An extended substitute-sour ces method for a turbulent atmosphere: Calculations for
upward refraction

This document has been downloaded from Chalmers Publication Library (CPL). It is the author’s
version of a work that was accepted for publication in:
Acta Acustica united with Acustica (ISSN: 1610-1928)

Citation for the published paper:

Forssén, J. (2003) "An extended substitute-sources method for a turbulent atmosphere:
Calculations for upward refraction”. Acta Acustica united with Acustica, vol. 89(2), pp. 225-
233.

Downloaded from: http://publications.lib.chalmers.se/publication/23250

Notice: Changes introduced as a result of publishing processes such as copy-editing and
formatting may not be reflected in this document. For a definitive version of this work, please refer
to the published source. Please note that access to the published version might require a
subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.

The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)


http://publications.lib.chalmers.se/publication/23250

An extended substitute-sources method for a turbulent

atmosphere: Calculations for upward refraction

Running title: An extended substitute-sources method

Jens Forssén
Centre Acoustique, Ecole Centrale de Lyon, France

(On leave from Chalmers University of Technology, Goteborg, Sweden)

Abstract

The substitute-sources method (SSM) was previously implemented for a single
noise barrier in a turbulent atmosphere by applying a substitute surface between the
barrier and the receiver [1, 2]. Here, the method is extended, aiming to more gen-
eral applicability to traffic noise propagation in urban environments. In the method,
multiple substitute surfaces are used along the propagation path. The atmospheric
turbulence causes a transfer of the initially coherent field into a residual, random
field along the propagation path. The mean sound level at the receiver position
is found from uncorrelated addition of the substitute surfaces’ contributions. The
calculation of each contribution is based on a mutual coherence function (MCF)
for a turbulent atmosphere. The strength of the substitute sources and the Green
functions to the received pressure are calculated for a non-turbulent atmosphere,
here by using a fast field program (FFP). A special MCF for the residual field is
derived. Examples are calculated for a turbulent atmosphere with upward refrac-
tion or without refraction. The results are compared with those from a parabolic
equation method (PE) for the refractive cases and with an analytical solution oth-
erwise. The results show good agreement, which indicates that the SSM could be

useful for predictions of outdoor sound propagation.
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1 Introduction

A substitute-sources method (SSM) was previously developed to predict the in-
creased noise level behind a single barrier due to a turbulent atmosphere [1, 2].
The approach presented here aims to be applicable to more variations along the
propagation path, e.g. multiple barriers and range dependent ground and medium
properties. Of main interest is the prediction of noise propagation in urban environ-
ments, for instance for city planning purposes. In urban situations the propagation
is expected to be influenced by many things: atmospheric turbulence, sound speed
profiles that may vary with range, multiply reflecting and diffracting buildings and
barriers, and range varying ground properties. Parabolic equation methods (PE)
are largely applicable to such situations [3, 4, 5]. Potentially applicable methods
are those based on finite elements (FEM) or finite differences, boundary element
methods (BEM) [6, 7] and fast field programs [8].

The approach with substitute sources presented here enables calculations for
steep geometries, for instance when a high barrier is located close to the source or
to the receiver [2]. PE methods are in general limited to not too steep geometries,
but a high barrier can be modelled if the diffraction is calculated by other means
and inserted into the PE solution. The SSM models the propagation outward from
the source, as also the PE does. This means that backscattering is neglected, unless
calculated separately and added (as can be done in the PE [5]).

In the SSM, the sound field due to an original source is represented by a distri-
bution of sources on a plane surface. The surface is called a substitute surface and
the sources are called substitute sources, which can be seen as Huygens’ secondary
sources. Here, many substitute surfaces are put between the source and the receiver,
with separation distances large compared with the wavelength. (See Figure 1.) The
propagation is calculated in steps from one surface to the next for a non-turbulent

atmosphere. The effect of turbulence is that it causes a loss in coherence of the
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sound field. Within each step the unperturbed, coherent field loses power into a
residual, random field. The coherent field is further propagated toward the receiver
and at each substitute surface the residual, random part is taken out. The contri-
butions from different surfaces are assumed to be uncorrelated, and the total power
at the receiver is found by adding the power from the coherent field to the powers
from the residual fields. The strengths of the substitute sources are calculated as
for a non-turbulent atmosphere and scaled in amplitude to fulfill the power of the
residual field. The Green function for the sound pressure at the receiver due to each
substitute source is also found for a non-turbulent atmosphere. From one substitute
surface, each of the sources’ contributions is decomposed into a direct and a ground
reflected part. All the contributions are summed up to give the estimated power
by taking into account their mutual coherence due to the turbulence. A mutual
coherence function for the residual field is derived.

Since the calculation of the source strengths and the Green functions do not
involve turbulence, many methods could be used. For instance ray-methods would
be efficient for a homogeneous atmosphere or a linear sound speed profile. Here,
a fast field program (FFP) is used throughout. The following section describes
the theory and thereafter a few examples are calculated. The examples are for a
hard and a finite impedance ground surface, with or without an upward refracting

atmosphere. All calculations are for two-dimensional situations.

2 Theory

The description of the theory is divided into five subsections. The use of the Rayleigh
integral for representing the sound field is described in the first subsection. There-
after the mutual coherence function (MCF) or transverse coherence function, I,
and the extinction coefficient, «y, for a turbulent atmosphere are shown. In the third
subsection the MCF for the residual field is derived, and thereafter the calculation
scheme is described. The fifth subsection is about the Gaussian turbulence model

that is used here.
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2.1 The Rayleigh integral

The Rayleigh integral can be used to calculate the sound pressure level in a medium
provided that the particle velocity in normal direction to a plane surface and the
Green function for the medium are known. The propagation through either a snap-
shot of a turbulent atmosphere or through a non-turbulent atmosphere, with for
instance refraction, could be described by a Green function. The plane surface is
here one of the substitute surfaces S;, ¢ = 1...N, and the normal component of
the velocity, v;, of the sound field at the surface S; is the strength of the substitute
sources. In the two-dimensional (2-D) implementation used here, the surface is
transformed into a line, but still referred to as a substitute surface. The resulting
pressure amplitude at a receiver position, p(z,y), from the velocity on surface S;

can be written

jw
pley) = 50 [ ilus)Glas, s, z,v)dus, 1)

where [ is the line of integration, w is the angular frequency of a time-oscillation,
et with time ¢, and py the medium density. In equation (1) G is the Green
function which in general depends on the position (zg,ys) on the surface and on
the receiver position. The velocity, v;, and the Green functions are here found from

FFP calculations.

2.2 Coherence in a turbulent atmosphere

The subject of line-of-sight propagation in a random medium has been studied
extensively (e.g. [9, 10, 11, 12, 13]), and the theoretical results most useful here
relate to the correlation between acoustic pressure signals that have travelled from
monopole sources through different parts of the medium. In Figure (2) a geometry
with two sources and two receivers are shown; p' and p are transverse separations
and L is the longitudinal distance or range. For the case where the pressure p; is
only due to source 1 and pressure ps is only due to source 2, the mutual coherence

function for p; and ps can be written as

_ App3) + (pip2)
P12 = 15 o T i) ®
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where the complex conjugate is denoted by an asterisk (*), p1 and p2 are the fluc-
tuating pressure amplitudes in the turbulent atmosphere and p; and p, are the
amplitudes without turbulence (e.g. [14]). In the usual definition of the MCF there
is only one source (i.e. coinciding source positions in Figure 2). This MCF is here
referred to as I'°(p, L), where p is the distance between the receivers and L is the
range. The reciprocal problem has the same MCF, i.e. when there are two sources
and one receiver.

The extinction coefficient, v, is related to the decay over distance of the mean
field in a turbulent atmosphere. If the pressure amplitude due to a point source in

free field is p without turbulence, then the mean amplitude in turbulence will be
Dec = <p> = ﬁe—'yL’ (3)

where L is the distance of propagation [13]. The mean pressure amplitude, p,, is
also called the coherent field. The total field is the sum of the mean field and the
residual, fluctuating field, p = (p) + p., with (p,) = 0.

In the case the two paths are largely separated, the fluctuations in p; and po
will be independent. The mutual coherence will then not depend on the separation,

p, and can be written as a function of the extinction coefficient vy [13]:
Flg = e_z'yL. (4)

If the situation of propagation involves a ground surface, the effect of turbulence
is that it makes the interference less strong. The received pressure amplitude is
the sum of the direct and the ground reflected contributions. Without turbulence
the amplitude is constant, p = p; + P2, whereas with turbulence the amplitude
will fluctuate, p = p; + p2. The long-term average of the square of the pressure

amplitude is then computed as [15, 16, 17]

. . . D2
() = 0 + 1 + 2 cos g (2) | Pz, ). 6
The case with a ground surface is special since the ground reflected ray changes
direction. A good approximation of the MCF in equation (5) is taking p = pmax,
where pmax is the maximum vertical separation between the direct and the ground

reflected rays; pmax = 2hshgr/(hs + hgr), where hg and hg are the source and
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receiver heights. Hence I'12 in equation (5) is calculated as for no ground but with
the adjusted transverse distance: 12 = T'(pmax, L) [18].
That T';» is chosen as I'%(pmax, L) can be schematically explained as follows. It

can be shown that the MCF can be generally written as
re (pa L) = eiLU(p)a (6)

where U is a function that depends on the turbulence model and on p. (See Ap-
pendix for a more detailed description.) For a flat geometry with equal source and
receiver heights (hg = hg < L), the distance of propagation is approximately L,
and the ground reflection is at range 7 At the range 5 the separation between
the two rays is pmax and the MCF is I'*(pmax, %) = exp[—£U(p)] there. The decor-
relation has a multiplicative property over range, whereby the total MCF, at the
range of the receiver, will be T'%(pmax, Z)? = T'%(pmax, L), using equation (6). The
argument can be generalised and extended to situations where the source and the
receiver are not at the same height (see Appendix). The calculation of other special
cases are also shown in the Appendix, for instance the coherence between a direct
wave from one source and a ground reflected wave from another source. (The results
for these cases are not applied in the implementation of the SSM used here, but can
be useful in further implementations.)

For M contributions p;, 7 = 1...M, the long-term average of the square of the

total pressure amplitude can be computed as [16]

(Ipeoel) ZWHZ S Iyl cos g (2 )] )

Jj=1 k=j+1
The equation corresponding to equation (7) but for a continuous source distribution

can be written as

(e’ / / v)dydy') = ®)
[ [ e [arg (B | reaay,

where y and g’ are positions on the substitute surface. If there would be a homoge-

neous atmosphere, '’ = 1, equation (8) could be seen as the same as the square of

the Rayleigh integral in equation (1).
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The quantity (|pso¢|?) is proportional to the power of the signal at the receiver.

In the following, the quantity 2(|po¢|?) is referred to as the power. (The sound
1 2

pressure level is then found as L, = IOIg%."fL) dB re 2-107° Pa.) Hence, when

there is a turbulent atmosphere between a substitute surface and the receiver, the

received mean power can be calculated as

_1 2y _ 1 (wpo)? Iy VG N oy, g
Wtot—2(|ptot|)—2(27r) /l/l|1)GvG|cos arg { -~ Mdydy’. (9)

2.3 Coherence of the residual field

In Figure (3) a situation is described where only a part, L', of the range of propa-

gation is through turbulence. This case could be formulated as
(i) = Bl + |pl? + 2] cos fang (22 | 7, (10)
1

where I'" is the MCF for a turbulent layer with thickness L'. If p’ « L' + L, the
propagation distance through the turbulence will be approximately L', and then the
decrease in power in the coherent field can be approximated by the factor e*QWL',
using equation (3). At the receiver, the contribution due to the coherent field can

then be written as

ot [ . . P
(Ipel?) = e=27% (w T |paf? + 2pa] cos [arg (F )D ' ()

Since the coherent pressure field, p., and the residual pressure field, p,, are uncor-
related, one gets (|pot|?) = (|pc|?) + (|p-|?), and the residual contribution is given

by:
(Ipr|*) = {Ipeot|*) = (Ipel*) = (12)
—2y L' L2 1A 12 N p\] I —e 2t
(1 —e ) <|p1| + |p2|* + 2|p1P2| cos [arg (ﬁ—lﬂ Tt |-
From the above equation a MCF for the residual field, T, can be generally defined

as

FO _ e—2’yL

It can be noted that, as T° approaches the value e 27" for large p, ' approaches

zero. The equations (12) and (13) constitute the main theoretical result of this
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paper, and can be seen as describing the transfer of the coherent field into a random
field and how the contribution from the random field is calculated.
For the case with a turbulent layer (as in equation 12), T’ can be found from

the multiplicative property as

= @, L+ 1) (14)
I%(p, L)
with T%(p', L' + L) and T'%(p, L) calculated as for the same turbulence throughout
the source-to-receiver range.
If there is turbulence also after the range L', the MCF for the residual field should
be multiplied by T'%(p, L). For the coherent field the contribution is then found from
multiplying the mixed term in equation (11) (the last term in the parentheses) by

the same function, I'(p, L).

2.4 Numerical method

In the SSM the sound field is represented by a distribution of sources on each
substitute surface. The above derived mutual coherence function for the residual
field is applied to each pair of source contributions when calculating the powers
from all but the last surface. The power W; from the residual field from surface S;

can be written
W; = %(|pi|2) = % (u;_/;o)? /l/l|viG,-v§G;~| cos [arg (%)] ITdydy’, (15)
where T is the MCF for the residual field and T° for the medium after the next
surface, S;y1. The contribution, W%, from the last surface, i.e. from the coherent
source field, is found from setting I' = 1 in the above equation. When the integrals
in equation (15) are discretised, the solution takes the form of equation (7).
In equation (15) the distribution of power between different surfaces is ignored.

Taking into account the correct loss in power to the residual field within each step,

the total power at the receiver can be found as
Wiot = (16)

(1 - e_Q'YL) (Wl + 6_27LW2 + 6_47LW3 + ...+ e—2(N—2)'yLWN_1)
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N-1
+e—2(N—1)7LWJ% _ (1 _ e*QWL) <Z eQ(il)'yLWi) +ef2(N71)'yLWJ(\)“

i=1
where L is the distance between the substitute surfaces and e 2V =1L Y is the
power from the last surface.

In the present formulation of the method the assumption that the contributions
from different substitute surfaces are uncorrelated relies on L being large compared
with the correlation length of the turbulence. For smaller values of L it might be
possible to find corrections to v and [ if necessary. The study of this can belong to

future work.

2.5 Gaussian turbulence model

To describe the turbulence, it is assumed to be homogeneous and isotropic, that
is, the fluctuations are assumed to follow the same statistics for all points and
the statistics are independent of rotation. In the Gaussian turbulence model the
temperature fluctuations of the medium are described by a Gaussian spectrum, and
here the velocity fluctuations are omitted. All the above assumptions simplify the
turbulence modelling and results in a poor description of realistic situations. The
turbulence modelling can however be improved in future implementations of the
SSM, but the simplifications used here facilitate a first evaluation of the method.
For the Gaussian turbulence model the mutual coherence function can be written

as

I(p,L) = exp [— 2vL ( - %) ] (17)

where [ is usually referred to as the correlation length or the scale of the fluctuations,

d(p/1) = [ exp(~t2)dt and

Tk2l
‘/_2 145

(18)

where p2 is the variance of the index of refraction fluctuations [19, 20, 13]. (It
could be noted that p% = J0%, where 0% is the variance of the relative temperature

fluctuations.) Following the same references, the MCF for plane wave propagation
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can be written

! (p, L) = exp [ —29L (1 - efpz/ﬂ) ] . (19)

(In equations (17) and (19) it can be seen that for large separations, p > [, the MCF
becomes independent of p and reduces to equation (4).) The MCF (17) is deduced
for a three-dimensional turbulence. It can however be shown that the MCF for two

dimensions is the same for the Gaussian turbulence model [14, 21].

3 Implementation and calculated examples

A few examples are calculated to study the behaviour of the SSM, involving upward
refraction and no refraction for a hard or a soft, grass-like ground surface. The
calculations without turbulence are made using a fast field program (FFP) imple-
mented according to Salomons [17]. In the FFP the sound field is transformed into
a wave number domain and this is used to efficiently calculate the velocity from the
pressure derivative which is transformed into a multiplication.

The parts of the non-turbulent sound field that are wanted are the normal ve-
locities at the surfaces, i.e. the strength of the substitute sources, and the Green
functions for the received pressure due to these velocities. In a model using the mu-
tual coherence function all contributions are seen as rays, for which the separation,
p, and the range, L, can be defined. The received pressure due to a source on a sur-
face is therefore decomposed into a direct and a ground reflected contribution. The
decomposition is done by making FFP calculations both with and without a ground
surface. Subtracting the two results gives the ground reflected contribution and
the calculation without the ground gives the direct contribution. The values of the
input parameters p and L for the coherence I" are here approximated as for straight
rays. Taking into account the curvature of a pair of rays due to the refraction would
alter the values of p and L. Here, however, it is assumed that the corresponding
error in T is negligible, but this could be improved in future implementations.

For upward refraction a shadow region is formed and, in general, the sound

field cannot be decomposed into defined rays. In the SSM, however, the approach

10
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is different since the field due to the original source is substituted by a surface of
sources. The sources at large enough height will be above the limiting ray of the
shadow region and will thereby have direct rays to the receiver. Hence, it is assumed
that the dominating contribution comes from the substitute sources that are above
the limiting ray to the receiver, whereby the error from applying the MCF T also
to the other rays is negligible.

For the results shown here the FFP is used to calculate directly the velocities at
all surfaces. Another possible approach is to calculate a matrix of Green functions
relating all velocities on one surface to all the velocities on the following surface, and
apply the matrix repeatedly. This approach would be motivated for instance if there
is a an impedance jump of the ground surface, or other range varying properties.
Concerning computational demands, the SSM and the PE are fairly similar, and in
the SSM the computation time is dominated by the FFP calculations.

For the cases with upward refraction, a logarithmic effective sound speed profile
is used up to 30 m height. Above that height the sound speed is taken as constant
to improve the numerical stability of the FFP. The logarithmic sound speed profile
is c(y) = co — b - In(y/Yrough + 1), with b = 0.43 m/s and the roughness height
Yrough = 0.05 m [17]. For the turbulence the correlation length / = 1 m and the
variance of the index of refraction p2 = 2-107% or 5-107° are used. The larger value
for p3 models a strong turbulence and is chosen for the examples without refraction
to give a strong turbulence effect at relatively short propagation range.

In the calculations with the SSM presented here, only the plane wave MCF is
used. The motivation is that between one substitute surface and the next, most
pairs of rays toward the receiver can be approximated as parallel. The MCF for
the residual field is then calculated as T' = [[P' — exp(—2vL)]/[1 — exp(—2vL)].
Moreover, in the examples calculated here, the MCF T’ dominates the decorrelation
and I'TY is approximated as T, i.e. TO = 1 is used.

The discretisation in height in the SSM, i.e. the distance between the discrete
substitute sources is A\/5 for the non-refractive cases and A/10 for the cases with
upward refraction, where A is the sound wavelength. These values were found

from numerical tests without including the turbulence effects. The height used for

11



J. Forssén

the substitute surfaces is about half the maximum propagation range, and the top
third is windowed to give a smooth decay with height of the source strengths. The
windowing is used to reduce spurious oscillations in the solution [1]. The separation
in range between the substitute surfaces, L, is 10 m in all examples, and the results
are calculated every 5 meters.

The calculations for the soft ground uses a normalised ground impedance of
3.71 — j3.68 at the frequency 500 Hz and 5.56 — j6.10 at 1000 Hz. These values
are for a grass-like surface and come from the Delany and Bazely model using a
flow resistivity of 200 kNs/m?* (e.g. [16]). (The sign of the imaginary part of the
impedance is consistent with the time-dependence used here and with a normal
vector pointing into the ground.)

The calculated results are shown in Figures (4-9). Figures (4-7) are for a non-
refractive atmosphere, for hard and soft ground, and for the frequencies f = 500 Hz
and f = 1000 Hz. Figures (8-9) are for upward refraction, for hard and soft ground,
for f = 500 Hz. (Other data are given in the Figure captions.) The results are
plotted as sound pressure level relative to free field as a function of propagation
range from the source.

For the calculations without refraction (Figures 4-7) the two thicker curves show
the results for a turbulent atmosphere. The solid line is for the SSM and the
dashed line is the analytical solution using the MCF for the direct and ground
reflected rays from the source to the receiver, as described in Subsection 2.2. The
two thinner curves are for no turbulence; the dashed line for the FFP directly
and the solid line for the SSM without turbulence, i.e. where all power is calculated
from the last substitute surface without decorrelation. (These two curves are almost
indistinguishable in the Figures.)

In the examples with upward refraction (Figures 8 and 9), a comparison is made
with a parabolic equation method (PE). In the PE calculations 50 realisations of the
turbulence are used to estimate the power at the receiver. (The PE implementation
used here is mainly based on Ref. [3] and is described in detail in Ref. [22].) The
dash-dotted curves show the PE results, with and without turbulence.

For an atmosphere without refraction, the effect of turbulence is mainly that it

12
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reduces the interference, as can be seen in Figures (4-7). Most of the SSM results
show good agreement with the analytical in these examples. However, for the soft
ground at f = 500 Hz (Figure 5), there is a significant discrepancy. To provide an
additional comparison, the PE method is applied also to this case, and the results
are shown in the same figure. The PE results are similar to those from the SSM,
which indicates that the analytical solution may give a significant error in this case.
A possible explanation is that the turbulence scattering results in a larger loss into
the ground than what is given by the analytical ray model. For upward refraction
the main effect of the turbulence is that is limits the acoustic shadow, as can be
seen in Figures (8) and (9). The difference between the SSM and the PE results is
around 2 dB at most, which for situations with strong shadowing can be considered

as good agreement.

4 Conclusions

The good agreement shown in the comparison with the other methods indicate that
the extended substitute-sources method presented here could be a useful tool for
predictions of outdoor sound propagation. The approach also enables application
to steep geometries, as shown in a previous implementation for a single barrier [2].

In future work, range dependent properties of the atmosphere and the ground
could be taken into account. For example, with small changes in the method, a

ground impedance that is step-wise constant over range could be modelled.
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Appendix

The mutual coherence function (MCF) T'%(p, L), or transverse coherence function,
describes the correlation between the pressure amplitudes at two receiver positions
at the range L from a monopole source. The range L is also called the longitudinal
distance. The transverse separation between the receivers is p. In this paper the
MCF is defined as in equation (2). The main assumption made when finding the
analytical solution for the MCF is weak scattering due to the turbulence. (For a
thorough description the reader is referred to Refs. [19, 20, 13].) With the notation

used here, the MCF for a homogeneous and isotropic turbulence can be written as
I°(p, L) = exp [By(p, L) — Bx(0, L) + By(p, L) — By(0, L)], (20)

where B, and By are correlation functions of the log-amplitude fluctuations, ¥,
and the phase fluctuations, ¢ (e.g. [19]). The relation to the fluctuating pressure
amplitude, p, is p = pexp(x +jo), where p is the amplitude without turbulence. For
x1 and x2 at two receivers with separation p at range L from a single source, the
correlation function for the log-amplitude fluctuations can be written as By (p, L) =
{x1x2). The correlation function for the phase fluctuations is defined in the same
way: By(p,L) = (¢142). As a physical explanation of what equation (20) describes,
the sum of variances B, (0,L) + B4(0,L) = (x?) + (#?) can be seen as causing a
loss of the coherent wave into the residual field. The correlation B, (p, L)+ By (p, L)
results in a compensating factor because some of the fluctuations are the same for
both rays.

For a spherical wave the correlation functions can be found as
By,s(p, L) = (21)

n2k2 [P K3z x x
: /0/0 K{l:}:cos[ - (1—5)]}%(sz)@eﬂ(o,K)dex,

where B, is for the minus-sign of F and By for the plus-sign and where Jy is the

Bessel function of zero order [19, 20, 13]. As defined in Refs. [19, 13] ®eg (K, Ky, K)
is a three-dimensional spectral density for a moving random medium, and in equa-

tion (21) K, = 0 and K = ,/K? + K?. (For a detailed description the reader is

14
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referred to Chapter 7 in Ref. [13].) For the special case where @ models Gaussian
index of refraction fluctuations in a non-moving atmosphere, the equations (17-19)
are arrived at, which can be seen as a model for the temperature fluctuations in
turbulence.

After integrating equation (21) over K, the resulting MCF can be written as

000 1) — oo | — [ (o
I"(p,L) = exp /0 u(py)dz |, (22)

where the function u depends on only one variable. Making the substitution t = 2/L

gives

(p, L) = exp [—L /0 1 u(pt)dt] , (23)

which can be written as exp[—LU(p)]. Using equation(22), the properties of the
MCEF can be studied and the special problems of interest here can be solved.

If the propagation through the turbulence is divided into two ranges, the mul-
tiplicative property of the MCF can be shown. (See Figure 10a.) The total MCF

can be written

X

—)dz
L1+L2)

Li+Lo
Tior = T%ps, Lt + L) = exp | - / u(p2 - (24)
0

L1 x Li+Lo T
ex - u(pa—)dzx| ex - u(ps ——)dzx
p /0 (sz1+L2) p /L1 (sz1+L2)

Since pa/(L1 + L2) = p1/L1, the first factor in the last step in equation (24) is
equal to I'°(p1, L1). If there is turbulence only after range L;, the MCF is given
by only the last factor in equation (24), and the result can be written: Ty =
T%(pa, Ly + L3)/T%(p1, Ly)-

The situation of a direct and a ground reflected ray is shown in Figure (10b).
For a flat geometry p is much smaller than L and the distance of propagation is
approximately equal to L for both rays. Using the multiplicative property over
range (as in equation 24), the total MCF can be written Ty = I'%(p, L1)T(p, L2),
and using equation (23) gives I'°(p, L1)T%(p, Ly) = T%(p, L1 + L2).

15
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For the case when a direct and a ground reflected ray do not meet (Figure 10c),
the total MCF can be found as

T0(p, L + L) T°(p, Lo + L)
D01, L)) T9(ps, L)

The situation with crossing rays (Figure 10d) can be solved as T'yo; = I'°(p1, L1)T°(p2, Lo).

Ftot == (25)

If there are both crossing rays and a ground reflection, the solution can be found
after dividing the propagation into three ranges.

If the pair of sources (or receivers) are not at the same range, it can be seen
as an additional independent decorrelation (Figure 10e). The solution for that case
can be written: Tyoy = I'°(p, L1) exp(—vyL2). This result could be used in the SSM
to model the rays that deviate largely from horizontal direction, as shown in Figure

(10f).
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Figure 5: Result for soft ground, f = 500 Hz, p2 =5-107°, hg =2 m, hg =4 m.
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Figure 6: Result for hard ground, f = 1000 Hz, u3 = 5-107%, hs =2 m, hg = 4 m.
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Figure 8: Result for hard ground and upward refraction, f = 500 Hz, u% =2-1079,

hs =2m, hg =2 m.
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Figure 9: Result for soft ground and upward refraction, f = 500 Hz, u% =2-1079,

hs =2 m, hg =2 m.
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Figure 10: Different cases of ray pairs.



