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Recent decades have witnessed steady improvements
in our ability to harness the information-carrying
capability of optical fibres. Will this process continue,
or will progress eventually stall? Information theory
predicts that all channels have a limited capacity
depending on the available transmission resources,
and thus it is inevitable that the pace of improvements
will slow. However, information theory also provides
insights into how transmission resources should in
principle best be exploited, and thus may serve as a
guide for where to look for better ways to squeeze
more out of a precious resource. This tutorial paper
reviews the basic concepts of information theory and
their application in fibre-optic communications.

1. Introduction
We live in a connected society where digital information
is continuously exchanged across the globe. The vast
majority of this information is carried by optical fibres for
at least part of their journey. The development of long-
haul fibre-optic communications is a fascinating story of
invention—recounted in part in [1]—in which various
technological advances (the development of single-mode
fibre, efficient laser transmitters and modulators, optical
amplifiers, wavelength-division multiplexing schemes,
coherent signal detection and digital signal processing)
have, over time, yielded steady improvements in the
information-carrying
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information-carrying capacity (bit/s) in commercial systems. Can this progress continue
indefinitely, or are optical fibres ultimately limited in their capacity to carry information? If so,
how close are we to achieving this ultimate limit?

These questions fall within the domain of a mathematical and engineering discipline called
information theory, founded in the seminal paper of Claude E. Shannon [2]. Conceived as a
“mathematical theory of communication,” one branch of information theory answers questions
about the trade-off between the rate at which the transmitter can send information and the
reliability with which the receiver can decode the received signal. Remarkably, in his celebrated
“channel coding theorem,” Shannon showed that the trade-off between rate and reliability is not
smooth, but is discontinuous: at transmission rates below a fundamental quantity—the channel
capacity—any (arbitrarily high) reliability (or, equivalently, any arbitrarily low probability of
error) is in principle achievable using sophisticated coding and decoding schemes, while at
transmission rates above the channel capacity, arbitrarily high reliability is impossible, no matter
how sophisticated the transmitter and receiver are. Information theory thus seems to be precisely
the right tool with which to establish the ultimate information-carrying capability of optical fibres.

So, what is the capacity of an optical fibre? Unfortunately, the answer is quite subtle and,
to date, open. Subtleties emerge for a number of reasons. For example, in practical long-
haul transmission, a high optical intensity has to be transmitted in order to overcome the
accumulated loss over many kilometers of fibre. At such high intensities, the optical fibre becomes
a nonlinear medium, and even the simplest mathematical channel model involves a complicated
stochastic partial differential equation (the so-called generalised nonlinear Schrödinger equation
and variants thereof) which challenges (and so far defies) information-theoretic analysis. Because
it accepts a waveform at its input and produces a waveform at its output, the optical fibre channel
is a so-called “waveform channel.” Unfortunately, except for certain special cases (in which a
waveform channel can be converted into a completely equivalent “discrete-time channel”), no
tractable general information-theoretic analysis is known. Furthermore, commercial optical fibre
systems are often operated as “networks,” with the interference-causing signals of different users
multiplexed and demultiplexed at various geographical locations. The question of the capacity
of optical fibre networks then becomes a question of “multiuser information theory,” for which
precise capacities are generally unknown, even in relatively simple situations. Finally, the answer
to the question of determining the capacity of a fibre channel depends not only on the physical
medium (the fibre itself), but also crucially on which physical devices (such as amplifiers and
multiplexers) are used along the transmission path, as well as how the transmitter and receiver
are implemented. The past 15 years have witnessed an intense research in the area of optical fiber
capacity. For extensive literature surveys, see [3–6] and [7, Sec. VI].

The purpose of this paper is to provide a tutorial introduction to information theory as it is (or
might be) applied in understanding fundamental limits on the information-carrying capabilities
of optical fibres. In § 2 we introduce some of the basic terminology, and give precise formulations
of the questions that information theory intends to answer. In § 3 we provide some of the intuition
that underlies Shannon’s channel coding theorem. In § 4 we turn to the problem of determining
the capacity of waveform channels, starting with the classical additive white Gaussian noise
channel (AWGN), and then considering various formulations of the optical fibre channel. In § 5 we
speculate on ways in which information-theoretic insights may translate into new architectures
that more fully exploit the information-carrying capability of optical fibres. Finally, in § 6 we point
out that the application of information theory to long-haul fibre-optic communications is far from
straightforward, leaving open many interesting questions and challenges for future research.

2. Channel capacity: the maximum data rate
The word “capacity” has both a colloquial and a mathematical meaning. When we talk about the
“capacity” of a storage drive in daily life, we mean the amount of data that it can store, and when
we talk about the capacity of a communication system, we usually mean the amount of data
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Figure 1. (a) A communication link, consisting of a transmitter, a waveform channel and a receiver. The purpose is to

transmit a message m in such a way that it can be reliably guessed (decoded) by the receiver. In (b) the transmitter is

split into two units, an “outer Tx” that maps the message m into a discrete-time codeword xn, and an “inner Tx” that

maps the codeword to a waveform x(t) of duration at most T . The receiver (Rx) is modelled using the reverse two blocks.

In (c) the inner Tx, the channel and inner Rx are considered as a single unit with discrete-time input and output.

that can be transported through it per time unit. When consumers or service providers scream
for more capacity, it should be understood in this latter sense: there is a need for transporting
even higher data volumes per time unit, or to more remote locations, or to a larger number of
simultaneous users, or all of these.

Naively, increasing the data traffic volume should be ridiculously simple: can we not make
some adjustment to a setting in the transmitting device, and cause bits to be pushed into the
channel even faster than before? Unfortunately, without proper adjustment in the receiver, this
increase is useless or even detrimental: more bits are transmitted than before, but if they are
received in error, the received data are generally useless.

This trade-off between the rate of transmission and the reliability was discovered by Shannon,
who defined mathematically the capacity of a transmission medium or a channel. The capacity is
the maximum data rate that can be transmitted through the channel at an arbitrarily small error
probability. This idea, which will be stated precisely in the next subsection, was revolutionary
when it was presented in 1948 [2]. It means, in plain words, that reliable communication, at positive
rates of transmission, is possible over unreliable channels. If the channel has a low quality, due to
noise, distortion, interference, or any other physical impairments, a low rate has to be applied,
but the data can nevertheless be transmitted virtually error-free. As an extreme example, the
Voyager deep-space probes transmit photos and measurement data reliably to earth over billions
of kilometers, using only a 22 W radio transmitter, thanks to a very low data rate (of the order of
160 bit/s).

(a) Codebook, capacity and channel
To see how it is possible to transmit data reliably over an unreliable channel, consider the
schematic in figure 1 (a). A message m, consisting of a block of k bits, is encoded into a waveform
x(t) with duration T or less. There are M = 2k possible messages, each of which corresponds to a
unique waveform x(t), which can be real- or complex-valued. The set of allM waveforms is called
the codebook. After transmission over the channel, a distorted version, y(t), of x(t) is observed by
the receiver over the interval 0≤ t < T . The data rate R in bit/s that is achieved by this scheme
is equal to the number of bits sent by the transmitter normalised by the observation time at the
receiver, namely R= k/T = (log2M)/T .

The receiver, upon observing y(t), tries to guess which of the waveforms in the codebook
might have been transmitted and outputs the message m̂ corresponding to this waveform. If the
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received waveform is not overly distorted or corrupted by noise, and if the waveforms in the
codebook are reasonably well separated in relation to the distortion, then the receiver’s guess will
be correct, producing m̂=m.

The channel capacity in bit/s can now be mathematically defined as follows. We first decide
on a given nonzero error probability threshold ε that can be accepted and a receiver observation
duration T . Then we search for the largest codebook such that an ideal receiver, upon observing
y(t) over the interval 0≤ t < T , can correctly guess the transmitted message m with probability
no less than 1− ε. Disregarding the facts that this search process may be prohibitively complex
and that the ideal receiver may be unknown, the size of this optimal codebook is denoted by M∗

and the corresponding rate by R= (log2M
∗)/T . This quantity is the maximum achievable rate at

duration T and error probability ε, and it exists theoretically for any T > 0 and 0< ε< 1, even if
we usually do not know how to compute it.

Next, we let T increase, still for a given nonzero ε, which means that M∗ also increases.
Depending on the type of channel and the value of ε, the ratio R may increase or decrease
with increasing T , but in any case, it converges to a limit, C = limT→∞R. This limit defines the
capacity of the channel. One might expect that C would decrease as ε decreases, but the limit is
the same regardless of ε, as long as it is not 0 or 1 [2, Theorem 12]. The qualitative behaviour of R
is well represented by figure 2 in the next subsection, if n is replaced by T , for more or less any
channel. A threshold phenomenon is evident at high T : every rate below capacity is achievable
even at very low error probability (imagine a horizontal plane at a level R< 0.5 in figure 2),
whereas a rate above capacity (a plane at R> 0.5) implies an error probability near 1.

To summarise, the channel capacity in bit/s of any waveform channel x(t), 0≤ t < T →
y(t), 0≤ t < T is defined as

C = lim
T→∞

log2M
∗

T
, (2.1)

where M∗ is the maximum size of a codebook for which the probability of m̂ 6=m is no larger
than ε, for any given 0< ε< 1. By choosing T large enough, transmission is possible at any data
rate below C at an arbitrarily small nonzero error probability, whereas this is impossible above
C. However, although Shannon predicted the existence of codebooks for reliable transmission at
data rates below capacity, he did not give a recipe for the construction of such codebooks. This
has been an active area of research for 65 years [8].

The channel capacity C is sometimes given as a function of a transmission parameter, if the
transmitter is constrained to select waveforms x(t) that satisfy certain conditions. In this case, the
maximisation that gives M∗ in (2.1) is over a constrained set of codebooks. A common example
is the power-constrained capacity C(P ), where P denotes the maximum transmit power of any
waveform x(t), averaged over t. In this case, all waveforms x(t) in the codebook are required to
satisfy

∫T
0 |x(t)|2dt≤ PT . Constraints on the bandwidth, peak power and/or block length (delay)

may also apply.
In contrast to the colloquial meaning of the word “capacity” discussed in the beginning of this

section, the channel capacity as defined in (2.1) is a mathematical concept, and hence it applies
to mathematical channels. In order to make information-theoretic statements about a real-world,
physical channel, a channel model is needed, which captures the essence of the physical channel’s
behaviour and gives it a mathematically precise formulation, taking into account the random
nature of the signal propagation. A good channel model should be both physically realistic and
tractable for mathematical analysis, which is sometimes difficult to achieve. For many types of
copper-wired and wireless communication links, such models exist and are generally accepted,
being relatively accurate for a wide range of transmission conditions, yet simple enough to allow
information-theoretic analysis.

Unfortunately, as described in § 4 (b), fibre-optical channel modeling is more complicated. The
fibre-optical channel does not only include random effects, due to the noise contributed by optical
amplifiers, but also nonlinear effects, due to the so-called Kerr nonlinearity in the fibre, which
kicks in at high optical intensity. The relation between the optical channel’s input x(t) and output
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y(t) is usually modeled by a stochastic nonlinear partial differential equation (the generalised
nonlinear Schrödinger equation). For example, the Kerr nonlinearity implies that if the signal
level of the input is doubled, unlike many models for copper-wired and wireless channels, the
statistical distribution of the output changes in a more intricate way than by pure scaling.

Another feature of nonlinear channels is bandwidth expansion (or, in rare cases, bandwidth
contraction). This means that if the transmitted signal is confined to a certain frequency band,
the received signal may include frequency components outside this band. This phenomenon is
important in practice, as it influences the spectrum allocation and receiver design. It does not
influence the channel capacity C in (2.1), which is measured in bit/s, but it has a strong influence
on the maximum spectral efficiency, which is the channel capacity per unit bandwidth, measured
in bit/s/Hz. If W is the bandwidth under consideration, then the spectral efficiency C/W will be
different depending on whetherW is defined at the transmitter, receiver, or elsewhere, since these
bandwidths are in general different. There are also several mathematically inequivalent ways to
define bandwidth, but this is outside the scope of the present article.

The peculiarities of the nonlinear optical channel will be further discussed in § 4 (b).

(b) Discrete-time channel models
For practical reasons, the transmitter in figure 1 is often divided into two parts, as illustrated in
figure 1 (b). The first part, here called the outer transmitter, converts the message m to a sequence1

of n discrete-time symbols xn, where each symbol xi is a real or complex number, or a vector
of numbers2, and the second part, the inner transmitter, converts the sequence of symbols to a
waveform x(t). The corresponding parts can be defined on the receiver side, also illustrated in
figure 1 (b). As we shall see in § 3, this subdivision facilitates information-theoretic analysis, and
it also represents the design of digital communication systems, where the functionalities of the
inner and outer parts are often carried out by separate hardware or software components.

In most, if not all, commercially deployed communication systems, the inner transmitter is a
linear filter (pulse shaper) and the inner receiver includes a linear (matched) filter followed by
sampling. This setup is provenly optimal for the band-limited AWGN channel, which is the most
common linear channel model and will be formally defined in § 4 (a), but is not the most general
setup and not necessarily optimal for nonlinear or non-Gaussian channels.

If the inner transmitter and receiver are kept fixed while the outer parts are optimised, it is
convenient to regard the inner parts as part of the channel, as in figure 1 (c). This creates a so-called
discrete-time channel, whose input and output are both a sequence of symbols, with input symbols
selected from some set X and outputs produced in some set Y . Usually the inner transmitter
accepts symbols at some fixed symbol rate Rs. Such a discrete-time channel is typically described
by a probabilistic channel law pYn|Xn(yn | xn), giving the probability that the inner receiver
produces a particular output sequence yn when xn is passed to the inner transmitter.

The capacity of a discrete-time channel xn→ yn can be defined in analogy with (2.1). As
before, we fix a nonzero error probability ε that can be accepted and a sequence length n. Based
on the messagem, the transmitter chooses one length-n sequence from a predefined codebook for
transmission. LetM∗ denote the largest size of the codebook such that the receiver can recover the
transmitted message with error probability no larger than ε. Then the capacity of a discrete-time
channel, in bit/symbol or bit/channel use, is defined as

Cdt = lim
n→∞

log2M
∗

n
. (2.2)

In analogy with (2.1), the limit exists for any given 0< ε< 1, and is the same for any ε in this
range. This behaviour is exemplified in figure 2, where the maximum achievable rate approaches
a threshold function at high n (right end of the graphs). Most channels, in continuous as well as
discrete time, exhibit similar behaviour, possibly with rescaled axes.
1Notation convention: a sequence such as x1, x2, . . . , xn is denoted as xn. Similarly, y1, . . . , yn is denoted as yn,
X1, . . . ,Xn is denoted as Xn, etc. Random variables are uppercase (e.g.,X) and a single realization therof lowercase (x).
2The outer transmitter is usually constructed by concatenating a binary error-correcting code and a bit-to-symbol mapper.
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Figure 2. Estimate of maximum achievable rate R for a discrete-time channel with Cdt = 1/2, as a function of error

probability ε and block length n. (Detailed formulas are given in the appendix.) (a) For each 0< ε< 1, the maximum

achievable rate R approaches Cdt as n→∞. The horizontal plane shows the capacity. (b) The low-ε portion of (a)

zoomed in.

The discrete-time channel capacity Cdt, multiplied by the symbol rate Rs, lower-bounds the
capacity C of the underlying waveform (continuous-time) channel, since there are fewer degrees
of freedom in the transmitter and receiver of figure 1 (c) than in figure 1 (a).

(c) Multiuser information theory
Although we have so far focussed on systems with just a single transmitter and a single receiver,
realistic data transmission systems must account for situations in which there are multiple
transmitters and multiple receivers. For example, in fibre-optic transmission, signals of different
users are often multiplexed at different wavelengths for transmission over the same physical fibre
in a so-called wavelength-division multiplexing (WDM) system. Because of channel nonlinearities,
these signals, even though they are propagating centered at different wavelengths, interact with
each other, creating interference. The study of fundamental limits in such scenarios is the domain
of multiuser information theory, a topic of enormous contemporary research (see, e.g., [9]).

While there are many variations in possible setups, an important example of a multiuser
communication scenario relevant to fibre-optic communication is the so-called K-user interference
channel, in which we have K different transmitters and K different receivers, with each receiver
interested in correct decoding of the message sent by its corresponding transmitter. The channel
model is usually given so that the signal transmitted by all other users affects the signal received
by the intended receiver. If the rate of reliable information transmission by the first transmitter-
receiver pair is denoted as R1, that of the second pair by R2, and so on, then one can define a
so-called capacity region as (the closure of) the set of simultaneously achievable (R1,R2, . . . ,RK)

tuples. The capacity region then indicates all possible trade-offs between the transmission rates
of the K users using all manner of transmission strategies.

Unfortunately, although one has fairly general inner and outer bounds that apply in certain
situations, capacity regions are known precisely only in certain special situations. For example, it
is unknown for the seemingly straightforward case of theK-user interference channel, even when
K = 2 and the simple AWGN channel (no memory or nonlinearity) is considered. The application
of multiuser information theory to optical WDM systems will be discussed in § 5.

3. The capacity of discrete-time channels
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(a) Memoryless channels
In this section, we show how capacity is computed for the important special case of a discrete-
time memoryless channel. Such a channel might be induced (at least in certain situations) by
the combination of the inner transmitter, waveform channel, and inner receiver depicted in
figure 1 (b), resulting in a channel that accepts sequences of symbols from some alphabet X and
produces symbols from some alphabet Y as shown in figure 1 (c). For simplicity, we will focus
initially on the special case where X and Y are finite sets, discussing more general alphabets later.

The term memoryless means that the output Yi of the channel at discrete time i, given the
channel input at time i, is independent of channel inputs and outputs at all other times. The
channel law for a memoryless (and time-invariant) channel is given by

pYn|Xn(yn | xn) =

n∏
i=1

pY |X(yi | xi), (3.1)

where pY |X(y | x) is a fixed function (independent of i), giving the probability of receiving symbol
y ∈Y when symbol x∈X is sent.

As explained in § 2 (b), the capacity of a discrete-time channel is given in (2.2) as a limit taken
as the number of discrete channel uses, n, grows large. To compute the limit in the case of a
memoryless channel, we will exploit the law of large numbers.

(b) Typical sets
The (weak) law of large numbers (LLN) captures the intuitive notion that the empirical mean
associated with a large number of independent statistical trials should be very near the expected
value. More precisely, suppose that X1, . . ., Xn is a sequence of independent identically-
distributed (i.i.d.) random variables with an expected value of µ. The arithmetic mean

X̄n =
1

n
(X1 +X2 + · · ·+Xn) (3.2)

is then itself a random variable with an expected value of µ. For a large n, one would be surprised
to find that X̄n takes a value very far from µ, and indeed, the LLN states that, for every positive
number ε,

Pr
[∣∣X̄n − µ∣∣> ε]→ 0 as n→∞. (3.3)

Now let X1, . . ., Xn be a sequence of i.i.d. random variables taking values in a finite alphabet
X . For any x∈X , let pX(x) denote the probability that the random variable Xi takes on value x.
This probability does not depend on i as a consequence of the assumption that X1, . . . ,Xn are
identically distributed. The probability that any particular sequence xn occurs, i.e., the probability
that X1 = x1,X2 = x2, . . . ,Xn = xn, denoted as pXn(xn), is then

pXn(xn) =

n∏
i=1

pX(xi). (3.4)

Taking logarithms (to the base 2, say) and scaling by−1/n in (3.4) allows us to apply the LLN,
since then

− 1

n
log2 pXn(xn) =− 1

n

n∑
i=1

log2 pX(xi)→E[− log2 pX(X)] as n→∞, (3.5)

where E denotes expectation. The right-hand side of (3.5) is usually denoted as H(X) and called
the entropy associated with the probability mass function (PMF) pX . Explicitly,

H(X) =−
∑
x∈X

pX(x) log2 pX(x).

The choice of the base of logarithm is arbitrary, but conventionally the base 2 logarithm is chosen,
in which case the entropy is measured in units of bit/symbol.
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Setting µ=H(X) in (3.3) yields, for any positive number ε,

Pr

[∣∣∣∣∣− 1

n

n∑
i=1

log2 pX(Xi)−H(X)

∣∣∣∣∣> ε
]
→ 0 as n→∞. (3.6)

For fixed ε, this motivates one to define a typical set of length-n sequences as

A(n)
ε =

{
xn |

∣∣∣∣∣− 1

n

n∑
i=1

log2 pX(xi)−H(X)

∣∣∣∣∣≤ ε
}

. (3.7)

By taking a sufficiently large n, the probability that a random i.i.d. sequence Xn yields an element
in the typical set approaches arbitrarily close to unity. Intuitively this means that, for large n,
outcomes not in the typical set occur only with vanishing probability.

If xn ∈A(n)
ε , from (3.1) and the definition (3.7), each typical sequence occurs with a probability

lying in a bounded range

2−n(H(X)+ε) ≤ pXn(xn)≤ 2−n(H(X)−ε). (3.8)

Since the total probability of any set of sequences cannot exceed unity, the typical set cannot be
too large. Denoting the cardinality of the typical set as |A(n)

ε |, we have

|A(n)
ε | ≤ 2n(H(X)+ε). (3.9)

On the other hand, for a sufficiently large n we know that the total probability of A(n)
ε can be

made to exceed 1− ε, which implies that

|A(n)
ε | ≥ (1− ε)2n(H(X)−ε) when n is sufficiently large. (3.10)

Thus we see that the typical set cannot be too small either. Very roughly, when ε is small and n is
large, (3.8)–(3.10) tell us that the typical set contains about 2nH(X) sequences each of probability
“near” 2−nH(X), accounting for very nearly all of the probability mass. The entropy H(X) can
therefore be interpreted as the growth-rate factor of the size of the typical set of sequences of
length n associated with a PMF pX .

A typical set can similarly be defined for i.i.d. sequences of continuous random variables with
common probability density function (PDF) pX(x), by taking

A(n)
ε =

{
xn |

∣∣∣∣∣− 1

n

n∑
i=1

log2 pX(xi)− h(X)

∣∣∣∣∣≤ ε
}

,

where

h(X) =−
∫∞
−∞

pX(x) log2 pX(x)dx (3.11)

denotes the so-called differential entropy associated with the PDF pX . The LLN implies that the
probability of the typical set approaches unity as n→∞. In analogy to (3.9)–(3.10), the volume,
Vol(A(n)

ε ), of the typical set can be shown to be bounded as

(1− ε)2n(h(X)−ε) ≤Vol
(
A(n)
ε

)
≤ 2n(h(X)+ε),

where the lower bound applies when n is sufficiently large. Thus, the differential entropy h(X)

can be interpreted as the growth-rate factor of the volume of the typical set of sequences of length
n associated with a PDF pX .

(c) Mutual information and channel capacity
Without attempting to be absolutely rigorous, using only these rough properties of typical
sets, we will now consider information transmission over a discrete memoryless channel. We
assume the channel has input alphabet X , output alphabet Y and channel law pY |X(y | x),
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noise balls of size 2nH(Y |X)

2nR codewords

2nH(X) typical inputs
2nH(Y ) typical outputs

|X |n possible

input sequences |Y|n possible

output sequences

Figure 3. The relationships between typical sets, noise balls, and transmitted and received codewords.

giving the probability of observing symbol y ∈Y at the channel output when symbol x∈X is
transmitted. We will assign a PMF pX to the transmitted symbols, and assume that the transmitter
is constrained to the transmission of typical sequences only. When a sequence xn is transmitted,
and assuming n is sufficiently large, the set of output sequences observed by the receiver are
confined to a typical set of size about 2nH(Y |X), where H(Y |X) denotes the so-called conditional
entropy of Y given X , given as

H(Y |X) =−
∑
x∈X

pX(x)
∑
y∈Y

pY |X(y | x) log2(pY |X(y | x)). (3.12)

We think of this set as a “noise ball” or “uncertainty ball,” in the set of possible outputs, associated
with the transmitted sequence xn. The set of probable received sequences (corresponding to all
possible transmitted sequences) is itself a typical set containing about 2nH(Y ) elements, where
H(Y ) is the entropy associated with the PMF pY (y) =

∑
x∈X pX(x)pY |X(y | x). Our goal is to

design a codebook of transmitted sequences with the property that there is little probability of
overlap between the noise balls corresponding to different codewords. In this case, each received
sequence is highly likely to fall within the noise ball associated with just one codeword (the
transmitted one), and thus a low probability of error can be achieved if the decoder simply
produces the associated codeword. The relationships among these various sets are illustrated
in figure 3.

To maximise the transmission rate, we would like to design a codebook with as many
codewords of possible, yet with the property that the noise balls corresponding to different
codewords are essentially nonoverlapping. Ideally we might hope that the noise balls completely
partition the set of typical output sequences. Assuming that the transmitted and received
sequences are of length n, since the set of typical channel output sequences contains about 2nH(Y )

elements and each noise ball contains about 2nH(Y |X) elements, we would certainly not hope for
more than about

2nH(Y )

2nH(Y |X)
= 2n(H(Y )−H(Y |X))

codewords. The quantity H(Y )−H(Y |X) is a fundamental quantity in information theory
called the mutual information, I(X;Y ), between discrete random variables X and Y , and it is
given as

I(X;Y ) =H(Y )−H(Y |X) =
∑
x∈X

∑
y∈Y

pX,Y (x, y) log2

(
pX,Y (x, y)

pX(x)pY (y)

)
. (3.13)

If one replaces “cardinality” with “volume,” an identical argument applies for memoryless
channels whose input and output are continuous random variables. In this case the ratio of the
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volume of the typical output sequences to the volume of a noise ball gives a bound on the size of
a decodable codebook expressed in terms of the mutual information I(X;Y ) between continuous
random variables X and Y , defined as

I(X;Y ) = h(Y )− h(Y |X) =

∫∞
−∞

∫∞
−∞

pX,Y (x, y) log2

(
pX,Y (x, y)

pX(x)pY (y)

)
dy dx. (3.14)

Thus, regardless of whether the random variables are discrete or continuous, we would not
expect a codebook with codewords of length n to have more than 2nI(X;Y ) codewords while
achieving reliable decoding; or, put another way, we would expect that R≤ I(X;Y ). Indeed, it
is possible to show that if a codebook of more than 2nR codewords of length n is used, then the
probability of error of any decoder cannot be made arbitrarily small, i.e., the probability of error
is in that case strictly bounded away from zero.

On the other hand, suppose that we select a transmission rate R= I(X;Y )− ε, where ε is
a small positive number. For any n, the total cardinality (or volume) of the union of all the
noise balls associated with a codebook of 2nR length-n codewords is at most 2nR · 2nH(Y |X),
accounting for a fraction of at most

f =
2nR · 2nH(Y |X)

2nH(Y )
= 2−nε

of the cardinality (or volume) of the set of typical output sequences. As n→∞, this fraction
approaches zero, suggesting that a placement of essentially nonoverlapping noise balls becomes
increasingly more feasible with increasing block length. Indeed, as Shannon proved in [2] in his
celebrated “random coding argument,” a completely random placement is highly likely, when n
is sufficiently large, to produce a configuration with low average error probability. By expurgating
a constant fraction of the codewords with the worst individual probability of error, (which has a
negligible impact on the rate), the worst-case probability of error can also be made to approach
zero.

In summary, we see that at transmission rates R greater than the mutual information I(X;Y ),
the probability of error cannot be made to approach zero, while at transmission rates R less than
I(X;Y ), any arbitrarily small error probability can in principle be achieved by choosing the block
length n to be sufficiently large. Thus for discrete memoryless channels, when the channel input
symbols are chosen according to a probability mass (or density) function pX(x), the maximum
achievable rate of reliable information transmission is the mutual information I(X;Y ).

Since the mutual information depends on pX(x), the channel capacity for discrete memoryless
channels is equal to the maximum mutual information that can be achieved over all possible input
distributions, i.e.,

C = max
pX

I(X;Y ). (3.15)

It is important to note that (3.15) is not the definition of capacity; it is an expression that gives
the capacity for memoryless channels. In particular, this so-called “single-letter” expression does
not hold for general channels with memory. The multiletter generalisation

C = lim
n→∞

sup
pXn

1

n
I(Xn;Yn)

holds for so-called information stable channels with memory. While this latter formula gives the
capacity of many channels of practical interest, it is possible to create mathematical models for
channels for which even this formula fails to hold; see [10] for a discussion and development of a
capacity formula that applies to even more exotic channel models with memory.

All of these capacity formulas apply to waveform channels whenever such channels are
completely equivalent to some discrete-time channel model (for example, via projection on a
countable orthogonal basis). For nonlinear waveform channels such as the optical fibre channel,
it appears difficult to achieve such an equivalence, and therefore one typically must resort to
making approximations and assumptions (e.g., the assumption that waveforms are essentially
bandwidth-limited).
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4. The capacity of waveform channels

(a) The additive white Gaussian noise channel
The most well-studied channel in information theory is the AWGN channel. This is for two
reasons. First, it accurately describes the propagation on wired and wireless links under certain
conditions; and second, it is one of the few waveform channels whose capacity is known exactly.

In the AWGN channel, the relationship between the input x(t) and output y(t), which are both
complex processes, is

y(t) = x(t) + w(t), (4.1)

where w(t) is a complex-valued, zero-mean, white Gaussian random process with power spectral
density N0 W/Hz, which is assumed constant3. White Gaussian statistics for w(t) in (4.1) is a
good model for thermal noise (Johnson–Nyquist noise) introduced by electronic components in
the receiver in any finite band of practical interest. Moreover, in optical communications, white
Gaussian noise models well the amplified spontaneous emission noise introduced by optical
amplifiers.

Assume that the complex waveform x(t) is limited to a bandwidth W , i.e., its spectrum is
zero outside [f , f +W ] for some f , and also has a limited power P . For any P and W , the
power- and bandwidth-constrained channel capacity in bit/s of the complex AWGN channel in
(4.1) is [2, Theorem 17]

C(P ,W ) =W log2

(
1 +

P

N0W

)
, (4.2)

where N0W is the power of the complex noise z(t) in the signal bandwidth and P/(N0W ) is the
signal-to-noise ratio (SNR). This capacity is achieved by choosing x(t) to be a Gaussian random
process with power spectral density P/W over the band [f , f +W ], and zero otherwise. The
expression in (4.2), though sometimes called “the Shannon capacity,” applies specifically to the
channel capacity of the AWGN channel. Other channels may have a larger or smaller capacity,
depending on their particular characteristics.

The capacity C(P ,W ) in (4.2) represents the maximum number of bits per second that
can be reliably be transmitted through the channel (4.1), when x(t) is power- and bandwidth-
constrained. To increase the capacity, one can increase the bandwidth W , the power P , or both.
If the bandwidth is fixed and the transmitted power is increased, the capacity C(P ,W ) tends
to infinity, but it grows only logarithmically with power. On the other hand, if the power is
fixed and the bandwidth increases, the capacity will never exceed C(P ) = limW→∞ C(P ,W ) =

P log2 e/N0 bit/s. These two cases highlight the fact that when bandwidth is available, it is a good
idea to spread the power over the whole bandwidth rather than only using a small part of it.

We will now use the band-limited AWGN channel in (4.1) as the noisy channel in figure 1 (b)
to exemplify two fundamental principles regarding achievable rates of continuous- and discrete-
time channel models. First, there exist multiple discrete-time channels that correspond to the
same waveform channel, depending on the choices for the inner transmitter and receiver. These
discrete-time channels can have different capacities, of which the highest is equal to the capacity
of the underlying waveform channel. Second, there exist multiple transmission schemes for the
same discrete-time channel (see figure 1 (c)), depending on the choices for the outer transmitter
and receiver. These schemes can have different mutual informations, of which the highest is equal
to the channel capacity of the discrete-time channel.

To elaborate on the first point, we design a waveform x(t) from a sequence of complex numbers
xn as

x(t) =

n∑
i=1

xi sinc (t/Ts − i) , (4.3)

3“White” means in this context thatw(t) had autocorrelation function E[w(t)w∗(t′)] =N0δ(t− t′), where δ(t) is the Dirac
delta function and (·)∗ denotes complex conjugate.
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Figure 4. (a) The channel capacity of two discrete-time channels based on the same waveform channel. The highest of

these, which gives the capacity of (4.5), is equal to the capacity of the waveform channel (4.1) with coherent detection.

If a suboptimal noncoherent detector is applied, the capacity (in the shaded region) is less. (b) The mutual information

I(X;Y ) of the discrete-time channel (4.5) for selected continuous and discrete input distributions. The highest of these

represents the capacity of the channel.

where sinc(v) = sin(πv)/(πv) and Ts = 1/Rs = 1/W is the time between transmission of two
symbols xi. This is a linear modulator, which we use as the inner transmitter in figure 1 (b). We
consider two different inner receivers, the coherent and noncoherent receiver, which are both based
on the matched filter output

r(t) =
1

Ts

∫∞
−∞

y(τ) sinc

(
τ − t
Ts

)
dτ . (4.4)

In the coherent receiver, the output yi is the complex sampled filter output yi = r(iTs) for i=

1, . . . ,n, whereas in the noncoherent receiver, the phase information is lost and the output is
only the magnitude |r(iTs)|. It can be shown that the coherent receiver in combination with the
inner transmitter (4.3) and the AWGN waveform channel (4.1) generates the complex discrete-time
AWGN channel

yi = xi + wi, (4.5)

where wi are complex independent Gaussian random variables with zero mean and variance
σ2w = E[|wi|2] =N0/Ts =N0W . The variance of the transmitted symbol xi is σ2x = P for all i.

The capacities of these two discrete-time channels are shown in figure 4 (a), where the shaded
region indicates that the capacity of the noncoherent channel is known by means of upper and
lower bounds (see appendix) but not exactly. Despite the fact that they both communicate over
the same waveform channel, their capacities are quite different. Interestingly, the capacity of
the complex discrete-time AWGN channel is log2(1 + σ2x/σ

2
w) bit/symbol, which corresponds

to (1/Ts) log2(1 + σ2x/σ
2
w) bit/s. This is exactly the same expression as (4.2), which shows that

this combination of transmitter and receiver is indeed optimal for the continuous-time AWGN
channel. This optimality can be understood by means of Nyquist’s sampling theorem, which
states that any complex waveform band-limited to [f , f +W ] can be completely described by
its samples taken at rate W . Hence, if the waveform is time-limited to a large time interval T ,
then n=WT complex numbers are enough to completely describe the waveform. In other words,
there is a one-to-one correspondence between x(t), 0≤ t < T= nTs in figure 1 (b) and x1, . . . ,xn in
figure 1 (c), and analogously for y(t), which means that the continuous- and discrete-time AWGN
channels are equivalent and have the same capacity. For general channels, however, there exists
no such equivalence between continuous- and discrete-time models.

We now turn to the second principle, namely, that different transmission schemes for the same
channel have different maximum achievable rates. Using the discrete-time AWGN channel (4.5)
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Figure 5. General behaviour of upper and lower bounds on the capacity of fiber-optic channels. An upper bound on the

average transmit power is also shown, which confines the capacity to a triangular region (shaded). It is not known where

in this region the true capacity lies.

as a case study, the mutual information (3.13) and (3.14) is evaluated in figure 4 (b) for a variety of
continuous and discrete input distributions. For the finite input alphabetsX , which all correspond
to well-known digital modulation formats, the mutual information converges to log2 |X | as the
SNR increases, whereas the it grows unboundedly in the case of continuous input distributions.
The highest mutual information is at all SNRs obtained for the circular Gaussian distribution, and
this mutual information is indeed equal to the highest capacity in figure 4 (a). This shows that the
capacity-achieving input distribution for this discrete-time channel is circular Gaussian.

(b) The optical fibre channel
Since information theory is a mathematical science, it needs a mathematical description of the
channel. The most common model of lightwave propagation in an optical fibre is given by the
generalised nonlinear Schrödinger equation. It describes how the optical field U(t, z) changes with
time t and with the distance z from the fibre’s end, according to the partial differential equation

∂U(t, z)

∂z
=−αU(t, z)− j β2

2

∂2U(t, z)

∂t2
+ jγ|U(t, z)|2U(t, z) +W (t, z), (4.6)

where α, β2 and γ are fibre parameters that characterise the loss, dispersion and nonlinearity,
resp., and j =

√
−1. The term W (t, z) represents random noise, uncorrelated in t and z, which

is added in optical amplifiers and detectors. If the input to a fibre of length L is denoted by
X(t) =U(t, 0) and its output by Y (t) =U(t,L), then (4.6) can represent the noisy channel in
figures 1 (a) and 1 (b). The model has been demonstrated to be very accurate and it can be adapted
to a wide range of scenarios, including different amplification schemes and dual-polarisation
transmission. Unfortunately no explicit relation between X(t) and Y (t) is known. The equation
cannot be solved analytically except in a few special cases.

The capacity of the optical fibre channel is not known. This is a property that it shares with
most other real-world channels. The standard approach in such cases is to sandwich the capacity
between lower and upper bounds. If such bounds can be derived, and if they are reasonably close
to each other, then reliable conclusions can be drawn about the capacity, and the results often give
insights into how to design efficient transmission schemes for the channel in question.

Lower and upper bounds have different nature and are derived by different mathematical
techniques. A lower bound describes what is possible, whereas an upper bound describes what
is impossible. Any transmission scheme (i.e., any choice of transmitter and receiver in figure
1 (a)) gives a lower bound, if the error probability is sufficiently low. Other lower bounds can
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be obtained by studying other transmission schemes. For example, it is sufficient to study any
single pair of inner transmitter and receiver in figure 1 (b). Therefore there exists a rich literature
about lower bounds on the capacity of optical channels [4,7,11,12]. Without any ambitions to plot
any of these bounds exactly, which would confine the study to a specific system setup, the general
behaviour of these lower bounds is illustrated by the colored curves in figure 5. Even though most
of these lower bounds have a peak at some power, their envelope does not: at low transmit power,
when nonlinear distortion is negligible, it increases following the capacity of the AWGN channel,
and at higher power it flattens out. Capacity can never decrease with power, which is obvious
from the definition of P as a maximum power in § 2 (a).

In contrast, upper bounds cannot be based on isolated transmission schemes—they predict
that rates above a certain value can never be achieved for the considered channel, with neither
present methods nor any methods that may devised in the future. Thus, an upper bound derived
for a specific discrete-time channel is not necessarily valid for the underlying waveform channel.
Figure 5 includes the only upper bound on the capacity of the fibre-optic channel that we are
aware of, which was proved only recently [13]. In plain words, it states that the capacity is no
larger than the capacity of an AWGN channel (4.2) with the same amount of noise, the same
transmit power and the same bandwidth4. The presence of loss, dispersion and nonlinearity in
(4.6) cannot increase capacity.

There is a sizeable gap between the lower and upper bounds in figure 5. The gap increases
with power, which may give the impression that capacity might indeed be infinite in some cases.
Unfortunately, there is a third bound, which comes not from information theory but from physics:
If the transmit power is increased too high, the fibre will heat up and eventually melt. Since the
core of a modern optical fibre is very thin, of the order of 1 µm, this so-called fibre fuse [14] does not
require a huge amount of power. Hence, the capacity is not only bounded from above and below,
but also from the right. It is still an open question where in the gray region the true capacity lies.

The picture gets more complicated when one considers a whole network of connections rather
than a single point-to-point link. An optical network consists of a mesh of nodes connected with
fibres. Each fibre carries many parallel signals on different wavelengths, which interfere with
each other during propagation. The connections are routed from source to destination via several
intermediate nodes, where the signals are separated in wavelength-selective switches. This setup
creates a topology that connects geographically separated nodes with each other in the same
configurable network.

The maximum achievable rates in optical networks have been analyzed only under certain
simplifying assumptions. The most common approach is to consider the capacity of a single
point-to-point link in the network, assuming certain behavioural models for the transmission on
the interfering channels [12,15,16]. Another approach, which is better aligned with conventional
information theory, is to study the set of rates that can be simultaneously achieved over a set of
interfering connections in the network [17–19].

5. Architectural implications of information theory
Although we have so far argued that information theory is an indispensable tool for the analysis
of communication systems, we now argue that it is also eminently suitable for system design. By
understanding the fundamental limits associated with any given transmission strategy, system
builders can allocate development effort appropriately, converging to a design with the most
suitable trade-off between data transmission performance and implementation complexity in any
given application. Importantly, by understanding fundamental limits, system designers “know
when to stop;” they understand the futility of attempting to improve systems beyond the best
achievable performance.

Of course, as indicated in § 4 (b), our information-theoretic understanding of the fibre-
optic channel is far from complete, and much further investigation needs to be done. As our
4Care must be exercised when defining the bandwidth for a nonlinear system, as it may vary with the propagation distance,
see § 2 (a)
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understanding of the fundamental limits (and the transmission schemes that approach them)
matures, we expect—or, more accurately, we speculate—that new approaches for information
transmission over the fibre-optic channel will emerge.

At present, with the notable exception of soliton systems (which exploit the specific
peculiarities of the nonlinear Schrödinger equation [20]), the design of transmission strategies for
the fibre-optic channel have largely been guided by our understanding of transmission schemes
for the AWGN channel. Widely used linear matched-filter receivers—which are known to provide
a sufficient statistic for detection at the output of the AWGN channel—are not necessarily the
optimal processor at the output of a nonlinear channel. In AWGN channels, capturing and
processing energy outside the frequency band of the transmitted signal is useless; in fibre
channels, due to the nonlinearity, such processing may be helpful as out-of-band signals are
correlated with the in-band signal of interest.

Information theory is expected to help system designers understand the impact on achievable
transmission rates of replacing expensive optical components and devices with less efficient
and less expensive alternatives. In the terminology of § 2 (b), such devices are often part of the
“inner transmitter” and “inner receiver.” It is often the case that an appropriate adjustment
to the “outer transmitter” and “outer receiver”—an improved error-correcting code, say—can
overcome or partially offset the additional system impairments created by use of a less-than-ideal
optical component. We would expect that the potentially significant cost reductions that may be
achievable using this approach will drive research and development in this direction.

WDM creates user subchannels centered at different carrier frequencies (wavelengths),
analogously to the method by which the signals from different radio or television broadcasters
are kept separated. Unfortunately, this linear multiplexing technique inevitably suffers from
interference (crosstalk) between the channels due to channel nonlinearity, which appears to limit
the data transmission rates that can be achieved in such systems. A recently proposed nonlinear
frequency division multiplexing (NFDM) approach [21–24] exploits the properties of the so-called
nonlinear Fourier transform, to decompose the ideal nonlinear Schrödinger channel into parallel
noninteracting subchannels, much as the ordinary (linear) Fourier transform decomposes a linear
time-invariant channel into noninteracting subchannels. (A single-channel version of the idea of
modulating information in this manner was termed “eigenvalue communication” in [25].) At least
in principle, it may be possible to multiplex the signals of different users in different bands in the
nonlinear spectral domain. In contrast with WDM systems, in which crosstalk occurs even in ideal
noise-free systems, since nonlinearly multiplexed subchannels are completely noninteracting in
the absence of noise, we speculate that the amount of interaction between channels will be smaller
than in WDM systems in the low-noise regime. At present this idea is far from practical, since
there are no known physical devices (apart from synthesis by digital algorithms) that can achieve
such multiplexing with the same convenience as the linear superposition of multiple modulated
laser sources operating at different wavelengths. Furthermore, deviations from ideality (in
particular, loss, noise, imperfections in waveform synthesis) will have a deleterious effect that
is at present only poorly understood. Certainly, further investigation of NFDM is warranted.

In applying the results of information theory, system designers must be cautious to ensure
that all constraints and costs are reflected in the information-theoretic model. For example, the
usual analysis of the capacity of the AWGN channel considers only the cost of the transmitter
power P and the bandwidth W , neglecting, for example, the power expended in the operation
of the receiver. While such a model is certainly appropriate in situations (like long-distance
wireless communication) where the transmitter power is the dominant component in the total
system power budget, this may not be the regime of greatest interest in long-haul optical
communications, where significant power is consumed in the operation of the receiver. To
operate near the channel capacity requires long codes and complicated power-hungry decoding
algorithms; thus, as suggested by recent information-theoretic analyses [26], when minimising
total power consumption it may be beneficial to operate a system at some gap from the channel
capacity.
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Multiuser information theory, as described briefly in § 2 (c), is also likely to play an important
role in the design of future optical communication systems, as it studies techniques by which
different users can coordinate and cooperate to achieve certain communications objectives. In K-
user linear multiuser interference channels, the recently proposed concept of interference alignment
[27] is an intriguing concept with a potential for application to optical-fibre systems. Here each
user partitions its set of available degrees-of-freedom into two bins: one bin to collect the signal
of interest, and one bin to collect the interference. Transmissions are carefully coordinated so that
all K − 1 signals not wanted by any particular receiver are aligned to fall within the second bin,
while the desired signal falls into the first bin. In the context of the fibre-optic channel, one such
alignment strategy—termed “interference focusing”—has been proposed in [6,18,19].

As optical fibre system designs have increasingly come to afford ever more sophisticated
digital signal-processing and error-correcting decoding algorithms in the receiver, design
choices made previously to simplify processing are being revisited. A primary example is the
development of single-mode fibre, which greatly simplifies equalisation and signal processing
in long-haul systems. On the other hand, multimode or few-mode fibre gives the possibility of
achieving a substantial enhancement in information-carrying capacity, at the expense of devices
that allow for coupling of different signals simultaneously into several modes at the transmitter,
and detecting and processing these modes at the receiver. Unlike the similar conventional
linear multiantenna transmission systems used in wireless communications, nonlinearity is
expected to be a dominant consideration in such multimode systems. Establishing fundamental
information-theoretic limits on such systems remains an open problem.

6. Conclusion
Information theory builds upon mathematical models of communication systems to establish
fundamental limits on their information-carrying capability. Information theory guides system
designers to find efficient strategies with which to exploit a given set of transmission resources.
Even though the exact channel capacity, which is the maximum achievable data rate for a given
channel, is not known exactly, bounds and estimates are available, which give important insights
into system designs. By optimising the available resources to maximise the capacity of the
channel, or bounds thereon, designers can “future proof” their systems: even if they choose to
operate these systems far from fundamental limits, they know that sophisticated coding and
signal processing techniques in principle exist that can move the operating point to a more
efficient regime. While models of fibre-optic channels have so far defied exact information-
theoretic analyses, substantial progress continues to be made, and the insights obtained are likely
to inform system designs for many years to come.

Funding statement. The research was supported by the Swedish Research Council under grants no. 2012-
5280 and 2013-5271, the Engineering and Physical Sciences Research Council (EPSRC) through the project
UNLOC (EP/J017582/1) and the Natural Sciences and Engineering Research Council of Canada.

A. Mathematical toolbox
This appendix provides mathematical expressions for some of the capacity estimates and bounds
that are illustrated in this paper.

Figure 2 is based on the binary symmetric channel with crossover probability p, which is
a discrete-time memoryless channel with input and output alphabets X =Y = {0, 1} and the
channel law pY |X(y | x) = p if y 6= x. In [28], it is estimated that a code of length n can have as
many asM∗ codewords and still achieve an error probability ε over this channel, with p∈ (0, 1/2),
where

log2M
∗ = nC(p)−

√
nV (p)Q−1(ε) +

1

2
log2 n+O(1)

in which Q(x) = (1/2) erfc(x/
√

2) is the standard Gaussian tail Q function, C(p) = 1 + p log2 p+

(1− p) log2(1− p) is the channel capacity and V (p) = p(1− p)(log2(1/p− 1))2 is the so-called
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channel dispersion (not to be confused with the fiber dispersion in § 4 (b)). The curves of figure 2
were obtained for p= 0.11 by converting M∗ to a rate and setting the O(1) term to zero. The
maximum achievable rate as a function of n and ε for other channels behaves qualitatively the
same, displaying the same threshold phenomenon.

The noncoherent AWGN capacity in figure 4 (a) was characterised by the upper bound in [29,
Eq. (42)] and the lower bound in [30, Eq. (13)]. These bounds are not very tight. Stronger bounds
exist but are in general more complex to evaluate [29,30]. The continuous input distributions in
figure 4 (b) are a complex circular Gaussian distribution and a complex uniform distributions over
a square. Their mutual informations were calculated for the real and imaginary parts separately
as I(X;Y ) = h(Y )− h(Y |X), see (3.14), where h(Y ) was computed by numerically integrating
(3.11) and h(Y |X) = (1/2) log2 πeσ

2
w . The discrete distributions are 16-ary quadrature amplitude

modulation (QAM), quaternary phase shift keying (QPSK), and on–off keying (OOK). In all three
cases, the constellations are scaled to the desired power and probabilities are uniform on the
constellation points. The mutual information of these constellations was calculated by means of
Gauss–Hermite quadratures according to [31, Sec. 4.5].

References
1. Hecht J. 2004 City of Light: The Story of Fiber Optics. New York, NY: Oxford University Press,

2nd edition.
2. Shannon CE. 1948 A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–

423/623–656.
3. Kahn JM, Ho KP. 2004 Spectral efficiency limits and modulation/detection techniques for

DWDM systems. IEEE J. Sel. Topics Quantum Electron. 10, 259–272.
4. Agrell E, Alvarado A, Durisi G, Karlsson M. 2014 Capacity of a nonlinear optical channel with

finite memory. J. Lightw. Technol. 32, 2862–2876.
5. Agrell E. 2015 Conditions for a monotonic channel capacity. IEEE Trans. Commun. 63, 738–748.
6. Ghozlan H, Kramer G. 2015 Models and information rates for multiuser optical fiber channels

with nonlinearity and dispersion. http://arxiv.org/abs/1503.03124
7. Essiambre RJ, Kramer G, Winzer PJ, Foschini GJ, Goebel B. 2010 Capacity limits of optical fiber

networks. J. Lightw. Technol. 28, 662–701.
8. Costello DJ Jr, Forney GD Jr. 2007 Channel coding: The road to channel capacity. Proceedings

of the IEEE 95, 1150–1177.
9. El Gamal A, Kim YH. 2011 Network Information Theory. Cambridge, UK: Cambridge University

Press.
10. Verdú S, Han TS. 1994 A general formula for channel capacity. IEEE Trans. Inf. Theory 40,

1147–1157.
11. Mitra PP, Stark JB. 2001 Nonlinear limits to the information capacity of optical fibre

communications. Nature 411, 1027–1030.
12. Secondini M, Forestieri E, Prati G. 2013 Achievable information rate in nonlinear WDM fiber-

optic systems with arbitrary modulation formats and dispersion maps. J. Lightw. Technol. 31,
3839–3852.

13. Kramer G, Yousefi MI, Kschischang FR. 2015 Upper bound on the capacity of a cascade of
nonlinear and noisy channels. In Proc. IEEE Inf. Theory Workshop (ITW). Jerusalem, Israel.

14. Kashyap R. 2013 The fiber fuse—from a curious effect to a critical issue: A 25th year
retrospective. Opt. Exp. 21, 6422–6441.

15. Agrell E, Karlsson M. 2013 WDM channel capacity and its dependence on multichannel
adaptation models. In Proc. Opt. Fiber Commun. Conf. (OFC), p. OTu3B.4. Anaheim, CA.

16. Agrell E, Karlsson M. 2015 Influence of behavioral models on multiuser channel capacity. J.
Lightw. Technol. 33, 3507–3515.

17. Taghavi MH, Papen GC, Siegel PH. 2006 On the multiuser capacity of WDM in a nonlinear
optical fiber: Coherent communication. IEEE Trans. Inf. Theory 52, 5008–5022.

18. Ghozlan H, Kramer G. 2010 Interference focusing for mitigating cross-phase modulation in a
simplified optical fiber model. In Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 2033–2037. Austin,
TX.

19. Ghozlan H, Kramer G. 2011 Interference focusing for simplified optical fiber models with
dispersion. In Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 376–379. Saint Petersburg, Russia.



18

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

374:
20140438

..................................................................

20. Mollenauer LF, Gordon JP. 2006 Solitons in Optical Fibers: Fundamentals and Applications.
Burlington, MA: Elsevier Academic Press.

21. Yousefi MI, Kschischang FR. 2014 Information transmission using the nonlinear Fourier
transform: Parts I–III. IEEE Trans. Inf. Theory 60, 4312–4369.

22. Meron E. 2012 Aspects of communications in the optical fiber channel. Ph.D. dissertation, Tel Aviv
University, Faculty of Engineering, Israel.

23. Prilepsky JE, Derevyanko SA, Turitsyn SK. 2013 Nonlinear spectral management:
Linearization of the lossless fiber channel. Opt. Exp. 21, 24344–24367.

24. Prilepsky JE, Derevyanko SA, Blow KJ, Gabitov I, Turitsyn SK. 2014 Nonlinear inverse
synthesis and eigenvalue division multiplexing in optical fiber channels. Phys. Rev. Lett. 113,
013901 1–5.

25. Hasegawa A, Nyu T. 1993 Eigenvalue communication. J. Lightw. Technol. 11, 395–399.
26. Grover P, Woyach KA, Sahai A. 2011 Towards a communication-theoretic understanding of

system-level power consumption. IEEE J. Selected Areas Commun. 29, 1744–1755.
27. Cadambe VR, Jafar SA. 2008 Interference alignment and degrees of freedom of the k-user

interference channel. IEEE Trans. Inf. Theory 54, 3425–3441.
28. Polyanskiy Y, Poor HV, Verdú S. 2010 Channel coding rate in the finite blocklength regime.

IEEE Trans. Inf. Theory 56, 2307–2359.
29. Katz M, Shamai (Shitz) S. 2004 On the capacity-achieving distribution of the discrete-time

noncoherent and partially coherent AWGN channels. IEEE Trans. Inf. Theory 50, 2257–2270.
30. Durisi G. 2012 On the capacity of the block-memoryless phase-noise channel. IEEE Commun.

Lett. 16, 1157–1160.
31. Szczecinski L, Alvarado A. 2015 Bit-Interleaved Coded Modulation: Fundamentals, Analysis and

Design. Chichester, UK: John Wiley & Sons.


	1 Introduction
	2 Channel capacity: the maximum data rate
	(a) Codebook, capacity and channel
	(b) Discrete-time channel models
	(c) Multiuser information theory

	3 The capacity of discrete-time channels
	(a) Memoryless channels
	(b) Typical sets
	(c) Mutual information and channel capacity

	4 The capacity of waveform channels
	(a) The additive white Gaussian noise channel
	(b) The optical fibre channel

	5 Architectural implications of information theory
	6 Conclusion
	A Mathematical toolbox
	References

