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Abstract

In the context of community noise and its negative effects, the noise descrip-

tors used are usually long-term equivalent levels and, sometimes, maximum levels.

An improved description could be achieved by including the time variations of the

noise. Here, the time variations of A-weighted road traffic noise levels have been

studied. Of special interest are situations with a shieldedcourtyard. For numeri-

cal results, a ray model has been used for calculating the sound propagation, and

the traffic has been modelled as a Poisson process. With this model the statistics

of A-weighted levels have been investigated for different situations with varying

traffic flows. Results from an in-situ measurement have been compared with those

from the numerical model, showing acceptable agreement. Itis shown both by

numerical modelling and measurements that the time variations in noise level are

smaller in a courtyard than in a corresponding directly exposed situation. One of
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the additional conclusions is that the noise reduction of the maximum level can be

significantly higher than that of the equivalent level.

1 Introduction

The road traffic noise in urban areas has a large negative effect on health and wellbe-

ing today. Possible strategies for improvement involve traffic planning, reduction of

source strength by optimising tyre and road surface, noise barriers, tunnels, etc. In an

ongoing project [1], effects are studied of planning buildings so that the inhabitants

have access to a quieter side, for instance with a bedroom facing a shielded courtyard

with much lower noise levels than outside the living room facing the street. It is known

from previous research that, in many cases, the noise level in a courtyard is built up

from multiple reflections and many sources within a large area [2]. This results in an

acoustic situation that is different from that on the directly exposed side. With the tools

available today, is it difficult to make a good noise level prediction for a courtyard sit-

uation. Therefore it is of interest to improve the modellingand understanding of such

situations.

When studying the effects of traffic noise on annoyance, it isimportant to consider

not only the long-term equivalent levels, but also the temporal variations of the noise

levels (see e.g. [3]). The importance of the temporal variations has also been shown

in sleep disturbance studies, where the maximum level is an important agent [4]. It

should be noted that statistical treatment of road traffic noise is not a new topic within

acoustics (see e.g. [5]). Possibly, the interest is renewedtoday after an intermediate

period of extensive credit to long-term equivalent levels.

In this paper we have studied the temporal variations of roadtraffic noise for situa-

tions with a shielded courtyard and a directly exposed side.The traffic flow is modelled

as a Poisson process, which is a model with a very low level of complexity compared

with other microscopic traffic flow models. Less simplified models can involve car-

following theories (see e.g. [6, 7, 8, 9]), which has previously been used also for noise
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predictions (see e.g. [10]). In a recent paper, a software based on car-following was

used, and time variations of traffic noise were predicted fordifferent positions within a

large urban area [11]. The courtyard situation was not investigated, which is the main

focus of the work presented here. The use of the Poisson modelis motivated for sit-

uations when each vehicle can move with weak dependence on the other vehicles, for

instance for low flow conditions [6]. The traffic model is further discussed in the next

Section. In Refs. [12, 13], shielded environments as due to courtyards and balconies

were studied, and statistics of noise levels due to traffic investigated. The conclusions

drawn about the change in noise level variation, due to the shielding in a courtyard,

is supported by the numerical and in-situ measured results presented here. Here, also

time patterns are presented, as well as results for varying traffic flows.

A numerical ray model is used for calculating the sound propagation. The model

is computationally fast, but the omission of higher-order diffraction leads to limited

accuracy. More accurate models would presently be too time consuming, such as finite

element or boundary element solutions of the Helmholtz equation, or by using more

sophisticated diffraction calculations up to very high orders of reflection. The used ray

model is validated by measurements in a scale model (see Appendix A). A numerical

study is performed for different situations with varying traffic flows. The probability

density functions (PDFs) of the A-weighted levels are investigated. Also, results from

an in-situ measurement are compared with those from the numerical model.

2 Numerical study

2.1 Ray model

The ray model assumes that the sound propagates as a ray, rather than as a wave. As

implemented here, the reflections in boundaries become raysin the specular direction.

For vertical boundary surfaces, the amplitude reduction ofthe reflected ray is mod-

elled by an absorption coefficient, here set toα = 0.05 for all surfaces. For finite
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impedance ground surfaces, a spherical wave reflection factor is used [14]. Diffrac-

tion and diffusion effects may be modelled as add-on processes, as a consequence of

the ray approach. Here, single edge diffraction is modelledfor the rays that reach the

courtyard. (A description of the used diffraction theory can be found in e.g. Ref. [15].)

Curving of the rays, which would model refraction effects due to a vertical temperature

gradient or wind, is not implemented. Also, scattering and decorrelation effects due to

atmospheric turbulence are neglected here.

For free field propagation, a decay with distance as for spherical spreading is as-

sumed. Additional decay due to air absorption is modelled following Ref. [16] with

70% relative humidity, 10◦C temperature and standard atmospheric pressure. Reflec-

tions in vertical surfaces with a finite dimension are reduced in amplitude following the

Fresnel zone model as described in Ref. [17], with an eighth of a wavelength as param-

eter value. The total number of reflections needed is found bystudying the convergence

of the resulting sound pressure level. For the situations investigated here, reflections

up to order 64 have been included. Assuming acoustically hard vertical surfaces and

no air absorption leads to only minor changes in the results.All reflections from one

vehicle are added in phase, whereas contributions from different vehicles are added as

uncorrelated contributions. Appendix A describes a validation of the ray model using

scale model measurements.

The numerical study concerns simplified situations. In thisSection all traffic is

modelled as flowing on a single lane. In Section 3 a field situation is studied, resulting

in a similar model but involving multiple lanes of traffic.

The geometry of the situation is shown in Figure 1. Parallel to the straight road is a

3 m high noise barrier, assumed to be thin and hard concerningthe diffraction. A long

building block is placed 15 m further away, also parallel to the road, thus forming a

closed courtyard together with the barrier (closed in a two-dimensional sense). In the

modelling the building is assumed to be infinitely high. The distance from the barrier

to the closest vehicle wheels is taken as the source–barrierdistance, 12 m. Between the

barrier and the building, the receiver is located, at a distance of 7 m from the barrier,
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and at a height of 1.5 m. The ground surface is flat and acoustically hard. In Figure 1

also the coordinate system is shown, with they-axis parallel to the road and the receiver

aty = 0.

source line
(road)

receiver

barriery

x

15 m

12 m

7 m

building

Figure 1: Geometry for the calculated situation.

The used source strengths are derived from the A-weighted equivalent levels given

by the Nordic prediction model from 1996 [18]. The level for light vehicles is given for

speeds above 40 km/h, at 10 m distance from the road and for onevehicle per second,

as

LAEq,L = 73.5 + 25 log 10(v/50), (1)

wherev is the vehicle speed (in km/h). For speeds above 50 km/h, the corresponding

equation for heavy vehicles is

LAEq,H = 80.5 + 30 log 10(v/50). (2)

The source strengths include the reflection in the road surface, and assumes a source

height of 0.5 m. However, in the study presented here the source is located on the

ground surface. The cause for this is to better model the low location of the dominating

source that is due to the tyre and road contact. Omni-directional sources are assumed.

However, a test including directivity is made for the in-situ study. The source spec-

trum used here is taken fromCtr, the standardised third-octave band values from 50 to
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5000 Hz for urban traffic noise [19]. The values are interpolated to a finer frequency

resolution used in the calculations (20 components per third-octave band).

2.2 Traffic flow model

The vehicles are modelled as point sources with initially randomised positions accord-

ing to a Poisson process. The distanceν between two consecutive vehicles is then an

exponential random variable, with a PDF as

1

µ
e−

ν

µ , ν ≥ 0, (3)

whereµ is the mean distance between vehicles [6]. The exponential PDF has its largest

value at zero distance,ν = 0, which is unrealistic for traffic due to the length of the

vehicles and a preferred minimum distance in between them. More realistic PDFs can

involve a user-selected shift of the minimum time headway [6]. (The time headways

can for instance be defined as the difference in time between passages of the vehi-

cles’ front wheels.) Here, however, the exponential PDF is used, as given by equation

(3). As will be shown below, this can limit the acoustic modelling to cases where the

contributions to the noise come from a road with many lanes.

Traffic data were collected by the Swedish Road Administration during one hour

on a motorway with six lanes, where the speed limit was 70 km/h. The time between

vehicle passages (time headway) is given for each lane with aprecision of 0.01 s. As

an example, the smoothed histogram for one of the lanes is shown in the inset in Figure

2 (bin size being 0.1 s). (All shown histograms are normalised to yield an estimate

of the PDF, i.e. the PDF integrates to 1.) It can be seen that the agreement with the

corresponding exponential PDF is poor at the shorter time headways. However, if the

traffic on all lanes is seen as one process, a better agreementis reached. In this way,

a passage on one lane can take place arbitrarily close in timeto a passage on another

lane. The non-smoothed histogram (bin size 0.01 s) for all lanes together and the

corresponding exponential PDF are plotted in Figure 2. The agreement is good but one

can discern a trend that the recorded data shows slightly lower probabilities at larger
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time headways, i.e. results in a slightly smaller standard deviation than the exponential

PDF does. (The standard deviations are 0.45 and 0.57 s, respectively.)
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Figure 2: Histogram of measured time headways for the trafficon lane 1 (inset) and for

all lanes together. The histograms are normalised to yield an estimate of the probability

density function (PDF), i.e. sample probability. The theoretical exponential PDFs are

also shown.

2.3 Pass-by patterns

After the initial vehicle positions have been randomised, the vehicles are moved along

the road, in steps with lengthv∆t, wherev is the speed of the vehicles and∆t is the

time discretisation. Here the vehicle speed isv =70 km/h (19.4 ms−1), and taken to be

the same for all vehicles. The time discretisation,∆t, should be chosen short enough

for a sufficient sampling of the time varying sound pressure level. Setting∆t as the

time it takes for a vehicle to travel a quarter of the distancebetween the road and the

receiver seems to be a good rule of thumb, and here a value slightly smaller than that

has been used:∆t = 0.22 s. Numerical tests showed, for the situations studied here,
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negligible differences when the traffic was divided into twolanes with opposing flow

directions, and both lanes still at the same distance from the receiver.

To speed up the calculations, pass-by patterns are pre-calculated, i.e. the time

varying total A-weighted level as a vehicle moves fromy = 0 to y = ymax, where

ymax= 2700 m has been used here. (The values fory ≤ 0 are given by symmetry.) In

Figure 3 pass-by patterns are shown for the four different combinations of including or

excluding the barrier and the building. The results are for asingle heavy vehicle.

Comparing, in Figure 3, the two dashed curves, which show theresults without

the building, one can see that the relative effect of the barrier is reduced as the vehicle

moves away fromy = 0. The difference between a situation with and without barrier

is about 16 dB aty = 0 and only about 3 dB aty = 1000 m. This behaviour is due

to the smaller diffraction angle at largery values, which corresponds to less screening

effect. The results with the building show a similar but enhanced trend: the difference

is about 14 dB aty = 0, whereas at aroundy = 350 m the curves cross. This means

that a vehicle further down the road can be heard more easily if a barrier is placed

between the road and the listener. The cause for this phenomenon is a combination of

two different things going on. First, the diffraction angles get smaller for higher orders

of reflection as well as for largery values, which gives less screening effect. Second,

when the reflection order is increased, the elongation of thepropagation distance is

shorter for largey values than for smally values. That is, for largey values, the low-

order reflections are almost as strong as the zeroth order reflection. (The reflection

order is the number of reflections in the building and the barrier together.) The second

effect is displayed in Figure 4, where the propagation distance,r, is plotted as function

of the reflection order,N = 0 . . . 64. The six different graphs are fory values ranging

from 0 to 1000 m in steps of 200 m, with the lowest graph fory = 0. It is apparent

that the rate of increase of the propagation distance,r, whenN increases from zero, is

small for largey values and larger for smally values. Analytically, it can be shown that

the rate of increase tends to zero asy tends to infinity. In other words, the contributions

of the low-order reflections have about equal strength for largey values, whereas the
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strength decays rapidly with increased reflection order fory near zero. This results in

a level as function ofy which decays faster without the barrier than with the barrier.

A similar effect has been noted previously in a two-dimensional modelling of court-

yards, which can be seen as a situation similar to the one studied here aty = 0 [20].

There it was concluded that multiply reflected contributions decay slower with increas-

ing reflection order for far away roads than for roads nearby.This is due to that the

change in propagation distance, when the reflection order isincreased, is small com-

pared with the total distance, if the road is far away in comparison with the size of the

courtyard.
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Figure 3: Pass-by patterns for the four different combinations of including or excluding

the barrier and the building, for a heavy vehicle only.

The above explained phenomenon for the courtyard situation, i.e. the slow decay

of a vehicle’s noise contribution wheny is increased, has strong implications on the

resulting time variations of the levels, as will be shown below. The very strong effect

of this phenomenon shown in Figure 3 is however assumed to have the possibility to
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Figure 4: Propagation distance,r, plotted as function of the reflection order,N =

0 . . . 64. The six different graphs are fory values ranging from 0 to 1000 m in steps of

200 m, with the lowest graph fory = 0.

appear only when the vertical surfaces of the building and ofthe barrier give very small

reflection losses.

2.4 Time patterns

An example of time patterns is shown in Figure 5 for the two cases with and without

the barrier, both with the building. Here, the mean flow is 6250 vehicles per 24 hours

(veh/24h) and 10 % are heavy vehicles. In the Figure, the heavy vehicles give rise to the

three largest peaks of both curves. As discussed above, one can find situations where

the level is higher with the barrier than without, here for instance at times around 65 s.

The straight lines indicate the long-term equivalent levels,LAeq.

An important conclusion concerns the difference between the barrier’s screening

effect on the maximum level,LAmax, and on the equivalent level. The peak level

calculated here can be seen as an approximation ofLAmax since an integration time

is used when measuringLAmax. Looking at the peak levels the barrier gives a noise

reduction of 13.5 dB. For the equivalent level,LAeq, the reduction is only 8.5 dB.
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Hence, for the case studied here, the difference in screening effect amounts to 5 dB

between peak and equivalent levels. (Since the same spectrum is used for heavy and

light vehicles, the values of the noise reduction due to the barrier are independent of the

vehicle type.) The explanation for this effect lies with thedifferent pass-by patterns for

the two situations: the courtyard situation (with the barrier and the building) and the

directly exposed situation (without the barrier and with the building). The peak level

is given aty = 0, and by comparing the courtyard situation and the directly exposed

situation, the peak level can be seen to be reduced by about 13.5 dB (see the two solid

curves in Figure 3). Due to the slower decay with distance,y, for the courtyard situation

than for the directly exposed one, one gets a smaller difference between the equivalent

levels (see Figure 3).

It should also be noted that the peak levels show very little variation in value, es-

pecially without the barrier. This is due to that, for the relatively low vehicle flow,

there are seldom two vehicles close enough to significantly change the peak value of a

vehicle pass-by. In addition, for these results, all vehicles are identical, except for the

separation into light and heavy ones.

By introducing a random variation of the individual vehicles’ source strengths, the

time patterns become more realistic, as shown in Figure 6. The main assumption is

that the level is normally distributed, as in the 1996 Nordicmodel [18]. However, the

values of the corresponding standard deviations can today be concluded to be lower,

see Ref. [21]. The same reference gives the following standard deviations: 1.4 dB for

light vehicles at 90 km/h and 1.8 dB for heavy vehicles (≥ 3 axles) at 70 km/h. In

the 1996 Nordic model the standard deviation is given by a factor times an exponential

decrease with speed. Here, due to lack of further data, the same exponential decrease

is assumed and only the factor is changed when applying the newer values from Ref.

[21]. This leads to a standard deviation of 1.85 dB for light vehicles at 70 km/h.
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Figure 5: Example of time patterns for the two cases with and without the barrier, both

with the building. The mean flow is 6250 veh/24h and 10 % are heavy vehicles. The

straight lines correspond to long-term equivalent levels.
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Figure 6: Example with randomised source strengths. Otherwise same conditions as

for Figure 5.

2.5 Statistics of levels

Histograms of sound pressure levels have been calculated for the situation exempli-

fied in Figure 6 and for other vehicle flows, including a randomised source strength
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as described above. The results in Figure 7 are for the directly exposed side (without

the barrier and with the building), whereas Figure 8 shows the results for the court-

yard (with the barrier and the building). The different histograms correspond to flows

ranging from 1562.5 to 100000 veh/24h. The time length for the calculation of each

histogram is chosen long enough to yield an estimated passage of 10000 vehicles.
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Figure 7: Histograms of the directly exposed levels for different traffic flows (1562.5,

6250, 25000, and 100000 veh/24h).

The histograms for the courtyard levels (Figure 8) show smaller spread than the

respective histograms for the directly exposed levels (as has also been concluded in

[12]). Also this effect is linked to the difference in pass-by patterns (see Figure 3). The

slower decay with distance for the courtyard situation has the effect that, on average,

a larger number of vehicles contribute to the received pressure, than for the directly

exposed situation. When more vehicles are contributing, the standard deviation of the

sound pressure level is reduced. (It could be noted that the standard deviation of a

level in decibel shows similar qualities as the standard deviation of an acoustical power

density normalised by its mean value.) Alternatively put, aslower decay with distance



J. Forssén and M. Hornikx 14

30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

A−weighted sound pressure level [dB(A)]

E
st

im
at

ed
 p

ro
ba

bi
lit

y 
[−

]

Figure 8: Histograms of the courtyard levels for different traffic flows (1562.5, 6250,

25000, and 100000 veh/24h).

(or vehicles contributing from a longer section of the road)causes less deep valleys

between the peaks in the time patterns.

Some of the histograms have shapes far from Gaussian, especially on the directly

exposed side and for the lower vehicle flows. The protrusions(bumps) shown at around

70 dB for these cases are given by the maximum levels of the light vehicles (Figure

7). Without the randomisation of the source strengths, peaks appear at around 70 and

78 dB, corresponding to the maximum levels caused by light and heavy vehicle, re-

spectively. It should be noted that the modelling of the two different vehicle classes

results in a much larger spread of sound levels, than if all traffic would consist of a

single vehicle type, with averaged properties.

Table 1 displays the equivalent levels and the standard deviations (STDs) for the

different flows, for the directly exposed side and for the courtyard. The maximum

level,LAmax, is independent of the flow. (For a single pass-by of a heavy vehicle the

peak level is 78.1 dB(A) on the directly exposed side, and 64.5 dB(A) in the courtyard.

The corresponding values for the light vehicles are 7.7 dB(A) lower.) The equivalent

level,LAeq, increases with 3 dB for each doubling of flow. (It could be noted that, in

practice, an increased flow would eventually lead to lower driving speeds.) In Figure 9
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the standard deviations of the levels are plotted. They are higher in the directly exposed

case than in the courtyard, as also stated above. The difference, in dB, between the

STDs is large for the lower flows and decreases with increasedflow. It can also be

noted that, at the lower flows, the rate of decrease of the STDswith increased flow is

about the same for the two cases.

Table 1: Levels and standard deviations (STD), for different flows.

Flow [veh/24h] 1562.5 3125 6250 12500 25000 50000 100000 200000

Directly exposed:

LAeq[dB(A)] 60.2 63.2 66.2 69.2 72.2 75.2 78.2 81.3

STD [dB] 10.34 8.89 7.31 5.71 4.22 3.09 2.20 1.65

Courtyard:

LAeq[dB(A)] 51.6 54.6 57.7 60.7 63.7 66.7 69.7 72.7

STD [dB] 6.20 4.63 3.44 2.56 1.86 1.41 0.96 0.75
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Figure 9: Standard deviation [dB] as function of traffic flow [veh/24h] for directly

exposed side and courtyard.
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3 Field measurement

3.1 Measurement conditions

The measurement site is a courtyard shielded from a nearby motorway by a noise bar-

rier. The site was chosen because of the noise in the courtyard being dominantly caused

by the traffic on the motorway, which simplifies the modelling. However, normally, in

an urban area many roads must be taken into account for a good prediction of the noise

level in a shielded courtyard.

Recordings were made during 45 minutes on two channels: one in the courtyard

and one on the side of the barrier facing the traffic. All sections with audible anomalies

were removed, resulting in 30 minutes of typical traffic noise. (Sections were removed

which contained sounds of birds, doors, voices and similar,as well as untypical traffic

sounds, such as from rattling metal parts, etc.)

The motorway has eight lanes as it passes the site. The lane closest to the courtyard

is an exit lane and the lane furthest away is an entry lane. At the location where the

traffic flow data were collected, the motorway has only six lanes. This is the same

location as where the traffic data discussed in Section 2 werecollected, and lies a few

hundred meters away from the measurement site.

At the site, the barrier is only approximately parallel to the motorway; the angle

between them being about8◦. The building is U-shaped, thus forming an enclosed

courtyard with a width of around 40 m in they-direction. The shielding caused by the

building is assumed to be partly compensated by the reflections in the corresponding

facades. Hence, in the modelling a two-dimensional, parallel geometry is assumed (see

Figure 10).

The source is taken to be located 1 m in on each lane, and at height z = 0. (In the
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Figure 10: Geometrical model for the measurement site. Left: top view. Right: vertical

section. The edges of the road lanes are atx =4.2, 9.0, 12.8, 16.6, 21.4, 25.2, 29.0 and

32.8 m.

caption of Figure 10 the distance to the edge of each lane is written.) At the edge of

lane 2 and of lane 5 there is a low barrier, with a modelled height of 0.85 m. The effect

of the low barriers on the noise in the courtyard is estimatedto be negligible. However,

on the face of the tall barrier, which has the receiver position 0.6 m below the barrier

edge, the diffraction due to the low barriers is taken into account.

The tall noise barrier is made of wood, with a concrete fundament. The thickness

of the barrier is 150 mm, but it is modelled as a thin, hard screen. The vertical surface

of the building is mainly covered by wooden panels. In the courtyard the ground is

dominantly grass covered. The ground impedance is taken from Ref. [22] as the two-

parameter model for hard worn lawn, which in turn is used for calculating the spherical

reflection factor. The ground plane of the courtyard is 1 m lower than the road plane.

The microphone of the courtyard was placed 1.5 m above the ground plane. Outside

the courtyard, a continuous asphalt surface is assumed eventhough there is a small

strip of grass between the barrier and the road edge.

The measurements were made in the winter, on a Thursday afternoon (time 14:18–

15:03). The temperature was+4◦C and the relative humidity 87 %, which is used for

the calculations below. The static pressure was 1027.8 hPa,the wind at 10 m height

was around 5 m/s, from the south (i.e. a cross-wind situation), and the sky was partly
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cloud covered.

3.2 Comparison with calculations

The traffic data during the 45 minutes measurement was collected a few hundred meters

to the north, along the same motorway. Unfortunately these data were not given at more

detail than on one-minute intervals. Thereby we have less control of the time headway

distributions than what is preferable. We do, however, assume that the more detailed

data collected later are relevant, which are the data discussed in Section 2. (The data

were collected on a Tuesday at around 14:00, with 152000 veh/24h, which gives similar

traffic conditions as those during the noise measurements.)

The flow during the noise measurements was 161000 veh/24h, with 10.7 % heavy

vehicles. The source spectra for light and heavy vehicles were taken from Ref. [23]

as the Swedish data for 70 km/h (from categories1a and3c+3d, respectively). As

previously, the total source strengths, in dB(A), were found from equations (1) and (2).

A bit south from the measurement site the motorway sloped upwards. By includ-

ing this in the modelling, slightly higher noise levels werereached in the courtyard,

whereas the levels on the directly exposed side were unchanged. (The up-slope started

50 m to the south and continued for 70 m with a constant slope, reaching 2.2 m eleva-

tion. Thereafter the motorway was flat.)

The calculations of the time patterns are made in a similar way as in Section 2,

except for that described above, and that the different distances to the separate lanes

is taken into account. The first lane (lane 1) has a lower flow rate (33 % of that on

the other lanes) and a lower velocity (50 km/h instead of 70 km/h). This is taken into

account in the modelling, except for the change in spectrum due to the lower speed,

which is assumed to lead to negligible differences of the A-weighted levels.

In Figure 11, the equivalent levels as function of frequencyare shown for the mea-

surements and the calculations. One can see that the noise reduction is larger at the

higher frequencies. The overall agreement between the measurements and the calcula-
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tions is good, but there are some deviations. At lower frequencies the high measured

levels could be due to that the motorway starts to slope upward near the site, which

causes a heavier load on the vehicles and thereby more noise from the power train,

which is not modelled here. The peak near 80 Hz is assumed to bedue to engine

noise, related to the ignition cycle. Most vehicles had studded tyres, which leads to

the increased level shown at around 5–8 kHz. However, a more general increase due

to the studded tyres was expected. In the courtyard, at higher frequencies, the rel-

atively strong measured levels could be due to diffusion effects. That is, the stronger

sound reaching higher positions on the building are scattered in non-specular directions

within a broad angle, thereby increasing the sound level in the shadow region formed

by the barrier. Possibly, also scattering due to turbulencecould cause a similar increase

at high frequencies. Since the focus here is on A-weighted levels, no further attempt

has been made of improving the spectral agreement.
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Figure 11: Measured and calculated third-octave band levels (A-weighted) for the di-

rectly exposed side and the courtyard.

The measuredLAeq is 79.5 dB(A) on the directly exposed side and 68.9 dB(A)

on the courtyard. The deviation of the calculated levels is less than 1 dB. Possibly,
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errors due to different approximations and assumptions partly cancel in the calculated

results. For instance, the used source power data (equations 1 and 2) are stronger

than the ones given by Ref. [23], which could counteract the expected increase due

to the studded tyres, as well as the expected increase in tyre-road noise due to the low

outdoor temperature. In addition, the front level is very sensitive to the exact height

and position of the low barriers on lanes 2 and 5. This problemcould be circumvented

by using multiple source heights for each vehicle, as is planned in the new prediction

methods under development [23, 24], where also source directivity is modelled. A

test was made where a source directivity was modelled. For this test the directivity

according to Ref. [23] was used. The most prominent feature of the directivity is that it

shows a dip sideways to the vehicle, thus reducing the level when the vehicle is closest

to the receiver. Concerning the calculated results, the inclusion of directivity caused

a slight increase in the courtyard level (of 0.7 dB(A)), and anegligible change on the

front side. (Concerning noise imission predictions, it could be noted that no correction

to free field conditions has been made here, which would result in a 6 dB lower level

on the directly exposed side. Moreover, when predicting theequivalent levels over 24

hours, they are expected to be about 2 dB lower than the daytime levels measured here.)

The contributions from the different lanes to the equivalent level range from 61

to 76 dB(A) on the directly exposed side. On the courtyard, the contribution from

lane 1 is 49 dB(A), whereas the other lanes contribute with larger values, within a very

small range of 59.2–59.8 dB(A). Thereby it can be assumed, atleast for the courtyard

calculations, that the multi-lane assumption is valid, which is used for being able to

apply the exponential distribution for the time headways.

An excerpt of the measurement is shown to the left in Figure 12, and an example of

a calculated time pattern is shown to the right. The time steps are 0.19 s for the mea-

surements and 0.17 s for the calculations. For both sides more fine-structure variations

are shown by the measured signals. On the front side the measured and the calculated

time patterns seem to have a similar behaviour, except that aslightly larger spread can

be seen in the calculations (see also Figure 13). The test made where source directivity
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was included, as described above, led to a better agreement for the front side results,

concerning the corresponding histograms. For future work it would be of interest to

implement the more complex directivity according to Ref. [24]. For the yard side, the

patterns look more different. The calculations show smaller variations than the mea-

surements (see also Figure 13). Possibly this could be due tothat the building at the

measurement site is U-shaped, and formes an enclosed yard. The test where directivity

was included did not lead to any improvement of the courtyardresults.
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Figure 12: Examples of time patterns: Measured to the left and calculated to the right.

Higher curves for the directly exposed side; lower curves for the courtyard.

The calculated histograms from modelling and measurementsare shown in Figure

13 (bin size 1 dB), where also the corresponding standard deviations are displayed. As

expected, the standard deviation is much larger on the frontside than in the courtyard,

as is shown by both the measurements and the modelling.

The difference between the modelling and the measurements does however look

significant. Some possible errors have been discussed above, but all causes for the
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Figure 13: Predicted and measured histograms of A-weightednoise levels. Top: Di-

rectly exposed side. Bottom: Courtyard.

differences are not understood at present. In order to reachan improved agreement and

understanding, several different sites need to be investigated in a similar way. Thereby

a refinement of the modelling could be enabled, as well as a better idea of what level

of agreement of the histograms can be expected for this kind of situations.

4 Discussion and Conclusions

Time variations of A-weighted traffic noise levels have beenstudied for shielded and

directly exposed situations. The used numerical ray model has been validated by mea-

surements in a scale model. Also, results from an in-situ measurement have been com-

pared with those from the numerical model. A numerical parameter study has been

performed, where statistics of A-weighted levels are investigated for situations with

varying traffic flows, using a Poisson model for the traffic. Itshould be noted that for

predictions of a larger variation of situations than studied here, more advanced traf-

fic flow models would be useful, which can incorporate more detailed conditions, for

instance individual vehicle speeds. However, it was concluded here that for a larger
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number of lanes, the total flow can be well approximated by a Poisson model.

The shielded situation of main focus is a courtyard created by a noise barrier in

parallel to a building, and with a road outside and parallel to the noise barrier. Due

to multiple reflections between the building and the barrier, the noise from a vehicle

may decay very slowly with distance, as compared with the case without barrier, i.e.

a directly exposed case. This effect has large implicationson the traffic noise. One

implication is that a vehicle further down the road can be heard more easily if a barrier

is placed between the road and the listener.

Another implication concerns the difference between a barrier’s noise reduction of

the maximum level and of the equivalent level. In the numerical study of the courtyard

situation, the noise reduction of the peak level was 5 dB higher than the noise reduction

of the equivalent level.

The probability density functions (PDFs), or histograms, for the courtyard levels

show a smaller spread than the respective PDFs for the directly exposed levels (as has

also been concluded in [12]). Also this is due to the slower decay with distance for

the courtyard situation. The cause is that, on average, a larger number of vehicles

contribute to the received pressure in the courtyard, than for the directly exposed situa-

tion. When more vehicles are contributing, the standard deviation of the sound pressure

level is reduced. Alternatively, this can be understood from that the slower decay with

distance causes the time-varying level to have less deep valleys between the peaks.

Predictions of the PDFs can be used for instance for an estimation of the proportion of

time during which the noise level does not exceed some chosenvalue.

When comparing the results measured in situ with the calculated ones, the time

variations of the levels look fairly similar. However, on the directly exposed side,

larger variations are shown by the calculations than by the measurements. For the

courtyard results, the opposite is shown, i.e. that the measured level varies more over

time than the calculated one. These differences are also shown by the PDFs. The

agreement between the predicted and the measured PDFs is acceptable in the sense that

the predictions can clearly discern between a courtyard situation and a directly exposed
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one. The differences between the PDFs do however look significant. The reasons for

the differences are not wholly understood at present. When asource directivity was

included, a better agreement was attained for the directly exposed side. The courtyard

results were however not improved. Possibly, one significant source of error could be

that the courtyard modelling assumes a two-dimensional, parallel geometry instead of a

U-shape. In order to reach an improved agreement and understanding, several different

sites need to be investigated in a similar way. Thereby a refinement of the modelling

could be enabled, as well as a better idea of what level of agreement of the PDFs can

be expected for this kind of situations.

It should be noted that modelling different vehicle types isneeded for good predic-

tions. An improvement could probably be reached by using more than the two types

used here, i.e. light and heavy vehicles. For future work it could also be of interest to

study the (super) spectra of the level fluctuations in shielded areas, similarly to what

has been done for directly exposed cases in Refs. [25, 11]. This could provide an

additional link to annoyance. Moreover, it would be of interest to investigate the ef-

fects on annoyance of the fact that the sound in shielded areas is relatively stronger at

low frequencies than the sound in directly exposed areas. Inaddition, considering the

time signals of the sound pressure in courtyard situations,the prolongation of the im-

pulse response due to diffraction and reflections may also change the perceived noise

situation.
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Appendix A. Scale model measurements – validation of

the ray model

To validate the numerical ray model used in the paper, scale model measurements were

executed. A 1 to 40 scale model was built in the anechoic room at Applied Acous-

tics, Chalmers University of Technology. The frequency range was limited to 4 kHz–

45 kHz, corresponding to full scale third octave bands from 100 Hz up to 1 kHz. The

dimensions and frequencies that are used below represent the full-scale situations.

Figures 14 and 15 show a picture and a vertical cross section of the scale model

setup. The used materials were chosen to yield a specular reflection and to have a low

absorption coefficient (α < 0.05) in the relevant frequency range. For the ground, a

chipboard plate coated with a thin layer of melamine (a plastic) was used. The barrier

was made of plywood, and its top was made narrower to approximate a thin barrier.

The width of the barrier top was 120 mm, which is less than halfa wavelength at the

highest frequency. The building row, 20 m high and 100 m long,consisted of cubic

boxes of plexiglass (acrylic glass). The building and barrier row were terminated by

absorption material to minimize unwanted end-effects.

In the model measurements, the source position was fixed whereas the microphone

position was changed along they direction (parallel to the barrier). The microphone

height was 0.39 m. Note that the reciprocity principle was used; the source and micro-

phone position were interchanged from their actual positions. The MLS technique was

used to obtain the impulse responses. A tweeter source was chosen with a response in

the above mentioned frequency range (Thiel and Partner, type C212-6). To obtain an

omni-directional source, the tweeter was placed below the ground level, covered by a

thin plexiglass plate with a circular hole. The size of the hole was designed to approx-

imate an omni-directional field. An 1/8 inch condenser microphone, type B&K 4138,

was used as the receiver. The microphone has a flat frequency response but has some

directionality effects increasing with frequency. The influence of these effects was not

relevant for the chosen microphone positions.
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An effect that has to be paid attention to in scale modelling is excess air attenuation

caused by a frequency dependent damping of sound waves in air. The excess attenua-

tion is stronger for the higher frequencies and determines an upper frequency limit of

scale model study measurements. The excess attenuation hasto be corrected for be-

fore a comparison with model calculations is made. Since airdamping is (travel) time

and frequency dependent, a correction in either time or frequency domain will not be

correct. Here, a correction using the continuous wavelet transform has been used (see

e.g. [26, 27]). The wavelet transformed impulse response signal is localized in both

time and frequency. A Morlet mother wavelet, order 20, was chosen. The transformed

signal is corrected for excess attenuation in the two dimensional field (related to time

and frequency) and an inverse transform returns the corrected signal. Since the wavelet

transformed signal is localized in both time and frequency,the use of a wavelet trans-

form seems a natural choice for correction of excess air attenuation. Among existing

ways of correcting are those involving a short-time Fouriertransform or narrow-band

filtering of the time signal (see e.g. [28, 29]).

Figures 16–19 show a comparison between measured and calculated sound pres-

sure levels (SPL), plotted relative to the free field level for a receiver aty = 0. The

calculations are made using the ray model as described in thepaper. The top panels

show narrow-band results and the bottom panels third octaveband results. The figures

are for the two situations with a barrier only, and with a barrier and a building row. For

each of these situations there are twoy positions:y = 0 andy = 80 m. In general, a

good agreement was found. The interference dips at 800 Hz in figures 16 and 18 are

more pronounced in the calculations than in the measurements. This can be attributed

to diffusive effects caused by small gaps between the plexiglass boxes and diffraction

by the building top; no diffusive effects have been includedin the numerical modeling.
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Figure 14: Picture of the setup for the scale model measurements.
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Figure 15: Geometry of the setup for the scale model measurements.
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Figure 16: Comparison between measured and calculated levels for y = 0, with barrier

only, i.e. no building row. The top panel shows narrow-band results and the bottom

panel third octave band results.
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Figure 17: Same case as in Figure 16 except fory changed to 80 m.
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Figure 18: Comparison between measured and calculated levels for y = 0, with barrier

and building row. The top panel shows narrow-band results and the bottom panel third

octave band results.
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Figure 19: Same case as in Figure 18 except fory changed to 80 m.
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