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PtkA, SalA, MinD and Soj contain the same 
ATP‑binding domain

The notion of tinkering in evolution was introduced by 
Jacob (1977). In a nutshell, the idea is that evolution pro-
ceeds by the principle of “bricolage”, using the available 
components to put together new molecular “devices”. One 
of the molecular mechanisms underlying this process is 
duplication of ancestral proteins domains, which fuse with 
other protein domains, and these combinations lead to new 
biological functions (Van Damme et al. 2007). A notewor-
thy aspect of this process, which acts as a constraint for 
divergent evolution and “tinkering”, is the preservation of 
the interfaces for protein–protein interactions (Heringa and 
Taylor 1997). Here we will focus on four Bacillus subtilis 
proteins with very different present-day functions, which 
have evolved from the same ancestral ATPase domain 
(Walker et al. 1982). Their common origin from the ances-
tral Walker-type ATPase has been suggested by Grangeasse 
et al. (2012), based on extensive sequence homology.

The first protein we will focus on is the BY-kinase PtkA. 
It employs its ATPase domain as a catalytic site for protein-
tyrosine kinase activity (Mijakovic et al. 2003). PtkA phos-
phorylates and regulates the activity of several protein sub-
strates in B. subtilis (Mijakovic et al. 2006; Jers et al. 2010; 
Derouiche et al. 2013, 2015). The second protein is Soj 
(ParA). Soj acts at the replication origin, where it controls 
the activity of the DNA replication initiator protein DnaA 
(Murray and Errington 2008; Scholefield et al. 2012). Inter-
estingly, Soj requires ATP-binding by its ATPase domain to 
dimerize and become capable of binding the DNA at the 
replication origin (Scholefield et al. 2011). The third pro-
tein, MinD, localizes at the cell poles, and via activation 
of MinC, ensures the selection of the mid-cell division site 
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(Marston and Errington 1999). Finally, the fourth protein 
we will focus on, SalA, was characterized more recently. 
SalA has been classified as a member of the Mrp protein 
family (Dardel et al. 1991). Due to its similarity to Soj, 
it can still be found erroneously classified as a ParA pro-
tein in several online databases. Ogura et al. (2004) have 
described B. subtilis SalA as an activator of the exoprotease 
AprE. They described the activation of aprE expression by 
SalA as a two-step process: SalA somehow the transcrip-
tion of scoC, which encodes a repressor of aprE. However, 
Ogura et al. (2004) detected no DNA-binding domain in 
SalA, and concluded that the repression of scoC is indirect. 
Recently, Derouiche et al. (2015) identified a DNA-bind-
ing domain at the C-terminus of SalA, and demonstrated 
that SalA represses scoC via direct binding to its promoter 
sequence (−35 to −6 with respect to the transcription start 
site). Similarly to Soj, SalA DNA-binding domain is also 
activated by ATP-binding to its ATPase domain (Derouiche 
et al. 2015).

Functional interactions preserved through domain 
duplication and divergent evolution

Based on recent evidence, we would like to argue that 
the divergent evolution of these four proteins, harboring 
the same ATP-binding domain, has been constrained by 
functional interactions established among them. Resolved 
structures of MinD proteins and BY-kinases support the 
notion that the ATP-binding domains of these proteins 
have a very similar fold (Olivares-Illana et al. 2008; Wu 
et al. 2011). Since all these proteins form oligomers, the 

interactions among them can be easily modeled as “oli-
gomerization” events. Functional interaction of MinD and 
Soj has been reported by Autret and Errington (2003). 
They described a mutant of Soj, incapable of hydrolys-
ing ATP, which interacts specifically with the cell pole; 
in MinD-dependent manner (the interaction was not 
dependent on MinC). Recently, a direct physical inter-
action between MinD and PtkA was reported by Shi 
et al. (2014). MinD was found to attract PtkA to the cell 
pole, and to enhance its kinase activity. One of the pos-
sible consequences of this interaction is PtkA-dependent 
phosphorylation of the cell division protein DivIVA (Shi 
et al. 2014). Arguably the most remarkable interaction is 
that between SalA and PtkA (Fig. 1). SalA contains in 
its C-terminus a domain (residues 294–352) which bears 
structural resemblance to the canonical activator of PtkA, 
TkmA (Mijakovic et al. 2003). This very same SalA 
domain was identified as the minimal domain required 
for interaction with PtkA (Derouiche et al. 2015). The 
consequences of this interaction are two-fold. The inter-
action leads to PtkA-dependent phosphorylation of SalA 
residue Y327. This enhances the SalA ATP-binding and 
hydrolysis, and ultimately leads to stronger binding to the 
SalA DNA target site. The physiological consequence is 
the repression of scoC and activation of aprE expression 
(Derouiche et al. 2015). On the other hand, SalA activates 
the kinase function of PtkA. Namely, it enables the kinase 
to phosphorylate a number of its substrates, and it does 
so by competing for the same binding site with the other 
PtkA activator, TkmA (Derouiche and Mijakovic, unpub-
lished results). This two-way activation thus represents a 
mutual regulatory loop.

Fig. 1  Functional interaction between SalA and PtkA. Both pro-
teins contain the same Walker motif domain (grey box), derived from 
domain duplication. The interaction between the two proteins leads 
to phosphorylation of SalA, and activation of its function as a tran-

scriptional repressor of scoC. The interaction also activates the kinase 
function of PtkA, which, in the activated form, phosphorylates its 
other protein substrates
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An exception or a rule?

These examples of well documented binary functional interac-
tions among four B. subtilis proteins evolved from the com-
mon ancestral ATPase domain raise a number of questions. 
Given the known cell cycle phenotype of the ptkA mutant 
(Petranovic et al. 2007), it is tempting to ask whether Soj and 
PtkA might also engage in some sort of functional interaction. 
Thinking more globally, should evolutionary analyses and 
phylogenomics studies be systematically coupled to interac-
tomics studies, when one seeks to define the functional inter-
action networks in systems biology? To the best of our knowl-
edge, this question has not been addressed in the literature. It 
has been established that protein–protein interactions tend to 
be preserved in the process of domain duplication (Evlampiev 
and Isamberth 2007). However, such studies have mostly 
examined members of protein families which have preserved 
the same function, such as transcription factors (Veron et al. 
2007) or SH2-domain proteins (Liu and Nash 2012). Interac-
tions among proteins of the same origin but different present-
day functions have not been examined systematically. The 
closest approximation to our example from B. subtilis is the 
study by Osadnik et al. (2015), where the authors describe two 
Escherichia coli proteins of the AAA+ family, a transcription 
factor PspF and a protein unfoldase ClpB, which have both 
retained a conserved coiled-coil domain. This is a protein–pro-
tein interaction domain which allows these AAA+ proteins to 
be activated by the same mechanism, despite their different 
functions. Our hypothesis that proteins which share a common 
evolutionary origin may have a higher propensity to function-
ally interact will have to be tested by systematic examination 
of interactomics datasets.
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