respect to the number

of topics used.

2.7 WebSockets

HTTP is a request-response protocol: a client makes a request and the server responds. In

HTTP 1.1, the connection between the client and the server is allowed to be kept open be-

tween requests to remove the overhead associated with establishing a new connection for each

request. Still, HTTP only allows the server to send data to the client as a response to a request.

It is often the case, however, that events emanating from the server side have to be com-

municated to the client somehow. Several solutions exist. The client can poll the server for

updates by sending regular requests, but this will waste requests when there are no updates and

the delivery of new events is only as fast as the time between requests. A technique called long

21

2.7. WEBSOCKETS CHAPTER 2. BACKGROUND

GET ws ://127.0.0.1:19001/ HTTP /1.1
Host: 127.0.0.1:19001
Connection: Upgrade
Pragma: no-cache
Cache -Control: no-cache
Upgrade: websocket
Origin: null
Sec -WebSocket -Version: 13
User -Agent: Mozilla /5.0 (X11; Linux x86_64) AppleWebKit /537.36 (KHTML

, like Gecko) Chrome /42.0.2311.90 Safari /537.36
Accept -Encoding: gzip , deflate , sdch
Accept -Language: en-US,en;q=0.8,sv;q=0.6
Sec -WebSocket -Key: fGA/GZ304AGt/qlACNiItA ==
Sec -WebSocket -Extensions: permessage -deflate; client_max_window_bits

Code Listing 2.1: WebSocket client handshake message

HTTP /1.1 101 Switching Protocols
connection: Upgrade
upgrade: websocket
sec -websocket -accept: h0lPB0mXl553xj /5 ZhpE30x3AY8=

Code Listing 2.2: WebSocket server handshake response

polling is a little bit more efficient. During long polling, the server delays the response to the

client’s polling request until it has data to send. There is still some communication overhead

for the client in sending a request just to allow the server to respond. Additional overhead is

introduced by the separate connections needed for incoming and outgoing messages. There

are also issues with network timeouts during the server delay.[30]

The WebSocket protocol, created by the IETF’s BiDirectional or Server-Initiated HTTP

working group, is a solution to all of the above problems. It is designed to allow bidirectional

communication within the existing HTTP infrastructure. The protocol consists of an initial

handshake, followed by the actual data transfer. A WebSocket handshake is initiated by the

client, which sends a regular HTTP request, such as the one seen in code listing 2.1. If the

server implements WebSockets and the Upgrade field has the value websocket, it will respond

with the the HTTP code 101, “Switching Protocols”, seen in code listing 2.2.[31]

22

2.8. BENCHMARKING PUB/SUB SYSTEMS CHAPTER 2. BACKGROUND

After a successful handshake, the client and server will both use the existing connection

for communication using WebSocket messages, consisting of one or more frames. There are

three types of frames: UTF-8 encoded text frames, binary data frames, and control frames.

The control frames are used for protocol-level signaling, for example to let the other end know

that the connection is closing, or for pinging and ping responses (“pong”) used for keep-alive

purposes or to verify the responsiveness of the other end.

Since both the original HTTP connection and the WebSocket connection assumes a re-

liable underlying transport protocol the protocol is robust with regards to message loss, while

having lower latency thanprevious solutions. It also hasmessage-ordering guarantees,messages

will arrive at the other end in the same order that they were sent.

2.8 Benchmarking pub/sub systems

It is important to verify that a system’s performance meets requirements. While theoretical

models such as time and memory complexity analysis can be useful, the performance charac-

teristics of a real system, with its hardware, software and network equipment can often bemore

easily assessed using benchmarks.

There are many standardized benchmarks for different types of systems and applications,

but hereinafter the word will be used in the most generic sense – “to evaluate [a system’s] per-

formance under a particular workload for a fixed configuration”[32] – and not necessarily re-

ferring to a standardized test.

A benchmark should be relevant, fair, repeatable, verifiable and economical. Relevant can

mean a lot of different things depending on the context and scope of the benchmark, but it

should at least be stressinghardware and software in away that is similar to theway they are used

in a production environment, and present measurements that are meaningful, understandable

and representative.[33]

23

3
Relatedwork

Some of the DHTs discussed in section 2.2 lack production-ready implementations. Others

are implemented as parts of applications or as libraries. Kademlia, for example, is used in the

Mainline BitTorrent client through the Python library Khashmir.

Message Oriented Middleware (MOM) can be defined as “any middleware infrastructure

that providesmessaging capabilities” [34]. MOMand libraries or protocols (possibly based on

DHT) that provides such services can have very different properties.

When evaluating possible solutions to the problem stated in section 1.2, only open source

pub/sub systemswith topic-basedmessagefiltering semantics and a reputation forhigh through-

put were considered. This chapter will examine some of the previous work done comparing

such systems, and motivate why RabbitMQ and Kafka were chosen for the Evaluation.

3.1 RabbitMQ

RabbitMQ is a message broker and AMQP implementation written in Erlang.

RabbitMQ, being an AMQP implementation, is built on the following concepts. Publish-

ers are the processes that produce the input to the system in the formofmessages. Themessages

are first received by an exchange, which is responsible for routing the message in different ways

24

3.1. RABBITMQ CHAPTER 3. RELATEDWORK

Je t'aime
Narjis <3

Valdemar Forsberg
Maximilian Laszlo
Leon Laszlo

Producer

Producer

Exchange

Queue 1 Consumer 1

binding A

type: topic

Queue 2
binding A+B

Consumer 2

Consumer 3

Figure 3.1: RabbitMQ pub/sub system example

depending on which type of exchange it is. One type of exchange is the topic exchange, which

routes messages based on amessage metadata field called routing key. Each exchange can be at-

tached to one ormore queues, that eventually deliver thesemessages to recipients, or consumers,

in a First In First Out (FIFO) fashion. One or more consumers can be bound to a queue and

receive messages from it, in this case each message will be delivered to only one client. Some

queues require clients to acknowledgemessages that it receives so that in case a consumer crashes

the queue can try to deliver the message to a different consumer.

In figure 3.1 the publishers send messages to a topic exchange. Each consumer is bound

to a single queue, which is bound to the exchange using binding keys. Each queue can, as pre-

viously mentioned, have several bindings to an exchange, matching the consumers’ particular

interests. In this example, Consumer 1 will receive messages that match the routing key speci-

fied in binding A, while Client 2 will receive messages of both type A and type B.

RabbitMQ is very flexible thanks to its core concepts. Messages are sent by producers to

exchanges that routemessages to queues. The exchanges andqueues can be configured to behave

in different ways, such as to routemessages by their routing key, to broadcast messages tomany

consumers, or to distribute work to workers.

RabbitMQ has support for clustering. The nodes forming a RabbitMQ are synchronized

and all system state except message queues, as well as the data in the system is shared across

all nodes. RabbitMQ clusters are guaranteeing full ACID properties, but does not handle

25

3.2. KAFKA CHAPTER 3. RELATEDWORK

network partitions well.[35] Partitions in a RabbitMQ cluster has been proven to potentially

cause data loss.[36]

3.2 Kafka

Another message broker is Kafka, although it is not an AMQP implementation. The main

point of Kafka is to handle very large amounts ofmessages in a fast and reliable way. The design

of Kafka is heavily inspired by transaction logs.

Kafka was originally developed by LinkedIn and designed for collecting and distributing

high volumes of log data. It can be seen as both a log aggregator and amessaging system. Kafka

is a topic-based system, where consumers subscribe to topics. The topics are divided into par-

titions that can be located on different broker nodes in a Kafka cluster. Partitions can be repli-

cated between brokers for fault tolerance, and producers can write to different partitions in

parallel. Message ordering is guaranteed, but only for messages within a partition.[37]

Kafka was explicitly designed to support less than a thousand topics[38]. An example of a

typical large-scale Kafka deployment is the one used at LinkedIn. In 2012, it was serving 367

topics in total. It is unclear what will happen when Kafka serves a higher number of topics.

A topic in Kafka is split into partitions that correspond to a logical log. Each log consists

of a set of segment files that all have approximately the same size. When amessage is published

to a topic, it is simply appended to the last segment file. To improve performance, changes to

the segment are only flushed after a configurable number of messages have been published, or

a specific amount of time has passed.[37]

The consensus service Zookeeper¹ is used for decentralized synchronization between bro-

kers in a Kafka cluster. It is used to keep track of brokers and consumers; client subscrip-

¹https://zookeeper.apache.org/

26

https://zookeeper.apache.org/

3.3. RABBITMQTHROUGHPUT RECORD CHAPTER 3. RELATEDWORK

tions, consumer groups and consumption relationships; and for balancing partitions between

brokers.[37]

The authors of Kafka conducted an experimental study[37] comparing their system to

RabbitMQ version 2.4, and Apache ActiveMQ, which is implements the JavaMessage Service

(JMS) API. The test consisted of publishing 10 million 200 byte messages to a single topic²

with asynchronous flushing of messages to persistent storage. Kafka supports sending mes-

sages in batches, so batch sizes of 1 and 50 messages per batch were used. The messages were

then consumed using automatic message acknowledgments, pre-fetching up to 1000 messages

at a time.

The results of the above experiment show that, for this one-topic configuration, the pro-

ducer performance of Kafka was twice that of RabbitMQ when single-message batches were

used, and it was eight times faster when a batch size of 50 was used. ActiveMQ’s producer per-

formance was orders of magnitude lower. In the consumer test, the Kafka consumer achieved

a message consumption rate that was almost four times higher than the RabbitMQ and Ac-

tiveMQ consumers.

3.3 RabbitMQ throughput record

An experiment made by Pivotal Software has achieved a throughput of 1 million messages per

second using a powerful RabbitMQ cluster, deployed on Google Compute Engine.[39] The

nodes used in this experiment had eight virtual CPUs and 30GB ofmemory each. 32 nodes in

total were used to form the RabbitMQ cluster, where 30 nodes were configured to store their

state only in RAM, and one node was configured to persist its state to disc. The last node was

monitoring the cluster using RabbitMQ’s management tool.

²Since the authors do not mention the number of topics or partitions used, a single topic configuration was
assumed. This seems like a logical choice since it is a throughput-centric experiment and a single topic is the
simplest configuration in Kafka as well as RabbitMQ.

27

3.4. IOTCLOUDMESSAGE BROKERS CHAPTER 3. RELATEDWORK

Messageswere pushed to the cluster using approximately 13000 simultaneous connections.

The messages were sent to 186 queues, located at different nodes in the cluster.

The authors of this experiment draw the conclusion that “taking full advantage of a large

cluster [...] requires architects to consider how messages are routed within RabbitMQ and

the design of the application’s so-called message fabric”[39], meaning that this result is largely

dependent on the routing scheme. This impressive result shows that when a simple routing

scheme is used, RabbitMQ can scale its throughput almost indefinitely. RabbitMQ clusters

are, like discussed previously, synchronizing a lot of their state, but a large number of queues

can be used since they are not synchronized.

3.4 IoTCloudMessage Brokers

The IoTCloud platform is a research system that connects smart devices to cloud services for

real-time data processing and control. The system uses a layered architecture with a pub/sub

layer closest to the devices. The system supports two differentmessage brokers, RabbitMQand

Kafka. As a part of the evaluation of the system, the authors performed benchmarks on both

brokers, using pub/sub semantics.[40]

The device endpoints in IoTCloud, called gateways, can either use shared channels, where

all the devices connected to a gateway are communicating through the same topic; or using

exclusive channels, where there is one topic per device. This means that the number of topics is

either equal to the number of gateways when using shared channels, or to the number of driver

instances when using exclusive channels. The team presents three different benchmark results

made with RabbitMQ.

28

3.4. IOTCLOUDMESSAGE BROKERS CHAPTER 3. RELATEDWORK

They first test the throughput of their server³, by sending messages to a topic with an in-

creasing message rate in the range 5 − 100 messages per second. They repeat this for different

message sizes, varying from 100 bytes to 500 kB, and measure the latency.

The test showed that for RabbitMQ the latency was stable for messages below 30 ms for

all message rates in the interval, for all message sizes up to 300 kB. When 300 kB messages

were used, the latency started to increase dramatically for message rates exceeding 50 messages

per seconds. The latency also increased for 500 kB messages at 30 messages/s. These numbers

indicate that the system had a bandwidth limit at around 120 megabit per second.

The same test was used for Kafka, but with message sizes in the range 100 byte to 70 kB.

The latency varied a lot, from around 20 ms to 250 ms. They concluded that “The Kafka la-

tency variation is very high compared to RabbitMQbroker”[40, p. 9] and did not conduct any

further benchmarks of Kafka. The reason for the varying latency is not explained.⁴

The scenario described above differs from requirements in section 1.2 in several ways:

• Higher message rates than 100 messages per second are not tested at all

• Throughput is tested mainly by varying message size, instead of message rate

• Only two topics were used in the first test, instead of testing richer filtering semantics

using many topics or content based filtering.

³The IoTCloud teamwere using virtual servers with two virtualCPUs, 4GBofmemory and 40GBof storage.
⁴Worth noting is that the Kafka configuration item that controls producer batch size is set to 200 messages

by default[41], if messages are not flushed explicitly this could account for the latency problems.

29

4
Design

Thedesign of amessaging system built on top of Riak is described in this chapter. The protocol

used by clients connecting to the systemwill be presented in detail, as well as the overall system

architecture and some of the design choices and trade-offs that were made.

4.1 System overview

An overview of the parts of the system can be found in figure 4.1. When a client connects,

it is assigned an endpoint to which it will be connected for the remainder of its session. The

endpoints are implemented as Erlang nodes that run the logic of the system. Several of these

Erlang nodes can be run in parallel on different machines to serve groups of users.

All performance-critical synchronization of these nodes is done through Riak. Other syn-

chronization, such as authentication, will not be discussed further in this thesis, since it can be

done using more traditional approaches in a side channel and will not affect the metrics and

goals discussed above.

The endpoints are loosely coupled since they use Riak for most of their communication.

This serves two purposes. The primary purpose is making the interface between each endpoint

and the rest of the system as simple as possible; an endpoint does not have to communicate

30

4.1. SYSTEMOVERVIEW CHAPTER 4. DESIGN

Riak

Client

Erlang application
(endpoint)

Websocket interface

Publish/subscribe system

Publish/subscribe

Receive notification

Figure 4.1: An overview of the system’s client-server interface

with anything but the Riak cluster, which behaves like a simple key-value store for the most

part. Secondly, this design is an instance of a simple layered architecture, see figure 4.2, where

each layer only communicates with the layers immediately above and below it. The client com-

municates only with the endpoint, which communicates with the client and the Riak layer,

which only communicates internally and with the endpoint.

The layered architecture has several benefits.[42] Changing the code inside one layer of

a layered system does not affect the other layers unless the interface is changed. This means

that interfaces should not change, and if they do they should be backwards-compatible. This

design also makes components exchangeable. A new layer with the same interfaces as the old

one can be implemented. Clients for different platforms could be written, without affecting

the endpoint code. It is also theoretically possible to replace Riak with another distributed

key-value store, or even another type of data store, in the future.

One of the objectives is to provide high throughput. The layered architecture makes it eas-

ier to analyze potential bottlenecks. The maximum throughput for an endpoint, for example,

is limited by the throughput of the layer above and beneath it. If only a small number of clients

can connect to each endpoint, the throughput will also be lower. Likewise, if more nodes are

added to the Riak cluster the potential throughput of the endpoint should also increase.

31

4.2. CLIENT INTERFACE CHAPTER 4. DESIGN

Client

Endpoint

Riak

Receive
notification

User

Pub/sub

Figure 4.2: The system implements a simple multilayered architecture

4.2 Client interface

From a client perspective, the system supports the following methods:

• Publish: Notify other clients of an observed event.

• Subscribe: Register the client to receive events matching a certain criteria, or from a

channel.

• Unsubscribe: Stop receiving events from a topic.

• Receive events: Events that match a client’s subscriptions should be sent to the con-

cerned clients without delay.

Client subscriptions are persistent and connected to the client’s identifier. After connect-

ing, a client can subscribe or unsubscribe from topics and publish events. Events can also be

received at any time, since the client-server connection is full duplex.

The protocol used in this API will be described in the next section.

32

4.2. CLIENT INTERFACE CHAPTER 4. DESIGN

:Client 1 :Client Endpoint 1 :Database :Client Endpoint 2 :Client 2

listen
set_endpoint

“ok”
“ok”

subscribe
add_subscription

“ok”
“ok”

Connection & subscriptionConnection & subscription

publish
get_subscribers
[subscriber list]
get_endpoint
<endpoint>

connect_endpoints

“ok”
notify

notify

Publication & notificationPublication & notification

Figure 4.3: Sequence diagram showing the communication between the different entities in the
system. Client 1 is the subscriber and Client 2 is the publisher.

33

4.3. CLIENT-ENDPOINT PROTOCOL CHAPTER 4. DESIGN

4.3 Client-endpoint protocol

A client connects to one of the endpoints of the system. In a production environment the list

of endpoints could be synchronized with each client, or they could all be placed behind a load

balancer tomake all endpoints appear as one. Thiswould allownodes to be added to the system

entirely transparently to the clients.

The endpoint is responsible for maintaining a connection with all the clients attached to it

as well as for establishing connections to the other endpoints in the systemwhenever necessary.

The connection between an endpoint and a client is made over the WebSocket protocol,

which allows bidirectional communication using a single TCP connection. Since TCP pro-

vides ordering and delivery guarantees, the client-endpoint protocol does so as well. A client

connects using a regularHTTP connection, and sends aWebSocket handshake request which

allows the endpoint to switch protocols from HTTP to WebSocket. Once the WebSocket

connection is established, the client can start sending commands.

The client-endpoint protocol is very simple and based on the exchange of JSON-encoded¹

messages. All commands sent by a clienthas twomandatoryfields: client id and command. The

client id is unique and known to each client when they connect, and the command parameter

identifies the command type. Specific commandsmight also include other fields for command-

specific data.

{
"command": "listen",
"client_id": 1

}

Code Listing 4.1: Client message: register with the endpoint

¹JSON: JavaScript Object Notation[43]

34

4.3. CLIENT-ENDPOINT PROTOCOL CHAPTER 4. DESIGN

A client that wishes to receive broadcast notifications registers with the endpoint using the

listen command in code listing 4.1. This makes the clients endpoint globally known to other

endpoints, which is necessary for routing.

To subscribe to a topic, a client sends the subscribe command in code listing 4.2. This

command includes a topic field, which uniquely identifies the topic that is being subscribed

to. The endpoint will create the topic if it does not already exist and add the client to the list

of subscribers for the topic.

{

"command": "subscribe"

"client_id": 1,

"topic": "Some topic",

}

Code Listing 4.2: Client message: subscribe to the topic “Some topic”

The big number of subscriptions supported by the system implies that clients will do many

subscriptions. To achieve better performance for clients that subscribe to many topics at once,

subscriptions can also be sent in batches. The subscribe commandhas a second form, inwhich

a list of topics is given instead, as seen in code listing 4.3. This dramatically reduces the round-

trip overhead cost associated with the first form of the subscribe command since only one

command is sent per batch, instead of one command per topic.

{

"command": "subscribe"

"client_id": 1,

"topic": ["Topic 1", "Topic 2", ...],

}

Code Listing 4.3: Client message: subscribe to several topics at once

35

4.3. CLIENT-ENDPOINT PROTOCOL CHAPTER 4. DESIGN

Thepublish command takes three extra parameters except client_id and command: topic,

payload and timestamp. The endpoint looks up the subscribers for the topic, then looks up

the endpoints for the subscribers and forwards the notification to these endpoints, including

the client id of the subscriber. The client’s endpoint will forward the notification to the client

using a broadcast message similar to the one in code listing 4.7.

The publish command is represented by the “publish” message in the Publication & noti-

fication block of figure 4.3.

{

"command": "publish",

"client_id": 1,

"topic": "Some topic",

"payload": "Payload data",

"timestamp": 1431104020907

}

Code Listing 4.4: Client message: publish information to a topic

The endpoint responds to each message sent by a client except for publish messages. The

response indicates success, like in code listing4.5 or failure. A successmessage onlyhas a result

field, but an error message may contain extra fields to help with debugging.

A client implementation can choose how to handle the different failure modes of each

command. A command can be re-issued in case of a missing response, for example. Clients

modifying the subscription state on the server will probably find it valuable to receive verifica-

tion that the issued commands were successful.

{

"result":"success"

}

Code Listing 4.5: Endpoint response: the previous command was successful

36

4.3. CLIENT-ENDPOINT PROTOCOL CHAPTER 4. DESIGN

The error field in the example error message in code listing 4.6 contains the error type

bad_state, which is not very helpful in itself, so the message field contain a human-readable

error and extra information about the error in the info fields. In this case, the error message

lets the client know that the required topic field was missing from the request.

{

"error": "bad_state",

"message": "Error",

"info": "Key 'topic ' not specified"

}

Code Listing 4.6: Endpoint response: the previous command failed

The publish command is the only command that does not expect an acknowledgment

response from the server. This trade-off was made because publish and broadcast messages are

expected to constitute amajority of allmessages handled by the system. Not sending a response

to each publish commandwill significantly reduce the number ofmessages sent by the system.

Furthermore, since the time span during which a message is valuable is very short, removing

the possibility to re-transmit lost messages does not impede the usefulness of the system since

amessage that needs to be retransmitted is probably already too old. Re-transmitting on server

errors, in this case, could also add stress to an already overloaded system.

The final message type is sent from the endpoint to a client, not as a response to a client

message, but to deliver a published message. This is represented by the “notify” message in

the Publication & notification block of figure 4.3. The broadcast message has two fields: The

{
"key":"Some topic"
"broadcast":"Payload data",

}

Code Listing 4.7: Endpoint broadcasts notification

37

4.4. DESIGN SUMMARY CHAPTER 4. DESIGN

key field is the name of the topic that received the message, and the broadcast field contains

the payload data, published by another client in the system, possibly attached to a different

endpoint.

The WebSocket protocol (section 2.7) does not have a notion of replies, so the application

has to keep track of this itself. The client-endpoint protocol described in this section assumes

that no message will be sent until a response has been received. A lost message might therefore

block the client indefinitely. This can easily be solved by implementing some kind of mes-

sage id, maybe a sequence number similar to the one used in TCP. This would allow for re-

transmissions, asynchronous messaging and other features commonly found in transport layer

protocols, but this is not yet implemented in the client-endpoint protocol.

4.4 Design summary

In this chapter the design of a messaging system built on top of Riak was outlined.

An interface for connecting clients was specified in the client-endpoint protocol based on

WebSockets and JSON. The protocol specifies basic pub/sub actions such as publish, sub-

scribe and unsubscribe.

Clients connecting using the client-endpoint protocol will be assigned one of of the end-

points in a loosely coupled cluster made up by Erlang nodes synchronizing their state using

Riak. The goal of this design is to allow scaling the system by adding endpoints to the cluster.

The design makes several trade-offs and optimizations to achieve the goals set forth in sec-

tion 1.3. The twomain design challenges was the requirement to handle a large number of top-

ics, probably more than a million; and to handle an even larger number of subscriptions. One

trade-off made in favor of throughput is that the publish command is never acknowledged by

the endpoint, to save messaging overhead. This could potentially lead to the undetected loss

of publishedmessages, but allows a higher throughput. An optimization that was made was to

38

4.4. DESIGN SUMMARY CHAPTER 4. DESIGN

allow multiple topics in a single subscribe command – this drastically reduces the number of

round-trips when a client needs to subscribe to many topics.

The protocol is not as flexible and robust as general purpose messaging middleware proto-

cols, such as AMQP, since it has a more narrow focus on efficient handling of large number

of topics and subscriptions with good throughput and latency. This lack of flexibility and ro-

bustness makes it a poor choice for many applications, but a better fit for the case when a large

number of clients need to share updates with low latency.

39

5
Implementation

Chapter 4 described the overall design and architecture of a topic-based pub/sub system. The

implementation of that design will be presented in this chapter.

5.1 Ingeborg: Pub/sub built on Riak

Ingeborg

cowboy riakcontrollerrouterlager

helpers

listeners ws_handler

subscribers

json

jiffy riakc

3d-party modules
and libraries

Applications and servers

Libraries

Figure 5.1: An overview of Ingeborg, the pubsub message router built on top of Riak.

40

5.1. INGEBORG: PUB/SUB BUILT ON RIAK CHAPTER 5. IMPLEMENTATION

The Erlang implementation of the design described in the previous chapter is called Inge-

borg. The system consists of several Erlang modules, laid out in figure 5.1.

The third party modules cowboy, lager, jiffy and riakc are used. Ingeborg is imple-

mented on top of the Erlang web server framework Cowboy. All logging is handled by the

logging framework Lager. JSON-encoding and decoding is handled by Jiffy. These libraries

has previously been described in section 2.4.

The router and riakcontroller modules are implementing most of the core function-

ality of Ingeborg. The listeners and subscribers modules are implementing data types for

binding clients to endpoints and for handling subscriptions. The ws_handler consists of a

number of Cowboy callbacks and implements the WebSocket layer of Ingeborg. Finally, the

helpers and jsonmodules contain functions used by many of the other modules.

The purpose of Ingeborg is to allow the client to connect to an endpoint using the Web-

Socket protocol described above. There can be one or more Ingeborg nodes in a system, they

will automatically find each other and synchronize information only when necessary. A client

can connect to any endpoint, at which point the cowboy server will spawn a new process that

sets negotiates a WebSocket connection with the client and then hands over the rest of the

session to the ws_handlermodule.

A connected client can start sending commands to the server. To receive messages, the

listen command needs to be sent. The ws_handler module will parse the commands using

the json helper library, which in turn uses the jiffy json parser internally. Once the com-

mand has been parsed, a server action is initiated. In the case of the listen command, the riak-

controller is asked to update the current endpoint of the calling client to the endpoint that

received the command. The logic for how endpoints are stored for each client is controlled by

the listeners library.

41

5.1. INGEBORG: PUB/SUB BUILT ON RIAK CHAPTER 5. IMPLEMENTATION

The above is an example of how Riak is used in the application to store and share system

state between each Ingeborg node. If a message needs to be routed to a client, by any node, this

node can look up which endpoint the client is currently connected to and route the message

to it directly.

The subscribers library handles lists of subscribers for each topic. The list is stored as the

set of the subscribing clients’ ids. The set implementation used is a General Balanced Tree[44],

which is a balancedbinary search treewith automatic re-balancing available in the gb_setOTP

module. The insertion, deletion and union operators available in the gb_set module are effi-

cient even for large sets. A subscription is handled by inserting the client id into the set and an

unsubscription by deleting the id. The union operation is used when two conflicting sets are

found, which can happen after a network partition since Riak will always allow a write. When

Riak discovers a conflict, the application can choose to resolve it, and in this case the union of

the conflicting is used to resolve the conflict. In effect, this introduces the possibility that an

unsubscription fails, but subscriptions should never fail.

When a client sends a publish command, the endpoint will see if there are any subscribers

registered for the key. A new routing process will be spawned for each subscriber to broadcast

messages in parallel, processes are cheap in Erlang. The routing process looks up the subscribers

endpoint, againusingRiak, and forwards themessage to it. Anendpoint that receives amessage

routed from another endpoint will look up the clients WebSocket process locally and finally

forward the JSON-encoded broadcast message, including the original payload, to the client.

Duplicate detection is not fully implemented, but the idea is to store a unique identifier for

the message, maybe hash(concatenate(key, payload)), along with a TTL in Riak. When

a message is received by an endpoint it will check if the message has been seen recently. If

this happens, messages will simply be dropped and the TTL will be increased. If the TTL has

42

5.2. ROUTING ALGORITHM CHAPTER 5. IMPLEMENTATION

expired, the message will be delivered normally. A cache of these recently seen messages and

their TTLs could be kept at each endpoint to reduce the number of Riak look-ups.

5.2 Routing algorithm

Whenmessages are broadcasted to a topic the systemneeds todeliver themto the correct subset

of all currently connected clients – the ones that are subscribing to the topic.

An endpoint can receive a broadcasted message in two ways. The first way is from a con-

nected client that broadcasts a message to a topic. The algorithm in code listing 5.1 describes

what an endpoint does with each message that it receives. First, all subscribers for the mes-

sage’s topic is fetched. For every client in the list of subscribers, the corresponding endpoint

for that client is looked up. If the endpoint is the current endpoint, the message can simply

be forwarded directly to the client by looking up which Erlang process that corresponds to the

client’s connection and forwarding the message to it. If the endpoint is remote, the message is

instead forwarded using to the endpoint, together with information about which client should

receive it. This is the only instance where two endpoints are communicating directly with each

for each $subscriber in lookup_subscriber($message.topic) {
$endpoint := lookup_endpoint($subscriber)
if ($endpoint == "localhost") {

$process := lookup_subscriber_process($subscriber)
if ($process) {

broadcast($process , $message)
} else {

unregister_endpoint($subscriber)
}

} else {
forward_message($endpoint , $message)

}
}

Code Listing 5.1: Endpoint message routing algorithm

43

5.3. RIAK INTEGRATION CHAPTER 5. IMPLEMENTATION

other, all of the other lookups above are done usingRiak. The intra-endpointmessaging is done

using distributed Erlang.

Looking up the subscribers for a topic requires only one look-up, but finding the endpoints

for each subscriber requires one look-up each since the subscriber list does not include any

endpoint information. The lookup and forward steps are done in parallel using one Erlang

process per subscriber.

The second way an endpoint can receive a broadcasted message is from another endpoint.

In this case the recipient is always included, so the endpoint looks up the Erlang process corre-

sponding to the connected client and forwards the message to it directly.

When the endpoint queries Riak for the endpoint of a client, the response can be empty.

This happens when the client is not connected, so no routing will be attempted. An endpoint

might also receive a message for a client that is no longer connected and then the message will

simply be dropped and the endpoint information in Riak for the client will be cleared since it

is no longer valid.

This simple routing algorithm ensures thatmessages are delivered to all subscribers formes-

sages broadcasted to any endpoint.

5.3 Riak integration

In chapter 4 and section 5.1 a loosely coupled design was described. In this system, nodes are

synchronizing state using Riak and the only direct communication between nodes takes place

to forward messages. This section will describe the module riakcontroller (see figure 5.1)

that handles all communication between an endpoint and Riak.

The riakcontroller module that handles communication between Riak and the end-

points exports the following functionality:

• ping() – Check whether the connection to Riak is still open.

44

5.3. RIAK INTEGRATION CHAPTER 5. IMPLEMENTATION

• subscribe(client, key)–Add a client to the list of subscribers for a topic identified

by key.

• unsubscribe(client, key) –Remove a client from the list of subscribers for a topic

identified by key.

• subscribers_lookup(key) – Fetch the list of subscribers for a topic identified by key.

• listener_register(client, server)–Update the endpoint (server) registered for

a client and replace any previously assigned endpoint for the client.

• listener_unregister(client) – Remove any registered endpoint for a client.

• listener_find(client) – Find the registered endpoint for a client, if any.

When an object is read from Riak, sometimes more than one version of the object are

returned. This is the result of the consistency model used by Riak. If two Riak nodes are out

of synchronization, conflicting updates can be made to the objects stored on the nodes. It is

up to the client to resolve these conflicts. This can happen in any update, so the subscribe,

unsubscribe, listener_register and listener_unregister functions all need to handle

conflict resolution.

The subscribers module (figure 5.1) handles conflict resolution for the subscribers list.

This list is implemented using gb_set, an efficient set implementation (see section 2.4). When

two different versions of a subscribers list is read for a particular topic, the union of the two

sets are used to resolve the conflict. This means that write operations will take precedence over

delete operations and a client that subscribes will always succeed, but an unsubscription might

be overwritten by an earlier subscription. This resolution model was chosen because it is easy

to detect a stale subscription, but hard to detect a missing one. A stale subscription results in

broadcasts to a topic that is no longer of interest to the client, and the client can unsubscribe

45

5.3. RIAK INTEGRATION CHAPTER 5. IMPLEMENTATION

again. A missing subscription, on the other hand, would only be visible if the client regularly

verified that it was registered on the expected topics.

The listeners module handles conflicts in a different way. The last_write_wins Riak

setting is used for these values, which means that any existing value will simply be overwritten.

In theory, a client could get the wrong endpoint registered, but since these values are updated

relatively rarely it should be rare and when it happens, the client can simply reconnect.

46

6
Evaluation

In this section, the design and results of the benchmarks described in section 6.2 will be pre-

sented.

6.1 Test metrics

Three systems were benchmarked. Apache Kafka and RabbitMQ are state of the art message

brokers that are known to scale well and handle high loads. The third system is the custom

Riak-based system described in chapters 4 and 5. The following sections details which metrics

were gathered.

6.1.1 Primary metrics

To test if the goals discussed in section 1.3 are met, load tests with simulated traffic were per-

formed. The users, metadata events and subscriptions were be simulated, but the core parts of

the system were tested in a production-like environment.

The keymeasurements are latency and throughput, as discussed previously. The input vari-

ables of the tests are the number of simultaneously connected users and the number of nodes

handling these users.

47

6.2. TEST STRATEGY CHAPTER 6. EVALUATION

To simplify, each load generator is able to simulate several average users by sending a typical

pattern of messages, such as subscriptions and unsubscriptions.

6.1.2 Additional metrics

The following information were also gathered, but in this case they were measured per node:

• CPU load

• Memory usage

• Network utilization

• Disk I/O

6.2 Test strategy

In the previous section, evaluation scenarios were discussed in general. This section will go

through how the benchmarks were actually performed.

Since three different systems were tested, the load generator was designed to support three

different back-ends. An overview of the test architecture can be seen in figure 6.1. The pur-

pose of the common interface is to make it possible to reuse the same traffic model for the

different back-ends without re-implementing common parts such as gathering metrics, service

monitoring, logging and rate control.

The benchmark used below is inspired by the jms2009-PS benchmark[45, 46, 47, 48],

based on SPECjms2007[49], which is targeted specifically towards testing pub/sub systems.

It has over 80 parameters, but the essential ones are:

• Number of topics and queues used

48

6.2. TEST STRATEGY CHAPTER 6. EVALUATION

Parameter Value Description

Transactional False Is a message sent as a part of a transaction?

Persistent False Are messages persisted?

Durable False Messages received while a subscriber is offline
are stored for later delivery

Queue False Whether a queue or topic is used in case of a
single consumer

Target destination option Message type A single topic per message type is used
Table 6.1: Parameter used in the benchmark, compared to those of jms2009-PS.

• Number of transactional vs. non-transactional messages

• Number of persistent vs. non-persistent messages

• Total traffic per topic and queue

• Complexity of used selectors (filter statements)

• Number of subscribers per topic

The requirements, expressed in terms used in the jms2009-PS benchmark are detailed in

table 6.1.

6.2.1 Trafficmodels

The load generators simulate several clients by sending messages to the system. The messages

sent are similar to traffic one could expect to see in a production system.

There are essentially two classes of messaging at the core of the system:

1. Data being published to a topic, or received from a topic

2. Subscriptions and unsubscriptions from topics

49

6.2. TEST STRATEGY CHAPTER 6. EVALUATION

Themajority of messages are going to be of the first type, so to simplify the benchmarks all

subscriptions are being done before the main phase of the benchmark starts and only publish

and broadcast messages are exchanged during the test. The subscribe and unsubscribe phase

were also recorded separately to get a complete picture of all phases of the test. The main

benchmark have three phases:

1. The load generators starts simulating client traffic, by connecting to the system and sub-

scribing to a number of topics.

2. Each load generator publishes messages at increasing rates, until the throughput or la-

tency goals are no longer met. At this point, the load generator should back off by low-

ering the message rate. This should allow the system to stabilize around the maximum

utilization for the current configuration.

3. Finally, the load generators should unsubscribe from all the topics that they are subscrib-

ing to. This way, unsubscription messages are also benchmarked, and all features of the

system are tested.

The following properties of the benchmark are of extra interest:

• A big number of topics, some very popular and some less popular. There should be a

small number of very popular topics, and a large number of topics with only a few sub-

scribers. This should match the use of the system well.

• Messages should be duplicated, which in this case means that the message payload is the

same for two ormoremessages fromdifferent clients. This is an interesting feature, since

the system will need to filter duplicates.

• A large number of simulated clients.

50

6.2. TEST STRATEGY CHAPTER 6. EVALUATION

C

P

C

P

C

P

Benchmarking
API

RabbitMQ

Kafka

Ingeborg

Back-endLoad generators

Figure 6.1: Overview of the test architecture, showing consumers and producers communicating
with the different systems through a common interface.

6.2.2 Acquiring metrics

This client does not only measure throughput, but it also includes timings of when messages

are sent and received. The timing data can be analyzed and the point A to point B latency, as

discussed in section 1.3.3, can be calculated on the level of individual messages. The messages

are chosen so that a single client will only receive messages that it sent and no time synchro-

nization between clients will be required to calculate the round-trip latency. If messages would

have been sent randomly, the system clocks at the load generating nodes would have had to be

synchronized with a very high accuracy to compare events logged on different load generators

with good precision.

Throughput is calculated from the logs by simply looking at the number of messages that

are logged during a certain time.

Other metrics (see section 6.1.2) were also logged. They were logged by a simple script

querying the system for the information needed.

51

6.2. TEST STRATEGY CHAPTER 6. EVALUATION

To assert that the systems being tested could handle the required loads for a longer period

of time, a dynamic load generator was used. The generator starts with a low message rate, and

keeps increasing it until themeasured latency is above a predefined threshold. At this point, the

load is decreased until the latency is below the threshold again. This lets the load generator find

a level where the generated load is at a sustainable maximum level. This approach allows one

single test run to find the limitations of the system, while showing how the system recuperates

after brief periods of high load.

6.2.3 Benchmarking RabbitMQ

Setting up a pub/sub system with RabbitMQ can be done in different ways thanks to the flex-

ibility of AMQP.One possible way is to let producers publishmessages to a topic exchange. To

subscribe, a consumer binds its own queue to the exchange by using a binding key which will

cause the exchange to route messages to this queue if the routing key of the message matches

the binding key.

In this case, the routing key can simply be the track. RabbitMQ is supposed to handle large

numbers of both queues and bindings well.

6.2.4 Benchmarking Kafka

Kafka is also using topics. A producer publishes messages to a topic and consumers consume

them.

Kafka understands both queuing and pub/sub using consumer groups. In short, the con-

sumer groups acts like a logical group for one or more consumers. Each consumer that sub-

scribes to a topic in Kafka with a unique consumer group will get a copy of the message.

52

6.2. TEST STRATEGY CHAPTER 6. EVALUATION

Kafka stores all published messages whether they are consumed or not, but in this appli-

cation old messages are useless. Therefore the log retention period should be configured to be

as small as possible.

A problem that might occur is that Kafka might use the maximum amount of file handles.

This happens with Kafka systems some times when the number of topics are large, since Kafka

keeps all log segments open. Ways around this problem might be to add more nodes to the

Kafka cluster, or to configure the Kafka nodes to allow a higher number of open files.

6.2.5 Reference system

Many of the web radio streams currently available are broadcasted using a loosely defined pro-

tocol that seems to be defined mostly by compatibility with existing clients and servers such as

the Shoutcast Server and its open source cousin Icecast. This de facto protocol will simply be

called Shoutcast below.

Shoutcast streams are identified by their URL, and a client that wants to consume a stream

sends aHTTP request with the specifiedURL.The server replies with aHTTP-like¹ response

followed by some headers that are followed by the response body. The response body can con-

tain either a playlist, a list of other endpoints, or a media stream. In the case of a media stream,

the type of the stream is specified in one of the headers and the response body is simply the

media stream.

When media files are stored, their metadata is usually stored as a file header (ID3v2[50])

or footer (ID3v1[51]) but since themetadata of amedia stream can change after the header has

been sent, themetadata needs to be updated some other way. Shoutcast solves this by inserting

metadata into the raw media byte-stream at regular intervals.[52] This means that to know

¹Some implementations will break the HTTP protocol, for example by responding with the status line ICY
200 OK, instead of the normal HTTP 200 OK response.

53

6.3. TEST PLATFORM CHAPTER 6. EVALUATION

which song is currently being broadcasted by such a server, the media stream actually has to be

consumed just to receive the interleaved metadata.

The system mentioned in the introduction had a notification service that notified con-

nected clients when a track was played. The server was connected to around 100 selected web

radio stations at any time tomonitoring their meta data, while themedia streamwas being dis-

carded². This was becoming costly, since the data traffic for the discardedmedia streams added

up to terabytes every year.

The server, of which the notification service was a part, was a custom server built to be run

as single instance. The server could not scale beyond a couple of hundred connected clients at

a time, because of the resources needed to monitor the stations mentioned above, and main-

taining the state and connections of the connected clients.³

6.3 Test platform

The tests were performed using virtual private servers, delivered by DigitalOcean⁴. The node

types thatwere used are described in table 6.2. The smallnode instanceswere used for network-

intensive tasks, and the medium were used for services requiring more computing power and

memory. Kafka required a lot of memory, so the large node type were used for this service.

Kafka version 0.8.1.1 and RabbitMQ version 3.4.4 were used in all the benchmarks below.

²The interpretation of Swedish copyright law of the time (2009)was that anyone couldmake copies of broad-
casted music for private use, but not commercially.[53]

³There are no exact numbers, since no detailed usage statistics were ever gathered. The numbers presented
have been provided by the service’s original developers.

⁴http://www.digitalocean.com/
⁵666.7 megabits per seconds measured by copying a 1 GiB file with random data between two nodes over

the private network interface.

54

http://www.digitalocean.com/

6.4. TRAFFIC BENCHMARK RESULTS CHAPTER 6. EVALUATION

Small Medium Large
Memory 512 MB 2 GB 4 GB

SSD Disk 20 GB 40 GB 60 GB

Processor Cores 1 2 2

CPU clock rate 2.4 GHz

Network Gigabit⁵

Operating System Ubuntu 14.04
Table 6.2: DigitalOcean node specifications. All vCPUs are at 2.4 GHz.

6.4 Traffic benchmark results

In this section, the results of the traffic benchmark described previously are presented. The

results for RabbitMQ and Ingeborg are complete, but the benchmark did not yield any useful

output in terms of throughput and latency for Kafka.

6.4.1 RabbitMQ

TheRabbitMQbenchmark that worked best is shown in figure 6.2. In this scenario, two small

nodes were configured to generate load against a single-node RabbitMQ system, also running

on small instances. A large Redis node ran alongside the RabbitMQ node, to allow duplicate

checking. Trafficwas generated using 20 connections, with 1000 topics and1000 subscriptions

per connection.

The reason for running this benchmark with no more than 1000 topics was that running

the benchmark with higher number of topics was too unstable and gave unpredictable results

in terms of latency spikes, crashes and sudden drops in throughput. To see how the number

of topics affected RabbitMQ and the other systems, a simplified benchmark was also imple-

mented, see section 6.5.

55

6.4. TRAFFIC BENCHMARK RESULTS CHAPTER 6. EVALUATION

m
es

sa
ge

 ra
te

 [m
es

sa
ge

s/
s]

100

1k

10k

Throughput out
Producer rate
Throughput in

99% latency goal

50% latency goal

la
te

nc
y

[m
s]

0

500

1k

1.5k

2k

2.5k

3k
99% latency
50% latency

Recv
Transmit

ne
tw

or
k

us
ag

e
[b

/s
]

100k

1M

CPU usage

Time
23:43:20 23:43:40 23:44:00 23:44:20 23:44:40 23:45:00

CP
U

us
ag

e
[%

]

0

50

100

150

200

Figure 6.2: Results of RabbitMQ benchmarks. The graphs show message rate, end to end latency,
network utilization and CPU usage.

56

6.4. TRAFFIC BENCHMARK RESULTS CHAPTER 6. EVALUATION

The load generator (see section 6.2.2) stabilizes its produced message rate at around 1300

messages per second. At this point 1000 incoming messages per second are registered by the

system, and the system is producing around 30%moremessages out, due to broadcasting. This

is equivalent to a system handling around 800 simultaneous users, based on the scenario de-

scribed in section 1.3.2.

The maximum total throughput achieved was 5259 messages per second.

The difference in 300 messages per second is due to duplicate messages being filtered. An-

other reason for the difference is that if RabbitMQ’s message buffer overflows, messages are

simply dropped. The rate of dropped messages and duplicates was not measured directly in

this test.

6.4.2 Kafka

Thetest architecture described in section 6.2 did not yield coherent results. The system crashed

in the middle of the benchmark with different error messages and exceptions. It seemed like

Kafka’s performance was degrading with the number of topics. This is consistent with the

Kafka designers’ stated goal of supporting up to a thousand topics (see section 3.2).

To see how the number of topics affected the performance of Kafka and the other systems,

a second benchmark was performed, see section 6.5.

6.4.3 Ingeborg

For evaluating the Ingeborg system, a five node Riak cluster using small nodes (see table 6.2)

was used to serve as the back-end. Each node in the cluster was also running a local Riak in-

stance. The Riak instances formed the cluster used for synchronizing state between the Inge-

borg nodes.

57

6.4. TRAFFIC BENCHMARK RESULTS CHAPTER 6. EVALUATION

m
es

sa
ge

 ra
te

 [m
es

sa
ge

s/
s]

10

100

1k

10k

Throughput out
Producer rate
Throughput in

99% latency goal

50% latency goal

la
te

nc
y

[m
s]

0

500

1k

1.5k

2k

2.5k

3k
99% latency
50% latency

Recv
Transmit

ne
tw

or
k

us
ag

e
[b

/s
]

1M

2M

CPU usage

Time
21:07:00 21:08:00 21:09:00 21:10:00 21:11:00 21:12:00 21:13:00

CP
U

us
ag

e
[%

]

0

100

200

300

400

500

Figure 6.3: Results of Ingeborg benchmarks. The graphs showmessage rate and end to end latency.

58

6.5. TOPICS BENCHMARK CHAPTER 6. EVALUATION

The load generator was running on a medium instance. Traffic was generated using 20

connections, with 1000 topics and 1000 subscriptions per connection, the same configuration

used for RabbitMQ above. How Ingeborg handles higher number of topics is investigated in

section 6.5.

A typical result of this kind of load test is shown shown in figure 6.3. The rate of messages

sent to the system is increased gradually until there is a spike in end to end latency. At this

point the maximum incoming message rate is about 200 messages per second, and the outgo-

ing message rate is about five times higher. The maximum total throughput achieved, while

keeping the latency at an acceptable level, was 1840 messages per second.

The results are fairly stable and shows how Ingeborg reacts when it can no longer handle

the amount of incomingmessages. When this happens,messages start accumulating in internal

buffers, either in Ingeborg or in the Riak back-end. One of the reasons for why the system can

no longer keep up is that it spends a high percentage of its time looking for the receiving clients’

respective endpoints by repeatedly looking up the client id-endpoint mapping in Riak.

6.5 Topics benchmark

In the traffic benchmarks, described in the previous section 6.4, scaling the number of top-

ics proved to be problematic. The Kafka traffic benchmark (section 6.4.2), only succeeded

in showing severe performance issues in this scenario and the RabbitMQ benchmark (sec-

tion 6.4.1) had to be run with a lower number of topics than initially planned, but showed

better results than Ingeborg in terms of throughput even though it was using less hardware.

The different amount of hardware in combination with using too few topics makes the result

hard to compare.

This prompted a second, less complex benchmark, which addresses a smaller scope than

the previous traffic benchmark. Since the large number of topics seemed to be an issue for

59

6.6. TOPICS BENCHMARK RESULT CHAPTER 6. EVALUATION

both Kafka and, to a smaller extent, RabbitMQ – the second benchmark was designed with

the intention to show how all three systems handle trafficwhen an increasing number of topics

are used.

The topic benchmark consists of the following steps:

• Reset the system, either by deleting all data or by reinstalling it.

• Synchronously, using a single client, publish a large number of messages to N topics.

The number of topics should be large enough to send at least one message to each topic,

in a round-robin fashion.

• Connect a single client and subscribe to the same topics that were used for publishing,

N in total.

• Consume all the messages, synchronously.

The above steps are performed for different values of N, the number of topics, startingwith

one and doubling it for each iteration until N reaches 2097152 which should be sufficiently

large to stress all three systems.

Three data points are collected for each iteration:

1. The time it takes for a client to connect and subscribe to N topics.

2. Overall throughput while producing.

3. Overall throughput while consuming all the previously produced messages.

A medium node (see table 6.2) was used for this benchmark.

60

6.6. TOPICS BENCHMARK RESULT CHAPTER 6. EVALUATION

Out of memory

Too many open files

Pr
od

uc
er

 ra
te

 [m
sg

s/
s]

1

10

100

1k

10k

100k

Co
ns

um
er

 ra
te

 [m
sg

s/
s]

10

100

1k

10k

Kafka
RabbitMQ
Ingeborg

Number of topics

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

Se
tu

p
tim

e
[s

ec
on

ds
]

1
10

10
0

1k
10

k

Figure 6.4: Results of the topics benchmark.

61

6.6. TOPICS BENCHMARK RESULT CHAPTER 6. EVALUATION

6.6 Topics benchmark result

The results of the topics benchmark is presented in figure 6.4. The sub-graphs are showing the

producer and consumer throughputs for each iteration, as well as the subscription time.

Ingeborg is able to achieve a very high message rate when producing messages, because no

message acknowledgments are used. Reliability is sacrificed, since there is noway to re-transmit

a lostmessage. RabbitMQis still very fast, even though it is spending some time acknowledging

messages. Kafka’s poor producer performance have several possible explanations. One is that

topics are created on demand in Kafka, so each produced message introduces some overhead

when creating a new topic. This overhead might be significant when each message is sent to

a new topic. Another factor is that messages are often sent in batches to Kafka, but in this

benchmark each message was sent individually.

It must be noted that this is not the intended use of Kafka, as mentioned in section 3.2,

the system is designed to handle a limited number of topics, so the results only apply to this

particular scenario. A more typical usage pattern would show completely different results. A

single Kafka broker is supposed to handle throughputs of hundreds of megabytes per second

with thousands of connected clients under normal circumstances.

Each topic in Kafka (see section 3.2) is represented by at least one file in the file system.

The consensus service Zookeeper used by Kafka also uses the file system to store information

about subscriptions and topics. The system that ran the benchmark allowed onemillion⁶ open

file descriptors per process. At 16384 topics, the Kafka system hit this limit and crashed.

RabbitMQuses files differently, andmessages are stored inmemory or in persistent storage

depending on the configuration. The subscription and topic information uses a significant

amount of memory, which became a problem at half a million topics. The RabbitMQ broker

used up all available memory at this point, and crashed. Several warnings were raised before

⁶The open file descriptors limit was 1048576. It was set using the command ulimit -n 1048576.

62

6.7. SUMMARY CHAPTER 6. EVALUATION

the crash and when the configurable memory high water mark was reached no more messages

could be published.

For the message rate while consuming, Ingeborg and RabbitMQ have switched positions.

Here, RabbitMQ’s optimized routing probablyworks in its favor. Kafka’s poor results are prob-

ably due to an atypical usage pattern, like before.

Kafka did the worst, again, in terms of the time it took for a client to subscribe to all topics.

The on-demand topic creation and Zookeeper synchronization are both probable causes for

this. RabbitMQ was three to four times faster than Kafka but 20 times slower than Ingeborg

for higher number of topics. RabbitMQ was the fastest for up to eight topics. The ability to

subscribe to multiple topics at once was clearly an advantage in this regard for Ingeborg. The

Kafka client has a similar option, but it seems like it translates to multiple calls to the broker.

6.7 Summary

Three different pub/submiddleware systems were benchmarked: RabbitMQ, Kafka and Inge-

borg. Two separate benchmarks were performed, a more complex traffic benchmark (sec-

tion 6.4) and a simplified benchmark designed to show how the systems handle a higher num-

ber of topics (section6.5). RabbitMQachieved the highest throughput for amoderate number

of topics, in the traffic benchmark and Ingeborgwas the only system that could handlemillions

of topics without problems.

In the traffic benchmark all systems had their specific problems but RabbitMQ delivered

the best results overall, with a maximum total throughput of 5259 messages per second. This

is less than three times the throughput of Ingeborg. Kafka could only complete the topics

benchmark, because of the excessive overhead when many topics were used. The number of

topics used in this benchmark was limited by RabbitMQ’s performance, which leads to the

topics benchmark.

63

6.7. SUMMARY CHAPTER 6. EVALUATION

The topics benchmark showed an advantage of Ingeborg over the other two systems. Rab-

bitMQ’smemory consumption andKafka’smanyopenfile descriptors during the topics bench-

mark confirms that these systems were not designed for this usage pattern.

64

7
Conclusion

In this section, the findings and results of this thesis will be discussed. The experimental work

has shown some of the difficulties in scaling topic-based pub/sub systems. The prototype sys-

tem’s design and implementation gives some ideas for how customized topic-based messaging

systems with pub/sub semantics can be implemented.

7.1 Topic-based filtering

Topic-based filtering does not scale without careful design. In the case of RabbitMQ, routing

speed decreases with the number of bindings and simply increasing the number of nodes in

a RabbitMQ cluster will not automatically make the overall throughput faster. Since a Rab-

bitMQ cluster replicates all data except message queues across its nodes, adding nodes can ac-

tually introduce more overhead. Nodes are added to scale the number of queues supported by

the cluster, and for reliability.

Getting the complex benchmark described in section 6.2 to work well with different plat-

forms proved difficult. An important part of a benchmark’s relevance is that it actually tests a

property of the system under test, and not just how well the benchmark itself performs.

65

7.2. OPTIMIZING INGEBORG CHAPTER 7. CONCLUSION

The benchmarks performed has shown that both Kafka and RabbitMQ perform very well

in a topic-based routing setup when a small number of topics are used but that the scalability

is limited when it comes to increasing the number of topics used.

Ingeborg, the system designed and prototyped in this thesis, managed to outperform both

Kafka and Ingeborg in this specific scenario for two different metrics. First, by eliminating

message acknowledgments it could achieve a high incoming message rate on one hand, sacri-

ficing delivery guarantees on the other hand. In this case this trade-off was acceptable, but in

many other applications it is not. Second, the systemwas designed with a very high number of

topics in mind, and kept delivering a stable service long after Kafka and RabbitMQ depleted

their resources in different ways.

RabbitMQ has an infinite number of possible configurations. Kafka, on the other hand, is

designed to achieve high throughput formany simultaneously connected clients on amoderate

number of topics. Therefore, it is important to note that these test results are only valid for

setups similar to the one used in this study.

7.2 Optimizing Ingeborg

In the Traffic benchmark results section, it was obvious that RabbitMQ outperformed Inge-

borg in a normal traffic scenario by a factor of about 2.85. This should not be surprising, given

that RabbitMQ is a mature system that has seen many years in production use across a wide

range of environments. How can Ingeborg be improved, then?

One point where Ingeborg could be optimized is in the way message routing is handled.

The routing scheme requires each message endpoint to be looked up every time a message is

routed. This yields a lot of calls to Riak, so some caching could be done, or the routing mech-

anism could be redesigned completely. One idea for an improved routing mechanism is to

synchronize all broadcastedmessages between the Ingeborg nodes and let the clients’ own end-

66

7.3. CONCLUDING REMARKS CHAPTER 7. CONCLUSION

point keep track of the current location of each client locally. This would probably reduce the

load on Riak drastically.

The prototyping of this system also highlighted the difficulties in debugging distributed

systems. Performance bottlenecks are hard to find unless you have the right data, and this

requires monitoring the system state of many machines at once, as well as the program state at

each node. Interpreting the monitoring and debugging information can also be difficult due

to the sheer volume of information.

7.3 Concluding remarks

There seems to bemany dimensions to the word “scalable” in themarketingmaterial and docu-

mentation of the available messaging systems. It is not always clear what is meant by the word.

RabbitMQandKafka both scale well to very high throughputs, for example, butmay fail when

the system scales along other dimensions, such as the number of simultaneously connected

clients; the number of bindings or subscriptions to a topic; the number of queues, exchanges

or other system state. There seems to be a need for a common language describing the proper-

ties and trade-offs of distributedmessaging systems, since the current jargon is often ambiguous

or vague.

This thesis set out to show how a pub/sub system could be used to service an application

with very high demands not only for throughput and latency, but also with the requirement of

a filtering mechanism supporting a large and changing set of subscriptions for each client. In

this aspect this thesis has been fruitful, since Ingeborg, the prototype system, could manage at

least eight times more topics than the second best system without problems.

The thesis’ value is also in showing some of the difficulties and possibilities that exist in

topic-based pub/sub systems. It is also clear from the experimental results that a simple system

based on RabbitMQ would outperform the reference system (section 6.2.5).

67

7.3. CONCLUDING REMARKS CHAPTER 7. CONCLUSION

Another positive result is that the prototype system Ingeborg is showing that it is possible

to create a new pub/sub system from scratch, on top of a distributed key-value store such as

Riak. This allows the designer to considermany trade-offs that are not possible inmore generic

systems like RabbitMQ, since these systems have to perform under a wide range of possible

configurations.

68

Bibliography

[1] IFPI Digital Music Report 2015: Charting the Path to Sustainable Growth.

http://www.ifpi.org/downloads/Digital-Music-Report-2015.pdf, April 2015.

[2] RIAA - Scope of the Problem.

http://www.riaa.com/physicalpiracy.php?content_selector=piracy-online-scope-of-

the-problem, September

2015.

[3] SFS 1960:729, Lag om upphovsrätt till litterära och konstnärliga verk. Swedish Code

of Statuses (Svensk Författningssamling).

[4] Produkter & ersättningsnivåer.

http://www.copyswede.se/elektronikbranschen/produkter-och-ersattningsnivaer/,

September 2015.

[5] Chilirec (BETA) - Your Free Internet Recorder!

https://web.archive.org/web/20071011230336/chilirec.com, October 2007.

[6] Kincaid, J. Dropbox acquires the domain everyone thought it had: Dropbox.com.

http://techcrunch.com/2009/10/13/dropbox-acquires-the-domain-everyone-

i

BIBLIOGRAPHY BIBLIOGRAPHY

thought-it-had-dropbox-com/, October

2009.

[7] We’ve only just begun!

https://news.spotify.com/se/2008/10/07/weve-only-just-begun/, October 7 2008.

[8] Tarkoma, S. Publish/subscribe systems: design and principles. John Wiley & Sons, 2012.

[9] Castro, M. et al. SCRIBE: A large-scale and decentralized application-level multicast

infrastructure. Selected Areas in Communications, IEEE Journal on, 2002.

20(8):1489–1499.

[10] Rowstron, A. & Druschel, P. Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems. InMiddleware 2001. Springer, 2001 (pages

329–350).

[11] Van Renesse, R. & Bozdog, A. Willow: DHT, aggregation, and publish/subscribe in

one protocol. In Peer-to-Peer Systems III, (pages 173–183). Springer, 2005.

[12] Eugster, P.T. et al. The many faces of publish/subscribe. ACMComputing Surveys

(CSUR), 2003. 35(2):114–131.

[13] Ratnasamy, S. et al. A scalable content-addressable network, volume 31. ACM, 2001.

[14] Stoica, I. et al. Chord: A scalable peer-to-peer lookup service for internet applications.

ACM SIGCOMMComputer Communication Review, 2001. 31(4):149–160.

[15] Zhao, B.Y. et al. Tapestry: An infrastructure for fault-resilient wide-area location and

routing. Technical Report UCB//CSD-01-1141, UC Berkeley, 2001.

[16] Maymounkov, P. & Mazieres, D. Kademlia: A peer-to-peer information system based

on the XOR metric. In Peer-to-Peer Systems, (pages 53–65). Springer, 2002.

ii

BIBLIOGRAPHY BIBLIOGRAPHY

[17] Timpanaro, J.P. et al. BitTorrent’s mainline DHT security assessment. InNew

Technologies, Mobility and Security (NTMS), 2011 4th IFIP International Conference

on. IEEE, 2011 (pages 1–5).

[18] Aekaterinidis, I. & Triantafillou, P. PastryStrings: A comprehensive content-based

publish/subscribe DHT network. In ICDCS, volume 6. 2006 (page 23).

[19] Ahulló, J.P., López, P.G. & Gomez Skarmeta, A.F. LightPS: lightweight content-based

publish/subscribe for peer-to-peer systems. In Complex, Intelligent and Software

Intensive Systems, 2008. CISIS 2008. International Conference on. IEEE, 2008 (pages

342–347).

[20] Pujol-Ahullo, J., Garcia-Lopez, P. & Gomez-Skarmeta, A.F. Towards a lightweight

content-based publish/subscribe services for peer-to-peer systems. International

Journal of Grid and Utility Computing, 2009. 1(3):239–251.

[21] DeCandia, G. et al. Dynamo: Amazon’s highly available key-value store. SIGOPS Oper.

Syst. Rev., October 2007. 41(6):205–220. ISSN 0163-5980.

doi:10.1145/1323293.1294281.

[22] Holcomb, B. NoSQL database in the cloud: Riak on AWS.

http://media.amazonwebservices.com/AWS_NoSQL_Riak.pdf, June 2013.

[23] Armstrong, J. The development of Erlang. In ACM SIGPLANNotices, volume 32.

ACM, 1997 (pages 196–203).

[24] Armstrong, J. A history of Erlang. In Proceedings of the third ACM SIGPLAN

conference on History of programming languages. ACM, 2007 (pages 6–1).

[25] Ekeroth, L. & Hedstrom, P.M. GPRS support nodes. ERICSSON REV(ENGL ED),

2000. 77(3):156–169.

iii

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Armstrong, J. Erlang. Communications of the ACM, 2010. 53(9):68–75.

[27] Däcker, B. Erlang-a new programming language. Ericsson Review, 1993. 70(2):51–57.

[28] Pardo-Castellote, G. OMG data-distribution service: architectural overview. In

Distributed Computing SystemsWorkshops, 2003. Proceedings. 23rd International

Conference on. May 2003 (pages 200–206). doi:10.1109/ICDCSW.2003.1203555.

[29] Extensible and dynamic topic types for DDS.

http://www.omg.org/spec/DDS-XTypes/1.1, 2014-11-03. Version 1.1.

[30] Loreto, S. et al. Known Issues and Best Practices for the Use of Long Polling and

Streaming in Bidirectional HTTP. RFC 6202 (Informational), April 2011.

[31] Fette, I. & Melnikov, A. The WebSocket Protocol. RFC 6455 (Proposed Standard),

December 2011.

[32] Binnig, C. et al. How is the weather tomorrow? towards a benchmark for the cloud. In

Proceedings of the Second International Workshop on Testing Database Systems. ACM,

2009 (page 9).

[33] Huppler, K. The art of building a good benchmark. In Performance Evaluation and

Benchmarking, (pages 18–30). Springer, 2009.

[34] Curry, E. Message-oriented middleware. Middleware for communications, 2004. (pages

1–28).

[35] RabbitMQ - Clustering Guide. https://www.rabbitmq.com/clustering.html. Retrieved

May 25, 2015.

[36] Kingsbury, K. Call me maybe: RabbitMQ.

https://aphyr.com/posts/315-call-me-maybe-rabbitmq, June 2014.

iv

BIBLIOGRAPHY BIBLIOGRAPHY

[37] Kreps, J., Narkhede, N. & Rao, J. Kafka: A distributed messaging system for log

processing. In Proceedings of the NetDB. 2011 .

[38] Goodhope, K. et al. Building LinkedIn’s Real-time Activity Data Pipeline. IEEE Data

Eng. Bull., 2012. 35(2):33–45.

[39] Kuch, J. RabbitMQ Hits One Million Messages Per Second on Google Compute

Engine. http://blog.pivotal.io/pivotal/products/rabbitmq-hits-one-million-messages-

per-second-on-google-compute-engine, June

2014.

[40] Kamburugamuve, S., Christiansen, L. & Fox, G. A framework for real time processing

of sensor data in the cloud. Journal of Sensors, 2015. 2015:11. Article ID 468047.

[41] Configuration: Important configuration properties for Kafka broker.

http://kafka.apache.org/07/configuration.html. Retrieved May 30, 2015.

[42] Buschmann, F. et al. Pattern-oriented software architecture: A system of patterns,

volume 1. Wiley, Chichester, 1996. ISBN 9780471958697, 0471958697.

[43] The JSON data interchange format, October 2013. ECMA International, ECMA-404,

1st edition.

[44] Andersson, A. General balanced trees. Journal of Algorithms, 1999. 30(1):1–18.

[45] Sachs, K. et al. Benchmarking publish/subscribe-based messaging systems. InDatabase

Systems for Advanced Applications. Springer, 2010 (pages 203–214).

[46] Sachs, K. Performance modeling and benchmarking of event-based systems. Ph.D. thesis,

Technischen Universität Darmstadt, 2010.

v

BIBLIOGRAPHY BIBLIOGRAPHY

[47] Kounev, S. et al. A methodology for performance modeling of distributed event-based

systems. InObject Oriented Real-Time Distributed Computing (ISORC), 2008 11th

IEEE International Symposium on. IEEE, 2008 (pages 13–22).

[48] Folkerts, E. et al. Benchmarking in the cloud: What it should, can, and cannot be. In

Selected Topics in Performance Evaluation and Benchmarking, (pages 173–188).

Springer, 2013.

[49] Sachs, K. et al. Performance evaluation of message-oriented middleware using the

specjms2007 benchmark. Performance Evaluation, 2009. 66(8):410–434.

[50] Nilsson, M. ID3 tag version 2.3.0. http://id3.org/d3v2.3.0, Feb 1999. Informal

standard.

[51] Id3v1. http://id3.org/ID3v1, October 2012. Retrieved 29 May 2015.

[52] McIntyre, S. SmackFu: Shoutcast Metadata Protocol.

http://www.smackfu.com/stuff/programming/shoutcast.html. Retrieved May 29,

2015.

[53] Behdjou, B. Chilirec lanserat i Sverige. Expressen, 2009. Jun 10, 2009.

vi

Glossary

AMQP Advanced Message Queuing Protocol vii, ix, 11, 17, 19, 20, 24, 26, 39, 52

BM bit mapping 15

CEP Complex Event Processing 4

Cowboy Erlang web server with websockets support.

Web site: https://github.com/ninenines/cowboy

19, 41

DDS Data Distribution Service for Real-Time System 19–21

DHT Distributed Hash Tables viii, 4–6, 12, 14–16, 24

Erlang Programming language designed for distributed systems. Named after Agner Krarup

Erlang, a danish mathematician and engineer. vii, viii, 17–19, 24, 30, 38, 41–44

exchange Exchanges are components in the AMQP protocol responsible for receiving mes-

sages frompublishers, and for forwarding receivedmessages tomessage queues based on

different types of rules. 24, 25, 34, 52, 67

vii

https://github.com/ninenines/cowboy

Glossary Glossary

FIFO First In First Out 25

Ingeborg The topic-based publish subscribe messaging system designed, implemented and

evaluated in this thesis. Named after Agner Erlang’s little sister. 41, 42, 55, 57, 59,

62–64, 66–68

JMS Java Message Service 27

Kademlia Kademlia is a peer-to-peer DHT protocol. Mainline DHT, one of several Kadem-

lia implementations, is used by BitTorrent clients to find peers. 15, 16, 24

Kafka Open source message broker originally developed by LinkedIn.

Web site: http://kafka.apache.org/

26–29, 47, 52–55, 57, 59, 60, 62–64, 66, 67

MOM Message Oriented Middleware 24

Open Telecom Platform A collection of libraries, tools and middleware distributed with Er-

lang. viii, 18

OTP Open Telecom Platform

viii, 18, 42,Glossary: Open Telecom Platform

publish-subscribe Messagingpatternwheremessageproducers and consumers are loosely cou-

pled. Every sent message in a publish-subscribe system belongs to a message class that

consumers can subscribe to. viii, 4

pub/sub publish-subscribe

viii, x, 4, 5, 11–13, 15, 16, 19, 20, 24, 25, 28, 38, 40, 48, 52, 63, 65, 67, 68, Glossary:

publish-subscribe

viii

http://kafka.apache.org/

Glossary Glossary

QoS Quality of Service 20, 21

queue Message queues are components used by messaging systems for asynchronous commu-

nication between processes. Messages sent to a queue can be read by one or more con-

sumers. 5, 11, 25, 28, 48, 49, 52, 65, 67

RabbitMQ Open source message broker implementing AMQP. See section 3.1.

Web site: http://www.rabbitmq.com

x, 5, 11, 17, 19, 24–29, 47, 52, 54, 55, 57, 59, 60, 62–68

Riak Distributed key-value data store, inspired by Amazon’s Dynamo system

Web site: http://basho.com/riak/

6, 16–19, 30, 31, 38, 42–47, 57, 59, 66–68

SEK Swedish krona 2

SOA Service Oriented Architecture 4

topic In publish-subscribe systems, a topic is a named logical channel to which messages are

published. xii, 5, 8, 13, 16, 20, 21, 24–29, 32, 35, 36, 38, 40, 42, 44, 48–50, 52, 53, 55,

57, 59, 60, 62–67

USD United States dollar 1

WebSocket WebSocket is a protocol often used for providing bidirectional communication

in web browsers. See section 2.7.

xii, 7, 19, 22, 23, 34, 38, 41, 42

ix

http://www.rabbitmq.com
http://basho.com/riak/

List of Figures

1.1 The flow of information between broadcasters and clients in the system . . . 10

2.1 A generalized pubsub system. 14
2.2 The DCPS model of DDS . 20

3.1 RabbitMQ pub/sub system example . 25

4.1 An overview of the system’s client-server interface 31
4.2 The system implements a simple multilayered architecture 32
4.3 Sequence diagram showing the communication between the different entities

in the system. Client 1 is the subscriber and Client 2 is the publisher. 33

5.1 An overview of Ingeborg, the pubsub message router built on top of Riak. . . 40

6.1 Overview of the test architecture, showing consumers and producers com-
municating with the different systems through a common interface. 51

6.2 Results of RabbitMQbenchmarks. The graphs showmessage rate, end to end
latency, network utilization and CPU usage. 56

6.3 Results of Ingeborg benchmarks. The graphs show message rate and end to
end latency. 58

6.4 Results of the topics benchmark. 61

x

List of Tables

2.1 Problems that Erlang was designed to solve [27] 18

6.1 Parameter used in the benchmark, compared to those of jms2009-PS. 49
6.2 DigitalOcean node specifications. All vCPUs are at 2.4 GHz. 55

xi

List ofCode Listings

2.1 WebSocket client handshake message . 22
2.2 WebSocket server handshake response . 22
4.1 Client message: register with the endpoint 34
4.2 Client message: subscribe to the topic “Some topic” 35
4.3 Client message: subscribe to several topics at once 35
4.4 Client message: publish information to a topic 36
4.5 Endpoint response: the previous command was successful 36
4.6 Endpoint response: the previous command failed 37
4.7 Endpoint broadcasts notification . 37
5.1 Endpoint message routing algorithm . 43

xii

	Introduction
	Motivation
	Problem statement
	Objective
	Scalability
	Throughput
	Event latency
	Message deduplication

	Outline

	Background
	Publish-subscribe
	Distributed hash tables
	Dynamo and Riak
	Erlang/OTP
	Message brokers
	Data Distribution Service
	WebSockets
	Benchmarking pub/sub systems

	Related work
	RabbitMQ
	Kafka
	RabbitMQ throughput record
	IoTCloud Message Brokers

	Design
	System overview
	Client interface
	Client-endpoint protocol
	Design summary

	Implementation
	Ingeborg: Pub/sub built on Riak
	Routing algorithm
	Riak integration

	Evaluation
	Test metrics
	Primary metrics
	Additional metrics

	Test strategy
	Traffic models
	Acquiring metrics
	Benchmarking RabbitMQ
	Benchmarking Kafka
	Reference system

	Test platform
	Traffic benchmark results
	RabbitMQ
	Kafka
	Ingeborg

	Topics benchmark
	Topics benchmark result
	Summary

	Conclusion
	Topic-based filtering
	Optimizing Ingeborg
	Concluding remarks

	Bibliography
	Glossary
	List of Figures
	List of Tables
	List of Code Listings

